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Abstract In this paper, we reveal the deep relation between Stepanov and piecewise continu-
ous almost periodic functions and apply it to the studyof almost periodic impulsive differential
equations. Under the quasi-uniform continuity condition, the equivalence of Stepanov and
piecewise continuous almost periodic functions is firstly established, which provides both a
generalization of Bochner’s theorem and a powerful tool to investigate piecewise continuous
almost periodic functions. As applications, themodule containment for piecewise continuous
almost periodic solutions to linear impulsive differential equations is studied.
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1 Introduction

Almost periodic functions, which are more often encountered in the study of various
phenomena than the rather special periodic ones, are first introduced by H. Bohr and sub-
stantially studied by S. Bochner, H. Weyl, A. Besicovitch, J. Favard, J. von Neumann,
V.V. Stepanov, N.N. Bogolyubov, and others [35]. The theory of almost periodic functions
has many important applications in problems of ordinary differential equations, dynamical
systems, stability theory and partial differential equations etc. A vast amount of research
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has been directed toward studying these phenomena. See [24,31,35,44,60] for surveys and
[4,12,13,15,21,25,30,32,36–43,50,52,57] et al. for recent developments.

There are many generalizations of Bohr’s almost periodic functions and we refer the read-
ers to [11] for details. One of the generalization is given by Stepanov [56], which successes
in removing the continuity restrictions, and characterises the almost periodicity of a locally
integrable function f by requiring the set

T ( f, ε) :=
{
τ ∈ R; sup

t∈R

∫ t+1

t
| f (s + τ) − f (s)|ds < ε

}

to be relatively dense for all ε > 0. Bochner [14] shows that by using a construction, a
Stepanov function can be reduced to a Bohr function so that properties of Stepanov functions
could be derived from the corresponding ones of Bohr functions. Another important general-
ization considered in this paper is the class of piecewise continuous almost periodic (p.c.a.p.,
for short) functions first introduced in [26], which have discontinuities of the first kind only
and satisfy the quasi-uniform continuous and almost periodic conditions (Definition 2.13).
The class of p.c.a.p. functions characterises an important and complicated kind of oscillations
in the study of impulsive differential equations which have a wide scope of applications, not
only in mathematics, but also in various fields of science and technology. Many biological
phenomena involving thresholds and optimal control models in economics exhibit impulsive
effects. See [1,3,5–7,10,27,28,33,34,45–48,53–55,59] et al. and the references therein for
the vast amount of research that has been directed toward the study of impulsive differential
equations.

By using an ingenious method, Bochner proved an important theorem on the equivalence
of Stepanov and Bohr almost periodic functions under the uniform continuity condition (The-
orem 2.8), which provides new characterizations for both of the two classes of functions.
The remark in [46, p. 400] shows that all bounded p.c.a.p. functions (Definition 2.13) are
Stepanov almost periodic, which indicates a possible way to investigate impulsive differential
equations. However, the essential condition under which Stepanov and piecewise continuous
almost periodic functions are equivalent has not been discovered and the module contain-
ment for p.c.a.p. solutions to impulsive differential equations has not been studied. So, the
purposes of this paper are to give a generalization of Bochner’s theorem for the two classes
of functions mentioned above and apply it to the study of impulsive differential equations,
which are of great interest.We think that the profound equivalence of Stepanov and piecewise
continuous almost periodic functions under the condition of quasi-uniform continuity (Theo-
rem 3.2) provides not only a good understanding of the complicated p.c.a.p. motions, but also
a powerful tool to study various properties of p.c.a.p. functions including Fourier analysis
and module containment. Our Theorem 3.2 is a generalization of Bochner’s important result
(Theorem 2.8) in the sense that Bohr almost periodic functions and the uniform continu-
ity condition are extended to p.c.a.p. functions and the quasi-uniform continuity condition,
respectively. Moreover, the module containment which serves as one of the few verifiable
spectral relation also helps a lot to understand the complexity of p.c.a.p. motions. It is shown
that Theorem 3.2 can be applied to investigate the module containment for impulsive dif-
ferential equations. The idea is to view p.c.a.p. functions as Stepanov almost periodic ones,
then vector-valued Bohr almost periodic ones, so that Favard’s module containment theorem
is applicable.

The module mod( f ), defined to be the smallest additive group containing all the frequen-
cies of a Bohr almost periodic function f , reflects the complexity of motions. For instance,
f is 2π/ω-periodic ⇔ mod( f ) ⊂ ωZ and f is constant ⇔ mod( f ) = {0}. Following the
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pioneer work of Favard [22,23], many works have been devoted to this topic. For module
containment properties, see [16–18,24,35,49,57] et al. for classical results on Bohr almost
periodic functions, [2,61,62] et al. for hybrid systems and [51] for almost automorphic
functions. In [29], the authors propose an improvement of Favard’s theorem concerning the
existence of almost periodic solutions to the following differential equations in R

d

x ′ = A(t)x + f (t) (1)

whose coefficients A and f are almost periodic too, but this dose not really improve Favard’s
classical theory as pointed out by Tarallo in [58], which proves that the separation condition
on solutions with norm in the sense of Bohr and Stepanov are equivalent. Furthermore, [9]
also proves an interesting result that the Stepanov and uniformly almost periodic sequences
coincide. However, the situation is different if impulse effect is considered in (1). In fact,
Stepanov and piecewise continuous almost periodic functions are naturally related by the
quasi-uniform continuity condition, and Stepanov almost periodic functions can indeed help
a lot in the study of impulsive differential equations. By a completely new approach, in this
paper we shall give a generalization of Bochner’s theorem (Theorem 2.8) and apply it to
study the following linear impulsive differential equations in R

d

{
x ′ = A(t)x + h(t), t �= τn,

x(τ+
n ) − x(τn) = B(n)x(τn) + b(n), n ∈ Z,

(2)

where A and h are respectively Bohr almost periodicmatrix-valued and piecewise continuous
almost periodic vector-valued functions, B and b are respectively almost periodic matrix-
valued and vector-valued sequences, and {τ j } j∈Z ⊂ R is a Wexler sequence.

This paper is organized as follows. Section 1 is an introduction and Sect. 2 introduces
basic notations and necessary knowledge. In Sect. 3 we give the generalization of Bochner’s
theorem for Stepanov and piecewise continuous almost periodic functions. In Sect. 4 we
establish the module containment theorem for Stepanov almost periodic functions (Theo-
rem 4.7) and reveal the deep relation between the normal sequences in the sense of Bohr
and Stepanov (Theorem 4.10). In Sect. 5 we make use of the generalization of Bochner’s
theorem to study the module of p.c.a.p. solutions to the linear impulsive differential equation
(2) (Theorem 5.2).

2 Preliminaries

Let G = R or Z, and (X, | · |) be a Banach space over R or C. A two-sided sequence in X is
a function {un}n∈Z = {u(n)}n∈Z from Z to X . In the following both notations will be used.

Definition 2.1 [19, p. 45], [35, p. 1], [46, p. 183] A continuous function f : G → X is
called Bohr almost periodic if given any ε > 0, the ε-translation set (or ε-almost periodic
set) of f ,

T ( f, ε) := {τ ∈ G; | f (t + τ) − f (t)| < ε,∀t ∈ G}
is relatively dense, that is, there is a positive number l = l(ε) such that [a, a+l]∩T ( f, ε) �= ∅
for all a ∈ G.

Denote by AP(G, X) the set of all Bohr almost periodic functions fromG to X . Equipped
with the uniform convergence norm ‖ f ‖ = supt∈G | f (t)|, AP(G, X) is a Banach space. For
each f ∈ AP(G, X), the mean value
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M{ f } :=
{
limT→∞ 1

T

∫ a+T
a f (t)dt, if G = R,

limN→∞ 1
N

∑a+N−1
n=a f (n), if G = Z,

exists uniformly with respect to a ∈ G. The set

� f = {λk} :=
{{

λ ∈ R; a( f, λ) = M{ f e−iλ·} �= 0
}
, if G = R,{

μ̃ ∈ R/2πZ; a( f, μ̃) = M{ f e−iμ·} �= 0, μ ∈ μ̃
}
, if G = Z,

called the spectrum of f , is at most countable. Denoting ak = a( f, λk), we associate the
Fourier series

f (t) ∼
∑
k

ake
iλk t , t ∈ G,

where ei s̃n := eisn , n ∈ Z, for G = Z. The elements ak ∈ X and λk are called the Fourier
coefficients and exponents of f , respectively. The additive group

mod( f ) :=
{

n∑
k=1

mkλk; λk ∈ � f ,mk ∈ Z, n ∈ Z+

}

is called the module of f .
The followingFavard’smodule containment theorem is a powerful tool to study themodule

of Bohr almost periodic functions.

Theorem 2.2 [8, p. 34], [24, p. 61], [35, pp. 42–44] The following statements are equivalent
for f and g ∈ AP(R, X).

(i) mod( f ) ⊃ mod(g).
(ii) For every ε > 0 there is a δ > 0 so that T ( f, δ) ⊂ T (g, ε).
(iii) Tα f exists implies Tαg exists (any sense).
(iv) Tα f = f implies Tαg = g (any sense).
(v) Tα f = f implies there is α′ ⊂ α so that Tα′g = g (any sense).

Remark 2.3 The operator Tα f = g is adopt here to ease the notation for taking limits, which
means that g(t) = limk→∞ f (t + αk), t ∈ G, α = {αk}∞k=1 ⊂ G, and is written only when
the limit exists. The mode of convergence in Theorem 2.2 includes those pointwise, uniform
and uniform on compact intervals and it will be specified at each use of the symbol [24, p. 3].
The mode of convergence in the sense of Stepanov is proven in Theorem 4.10. The symbol
β ⊂ α means that β = {βk}∞k=1 is a subsequence of α = {αk}∞k=1.

Remark 2.4 Except for the Banach space X , the module containment theorem above is the
same to that in [24, p. 61]. One can check that the proof of Theorem 4.5 in [24, p. 61] indeed
remains true when X is a Banach space. In addition, results in [8, p. 34] and [35, pp. 42–44]
are stated for Bohr almost periodic functions taking values in Banach spaces and metric
spaces, respectively.

Set

span(E) = {n1β1 + n2β2 + · · · + nkβk; k ∈ Z+, β j ∈ E, n j ∈ Z, 1 ≤ j ≤ k}
for E ⊂ R or E ⊂ R/2πZ. The following generalization of Favard’s module containment
theorem, which connects the continuous and discrete, is crucial in the study of the mod-
ule of almost periodic solutions to both hybrid and impulsive systems. See [62] for more
applications.

123



J Dyn Diff Equat (2019) 31:1955–1985 1959

Theorem 2.5 [62] Assume that η > 0 is fixed and f , g ∈ AP(R, X), then the following
statements are equivalent.

(i) mod(g) ⊂ span
(
mod( f ) ∪ { 2π

η
}).

(ii) For any sequence α′ ⊂ ηZ, Tα′ f = f implies the existence of a subsequence α ⊂ α′
with Tαg = g (any sense).

Theorem 2.6 [62] The following two statements are equivalent for u and v ∈ AP(Z, X).

(i) mod(u) ⊃ mod(v).
(ii) For any sequence α′ ⊂ Z, Tα′ f = f implies the existence of a subsequence α ⊂ α′ with

Tαg = g (any sense).

Next we introduce the definition and basic properties of Stepanov almost periodic func-
tions.

Definition 2.7 [8, p. 77], [19, p. 173] A function f ∈ L p
loc(R, X), p ≥ 1, is called S p-almost

periodic if for each ε > 0, the ε-translation set (or ε-almost periodic set) of f ,

T ( f, ε) :=
⎧⎨
⎩τ ∈ R; sup

t∈R

[∫ 1

0
| f (t + τ + s) − f (t + s)|pds

] 1
p

< ε

⎫⎬
⎭

is relatively dense.

Denote by S p(R, X) the Banach space of all Stepanov almost periodic functions (of order
p) with the norm

‖ f ‖S p = sup
t∈R

[∫ t+1

t
| f (s)|pds

] 1
p

.

If p = 1, we write S(R, X) instead of S1(R, X) for simplicity.
Clearly, Bohr almost periodic functions are Stepanov almost periodic. Their relationship

was established by Bochner as the following important result which gives new characteriza-
tions for both of the two classes of functions.

Theorem 2.8 (Bochner [8, p. 78], [19, p. 174], [35, p. 34]) If f ∈ S p(R, X) is uniformly
continuous, then f ∈ AP(R, X).

A Fourier series can be constructed for a Stepanov almost periodic function.

Theorem 2.9 [8, p. 79], [35, p. 35] Let f ∈ S p(R, X). The formal Fourier expansion then
holds

f (t) ∼
∑
k

ake
iλk t , (3)

where

ak = lim
T→∞

1

T

∫ a+T

a
f (t)e−iλk t dt

uniformly with respect to a ∈ R.
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Remark 2.10 The expression (3) does not imply any convergence. However, from Bochner’s
construction and the approximation theorem for Bohr almost periodic functions it follows
that for every ε > 0 there is a trigonometric polynomial

Pε(t) =
Nε∑
k=1

bk,εe
iλk t , bk,ε ∈ X,

such that ‖Pε − f ‖S p < ε.

We begin with characterizing the discontinuities before giving the definition of p.c.a.p.
functions. A sequence {τ j } j∈Z ⊂ R will be called admissible if lim j→±∞ τ j = ±∞ and
τ j < τ j+1 for all j ∈ Z. Let τ kj = τ j+k − τ j for j , k ∈ Z.

Definition 2.11 [46, p. 195] An admissible sequence {τ j } j∈Z is called a Wexler sequence if
it satisfies the separation condition inf j∈Z τ 1j > 0, and the family of derived sequences

{{τ kj }} := {{τ kj } j∈Z}k∈Z
is equi-potentially (or uniformly, see e.g. [1,5]) almost periodic (e.p.a.p., for short), that is,
for each ε > 0 the common ε-translation set of all the sequences {{τ kj }},

T ({{τ kj }}, ε) = {
p ∈ Z; |τ kj+p − τ kj | < ε for all j, k ∈ Z

}
is relatively dense.

Lemma 2.12 [46, p. 377] Suppose that {τ j } j∈Z ⊂ R is an admissible sequence and the
derived family {{τ kj }} is e.p.a.p. Then there exist unique ξ ∈ R and ζ ∈ AP(Z, R) such that

τn = ξn + ζ(n), n ∈ Z.

This lemma illustrates the condition imposed on the sequence {τ j } j∈Z containing the discon-
tinuities of a p.c.a.p. function. Since {τ j } j∈Z is admissible, ξ > 0 and ξ +ζ(n+1)−ζ(n) > 0
for all n ∈ Z.

Let PC(R, X) be the set of all piecewise continuous functions h : R → X which have
discontinuities of the first kind (both h(t +0) and h(t −0) exist) only at the points of a subset
of an admissible sequence {τ j = τ j (h)} j∈Z ⊂ R and are continuous from the left at {τ j } j∈Z,
i.e. limt→τ j−0 h(t) = h(τ j ) for all j ∈ Z.

Note that different functions in PC(R, X) do not necessarily have the same points of
discontinuities. Since the empty set is a subset of every admissible sequence, PC(R, X)

contains all continuous functions.

Definition 2.13 [46, p. 201]A function h ∈ PC(R, X) is called piecewise continuous almost
periodic (p.c.a.p.) if the following conditions hold:

(i) There is an admissible sequence {τ j } j∈Z ⊂ R which contains possible discontinuities
of h and has an e.p.a.p. family of derived sequences {{τ kj }}.

(ii) For each ε > 0 there exists a δ = δ(ε) > 0 such that |h(s) − h(t)| < ε whenever s,
t ∈ (τ j , τ j+1] for some j ∈ Z and |s − t | < δ.

(iii) For each ε > 0, the ε-translation set (or ε-almost periodic set) of h,

T (h, ε) := {τ ∈ R; |h(t + τ) − h(t)| < ε for all t ∈ R

such that |t − τ j | > ε, j ∈ Z}
is relatively dense.

Let PCAP(R, X) be the set of all p.c.a.p. functions.
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3 A Generalization of Bochner’s Theorem

In this section, we prove the deep equivalent relation between Stepanov and piecewise contin-
uous almost periodic functions under the quasi-uniform continuity condition. Consequently,
it will be natural to derive properties of p.c.a.p. functions and solutions to impulsive dif-
ferential equations from the corresponding ones of Stepanov almost periodic functions, for
instance, properties of Fourier series and module containment.

Definition 3.1 A function h ∈ PC(R, X) which has discontinuities at the points of a subset
of an admissible sequence {τ j } j∈Z ⊂ R, is said to be quasi-uniformly continuous on R, if for
each ε > 0 there exists a δ = δ(ε) > 0 such that |h(s)−h(t)| < ε whenever s, t ∈ (τ j , τ j+1]
for some j ∈ Z and |s − t | < δ.

Let

PUCW (R, X) = {h ∈ PC(R, X); h is quasi-uniformly continuous on R and

has discontinuities at the points of a subset of a Wexler

sequence},
PCAPW (R, X) = {h ∈ PCAP(R, X); h has discontinuities at the points of

a subset of a Wexler sequence}.
We shall prove the following generalization of Bochner’s theorem.

Theorem 3.2 S p(R, X) ∩ PUCW (R, X) = PCAPW (R, X) for any p ≥ 1.

To show this, we need three lemmas. Define for every h ∈ PC(R, X) a continuous
function

hσ (t) = 1

σ

∫ t+σ

t
h(ν)dν, t ∈ R,

where σ > 0, and a quantity

‖h‖ = sup
t∈R

|h(t)| = sup
j∈Z

sup
τ j<t≤τ j+1

|h(t)|,

which may be infinite.

Lemma 3.3 Suppose that h ∈ PCAP(R, X) has discontinuities at the points of a subset of
a Wexler sequence {τ j } j∈Z ⊂ R, then h is bounded on R.

Proof Let θ = inf j∈Z τ 1j . By (ii) of Definition 2.13, for each ε > 0 there exists a δ = δ(ε),
0 < δ < θ/3 such that |h(s) − h(t)| < ε whenever s, t ∈ (τ j , τ j+1] for some j ∈ Z and
|s − t | < δ. Let an inclusion length for T (h, δ) be l and M := supt∈[0,l] |h(t)|. We shall
consider three cases of the points in R.

Case 1 |t − τ j | > δ for all j ∈ Z. From (iii) of Definition 2.13, there exists an r ∈
[−t,−t + l] ∩ T (h, δ). Hence t + r ∈ [0, l] and

|h(t)| ≤ |h(t + r) − h(t)| + |h(t + r)|
< δ + M.

Case 2 τk − δ ≤ t ≤ τk for some k ∈ Z. Since δ < θ/3, there exists an s such that

τk−1 + δ < τk − 2δ < s < τk − δ,

0 < t − s < 2δ.
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Let r ∈ [−s,−s + l] ∩ T (h, δ). By using the inequalities in Case 1 for h(s) it follows that

|h(t)| ≤
∣∣∣∣h(t) − h

(
t − t − s

2

)∣∣∣∣ +
∣∣∣∣h

(
t − t − s

2

)
− h(s)

∣∣∣∣ + |h(s)|
< 2ε + δ + M.

Case 3 τk < t ≤ τk + δ for some k ∈ Z. Since δ < θ/3 there exists an s such that

τk + δ < s < t + δ ≤ τk + 2δ < τk+1 − δ.

Let r ∈ [−s,−s + l] ∩ T (h, δ). A direct calculation shows that

|h(t)| ≤ |h(t) − h(s)| + |h(s)|
< ε + δ + M.

��

Remark 3.4 Note that p.c.a.p. functions are not necessarily boundedonR. See the supplement
written by S. I. Trofimchuk in [46, p. 399] for an example of an unbounded p.c.a.p. function
which has discontinuities at the points of a sequence with finite limit points. Since Theorem
75 on the boundedness of p.c.a.p. functions in [46, p. 203] does not assume the separation
condition inf j∈Z τ 1j > 0, its proof is not sufficient. We provide a correct one.

Lemma 3.5 Suppose that h ∈ PUCW (R, X) has discontinuities at the points of a subset
of a Wexler sequence {τ j } j∈Z ⊂ R, and θ = inf j∈Z τ 1j . Then given any ε > 0, there exists a
δ, 0 < δ < min{ε, θ/2} such that |hσ (t) − h(t)| < ε for all σ ∈ R, 0 < σ < δ and t ∈ R,
|t − τ j | > ε, j ∈ Z.

Proof Since h is quasi-uniformly continuous on R, for each ε, 0 < ε < θ/2, there exists a
δ = δ(ε), 0 < δ < ε, such that |h(s) − h(t)| < ε whenever s, t ∈ (τ j , τ j+1] for some j ∈ Z

and |s − t | < δ. Let σ ∈ (0, δ) and t ∈ R with τk + ε < t < τk+1 − ε for some k ∈ Z.
Therefore,

τk + ε + σ < t + σ < τk+1 − ε + σ < τk+1

and

|hσ (t) − h(t)| =
∣∣∣∣ 1σ

∫ t+σ

t
[h(ν) − h(t)]dν

∣∣∣∣
≤ 1

σ

∫ t+σ

t
|h(ν) − h(t)|dν < ε.

For any ε′ > 0 choose an ε so small that 0 < ε < min{ε′, θ/2}. It follows that there is a
δ, 0 < δ < ε, with |hσ (t) − h(t)| < ε for all σ ∈ R, 0 < σ < δ and t ∈ R, |t − τ j | > ε,
j ∈ Z. Consequently, if t ∈ R, |t − τ j | > ε′, j ∈ Z, then |t − τ j | > ε, j ∈ Z and
|hσ (t) − h(t)| < ε < ε′. ��

Lemma 3.6 Suppose that h ∈ PUCW (R, X) has discontinuities at the points of a subset
of a Wexler sequence {τ j } j∈Z ⊂ R. If for each ε > 0 there exists an fε ∈ AP(R, X) such
that | fε(t) − h(t)| < ε for all t ∈ R, |t − τ j | > ε, j ∈ Z, then h ∈ PCAPW (R, X).
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Proof It suffices to prove that h satisfies (iii) of Definition 2.13. Let θ = inf j∈Z τ 1j and ε be
a number with 0 < ε < θ/6. We shall show that T (h, 3ε) is relatively dense. Consider the
following inequalities in (r, q) ∈ R × Z,

| fε(t + r) − fε(t)| < ε, t ∈ R, (4)

|τ qj − r | < ε, j ∈ Z. (5)

Lemma 29 in [46, p. 198] implies that the following two sets

� = {r ∈ R; there exists q ∈ Z such that (r, q) satisfies(4)and(5)},
Q = {q ∈ Z; there exists r ∈ R such that (r, q) satisfies(4)and(5)},

are relatively dense. Let (r, q) ∈ � × Q satisfy (4) and (5). If τk + 3ε < t < τk+1 − 3ε for
some k ∈ Z, from (5) it follows that

τk+q − τk − ε < r < τk+1+q − τk+1 + ε,

τk+q + 2ε < t + r < τk+1+q − 2ε.

Therefore, |t − τ j | > 3ε > ε and |t + r − τ j | > 2ε > ε for all j ∈ Z. A direct calculation
shows that

|h(t + r) − h(t)| ≤ |h(t + r) − fε(t + r)| + | fε(t + r) − fε(t)|
+ | fε(t) − h(t)| < 3ε.

Consequently, � ⊂ T (h, 3ε) and h ∈ PCAPW (R, X). ��
Proof of Theorem 3.2 Let h ∈ PCAPW (R, X) have discontinuities at the points of a subset
of a Wexler sequence {τ j } j∈Z ⊂ R. It is obvious that h ∈ PUCW (R, X). Next we show
that h ∈ S p(R, X). Let L > sup j∈Z τ 1j , θ = inf j∈Z τ 1j andm ∈ Z+ satisfymθ > 1. A direct
calculation shows that

τn+m − τn =
m−1∑
j=0

(τn+ j+1 − τn+ j )

=
m−1∑
j=0

τ 1n+ j ≥ mθ > 1

for all n ∈ Z. For every t ∈ R there exists a unique k ∈ Z with τk < t ≤ τk+1. Consequently,
t + 1 ≤ τk+m+1 and∫ t+1

t
|h(s + r) − h(s)|pds ≤

∫ τk+1+m

τk

|h(s + r) − h(s)|pds

=
k+m∑
j=k

[∫ τ j+ε

τ j

|h(s + r) − h(s)|pds +
∫ τ j+1−ε

τ j+ε

|h(s + r) − h(s)|pds

+
∫ τ j+1

τ j+1−ε

|h(s + r) − h(s)|pds
]

≤
k+m∑
j=k

[2ε(2‖h‖)p + (τ 1j − 2ε)ε p]

< (m + 1)[2p+1‖h‖p + (L − 2ε)ε p−1]ε
for all r ∈ T (h, ε), where ‖h‖ < ∞ by Lemma 3.3 and 0 < ε < θ/2. Hence h ∈ S p(R, X).
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For the reverse containment, assume that h ∈ S p(R, X) ∩ PUCW (R, X) has disconti-
nuities at the points of a subset of a Wexler sequence {τ j } j∈Z with inf j∈Z τ 1j = θ . Hölder’s
inequality yields

∫ t+1

t
|h(s + τ) − h(s)|ds ≤

[∫ t+1

t
|h(s + τ) − h(s)|pds

] 1
p

, p ≥ 1.

Hence h ∈ S(R, X). From Lemma 3.5 it follows that for every ε > 0 there exists a δ,
0 < δ < min{θ/2, 1} such that |hσ (t) − h(t)| < ε for all σ ∈ R, 0 < σ < δ and t ∈ R,
|t − τ j | > ε, j ∈ Z. Moreover, h ∈ S(R, X) implies that hσ ∈ AP(R, X) for 0 < σ < δ

[11, p. 80]. Therefore, h ∈ PCAPW (R, X) by Lemma 3.6. ��

Remark 3.7 Theorem 3.2 provides a powerful tool by using Stepanov functions to study
various properties including Fourier analysis, module containment and almost periodicity of
the primitives of p.c.a.p. functions, etc.

The following theorem shows that a p.c.a.p. function with possible discontinuities at the
points of a Wexler sequence is Bohr almost periodic if and only if it is continuous on R. Note
that this result is not obvious from the definitions of piecewise continuous and Bohr almost
periodic functions.

Theorem 3.8 PCAPW (R, X) ∩ C(R, X) = AP(R, X).

Proof It is easy to check that a Bohr almost periodic function is a p.c.a.p. one which has
discontinuities at the points of the empty subset of any Wexler sequence.

Next we prove the converse inclusion. Let h ∈ PCAPW (R, X)∩C(R, X). Theorem 3.2
yields h ∈ S(R, X). By Theorem 2.8, it suffices to show that h is uniformly continuous onR.
Let {τ j } j∈Z ⊂ R be the Wexler sequence in Definition 2.13 for h and θ = inf j∈Z τ 1j . Hence
for any ε > 0, there exists a δ = δ(ε), 0 < δ < θ such that |h(s) − h(t)| < ε whenever s,
t ∈ (τ j , τ j+1] for some j ∈ Z and |s − t | < δ. Letting s → τ j + 0 we arrive at

|h(τ+
j ) − h(t)| ≤ ε, τ j < t < τ j + δ, j ∈ Z.

On the other hand, if |s − t | < δ and

τk−1 < s ≤ τk < t < τk+1

for some k ∈ Z, a direct calculation shows that

|h(s) − h(t)| ≤ |h(s) − h(τ+
j )| + |h(τ+

j ) − h(t)|
< 2ε.

This proves the uniform continuity of h on R. ��

4 Module Containment for Stepanov Almost Periodic Functions

FromTheorem3.2 it is reasonable to investigate themodule containment for p.c.a.p. solutions
to differential equations with impulses at fixed times by using Stepanov almost periodic
functions. We shall prove relevant properties of this class of functions.
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4.1 A Space Isometrically Isomorphic to Sp(R, X)

Bochner showed that by using a construction, a Stepanov almost periodic function can be
reduced to a Bohr one which is vector valued. Consequently, the theory of Stepanov almost
periodic functions can be included in that of Bohr almost periodic functions. In this subsection
we construct a spacewhich is isometrically isomorphic to S p(R, X) on the basis of Bochner’s
method and useful in consequent sections.

For any p, 1 ≤ p < ∞, consider function spaces L p
loc(R, X), Y = L p([0, 1], X) and

C(R, Y ). For every f ∈ L p
loc(R, X), put

f̃ (t)(s) = f (t + s), s ∈ [0, 1] a.e., t ∈ R. (6)

It is obvious that the function f̃ (t) : [0, 1] → X belongs to Y for all t ∈ R. Hence f̃ is a
function from R to Y . For any t and τ ∈ R, a direct calculation shows that

‖ f̃ (t) − f̃ (τ )‖p
Y =

∫ 1

0
| f̃ (t)(s) − f̃ (τ )(s)|pds

=
∫ 1

0
| f (t + s) − f (τ + s)|pds

=
∫ τ+1

τ

| f (t − τ + s) − f (s)|pds,

which implies f̃ ∈ C(R, Y ).
Furthermore, from (6) it follows that

f̃ (t)(s) = f̃ (τ )(t − τ + s) (7)

for s ∈ [0, 1] ∩ [τ − t, τ − t + 1] a.e., which is a translation invariant property of f̃ in
some sense and turns out to be the essential condition to construct the space isometrically
isomorphic to S p(R, X). Let

C̃(R, Y ) = { f̃ ∈ C(R, Y ); f̃ satisfies(7)} (8)

and define a linear map by

� : L p
loc(R, X) → C̃(R, Y ), f �→ f̃ . (9)

Lemma 4.1 � : L p
loc(R, X) → C̃(R, Y ) is a linear isomorphism.

Proof It is obvious that the linear map � is injective. Next we prove that � is surjective. For
every g ∈ C̃(R, Y ) define

f (n + s) = g(n)(s), s ∈ (0, 1] a.e., n ∈ Z.

Because g(n) ∈ Y for all n ∈ Z, f ∈ L p
loc(R, X). Given t ∈ R and s ∈ [0, 1], let n = n(t, s)

be the unique integer such that n < t + s ≤ n + 1. Then

f (t + s) = g(n)(t + s − n) = g(t)(s)

for s ∈ [0, 1] a.e. by the definition of f and (7). Therefore, �( f ) = g. ��
Let

Mp(R, X) =
{
f ∈ L p

loc(R, X); sup
t∈R

∫ 1

0
| f (t + s)|pds < ∞

}
(10)
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be the Banach space [20, p. 39] of functions bounded in the mean (of order p) equipped with
the norm

‖ f ‖Mp = sup
t∈R

[∫ 1

0
| f (t + s)|pds

] 1
p

(11)

and

B̃C(R, Y ) = C̃(R, Y ) ∩ BC(R, Y )

be a subspace of bounded and continuous functions equipped with the uniform convergence
norm ‖ · ‖.

Lemma 4.2 � : (Mp(R, X), ‖ · ‖Mp ) → (̃BC(R, Y ), ‖ · ‖) is an isometric isomorphism.
Proof Lemma 4.1 and the equalities

‖�( f )‖ = sup
t∈R

‖ f̃ (t)‖Y

= sup
t∈R

[∫ 1

0
| f̃ (t)(s)|pds

] 1
p

= sup
t∈R

[∫ 1

0
| f (t + s)|pds

] 1
p

= ‖ f ‖Mp

imply that � : Mp(R, X) → B̃C(R, Y ) is both an isomorphism and an isometry. ��

Corollary 4.3 The space (̃BC(R, Y ), ‖ · ‖) is complete.
Let

ÃP(R, Y ) = C̃(R, Y ) ∩ AP(R, Y ).

Lemma 4.2 and the fact that f ∈ S p(R, X) ⇔ f̃ ∈ AP(R, Y ) [8, p. 78] together yield the
following

Lemma 4.4 � : (S p(R, X), ‖ · ‖Mp ) → (̃AP(R, Y ), ‖ · ‖) is an isometric isomorphism.

Corollary 4.5 The space (̃AP(R, Y ), ‖ · ‖) is complete.
4.2 Module Containment

By Theorem 2.9 we define the module of f ∈ S p(R, X), denoted by mod( f ), to be the
additive group

mod( f ) :=
{

n∑
k=1

mkλk; λk ∈ � f ,mk ∈ Z, n ∈ Z+

}
.

Furthermore, from the proof of Theorem 2.9 in [8, p. 79] it follows that if

f̃ (t) ∼
∑
k

ãke
iλk t ,
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then

ãk(s) = ake
iλk s, s ∈ [0, 1] a.e.

and

f (t) ∼
∑
k

ake
iλk t .

Hence

mod( f ) = mod( f̃ ). (12)

We first show the equivalence between pointwise and uniform convergence for Bohr
almost periodic functions.

Lemma 4.6 Suppose that f , f ∗ ∈ AP(G, X) and α ⊂ G is a sequence with Tα f = f ∗
pointwise for all t ∈ G, then already Tα f = f ∗ uniformly for all t ∈ G.

Proof Assume the contrary that { f (t + αk)}∞k=1 dose not converge uniformly to f ∗(t).
Therefore, there exist ε0 > 0 and a subsequence α′ ⊂ α such that

sup
t∈G

| f (t + α′
k) − f ∗(t)| > ε0 (13)

for all k ∈ Z+. Since f ∈ AP(G, X), there are f∗ ∈ AP(R, X) and a subsequence α′′ ⊂ α′
satisfying

lim
k→∞ sup

t∈G
| f (t + α′′

k ) − f∗(t)| = 0,

byBochner’s criterion. BecauseTα f = f ∗ pointwise for all t ∈ G, f ∗ = f∗. This contradicts
(13). ��

We formulate Favard’s module containment theorem for Stepanov almost periodic func-
tions as follows.

Theorem 4.7 The following statements are equivalent for f and g ∈ S p(R, X).

(i) mod( f ) ⊃ mod(g).
(ii) For every ε > 0 there is a δ > 0 so that T ( f, δ) ⊂ T (g, ε).
(iii) For any sequence α ⊂ R satisfying

lim
k→∞

[∫ t+1

t
| f (αk + s) − f ∗(s)|pds

] 1
p

= 0

for all t ∈ R (in any sense, e.g. pointwise, uniform with respect to t etc.) and some
f ∗ ∈ S p(R, X), there exists g∗ ∈ S p(R, X) such that

lim
k→∞

[∫ t+1

t
|g(αk + s) − g∗(s)|pds

] 1
p

= 0

for all t ∈ R (any sense).
(iv) For any sequence α ⊂ R satisfying

lim
k→∞

[∫ t+1

t
| f (αk + s) − f (s)|pds

] 1
p

= 0
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for all t ∈ R (any sense), there results

lim
k→∞

[∫ t+1

t
|g(αk + s) − g(s)|pds

] 1
p

= 0

for all t ∈ R (any sense).
(v) For any sequence α ⊂ R satisfying

lim
k→∞

[∫ t+1

t
| f (αk + s) − f (s)|pds

] 1
p

= 0

for all t ∈ R (any sense), there exists a subsequence α′ ⊂ α such that

lim
k→∞

[∫ t+1

t
|g(α′

k + s) − g(s)|pds
] 1

p

= 0

for all t ∈ R (any sense).

Proof If f̃ = �( f ) and g̃ = �(g), where � is given by (9), then Theorem 4.4 implies that
f̃ , g̃ ∈ ÃP(R, Y ) and Theorem 2.2 is applicable. By (12), (i) is equivalent to

mod( f̃ ) ⊃ mod(g̃). (14)

The following proof is divided into five steps.
1. (14) ⇒ (ii). For every ε > 0 find an ε′, 0 < ε′ < ε. A direct calculation shows that

sup
t∈R

[∫ 1

0
|g(t + τ + s) − g(t + s)|pds

] 1
p

= sup
t∈R

[∫ 1

0
|g̃(t + τ)(s) − g̃(t)(s)|pds

] 1
p

= sup
t∈R

‖g̃(t + τ) − g̃(t)‖Y ,

(15)

which implies T (g̃, ε′) ⊂ T (g, ε). By Theorem 2.2 there is a δ > 0 so that T ( f̃ , δ) ⊂
T (g̃, ε′). Since (15) also yields T ( f, δ) ⊂ T ( f̃ , δ), one arrives at T ( f, δ) ⊂ T (g, ε).

2. (ii) ⇒ (14). For each ε > 0, (15) implies T (g, ε) ⊂ T (g̃, ε). From (ii) it follows that
there is a δ′ > 0 such that T ( f, δ′) ⊂ T (g, ε). By (15) again, T ( f̃ , δ) ⊂ T ( f, δ′) for all δ

with 0 < δ < δ′. Hence T ( f̃ , δ) ⊂ T (g̃, ε) and Theorem 2.2 implies (14).
3. (14) ⇒ (iii). Let f ∗ ∈ S p(R, X) and α ⊂ R be a sequence such that

lim
k→∞

[∫ t+1

t
| f (αk + s) − f ∗(s)|pds

] 1
p

= 0

for all t ∈ R (any sense). A straightforward computation shows that

[∫ t+1

t
| f (αk + s) − f ∗(s)|pds

] 1
p

=
[∫ 1

0
| f (t + αk + s) − f ∗(t + s)|pds

] 1
p
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=
[∫ 1

0
| f̃ (t + αk)(s) − f̃ ∗(t)(s)|pds

] 1
p

= ‖ f̃ (t + αk) − f̃ ∗(t)‖Y
for all k ∈ Z+. So

lim
k→∞ ‖ f̃ (t + αk) − f̃ ∗(t)‖Y = 0

for all t ∈ R (any sense). By Theorem 2.2, Lemma 4.6, Corollary 4.5 and Theorem 4.4 there
exists a g̃∗ ∈ ÃP(R, Y ) such that g∗ = �−1(g̃∗) ∈ S p(R, X) and

lim
k→∞ ‖g̃(t + αk) − g̃∗(t)‖Y = 0

for all t ∈ R (any sense). Therefore,

lim
k→∞

[∫ t+1

t
|g(αk + s) − g∗(s)|pds

] 1
p

= lim
k→∞ ‖g̃(t + αk) − g̃∗(t)‖Y = 0

for all t ∈ R (any sense).
4. (iii) ⇒ (14). Let f ∗ ∈ S p(R, X) and α ⊂ R be a sequence such that

lim
k→∞

[∫ t+1

t
| f (αk + s) − f ∗(s)|pds

] 1
p

= 0

for all t ∈ R (any sense). Then

lim
k→∞ ‖ f̃ (t + αk) − f̃ ∗(t)‖Y = 0

for all t ∈ R (any sense). From (iii) it follows that there is a g∗ ∈ S p(R, X) with

lim
k→∞ ‖g̃(t + αk) − g̃∗(t)‖Y = lim

k→∞

[∫ t+1

t
|g(αk + s) − g∗(s)|pds

] 1
p

= 0

for all t ∈ R (any sense). Hence (14) follows from Theorem 2.2.
5. (14) ⇔ (iv) ⇔ (v). The proof is similar to that in steps 3 and 4. So we omit it. ��

4.3 Normal Sequences

In this subsection we prove the deep relation that for any f ∈ AP(R, X) and any sequence
α ⊂ R,

Tα f = f ∗ (any sense) ⇔ Tα f̃ = f̃ ∗ (any sense),

by which themode of convergence in Theorem 2.2 could be that in S p(R, X). This equivalent
relation is useful in the study of the module containment for impulsive differential equations.

Definition 4.8 [35, p. 42] Let f ∈ AP(R, X). A sequence α ⊂ R is called f -normal if Tα f
exists uniformly with respect to t ∈ R. In particular, α is called f -increasing if Tα f = f
uniformly.

The main tool in this subsection is as follows. It is clear that the module reflects the mode
of convergence of almost periodic functions.
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Theorem 4.9 [35, pp. 42–43]Let f ∈ AP(R, X), then for a sequenceα ⊂ R to be f -normal
it is necessary and sufficient that there exists a unique function θ(λ) with

lim
k→∞ eiλαk = θ(λ), λ ∈ mod( f ). (16)

In particular, α is f -increasing if and only if θ(λ) ≡ 1.

The main results in this subsection is the following

Theorem 4.10 Suppose that f , f ∗ ∈ AP(R, X) and α ⊂ R is a sequence, then Tα f = f ∗
(any sense) if and only if Tα f̃ = f̃ ∗ (any sense).

Proof By Lemma 4.6, it is sufficient to consider only the uniform convergence in Tα f = f ∗
and Tα f̃ = f̃ ∗.

Suppose that Tα f̃ = g uniformly for all t ∈ R. Hence α is f̃ -normal and (16) holds by
Theorem 4.9. Since mod( f ) = mod( f̃ ), α is f -normal by Theorem 4.9 again. Assume that
Tα f = f ∗ uniformly for all t ∈ R. It is easy to check that

lim
k→∞ sup

t∈R
‖ f̃ (t + αk) − f̃ ∗(t)‖Y = lim

k→∞ sup
t∈R

[∫ t+1

t
| f (t + αk) − f ∗(t + s)|pds

] 1
p

= 0.

(17)

From the uniqueness of the limit f̃ ∗ ∈ AP(R, Y ) it follows that g = f̃ ∗.
At last, Tα f = f ∗ implies Tα f̃ = f̃ ∗ by (17). ��

5 Module Containment for Linear Impulsive Differential Equations

In this section, we make use of Theorem 3.2 to study impulsive differential equations. Con-
sider the linear differential equation with impulses at fixed times{

x ′ = A(t)x + h(t), t �= τn,

x(τ+
n ) − x(τn) = B(n)x(τn) + b(n), n ∈ Z,

(18)

which satisfies the following conditions:

(H1) {τ j } j∈Z ⊂ R is a Wexler sequence such that

τn = ξn + ζ(n), n ∈ Z,

where ξ > 0, ζ ∈ AP(Z, R) and θ = inf j∈Z τ 1j .

(H2) A ∈ AP(R, R
d×d), h ∈ PCAP(R, R

d) has discontinuities at the points of a subset
of {τ j } j∈Z, B ∈ AP(Z, R

d×d), b ∈ AP(Z, R
d), where d ∈ Z+. det[I + B(n)] �= 0

for all n ∈ Z.
(H3) ρ∗

1 + D ln ρ∗
2 < 0, where

D = lim
T→∞

i(t, t + T )

T
, ρ∗

1 = sup
t∈R

ρ1(t), ρ∗
2 =

[
sup
j∈Z

ρ2( j)

]1/2

,

i(t, t + T ) is the number of the terms of {τ j } j∈Z ∩ [t, t + T ], ρ1(t) and ρ2( j) are
respectively the largest eigenvalues of the matrices

1

2
[A(t) + AT (t)], [I + B( j)]T · [I + B( j)].
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Denote by U (t, s) and W (t, s) respectively the Cauchy matrices of the linear system

x ′ = A(t)x

and the homogeneous impulsive one{
x ′ = A(t)x, t �= τn,

x(τ+
n ) − x(τn) = B(n)x(τn), n ∈ Z.

Set

|Q|M = sup
x∈Rd\{0}

|Qx |
|x |

for any matrix Q ∈ R
d×d and

‖A‖ = sup
t∈R

|A(t)|M , ‖B‖ = sup
n∈Z

|B(n)|M ,

respectively. By [46, p. 212], (H3) yields

|W (t, s)|M ≤ C1e
−C2(t−s), t ≥ s, (19)

for some positive constants C1 and C2. [46, p. 215] proves the following result

Theorem 5.1 Suppose that (18) satisfies (H1)–(H3), then (18) admits a unique p.c.a.p. solu-
tion φ, which is asymptotically stable and given by

φ(t) =
∫ t

∞
W (t, s)h(s)ds +

∑
τ j<t

W (t, τ j )b( j). (20)

Our goal is to characterize the module of p.c.a.p. solutions to linear impulsive differential
equation. Denote by E (r) the representative set

E (r) = {β ∈ [0, 2π); (β + 2πZ) ∈ E}
of a set E ⊂ R/2πZ. The main result in this section is formulated as follows.

Theorem 5.2 Suppose that (18) satisfies (H1)–(H3), then (18) admits a unique p.c.a.p. solu-
tion φ, which is asymptotically stable and given by

φ(t) =
∫ t

∞
W (t, s)h(s)ds +

∑
τ j<t

W (t, τ+
j )b( j). (21)

Furthermore, the solution φ satisfies

mod(φ) ⊂ span

(
mod(A, h) ∪

[
1

ξ
·
{
[mod(B, b, ζ )](r) ∪ {2π}

}])
. (22)

Remark 5.3 Note that (20) and (21) are different at the second sum. The correct one is (21)
by [10,34]. For completeness, we shall give a detailed proof of Theorem 5.2.

The main tools to study the module containment for p.c.a.p. solutions are Theo-
rems 2.5, 3.2, 4.10 and Lemma 4.4. To make use of these tools in impulsive differential
equations we introduce the following results.

Lemma 5.4 [46, pp. 207–208] The following statements are true.
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(i) If I is the identity matrix in R
d×d , then

|U (t, s) − I |M < e‖A‖·|t−s| − 1, |U (t, s)|M < e‖A‖·|t−s|

for all s, t ∈ R.
(ii) Let L > 0 be fixed, then for any ε > 0 there exists δ = δ(ε) > 0 such that

|U (t ′, s′) −U (t, s)|M < ε

whenever |s′ − s| < δ, |t ′ − t | < δ and |s − t | ≤ L.
(iii) If r ∈ T

(
A, ε/(LeL‖A‖)

)
, where L > 0, then

|U (t + r, s + r) −U (t, s)|M < ε

whenever |s − t | < L.

Lemma 5.5 [46, p. 210] Suppose that (19) holds for some positive constants C1 andC2, then
the diagonal of the matrix W (t, s) is almost periodic, i.e. for any ε > 0, t ≥ s, |t − τ j | > ε,
|s − τ j | > ε, j ∈ Z, there exists a relatively dense set of almost periods, �, such that

|W (t + r, s + r) − W (t, s)|M < εC3e
−C2(t−s)/2 (23)

for all r ∈ �, where C3 is a positive constant.

Remark 5.6 It is not convenient to use Lemma 5.5 in our applications since the set � is not
clear. However, from the proof of Lemma 5.5 it follows that if (19) is true and (r, q) ∈ R×Z

satisfies

|A(t + r) − A(t)|M < ε, t ∈ R, (24)

|B(n + q) − B(n)|M < ε, n ∈ Z, (25)

|τ qj − r | < ε, j ∈ Z, (26)

then (23) holds for all t ≥ s with |t − τ j | > ε, |s − τ j | > ε, j ∈ Z. This remark will be used
in the proof of Lemma 5.7 and Theorem 5.2.

A result similar to Lemma 5.5 is true if the Wexler sequence {τ j } j∈Z is taken into consid-
eration.

Lemma 5.7 Suppose that (r, q) ∈ R × Z satisfies (24)–(26), where 0 < ε < θ/3, θ =
inf j∈Z τ 1j . Then (19) implies

|W (t + r, τk+q) − W (t, τk)|M < 2C1e
−C2(t+r−τk+q )(e3ε‖A‖ − 1)

+ εC3e
−C2(t+r−τk+q )/2

(27)

and

|W (t + r, τ+
k+q) − W (t, τ+

k )|M < 2C1e
−C2(t+r−τk+q−ε)(e3ε‖A‖ − 1)

+ εC3e
−C2(t+r−τk+q−3ε)/2

(28)

for all t ∈ R, |t − τ j | > ε, j ∈ Z and τk < t , where C1, C2 and C3 are the constants in
Lemma 5.5.
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Proof Assume that t ∈ R satisfies τm + ε < t < τm+1 − ε for some m ∈ Z. A direct
calculation shows that

τm+q − τm − ε < r < τm+1+q − τm+1 + ε,

τm+q < t + r < τm+1+q

by (26).
We first prove (27). Let ε′ be a number such that ε < ε′ < 2ε. For any τk < t , it is easy

to see that k ≤ m and

τk−1 + ε < τk − ε′ < τk − ε,

τk−1+q < τk+q − ε − ε′ < τk − ε′ + r < τk+q + ε − ε′ < τk+q ,

where the last inequality is obtained by using (26) again. Therefore, from Remark 5.6,
Lemma 5.4 and the inequalities above it follows that

|W (t + r, τk+q) − W (t, τk)|M
≤ |W (t + r, τk+q) − W (t + r, τk − ε′ + r)|M + |W (t + r, τk − ε′ + r)

− W (t, τk − ε′)|M + |W (t, τk − ε′) − W (t, τk)|M
< |W (t + r, τk+q)[I −U (τk+q , τk − ε′ + r)]|M + εC3e

−C2(t−τk+ε′)/2

+ |W (t, τk − ε′)[I −U (τk − ε′, τk)]|M
< C1e

−C2(t+r−τk+q )
[
e‖A‖(τk+q−τk−r+ε′) − 1

]
+ εC3e

−C2(t−τk+ε′)/2

+ C1e
−C2(t−τk+ε′)

(
e‖A‖ε′ − 1

)

< C1e
−C2(t+r−τk+q )

(
e3ε‖A‖ − 1

)
+ εC3e

−C2(t+r−τk+q )/2

+ C1e
−C2(t+r−τk+q )

(
e2ε‖A‖ − 1

)

< 2C1e
−C2(t+r−τk+q )

(
e3ε‖A‖ − 1

)
+ εC3e

−C2(t+r−τk+q )/2.

Next we prove (28). For any τk < t , it is easy to see that k ≤ m and τk < t − ε. Let ε′ be
a number such that ε < ε′ < min{2ε, t − τk}. A straightforward computation shows that

τk + ε < τk + ε′ < τk + 2ε < τk+1 − ε,

τk+q < τk+q − ε + ε′ < τk + ε′ + r < τk+q + ε + ε′ < τk+q + 3ε < τk+q+1,

where the last inequality is obtained by using (26). Therefore, from Remark 5.6, Lemma 5.4
and the inequalities above it follows that

|W (t + r, τ+
k+q) − W (t, τ+

k )|M
≤ |W (t + r, τ+

k+q) − W (t + r, τk + ε′ + r)|M + |W (t + r, τk + ε′ + r)

− W (t, τk + ε′)|M + |W (t, τk + ε′) − W (t, τ+
k )|M

< |W (t + r, τ+
k+q)[I −U (τk+q , τk + ε′ + r)]|M + εC3e

−C2(t−τk−ε′)/2

+ |W (t, τ+
k )[U (τk, τk + ε′) − I ]|M

< C1e
−C2(t+r−τk+q )

[
e‖A‖(τk+ε′+r−τk+q ) − 1

]
+ εC3e

−C2(t−τk−ε′)/2

+ C1e
−C2(t−τk )

(
e‖A‖ε′ − 1

)
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< C1e
−C2(t+r−τk+q )

(
e3ε‖A‖ − 1

)
+ εC3e

−C2(t+r−τk+q−3ε)/2

+ C1e
−C2(t+r−τk+q−ε)

(
e2ε‖A‖ − 1

)

< 2C1e
−C2(t+r−τk+q−ε)

(
e3ε‖A‖ − 1

)
+ εC3e

−C2(t+r−τk+q−3ε)/2.

��

The relation between the spectra of an almost periodic sequence and the function defined
by filling in the gaps linearly reads as follows.

Lemma 5.8 Suppose that f ∈ AP(R, X), u ∈ AP(Z, X) and

f (t) = (n + 1 − t) · u(n) + (t − n) · u(n + 1), n < t ≤ n + 1, n ∈ Z,

then

�u = � f /2πZ, mod(u) = mod( f )/2πZ,

� f =
{
(�u − {0})(r) + 2kπ

}
k∈Z ∪ (

� f ∩ {0}) ,

mod( f ) = span
({

(�u − {0})(r) + 2kπ
}
k∈Z

)
.

Proof The first two equations are consequences of Theorem 2.3 in [62], from the proof of
which we know that a( f, 0) = a(u, 0) and

a( f, λ) = 2(1 − cos λ)

λ2
· a(u, λ̃), λ ∈ R, λ �= 0.

It is easy to see that a( f, λ) = 0 ⇔ a(u, λ̃) for all λ ∈ R, λ �= 0, λ̃ �= 0, and a( f, λ) ≡ 0 for
all λ ∈ R, λ �= 0, λ̃ = 0. Therefore,

λ ∈ � f ⇔ λ̃ ∈ �u, λ ∈ R, λ �= 0, λ̃ �= 0,

0 ∈ � f ⇔ 0 ∈ �u,

(2πZ − {0}) ∩ � f = ∅,

which imply the last two equalities. ��

We are in the position proving Theorem 5.2.

Proof of Theorem 5.2 Let L > sup j∈Z τ 1j . The proof is divided into five steps.
1. We prove that for any C > 0,

∑
τ j<t

e−C(t−τ j ) <
1

1 − e−Cθ
, (29)

which will be used later. If τm < t ≤ τm+1 for some m ∈ Z, from

t − τ j > τm − τ j ≥ (m − j)θ, j ≤ m

it follows that

e−C(t−τ j ) < e−C(m− j)θ , j ≤ m
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and

∑
τ j<t

e−C(t−τ j ) =
m∑

j=−∞
e−C(t−τ j ) <

m∑
j=−∞

e−C(m− j)θ

=
∞∑
j=0

e−C jθ = 1

1 − e−Cθ
.

2. We prove that the function φ given by (21) is a bounded solution to (18). By (29), (19)
and Lemma 3.3,

|φ(t)| ≤
∫ t

−∞
C1e

−C2(t−s)‖h‖ds +
∑
τ j<t

C1e
−C2(t−τ j )‖b‖

< C1

(‖h‖
C2

+ ‖b‖
1 − e−C2θ

)
,

which implies the boundedness of φ on R. Moreover, by (2.14) in [10],

d

dt
φ(t) =

∫ t

−∞
d

dt
W (t, s)h(s)ds + h(t) +

∑
τ j<t

d

dt
W (t, τ+

j )b( j)

=
∫ t

−∞
A(t)W (t, s)h(s)ds +

∑
τ j<t

A(t)W (t, τ+
j )b( j) + h(t)

= A(t)φ(t) + h(t)

for t �= τn , and

φ(τ+
n ) − φ(τn) =

∫ τn

−∞
[W (τ+

n , s) − W (τn, s)]h(s)ds +
∑

τ j≤τn

W (τ+
n , τ+

j )b( j)

−
∑

τ j<τn

W (τn, τ
+
j )b( j)

=
∫ τn

−∞
B(n)W (τn, s)h(s)ds +

∑
τ j<τn

B(n)W (τn, τ
+
j )b( j)

+ W (τ+
n , τ+

n )b(n) = B(n)φ(τn) + b(n)

for n ∈ Z. So φ is a solution to (18) on R.
3. We prove that φ is p.c.a.p. by Definition 2.13.
It is obvious that φ has discontinuities at the points of a subset of {τ j } j∈Z.
If t , τ ∈ (τm, τm+1] for some m ∈ Z and t ≥ τ , then

∑
τ j<t

W (t, τ+
j )b( j) =

∑
τ j<τ

W (t, τ+
j )b( j).

From (i) of Lemma 5.4, (19), the boundedness of φ and h, and the equality

W (t, s) = U (t, τ )W (τ, s), s ∈ R
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it follows that

φ(t) =
∫ τ

−∞
W (t, s)h(s)ds +

∫ t

τ

W (t, s)h(s)ds +
∑
τ j<τ

W (t, τ+
j )b( j)

=
∫ τ

−∞
U (t, τ )W (τ, s)h(s)ds +

∑
τ j<τ

U (t, τ )W (τ, τ+
j )b( j)

+
∫ t

τ

W (t, s)h(s)ds

= U (t, τ )φ(τ) +
∫ t

τ

W (t, s)h(s)ds

and

|φ(t) − φ(τ)| ≤ |U (t, τ ) − I |M · ‖φ‖ +
∫ t

τ

|W (t, s)|M · ‖h‖ds

< [e‖A‖(t−τ) − 1] · ‖φ‖ +
∫ t

τ

C1e
−C2(t−s)‖h‖ds

≤ [e‖A‖(t−τ) − 1] · ‖φ‖ + C1‖h‖(t − τ).

Therefore, φ satisfies (ii) of Definition 2.13.
Consider the inequalities (24)–(26) and the following ones

|h(t + r) − h(t)| < ε, |t − τ j | > ε, j ∈ Z, (30)

|b(n + q) − b(n)| < ε, n ∈ Z. (31)

Using the method of common almost periods as in Lemma 35 in [46, p. 208], the following
two sets

� = {r ∈ R; there exists q ∈ Z such that (r, q) satisfies(24)−(26)and(30), (31)},
Q = {q ∈ Z; there exists r ∈ R such that (r, q) satisfies(24)−(26)and(30), (31)}

are relatively dense. Let (r, q) ∈ � × Q satisfy (24)–(26) and (30), (31), then (23) and (28)
hold by Remark 5.6 and Lemma 5.7, respectively. If τm +ε < t < τm+1−ε for somem ∈ Z,
from (26) it follows that

τm+q − τm − ε < r < τm+1+q − τm+1 + ε,

τm+q < t + r < τm+q+1.

Therefore,

φ(t + r) =
∫ t+r

−∞
W (t + r, s)h(s)ds +

∑
τ j<t+r

W (t + r, τ+
j )b( j)

=
∫ t

−∞
W (t + r, s + r)h(s + r)ds +

∑
τ j<t

W (t + r, τ+
j+q)b( j + q)

and

|φ(t + r) − φ(t)| ≤
∫ t

−∞
|W (t + r, s + r)h(s + r) − W (t, s)h(s)|ds

+
∑
τ j<t

|W (t + r, τ+
j+q)b( j + q) − W (t, τ+

j )b( j)|.
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For convenience we denote

E(r, t, s) = |W (t + r, s + r)h(s + r) − W (t, s)h(s)|
for all r , t , s ∈ R with t ≥ s. (19) yields

E(r, t, s) ≤ 2C1‖h‖e−C2(t−s).

A straightforward computation shows that

∫ t

−∞
E(r, t, s)ds =

∫ t

τm

E(r, t, s)ds +
m∑

j=−∞

∫ τ j

τ j−1

E(r, t, s)ds

=
∫ t

τm+ε

E(r, t, s)ds +
∫ τm+ε

τm

E(r, t, s)ds

+
m∑

j=−∞

[∫ τ j−1+ε

τ j−1

E(r, t, s)ds +
∫ τ j−ε

τ j−1+ε

E(r, t, s)ds

+
∫ τ j

τ j−ε

E(r, t, s)ds

]

≤
∫ t

τm+ε

E(r, t, s)ds + 2εC1‖h‖e−C2(t−τm−ε)

+
m∑

j=−∞

{
2εC1‖h‖[e−C2(t−τ j−1−ε) + e−C2(t−τ j )

]

+
∫ τ j−ε

τ j−1+ε

E(r, t, s)ds
}

=
∫ t

τm+ε

E(r, t, s)ds + 2εC1‖h‖e−C2(t−τm−ε)

+
m∑

j=−∞

[
2εC1‖h‖(1 + eC2ε

)
e−C2(t−τ j ) +

∫ τ j−ε

τ j−1+ε

E(r, t, s)ds
]

<

∫ t

τm+ε

E(r, t, s)ds + 2εC1‖h‖e−C2(t−τm−ε)

+ 2εC1‖h‖ 1 + eC2ε

1 − e−C2θ
+

m∑
j=−∞

∫ τ j−ε

τ j−1+ε

E(r, t, s)ds,

where (29) is used to obtain the last inequality. By Remark 5.6 and (19),
∫ τ j−ε

τ j−1+ε

E(r, t, s)ds ≤
∫ τ j−ε

τ j−1+ε

{|[W (t + r, s + r) − W (t, s)]h(s + r)|

+ |W (t, s)[h(s + r) − h(s)]|}ds
≤ (τ j − τ j−1 − 2ε)

[
εC3‖h‖e−C2(t−τ j+ε)/2

+ εC1e
−C2(t−τ j+ε)

]
< εL

[
C3‖h‖e−C2(t−τ j+ε)/2 + C1e

−C2(t−τ j+ε)
]
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for j ≤ m and similarly,∫ t

τm+ε

E(r, t, s)ds ≤ (t − τm − ε)(εC3‖h‖ + εC1)

< εL(C3‖h‖ + C1).

Consequently,∫ t

−∞
E(r, t, s)ds < εL(C3‖h‖ + C1) + 2εC1‖h‖ 1 + eC2ε

1 − e−C2θ

+
m∑

j=−∞
εL

[
C3‖h‖e−C2(t−τ j+ε)/2 + C1e

−C2(t−τ j+ε)
]

< εL(C3‖h‖ + C1) + 2εC1‖h‖ 1 + eC2ε

1 − e−C2θ

+ εL
C3‖h‖e−C2ε/2

1 − e−C2θ/2 · C1e−C2ε

1 − e−C2θ
=: F1(ε).

On the other hand, from (19) and (28) it follows that∣∣∣ ∑
τ j<t

[
W (t + r, τ+

j+q)b( j + q) − W (t, τ+
j )b( j)

]∣∣∣

≤
m∑

j=−∞

{∣∣[W (t + r, τ+
j+q) − W (t, τ+

j )
]
b( j + q)

∣∣

+ ∣∣W (t, τ+
j )[b( j + q) − b( j)]∣∣}

<

m∑
j=−∞

{[
2C1e

−C2(t+r−τ j+q−ε)
(
e3ε‖A‖ − 1

) + εC3e
−C2(t+r−τ j+q−3ε)/2] · ‖b‖

+ εC1e
−C2(t−τ j )

}

<

m∑
j=−∞

[
2C1e

−C2(t−τ j−2ε)(e3ε‖A‖ − 1
) + εC3e

−C2(t−τ j−4ε)/2] · ‖b‖ + εC1

1 − e−C2θ

<
[
2C1e

2C2ε · e
3ε‖A‖ − 1

1 − e−C2θ
+ εC3e2C2ε

1 − e−C2θ/2

]
· ‖b‖ + εC1

1 − e−C2θ
=: F2(ε).

Therefore,

|φ(t + r) − φ(t)| < F1(ε) + F2(ε)

for all t ∈ R, |t − τ j | > ε, j ∈ Z. Hence T (φ, F1(ε) + F2(ε)) contains the relatively dense
set �. Summing up, φ is p.c.a.p.

4. We make use of Theorems 2.5, 3.2, 4.4 and 4.10 to prove the module containment.
This step is divided into four substeps. Let 0 < ε < θ/3 and L > sup j∈Z τ 1j be an integer.

4.1. We construct suitable functions and sequences. By filling in the gaps linearly we
define Bohr almost periodic functions

B̄(t) = (n + 1 − t)B(n) + (t − n)B(n + 1), n < t ≤ n + 1, n ∈ Z,

b̄(t) = (n + 1 − t)b(n) + (t − n)b(n + 1), n < t ≤ n + 1, n ∈ Z,

ζ̄ (t) = (n + 1 − t)ζ(n) + (t − n)ζ(n + 1), n < t ≤ n + 1, n ∈ Z.
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Note that all of A, B̄(·/ξ), b̄(·/ξ), ζ̄ (·/ξ) and h are also Stepanov almost periodic functions.
Let α′ ⊂ ξZ be a sequence such that

∫ t+1

t
|A(s + α′

k) − A(s)|Mds <
1

k
,

∫ t+1

t

∣∣∣B̄( s + α′
k

ξ

)
− B̄

( s
ξ

)∣∣∣
M
ds <

1

k
,

∫ t+1

t

∣∣∣b̄( s + α′
k

ξ

)
− b̄

( s
ξ

)∣∣∣ds <
1

k
,

∫ t+1

t

∣∣∣ζ̄( s + α′
k

ξ

)
− ζ̄

( s
ξ

)∣∣∣ds <
1

k
,

∫ t+1

t
|h(s + α′

k) − h(s)|ds <
1

k
, ∀t ∈ R,

for all k ∈ Z+. Since all of A, B̄(·/ξ), b̄(·/ξ), ζ̄ (·/ξ) are Bohr almost periodic, Theorem 4.10
implies that

‖A(· + α′
k) − A(·)‖ → 0,

∥∥∥B̄( · + α′
k

ξ

)
− B̄

( ·
ξ

)∥∥∥ → 0,

∥∥∥b̄( · + α′
k

ξ

)
− b̄

( ·
ξ

)∥∥∥ → 0,
∥∥∥ζ̄( · + α′

k

ξ

)
− ζ̄

( ·
ξ

)∥∥∥ → 0,

as k → ∞. Consequently, there exists a subsequence α ⊂ α′ such that

|A(t + αk) − A(t)| <
1

k
,

∣∣∣B̄(t + αk

ξ

)
− B̄(t)

∣∣∣ <
1

k
,

∣∣∣b̄(t + αk

ξ

)
− b̄(t)

∣∣∣ <
1

k
,

∣∣∣ζ̄(t + αk

ξ

)
− ζ̄ (t)

∣∣∣ <
1

k
,

∫ t+1

t
|h(s + αk) − h(s)|ds <

1

k
, ∀t ∈ R,

for all k ∈ Z+. Moreover, it is easy to check that

|ταk/ξ
j − αk | = |τ j+αk/ξ − τ j − αk |

=
∣∣∣ζ( j + αk

ξ

)
− ζ( j)

∣∣∣ <
1

k

(32)

for all j ∈ Z and k ∈ Z+.
4.2. We prove that |φ(t + αk) − φ(t)| is sufficiently small uniformly for all t ∈ R,

|t − τ j | > ε, j ∈ Z and large k.
If τm + ε < t < τm+1 − ε for some m ∈ Z, from (32) it follows that

τm+αk/ξ − τm − 1

k
< αk < τm+1+αk/ξ − τm+1 + 1

k
,

τm+αk/ξ − 1

k
+ ε < t + αk < τm+1+αk/ξ + 1

k
− ε.

Hence

τm+αk/ξ < t + αk < τm+1+αk/ξ
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for all k > 1/ε. Therefore,

φ(t + αk) =
∫ t+αk

−∞
W (t + αk, s)h(s)ds +

∑
τ j<t+αk

W (t + αk, τ
+
j )b( j)

=
∫ t

−∞
W (t + αk, s + αk)h(s + αk)ds

+
∑
τ j<t

W (t + αk, τ
+
j+αk/ξ

)b
(
j + αk

ξ

)
.

For convenience we denote

Gk(t, s) = W (t + αk, s + αk)h(s + αk) − W (t, s)h(s),

where t , s ∈ R, t ≥ s, and k ∈ Z+. (19) implies that

|Gk(t, s)| ≤ 2C1‖h‖e−C2(t−s).

A straightforward computation shows that,

∣∣∣
∫ t

−∞
Gk(t, s)ds

∣∣∣ ≤
∫ t

τm

|Gk(t, s)|ds +
m∑

j=−∞

∫ τ j

τ j−1

|Gk(t, s)|ds

=
∫ τm+ε

τm

|Gk(t, s)|ds +
∫ t

τm+ε

|Gk(t, s)|ds

+
m∑

j=−∞

[ ∫ τ j−1+ε

τ j−1

|Gk(t, s)|ds +
∫ τ j−ε

τ j−1+ε

|Gk(t, s)|ds

+
∫ τ j

τ j−ε

|Gk(t, s)|ds
]

≤ 2εC1‖h‖e−C2(t−τm−ε) +
∫ t

τm+ε

|Gk(t, s)|ds

+
m∑

j=−∞

{
2εC1‖h‖[e−C2(t−τ j−1−ε) + e−C2(t−τ j )

]

+
∫ τ j−ε

τ j−1+ε

|Gk(t, s)|ds
}

= 2εC1‖h‖e−C2(t−τm−ε) +
∫ t

τm+ε

|Gk(t, s)|ds

+
m∑

j=−∞

[
2εC1‖h‖(1 + eC2ε

)
e−C2(t−τ j ) +

∫ τ j−ε

τ j−1+ε

|Gk(t, s)|ds
]

< 2εC1‖h‖e−C2(t−τm−ε) +
∫ t

τm+ε

|Gk(t, s)|ds

+ 2εC1‖h‖ · 1 + eC2ε

1 − e−C2θ
+

m∑
j=−∞

∫ τ j−ε

τ j−1+ε

|Gk(t, s)|ds
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for all k > 1/ε, where (29) is used to obtain the last inequality. If k > 1/ε, by Remark 5.6
and (19),∫ τ j−ε

τ j−1+ε

|Gk(t, s)|ds ≤
∫ τ j−ε

τ j−1+ε

{|[W (t + αk, s + αk) − W (t, s)]h(s + αk)|

+ |W (t, s)[h(s + αk) − h(s)]|}ds
≤ (τ j − τ j−1 − 2ε)εC3‖h‖e−C2(t−τ j+ε)/2

+ C1e
−C2(t−τ j+ε)

∫ τ j−1+L

τ j−1

|h(s + αk) − h(s)|ds

< (L − 2ε)εC3‖h‖e−C2(t−τ j+ε)/2 + LC1

k
e−C2(t−τ j+ε)

< (L − 2ε)εC3‖h‖e−C2(t−τ j+ε)/2 + εLC1e
−C2(t−τ j+ε)

for j ≤ m and similarly,∫ t

τm+ε

|Gk(t, s)|ds ≤ (t − τm − ε)εC3‖h‖ + LC1

k

≤ (L − ε)εC3‖h‖ + εLC1.

Consequently,
∣∣∣
∫ t

−∞
Gk(t, s)ds

∣∣∣ < 2εC1‖h‖e−C2(t−τm−ε) + (L − ε)εC3‖h‖ + εLC1

+ 2εC1‖h‖ · 1 + eC2ε

1 − e−C2θ
+ (L − 2ε)εC3‖h‖ · e−C2ε/2

1 − e−C2θ/2

+ εLC1e−C2ε

1 − e−C2θ
=: F3(ε)

by the above inequalities and (29). On the other hand, from Lemma 5.7 and (19) it follows
that for any k > 1/ε,∣∣∣ ∑

τ j<t

[
W (t + αk, τ

+
j+αk/ξ

)b
(
j + αk

ξ

)
− W (t, τ+

j )b( j)
]∣∣∣

≤
m∑

j=−∞

{∣∣∣[W (t + αk, τ
+
j+αk/ξ

) − W (t, τ+
j )]b

(
j + αk

ξ

)∣∣∣

+
∣∣∣W (t, τ+

j )
[
b
(
j + αk

ξ

)
− b( j)

]∣∣∣}

<

m∑
j=−∞

{[
2C1e

−C2(t+αk−τ j+αk /ξ −ε)
(
e3ε‖A‖ − 1

)

+ εC3e
−C2(t+αk−τ j+αk /ξ −3ε)/2] · ‖b‖ + C1

k
e−C2(t−τ j )

}

<

m∑
j=−∞

{[
2C1e

−C2(t−τ j−1/k−ε)
(
e3ε‖A‖ − 1

) + εC3e
−C2(t−τ j−1/k−3ε)/2] · ‖b‖

+C1

k
e−C2(t−τ j )

}
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and by (29),∣∣∣ ∑
τ j<t

[
W (t + αk, τ

+
j+αk/ξ

)b
(
j + αk

ξ

)
− W (t, τ+

j )b( j)
]∣∣∣

<
[
2C1e

C2(1/k+ε) · e
3ε‖A‖ − 1

1 − e−C2θ
+ εC3eC2(1/k+3ε)/2

1 − e−C2θ/2

]
· ‖b‖ + C1

k(1 − e−C2θ )

<
[
2C1e

2εC2 · e
3ε‖A‖ − 1

1 − e−C2θ
+ εC3e2εC2

1 − e−C2θ/2

]
· ‖b‖ + C1ε

1 − e−C2θ
=: F4(ε).

Therefore,

|φ(t + αk) − φ(t)| < F3(ε) + F4(ε) (33)

for all t ∈ R, |t − τ j | > ε, j ∈ Z and k > 1/ε.
4.3. We prove that

lim
k→∞ sup

t∈R

∫ t+1

t
|φ(s + αk) − φ(s)|ds = 0. (34)

Let N ∈ Z+, Nθ > 1. It is obvious that

τ j+N − τ j ≥ Nθ > 1

for all j ∈ Z. If τm + ε < t < τm+1 − ε for some m ∈ Z, then

t + 1 < τm+1 + 1 < τm+1+N .

From (33) it follows that
∫ t+1

t
|φ(s + αk) − φ(s)|ds ≤

∫ τm+1+N

τm

|φ(s + αk) − φ(s)|ds

=
m+1+N∑
j=m+1

[ ∫ τ j−1+ε

τ j−1

|φ(s + αk) − φ(s)|ds +
∫ τ j−ε

τ j−1+ε

|φ(s + αk) − φ(s)|ds

+
∫ τ j

τ j−ε

|φ(s + αk) − φ(s)|ds
]

< (N + 1){4ε‖φ‖ + (L − 2ε)[F1(ε) + F2(ε)]}
for all k > 1/ε. Since ε is arbitrarily small, (34) holds.

4.4. We prove the module containment. (34) implies that α is φ̃-increasing. By (12),
Theorem 2.5 and Lemma 5.8,

mod(φ) = mod(φ̃) ⊂ span
(
mod

(
Ã, ˜̄B( ·

ξ

)
,˜̄b( ·

ξ

)
,˜̄ζ( ·

ξ

)
, h̃

)
∪
{2π

ξ

})

= span
(
mod

(
A, B̄

( ·
ξ

)
, b̄

( ·
ξ

)
, ζ̄

( ·
ξ

)
, h

)
∪
{2π

ξ

})

= span
(
mod(A, h) ∪

[1
ξ

· mod(B̄, b̄, ζ̄ )
]

∪
{2π

ξ

})

= span
(
mod(A, h) ∪

{1
ξ

·
⋃
k∈Z

[(�B ∪ �b ∪ �ζ − {0})(r) + 2kπ]
}
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∪
{2π

ξ

})

= span
(
mod(A, h) ∪

[1
ξ

· {[mod(B, b, ζ )](r) ∪ {2π}}]).

5. We prove that φ is asymptotically stable. By (2.18) in [10], any solution x to (18) can
be represented as

x(t) = W (t, t+0 )x(t+0 ) +
∫ t

t0
W (t, s)h(s)ds +

∑
t0<τ j<t

W (t, τ+
j )b( j), t > t0.

If ϕ and ψ are two distinct solutions to (18), then by (19),

|ϕ(t) − ψ(t)| ≤ |W (t, t+0 )[ϕ(t+0 ) − ψ(t+0 )]|
≤ C1e

−C2(t−t0)|ϕ(t+0 ) − ψ(t+0 )|, t > t0.

Thus (18) admits a unique almost periodic solution φ and φ is asymptotically stable. ��
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