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Abstract We develop a global Hopf bifurcation theory for differential equations with a
state-dependent delay governed by an algebraic equation, using the S1-equivariant degree.
We apply the global Hopf bifurcation theory to a model of genetic regulatory dynamics with
threshold type state-dependent delay vanishing at the stationary state, for a description of the
global continuation of the periodic oscillations.
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1 Introduction

Consider the following system of differential-algebraic equations (DAEs) with state-
dependent delay, {

ẋ(t) = f (x(t), x(t − τ(t)), σ ),

τ (t) = g(x(t), x(t − τ(t)), σ ),
(1.1)

where we assume that

(S1) The map f : RN ×R
N ×R � (θ1, θ2, σ ) �→ f (θ1, θ2, σ ) ∈ R

N is C2 (twice continu-
ously differentiable).

(S2) The map g: RN × R
N × R � (γ1, γ2, σ ) �→ g(γ1, γ2, σ ) ∈ R is C2.

(S3) ( ∂
∂θ1

+ ∂
∂θ2

) f (θ1, θ2, σ )|σ=σ0, θ1=θ2=xσ0
is nonsingular, where σ0 ∈ R, and where

(xσ0 , τσ0) (or, for simplicity, (xσ0 , τσ0 , σ0)) is a stationary state of (1.1). That is,

f (xσ0 , xσ0 , σ0) = 0, g(xσ0 , xσ0 , σ0) = τσ0 .
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(S3) implies that there exists ε0 > 0 and a C1-smooth curve (σ0 − ε0, σ0 + ε0) � σ �→
(xσ , τσ ) ∈ R

N+1 such that (xσ , τσ ) is the unique stationary state of (1.1) in a small neigh-
borhood of (xσ0 , τσ0) for σ close to σ0. In the following, we write ∂i f = ∂

∂θi
f for i = 1, 2,

and similarly we define ∂i g for i = 1, 2.
The state-dependent delay of system (1.1) arises in several applications. To mention a

few, in the model of turning processes [7], the delay τ is the time duration for one around of
cutting, in the echo control model [18], the state-dependent delay is the echo traveling time
between the object’s positions when the sound is emitted and received. See [4] for a review.
To model diffusion processes in genetic regulatory dynamics with time delay, we considered
in [5] the following system:⎧⎨

⎩
dx(t)
dt = −μmx(t) + f0(y(t − τ(t))),

dy(t)
dt = −μp y(t) + g0(x(t − τ(t))),

τ (t) = ε0 + c(x(t) − x(t − τ(t))),
(1.2)

where f0, g0 : R → R are three times continuously differentiable functions; μm , μp , c
and ε0 are positive constants. The time delay τ(t) = ε0 + c(x(t) − x(t − τ(t))) models
the homogenization time of the substances produced in the regulatory processes. Since the
equation for τ can be written as ∫ t

t−τ(t)

1 − cẋ(s)

ε0
ds = 1, (1.3)

we call τ a threshold type state-dependent delay and we have shown in [5] that using the time
transformation t �→ ∫ t

0 (1 − cẋ(s))ds inspired by [15,16], system (1.2) can be transformed
into a system with constant delay and distributed delay under certain conditions. In such a
case, the theory we developed in [1] is applicable to system (1.2) for a local and global Hopf
bifurcation theory. However, if ε0 = 0 in (1.2), then the integral equation for τ becomes∫ t

t−τ(t)
(1 − cẋ(s))ds = 0, (1.4)

which cannot be employed to remove the state-dependent delay using the time transformation
t �→ ∫ t

0 (1 − cẋ(s))ds. Thus the global Hopf bifurcation theory developed in [1] is no
longer applicable. We remark that if we obtain a differential equation of τ from τ(t) =
ε0 + c(x(t) − x(t − τ)) by taking derivatives on both sides, the resulting system will have
a foliation of equilibria and at least one zero eigenvalue. Thus the global Hopf bifurcation
theory developed in [6] is not applicable either.With these facts, we aremotivated to develop a
global Hopf bifurcation theory for system (1.1) and apply it to an extended three dimensional
Goodwin’s model with state-dependent delay where the delay vanishes at the stationary state.
[See system (5.1) at Sect. 5 for a brief description of the model.]

To start the discussion, we denote byC(R; RN ) the normed space of bounded continuous
functions from R to R

N equipped with the usual supremum norm ‖x‖ = supt∈R |x(t)| for
x ∈ C(R; RN ), where | · | denotes the Euclidean norm. We also denote by C1(R; RN ) the
normed space of continuously differentiable bounded functions with bounded derivatives
from R to R

N equipped with the usual C1 norm

‖x‖C1 = max{sup
t∈R

|x(t)|, sup
t∈R

|ẋ(t)|}

for x ∈ C1(R; RN ).

We wish to drop the algebraic equation in (1.1) for the application of S1-equivariant
degree. We have
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Lemma 1 Assume that (S2) holds. The following statements are true:

(i) For every (x, σ ) ∈ C(R;RN )×R, where x is periodic, there exists a function τ : R → R

such that τ(t) = g(x(t), x(t − τ(t)), σ ).

(ii) Let σ ∈ R be fixed and x0 be a constant function in C(R;RN ). There exists an open
ball O(ε) ⊂ C1(R;RN ) centered at x0 with radius ε > 0 such that for every periodic
x ∈ O(ε)with period p > 0, there exists a unique periodic τ ∈ C1(R;R)with period p
such that τ(t) = g(x(t), x(t−τ(t)), σ ), t ∈ R.Moreover, τ depends on x continuously
under the supremum norm.

Proof Fix an arbitrary t ∈ R and let a = τ(t). Consider the graphs of h = a and h =
g(x(t), x(t − a), σ ) in the h-a plane. The graphs must have an intersection since x ∈
C(R;RN ) is periodic and h = g(x(t), x(t − a), σ ) is continuous and bounded with respect
to a. Since t is arbitrary, there exists a function τ : R → R with a = τ(t) such that
τ(t) = g(x(t), x(t − τ(t)), σ ).

Define F : R2 → R by F(a, t) = a − g(x(t), x(t − a), σ ) where x ∈ C1(R;RN ) is
periodic. By (S2) F is continuously differentiable in (a, t) ∈ R

2. Moreover, a = τ(t) is
such that F(a, t) = 0. Note that we have

∂F

∂a
= 1 + ∂2g(x(t), x(t − a), σ )ẋ(t − a).

Since by (S2) ∂2g(γ1, γ2, σ ) is continuous, there exists an open ball O(ε) ⊂ C1(R;RN )

near x0 with ε > 0, such that for every x ∈ O(ε) with x periodic, we have ∂F
∂a �= 0. Indeed,

we can choose ε > 0 small enough so that ∂F
∂a assumes values in a small neighborhood of 1 in

R. By the Implicit Function Theorem, the solution a = τ(t) of a = g(x(t), x(t−a), σ ) for a
is continuously differentiable with respect to t . Moreover, by taking derivatives on both sides
of τ(t) = g(x(t), x(t − τ(t)), σ ) we know that τ̇ is bounded in R. That is, τ ∈ C1(R;R).

Next we show that we can choose ε > 0 small enough so that τ is unique. Suppose not.
Then for every ε > 0, there exists x ∈ O(ε) with period p such that τ is not unique. That
is, there exists τ0 �= τ such that τ0(t) = g(x(t), x(t − τ0(t)), σ ). Let ε1 > 0 and L > 0 be
such that

L = sup
x, y∈O(ε1)

sup
t∈R

|∂2g(x(t), y(t), σ )|.

Then by the Integral Mean Value Theorem, for x ∈ O(ε) ⊂ O(ε1), we have

0 < sup
t∈R

|τ(t) − τ0(t)|
= sup

t∈R
|g(x(t), x(t − τ(t)), σ ) − g(x(t), x(t − τ0(t)), σ )|

= sup
t∈R

∣∣∣∣
∫ 1

0
∂2g(x(t), x(t) + s(x(t − τ(t)) − x(t − τ0(t))), σ )ds

×(x(t − τ(t)) − x(t − τ0(t)))

∣∣∣∣
= sup

t∈R

∣∣∣∣
∫ 1

0
∂2g(x(t), x(t) + s(x(t − τ(t)) − x(t − τ0(t))), σ )ds

∣∣∣∣
× sup

t∈R

∣∣∣∣
∫ 1

0
ẋ(t + θ(τ (t) − τ0(t)))dθ(τ (t) − τ0(t))

∣∣∣∣
≤ Lε sup

t∈R
|τ(t) − τ0(t)|,
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which leads to Lε ≥ 1 for every ε ∈ (0, ε1). This is a contradiction. Therefore, τ is uniquely
determined by x with τ(t) = g(x(t), x(t − τ(t)), σ ), t ∈ R.

Next, we show that τ is p-periodic. Indeed, we have for every t ∈ R,

τ(t + p) = g(x(t + p), x(t + p − τ(t + p)), σ ) = g(x(t), x(t − τ(t + p)), σ ),

which combined with τ(t) = g(x(t), x(t − τ(t)), σ ) and the uniqueness of the solution for
τ leads to τ(t) = τ(t + p), t ∈ R.

Lastly, we show that τ depends on x continuously. Suppose that x and x̄ both lie in
O(ε) ⊂ C1(R;RN ) and that τ and τ̄ are the corresponding solutions of τ(t) = g(x(t), x(t−
τ(t)), σ ), t ∈ R for τ . Let L1 > 0 and L2 > 0 be the supremum of |∂1g| and |∂2g| when x
is in O(ε), respectively. We have

|τ(t) − τ̄ (t)|
= |g(x(t), x(t − τ(t)), σ ) − g(x̄(t), x̄(t − τ̄ (t)), σ )|
= |g(x(t), x(t − τ(t)), σ ) − g(x̄, x(t − τ(t)), σ )

+ g(x̄, x(t − τ(t)), σ ) − g(x̄(t), x̄(t − τ̄ (t)), σ )|
≤ L1‖x − x̄‖ + L2|x(t − τ(t)) − x(t − τ̄ (t)) + x(t − τ̄ (t)) − x̄(t − τ̄ (t))|
≤ L1‖x − x̄‖ + L2(ε|τ(t) − τ̄ (t)| + ‖x − x̄‖).

Take ε > 0 so that 0 < L2ε < 1. We have |τ(t) − τ̄ (t)| <
(L1+L2)‖x−x̄‖

1−L2ε
and

‖τ − τ̄‖ <
(L1 + L2)‖x − x̄‖

1 − L2ε
,

which shows the continuous dependency of τ on x under the supremum norm. ��
By Lemma 1, we notice that if x ∈ C(R;RN ) is periodic, the function τ satisfying τ(t) =

g(x(t), x(t − τ(t)), σ ) is not necessarily continuous and neither is f (x(t), x(t − τ(t)), σ ),
while continuity is crucial for applying topological degree theory for a Hopf bifurcation.
However, if x ∈ C1(R;RN ) is periodic and is in a small neighborhood of a constant function,
τ is continuously differentiable. The complexity is caused by the implicitly given τ in the
algebraic equation of system (1.1). If we replace the delayed term x(t − τ(t)) with x(t − τσ )

in the algebraic equation where τσ is the stationary state of τ defined after (S3), we obtain
the following system with state-dependent delay,{

ẋ(t) = f (x(t), x(t − τ), σ ),

τ (t) = g(x(t), x(t − τσ ), σ ),
(1.5)

where τ is continuous if x is continuous. We notice that system (1.5) shares the same set of
stationary states of system (1.1) and it has interest on its own right since it also represents a
class of differential-algebraic equations with state-dependent delay. Due to the similarities
between systems (1.5) and (1.1), we are interested in developing global Hopf bifurcation
theories for both systems, while for systems (1.5) we use the state space of C(R;RN ) and
for system (1.1) we use C1(R;RN ). Moreover, we show that if system (1.5) undergoes Hopf
bifurcation at (xσ0 , τσ0), then system (1.1) also undergoes Hopf bifurcation at the same
bifurcation point. Namely, we show that systems (1.5) and (1.1) share the same set of Hopf
bifurcation points.

We organize the remaining part of the paper as following: Using the framework for a
Hopf bifurcation theory established in [6], we develop a local Hopf bifurcation theory for
system (1.5) in Sect. 2 and for system (1.1) in Sect. 3. We develop global Hopf bifurcation
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theories for both systems (1.1) and (1.5) in Sect. 4. In Sect. 5 we apply the developed local
and global Hopf bifurcation theories to the prototype system (1.2) with ε0 = 0. We conclude
the discussion in Sect. 6.

2 Local Hopf Bifurcation for System (1.5)

We begin with definitions of notations. We denote by V = C2π (R; RN ) the space of 2π-
periodic continuous functions from R to RN equipped with the supremum norm. We denote
by C1

2π (R; RN ) the Banach space of 2π -periodic and continuously differentiable functions
equipped with the C1 norm.

Note that if x ∈ C(R;RN ) is p-periodic, then τ(t) = g(x(t), x(t − τσ ), σ ), t ∈ R is
continuous and p-periodic.Wecall x a solution if (x, τ ) satisfies system (1.5). For a stationary
state xσ0 of system (1.5) with the parameter σ0, we say that (xσ0 , σ0) is a Hopf bifurcation
point of system (1.5), if there exist a sequence {(xk, σk, Tk)}+∞

k=1 ⊆ C(R;RN ) × R
2 and

T0 > 0 such that

lim
k→+∞ ‖(xk, σk, Tk) − (xσ0 , σ0, T0)‖C(R;RN )×R2 = 0,

and (xk, σk) is a nonconstant Tk-periodic solution of system (1.5).
Due to the nature of the same approach of using the S1-equivariant degree, the presentation

of the remainingpart of this section is similar to that of [6], even though the systems in question
are different. We study Hopf bifurcation of (1.5) through the system obtained through the
formal linearization [2]. Namely, we freeze the state-dependent delay in system (1.5) at its
stationary state and linearize the resulting differential equation of x with constant delay at
the stationary state. For σ ∈ (σ0 − ε0, σ0 + ε0), the following system is called the formal
linearization of system (1.5) at the stationary point xσ :

ẋ(t) = ∂1 f (σ ) (x(t) − xσ ) + ∂2 f (σ ) (x(t − τσ ) − xσ ) , (2.1)

where

∂1 f (σ ) := ∂1 f (xσ , τσ , σ ), ∂2 f (σ ) := ∂2 f (xσ , τσ , σ ), τσ = g(xσ , xσ , σ ).

Letting x(t) = eωt · C + xσ with C ∈ R
N , we obtain the following characteristic equation

of the linear system corresponding to the inhomogeneous linear system (2.1),

detΔ(xσ , σ )(ω) = 0, (2.2)

where Δ(xσ , σ )(ω) is an N × N complex matrix defined by

Δ(xσ , σ )(ω) = ωI − ∂1 f (σ ) − ∂2 f (σ )e−ωτσ . (2.3)

A solutionω to the characteristic equation (2.2) is called a characteristic value of the stationary
state (xσ , σ ). If zero is not a characteristic value of (xσ0 , σ0), (xσ0 , σ0) is said to be a
nonsingular stationary state. We say that (xσ0 , σ0) is a center if the set of nonzero purely
imaginary characteristic values of (xσ0 , σ0) is nonempty and discrete. (xσ0 , σ0) is called an
isolated center if it is the only center in some neighborhood of (xσ0 , σ0) in R

N × R.
If (xσ0 , σ0) is an isolated center of (2.1), then there exist β0 > 0 and δ ∈ (0, ε0) such

that

detΔ(xσ0 , σ0)(iβ0) = 0,
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and

detΔ(xσ , σ )(iβ) �= 0, (2.4)

for any σ ∈ (σ0 − δ, σ0 + δ) and any β ∈ (0, +∞) \ {β0}. Hence, we can choose constants
α0 = α0(σ0, β0) > 0 and ε = ε(σ0, β0) > 0 such that detΔ(xσ0 , σ0)(·) has no zeros in

∂� where � := (0, α0) × (β0 − ε, β0 + ε) ⊂ R
2 ∼= C. We note that detΔ(xσ , σ )(ω) is

analytic in ω and is continuous in σ . If δ > 0 is small enough, then there is no zero of
detΔ(xσ0±δ , σ0±δ)(ω) in ∂�. So we can define the number

γ±(xσ0 , σ0, β0) = degB(detΔ(xσ0±δ , σ0±δ)(·), �),

and the crossing number of (xσ0 , σ0, β0) as

γ (xσ0 , σ0, β0) = γ− − γ+, (2.5)

where degB is the Brouwer degree in finite-dimensional spaces. See, e.g., [8] for details.
To formulate the Hopf bifurcation problem as a fixed point problem in C2π (R;RN ), we

normalize the period of a 2π/β-periodic solution x of (1.5) and the associated τ ∈ C(R;R)

by setting (x(t), τ (t)) = (y(βt), z(βt)) and obtain
(
ẏ(t)
z(t)

)
=
( 1

β
f (y(t), y(t − βz(t)), σ )

g(y(t), y(t − βzσ ), σ )

)
, (2.6)

where (yσ , zσ ) = (xσ , τσ ).
Define N0 : V × R × (0, +∞) � (y, σ, β) �→ N0(y, σ, β) ∈ V by

N0(y, σ, β)(t) = f (y(t), y(t − βz(t)), σ ), (2.7)

where z is chosen to satisfy the second line of (2.6) in light of Lemma 1.
Then the differential equation part of system (2.6) is rewritten as

ẏ(t) = 1

β
N0(y, σ, β)(t). (2.8)

Correspondingly, (2.1) is transformed into

ẏ(t) = 1

β
Ñ0(y, σ, β)(t), (2.9)

where Ñ0 : V × R × (0, +∞) � (y, σ, β) �→ Ñ0(y, σ, β) ∈ V is defined by

Ñ0(y, σ, β)(t) = ∂1 f (σ ) (y(t) − yσ ) + ∂2 f (σ ) (y(t − βzσ ) − yσ ) .

We note that y is 2π-periodic if and only if x is (2π/β)-periodic.
Let L0 : C1

2π (R; RN ) → V be defined by L0y(t) = ẏ(t), t ∈ R and K : V → R
N be

defined by

K (y) = 1

2π

∫ 2π

0
y(t)dt. (2.10)

Define the map F̃ : V × R × (0, +∞) → V by

F̃(y, σ, β) := y − (L0 + K )−1
[
1

β
Ñ0(y, σ, β) + K (y)

]
. (2.11)
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We call the set defined by

B(y0, σ0, β0; r, ρ) = {(y, σ, β) : ‖y − yσ ‖ < r, |(σ, β) − (σ0, β0)| < ρ},
a special neighborhood of F̃ , if it satisfies

(i) F̃(y, σ, β) �= 0 for every (y, σ, β) ∈ B(y0, σ0, β0; r, ρ)with |(σ, β)−(σ0, β0)| = ρ

and ‖y − yσ ‖ �= 0;
(ii) (y0, σ0, β0) is the only isolated center of (2.9) in B(y0, σ0, β0; r, ρ).

We cite some technical Lemmas from [6] with necessary notational adaptations, before we
state and prove the local Hopf bifurcation theorem for system (1.5).

Lemma 2 ([6]) Let L0 : C1
2π (R; RN ) → V be defined by L0y(t) = ẏ(t), t ∈ R and let

K : V → R
N be defined at (2.10). Then L0+K has a compact inverse (L0+K )−1 : V → V .

Lemma 3 ([6]) For any σ ∈ R and β > 0, the map N0(·, σ, β) : V → V defined by (2.7)
is continuous.

Lemma 4 ([6]) If system (2.1) has a nonconstant periodic solution with period T > 0, then
there exists an integer m ≥ 1, m ∈ N such that ±im 2π/T are characteristic values of the
stationary state (xσ , τσ , σ ).

For the purpose of establishing the S1-degree on some special neighborhood near the sta-
tionary state, we have

Lemma 5 Assume (S1)–(S3) hold. Let L0 and K be as in Lemma 2 and Ñ0 : V × R ×
(0, +∞) → V be as in (2.9). Let F̃ : V × R × (0, +∞) → V be defined at (2.11). If
B(y0, σ0, β0; r, ρ) is a special neighborhood of F̃ with 0 < ρ < β0, then there exists
r ′ ∈ (0, r ] such that the neighborhood

B(y0, σ0, β0; r ′, ρ) = {(u, σ, β) : ‖y − yσ ‖ < r ′, |(σ, β) − (σ0, β0)| < ρ}
satisfies

ẏ(t) �≡ 1

β
f (y(t), y(t − βz(t)), σ )

for (y, σ, β) ∈ B(y0, σ0, β0; r ′, ρ) with y �= yσ and |(σ, β) − (σ0, β0)| = ρ.

Proof We prove by contradiction. Suppose the statement is not true, then for any 0 < r ′ ≤ r ,
there exists (y, σ, β) such that 0 < ‖y − yσ ‖ < r ′, |(σ, β) − (σ0, β0)| = ρ and

ẏ(t) = 1

β
f (y(t), y(t − βz(t)), σ ) for t ∈ R. (2.12)

Then there exists a sequence of nonconstant periodic solutions {(yk, σk, βk)}∞k=1 of (2.12)
such that

lim
k→+∞ ‖yk − yσk‖ = 0, |(σk, βk) − (σ0, β0)| = ρ, (2.13)

and

ẏk(t) = 1

βk
f (yk(t), yk(t − βk zk(t)), σk) for t ∈ R, (2.14)

where zk is determined by yk by the second line of system (2.6).
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Note that 0 < ρ < β0 implies that βk ≥ β0 − ρ > 0 for every k ∈ N. Also, since the
sequence {σk, βk}∞k=1 belongs to a bounded neighborhood of (σ0, β0) in R

2, there exists a
convergent subsequence, still denoted by {(σk, βk)}∞k=1 for notational simplicity, that con-
verges to (σ ∗, β∗) so that |(σ ∗, β∗) − (σ0, β0)| = ρ and β∗ > 0. Then we have

lim
k→+∞ ‖yk − yσk‖ = 0, lim

k→+∞ |(σk, βk) − (σ ∗, β∗)| = 0, (2.15)

and

ẏk(t) = 1

βk
f (yk(t), yk(t − βk zk(t)), σk) for t ∈ R. (2.16)

In the following we show that the system

v̇(t) = 1

β∗ ∂1 f (σ
∗)v(t) + 1

β∗ ∂2 f (σ
∗)v(t − β∗zσ ∗), (2.17)

has a nonconstant periodic solution which contradicts the assumption that (yσ0 , σ0, β0) is
the only center of (2.9) in B(y0, σ0, β0; r, ρ).

By (S1), f :RN ×R
N ×R � (θ1, θ2, σ ) → f (θ1, θ2, σ ) ∈ R

N isC2 in (θ1, θ2). It follows
from the Integral Mean Value Theorem that

ẏk(t) = 1

βk

∫ 1

0
∂1 fk(σk, s)(t)ds(yk(t) − yσk )

+ 1

βk

∫ 1

0
∂2 fk(σk, s)(t)ds(yk(t − βk zk(t)) − yσk ), (2.18)

where

∂1 fk(σk, s)(t) : = ∂1 f (yσk + s(yk(t) − yσk ), yσk + s(yk(t − zk(t)) − yσk ), σk)),

∂2 fk(σk, s)(t) : = ∂2 f (yσk + s(yk(t) − yσk ), yσk + s(yk(t − zk(t)) − yσk ), σk)).

Put

vk(t) = yk(t) − yσk
‖yk − yσk‖

. (2.19)

Then we have

vk(t − βk zk(t)) = yk(t − βk zk(t)) − yσk
‖yk − yσk‖

. (2.20)

By (2.18) and (2.20) we have

v̇k(t) = 1

βk

∫ 1

0
∂1 fk(σk, s)(t)ds vk(t) + 1

βk

∫ 1

0
∂2 fk(σk, s)(t)ds vk(t − βk zk(t)). (2.21)

We claim that there exists a convergent subsequence of {vk}+∞
k=1. Indeed, by (2.13) and

system (2.6), we know that {zk, βk}+∞
k=1 is uniformly bounded in C(R;R) × R and hence

limt→+∞[t − βk zk(t)] = +∞. Then by (2.19) and (2.20), we have

‖vk‖ = 1, ‖vk(· − βk zk(·))‖ = 1.

Recall that ∂i f (σ ∗) and ∂i g(σ ∗), i = 1, 2, are defined in (2.1). By (2.15), we know that
(yσk + s(yk(t) − yσk ), yσk + s(yk(t − zk(t)) − yσk ), σk) converges to the stationary state
(yσ ∗ , yσ ∗ , σ ∗) in C(R;R2N ) × R uniformly for all s ∈ [0, 1]. By (S1) we know that
f (θ1, θ2, σ ) isC2 in (θ1, θ2, σ ) and ∂1 f (θ1, θ2, σ ) isC1 in σ . Also, by (2.13), the sequence
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{uk, βk, σk}+∞
k=1 is uniformly bounded in C(R;RN+1) × R

2. Then there exists a constant
L̃1 > 0 so that

|∂1 fk(σk, s)(t) − ∂1 f (σ
∗)|

≤ L̃1|(yσk + s(yk(t) − yσk ), yσk + s(yk(t − zk(t)) − yσk ), σk) − (yσ ∗ , yσ ∗ , σ ∗)|,
for all t ∈ R, k ∈ N and s ∈ [0, 1]. Therefore,we have limk→+∞ ‖∂1 fk(σk, s)−∂1 f (σ ∗)‖ =
0 uniformly for s ∈ [0, 1]. By the same argument we obtain that

lim
k→+∞ ‖∂1 fk(σk, s) − ∂1 f (σ

∗)‖ = 0, lim
k→+∞ ‖∂2 fk(σk, s) − ∂2 f (σ

∗)‖ = 0, (2.22)

uniformly for s ∈ [0, 1]. From (2.22) we know that ‖∂1 fk(σk, s)‖ and ‖∂2 fk(σk, s)‖ are
both uniformly bounded for all k ∈ N and s ∈ [0, 1]. Then it follows from (2.21) that
there exists a constant L̃2 > 0 such that ‖v̇k‖ < L̃2 for any k ∈ N. By the Arzela–Ascoli
Theorem, there exists a convergent subsequence {vk j }+∞

j=1 of {vk}+∞
k=1. That is, there exists

v∗ ∈ {v ∈ V : ‖v‖ = 1} such that
lim

j→+∞ ‖vk j − v∗‖ = 0. (2.23)

By the Integral Mean Value Theorem, we have

|vk j (t − βk j zk j (t)) − vk j (t − β∗zσ ∗)|

=
∣∣∣∣
∫ 1

0
v̇k j (t − θ(βk j zk j (t) − β∗zσ ∗))dθ(βk j zk j (t) − β∗zσ ∗)

∣∣∣∣
≤ ‖v̇k j ‖ · |βk j zk j (t) − β∗zσ ∗ |
≤ L̃2(βk j |zk j (t) − zσ ∗ | + |βk j − β∗|zσ ∗). (2.24)

By (2.15) and (2.24) we have

lim
j→+∞ ‖vk j (· − βk j zk j (·)) − vk j (· − β∗zσ ∗)‖ = 0. (2.25)

Therefore, it follows from (2.23) and (2.25) that

lim
j→+∞ ‖vk j (· − βk j zk j (·)) − v∗(· − β∗zσ ∗)‖ = 0. (2.26)

It follows from (2.15), (2.22), (2.23) and (2.26) that the right hand side of (2.21) converges
uniformly to the right hand side of (2.17). Therefore, v∗ is differentiable and we have

lim
k→+∞ |v̇k(t) − v̇∗(t)| = 0,

and

v̇∗(t) = 1

β∗ ∂1 f (σ
∗)v∗(t) + 1

β∗ ∂2 f (σ
∗)v∗(t − β∗zσ ∗). (2.27)

Since by (S3) the matrix ∂1 f (σ ∗) + ∂2 f (σ ∗), is nonsingular, v = 0 is the only con-
stant solution of (2.27). Also, we have v∗ ∈ {v ∈ V : ‖v‖ = 1}, ‖v∗‖ �= 0. Therefore,
(v∗(t), σ ∗, β∗) is a nonconstant periodic solution of the linear equation (2.27). Then by
Lemma 4 (yσ ∗ , σ ∗, β∗) is also a center of (2.9) in B(y0, σ0, β0; r, ρ). This contradicts the
assumption that B(y0, σ0, β0; r, ρ) is a special neighborhood of (2.6). This completes the
proof. ��
To apply the homotopy argument of S1-degree, we show the following
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Lemma 6 Assume (S1)–(S3) hold. Let L0, K , Ñ0, F̃ be as in Lemma 5 and N0 : V × R ×
(0, +∞) → V be as in (2.6). Define the map F : V × R × (0, +∞) → V by

F(y, σ, β) := y − (L0 + K )−1
[
1

β
N0(y, σ, β) + K (y)

]
.

If U = B(y0, σ0, β0; r, ρ) ⊆ V × R × (0, +∞) is a special neighborhood of F̃ with
0 < ρ < β0, then there exists r ′ ∈ (0, r ] such that Fθ = (F, θ) and F̃θ = (F̃, θ)

are homotopic on B(y0, σ0, β0; r ′, ρ), where θ is a completing function (or Ize’s function)
defined on B(y0, σ0, β0; r ′, ρ) which satisfies

(i) θ(yσ , σ, β) = −|(σ, β) − (σ0, β0)| if (yσ , σ, β) ∈ Ū;
(ii) θ(y, σ, β) = r ′ if ‖y − yσ ‖ = r ′.

Proof Since U = B(y0, σ0, β0; r, ρ) ⊆ V ×R× (0, +∞) is a special neighborhood of F̃
with 0 < ρ < β0, then by Lemma 5, both Fθ = (F, θ) and F̃θ = (F, θ) are U-admissible.
That is, the S1 degrees of Fθ and F̃θ are well-defined on U . Note that we introduce the
completing function θ in order to distinguish nontrivial solutions from trivial ones. See [8]
for details.

Suppose, for contradiction, that the conclusion is not true. Then for any r ′ ∈ (0, r ],
Fθ = (F, θ) and F̃θ = (F̃, θ) are not homotopic on B(y0, σ0, β0; r ′, ρ). That is, any
homotopy map between Fθ and F̃θ has a zero on the boundary of B(y0, σ0, β0; r ′, ρ). In
particular, the linear homotopy h(·, α) := αFθ + (1 − α)F̃θ = (αF + (1 − α)F̃, θ) has a
zero on the boundary of B(y0, σ0, β0; r ′, ρ), where α ∈ [0, 1].

Note that θ(y, σ, β) > 0 if ‖y − yσ ‖ = r ′. Then, there exist (y, σ, β) and α ∈ [0, 1]
such that ‖y − yσ ‖ < r ′, |(σ, β) − (σ0, β0)| = ρ and

H(y, σ, β, α) := αF + (1 − α)F̃ = 0. (2.28)

Since r ′ > 0 is arbitrary in the interval (0, r ], there exists a nonconstant sequence
{(yk, σk, βk, αk)}∞k=1 of solutions of (2.28) such that

lim
k→+∞ ‖yk − yσk‖ = 0, |(σk, βk) − (σ0, β0)| = ρ, 0 ≤ αk ≤ 1, (2.29)

and

H(yk, σk, βk, αk) = 0, for all k ∈ N. (2.30)

Note that 0 < ρ < β0 implies that βk ≥ β0 − ρ > 0 for every k ∈ N. From (2.29)
we know that {(σk, βk, αk)}∞k=1 belongs to a compact subset of R3. Therefore, there exist
a convergent subsequence, denoted for notational simplicity by {(σk, βk, αk)}∞k=1 without
loss of generality, and (σ ∗, β∗, α∗) ∈ R

3 such that β∗ ≥ β0 − ρ > 0, α∗ ∈ [0, 1] and
lim

k→+∞ |(σk, βk, αk) − (σ ∗, β∗, α∗)| = 0. (2.31)

Similarly as in the proof of Lemma 5, we show that the system

v̇(t) = 1

β∗ ∂1 f (σ
∗)v(t) + 1

β∗ ∂2 f (σ
∗)v(t − β∗zσ ∗) (2.32)

with ∂i f (σ ∗), ∂i g(σ ∗), i = 1, 2, defined at (2.1), has a nonconstant periodic solution which
contradicts the assumption that B(u0, σ0, β0; r, ρ) is a special neighborhoodwhich contains
an isolated center of (2.9).
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By (2.30), we know that the subsequence {(yk, σk, βk, αk)}∞k=1 satisfies

H(yk, σk, βk, αk) = 0. (2.33)

By (S1), f : RN × R
N × R � (θ1, θ2, σ ) → f (θ1, θ2, σ ) ∈ R

N is C2 in (θ1, θ2). Then it
follows from the Integral Mean Value Theorem and from (2.33) that

u̇k(t) = αk

βk

∫ 1

0
∂1 fk(σk, s)(t)ds(yk(t) − yσk )

+ αk

βk

∫ 1

0
∂2 fk(σk, s)(t)ds(yk(t − βk zk(t)) − yσk )

+ 1 − αk

βk

∫ 1

0
∂1 fk(σk, s)(t)ds(yk(t) − yσk )

+ 1 − αk

βk

∫ 1

0
∂2 fk(σk, s)(t)ds(yk(t − βk zσk ) − yσk ), (2.34)

where

∂1 fk(σk, s)(t) : = ∂1 f (yσk + s(yk(t) − yσk ), yσk + s(yk(t − βzk(t)) − yσk ), σk)),

∂2 fk(σk, s)(t) : = ∂2 f (yσk + s(yk(t) − yσk ), yσk + s(yk(t − βzk(t)) − yσk ), σk)).

Put

vk(t) = yk(t) − yσk
‖yk − yσk‖

. (2.35)

Then we have

vk(t − βk zk(t)) = yk(t − βk zk(t)) − yσk
‖yk − yσk‖

. (2.36)

By (2.34) and (2.36), we have

v̇k(t) = αk

βk

∫ 1

0
∂1 fk(σk, s)(t)ds vk(t)

+ αk

βk

∫ 1

0
∂2 fk(σk, s)(t)ds vk(t − βk zσk )

+ 1 − αk

βk

∫ 1

0
∂1 fk(σk, s)(t)ds vk(t)

+ 1 − αk

βk

∫ 1

0
∂2 fk(σk, s)(t)ds vk(t − βk zσk ). (2.37)

We show that there exists a convergent subsequence of {vk}+∞
k=1. Indeed, by (2.29) we know

that {zk, βk}+∞
k=1 is uniformly bounded in C(R;R) × R. Therefore we have

lim
t→+∞ t − βk zk(t) = +∞. (2.38)

By (2.35), (2.36) and (2.38), we have ‖vk‖ = 1, ‖vk(·−βk zk)‖ = 1. By (S1) and (2.31) and
by a similar argument yielding (2.22), we know that

lim
k→+∞ ‖∂1 fk(σk, s) − ∂1 f (σ

∗)‖ = 0, lim
k→+∞ ‖∂2 fk(σk, s) − ∂2 f (σ

∗)‖ = 0, (2.39)
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uniformly for s ∈ [0, 1]. We know from (2.39) that ‖∂1 fk(σk, s)‖, ‖∂2 fk(σk, s)‖, are both
uniformly bounded for every k ∈ N and s ∈ [0, 1]. It follows from (2.37) that there exists
L̃3 > 0 such that ‖v̇k‖ < L̃3 for every k ∈ N. By the Arzela–Ascoli Theorem, there exists
a convergent subsequence {vk j }+∞

j=1 of {vk}+∞
k=1. That is, there exists v∗ ∈ {v ∈ V : ‖v‖ = 1}

such that

lim
j→+∞ ‖vk j − v∗‖ = 0. (2.40)

By the Integral Mean Value Theorem, we obtain for all t ∈ R,

|vk j (t − βk j zk j (t)) − vk j (t − β∗zσ ∗)|

=
∣∣∣∣
∫ 1

0
v̇k j (t − β∗zσ ∗ − θ(βk j zk j (t) − β∗zσ ∗))dθ(βk j zk j (t) − β∗zσ ∗)

∣∣∣∣
≤ ‖v̇k j ‖ · |βk j zk j (t) − β∗zσ ∗ |
≤ L̃3(βk j |zk j (t) − zσ ∗ | + |βk j − β∗|zσ ∗). (2.41)

Then by (2.31) and (2.41) we have

lim
j→+∞ ‖vk j (· − βk j zk j (·)) − vk j (· − β∗zσ ∗)‖ = 0. (2.42)

From (2.40) and (2.42) we have

lim
j→+∞ ‖vk j (· − βk j zk j (·)) − v∗(· − β∗zσ ∗)‖ = 0. (2.43)

It follows from (2.31), (2.39), (2.40) and (2.43) that the right hand side of (2.37) converges
uniformly to the right hand side of (2.32). Therefore,

lim
j→+∞ |v̇k j (t) − v̇∗(t)| = 0, (2.44)

and

v̇∗(t) = 1

β∗ ∂1 f (σ
∗)v∗(t) + 1

β∗ ∂2 f (σ
∗)v∗(t − β∗τσ ∗). (2.45)

Noticing that v∗ ∈ {v : ‖v‖ = 1}, we have ‖v∗‖ �= 0. Since the matrix ∂1 f (σ ∗)+∂2 f (σ ∗) is
nonsingular, v∗ is a nonconstant periodic solution of (2.45). Then by Lemma 4 (yσ ∗ , σ ∗, β∗)
is also a center of (2.9) in B(y0, σ0, β0; r, ρ). This contradicts the assumption that
B(y0, σ0, β0; r, ρ) is a special neighborhood of (2.9) which contains only one center
(y0, σ0, β0). This completes the proof. ��
Now we are in the position to prove a local Hopf bifurcation theorem for system (1.5).

Theorem 1 Assume (S1)–(S3) hold. Let (xσ0 , σ0) be an isolated center of system (2.1). If
the crossing number defined by (2.5) satisfies

γ (xσ0 , σ0, β0) �= 0,

then there exists a bifurcation of nonconstant periodic solutions of (1.5) near (xσ0 , σ0). More
precisely, there exists a sequence {(xn, σn, βn)} such that σn → σ0, βn → β0 as n → ∞,
and limn→∞ ‖xn − xσ0‖ = 0, where

(xn, σn) ∈ C(R;RN ) × R

is a nonconstant 2π/βn-periodic solution of system (1.5).
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Proof Let (x, τ ) be a solution of system (1.5) with x being 2π/β-periodic and β > 0. Let
(x(t), τ (t)) = (y(βt), z(βt)). Then system (1.5) is transformed to{

ẏ(t) = 1
β
f (y(t), y(t − βz(t)), σ ),

z(t) = g(y(t), y(t − βzσ ), σ ).
(2.46)

Let V = C2π (R; RN ). For any ξ = eiν ∈ S1, u ∈ V , (ξu)(t) := u(t + ν). Recall that δ
and ε are defined before (2.5). Let D(σ0, β0) = (σ0 − δ, σ0 + δ) × (β0 − ε, β0 + ε) and
define the maps

L0y(t) := ẏ(t), y ∈ C1
2π (R; RN ),

N0(y, σ, β)(t) := f (y(t), y(t − βz(t)), σ ), y ∈ V,

Ñ0(y, σ, β)(t) := ∂1 f (σ )(y(t) − yσ ) + ∂2 f (σ )(y(t − βzσ ) − yσ ), y ∈ V,

where (σ, β) ∈ D(σ0, β0) and t ∈ R, and (yσ , zσ ) is the stationary state of the system at σ
such that yσ0 = xσ0 . The space V is a Banach representation of the group G = S1.

Define the operator K : V → R
N by

K (y) := 1

2π

∫ 2π

0
y(t)dt, y ∈ V .

By Lemma 2, the operator L0 + K : C1
2π (R;RN ) → V has a compact inverse (L0 + K )−1 :

V → V . Then, finding a 2π/β-periodic solution for the system (1.5) is equivalent to finding
a solution of the following fixed point problem:

y = (L0 + K )−1
[
1

β
N0(y, σ, β) + K (y)

]
, (2.47)

where (y, σ, β) ∈ V × R × (0, +∞).
Define the following mapsF : V ×R× (0, +∞) → V and F̃ : V ×R× (0, +∞) → V

by

F(y, σ, β) := y − (L0 + K )−1
[
1

β
N0(y, σ, β) + K (y)

]
,

F̃(y, σ, β) := y − (L0 + K )−1
[
1

β
Ñ0(y, σ, β) + K (y)

]
.

Finding a 2π/β-periodic solution of system (1.5) is equivalent to finding the solution of the
problem

F(y, σ, β) = 0, (y, σ, β) ∈ V × R × (0, +∞).

By results in [6], it is sufficient to verify the following conditions:

(A1) V has an S1-isotypical decomposition V = ⊕∞
k=0Vk and for each integer k =

0, 1, 2 . . . , the subspace Vk is of finite dimension.
(A2) There exists a compact resolvent K of L0 such that for every fixed parameter (σ, β) ∈

R
2, (L0 + K )−1 ◦ [N0(·, σ, β) + K ] : V → V is a condensing map.

(A3) There exists a 2-dimensional submanifold M ⊂ V0 × R
2 such that i) M ⊂ F−1(0);

ii) if (y0, σ0, β0) ∈ M , then there exists an open neighborhood U(σ0, β0) of (σ, β) in
R
2 , an open neighborhood Uy0 of U0 in V0, and a C1-map η : U(σ0, β0) → Uy0 such

that M ∩ (Uy0 ×U(σ0, β0)) = {(η(σ, β), (σ, β)) : (σ, β) ∈ U(σ0, β0)}.
(A4) M ⊂ F̃−1(0) and for every fixed parameter (σ, β) ∈ R

2, (L0+K )−1◦[Ñ0(·, σ, β)+
K ] : V → V is a condensing map.
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(A5) There exist r > 0 and ρ > 0 so that B(y0, σ0, β0; r, ρ) is a special neighbor-
hood of F̃ and there exists r ′ ∈ (0, r ] such that F(y, σ, β) �= 0 for (y, σ, β) ∈
B(y0, σ0, β0; r ′, ρ) with y �= η(σ, β) and |(σ, β) − (σ0, β0)| = ρ.

(A6) DuF̃(y0, σ0, β0) : V0 → V0 is an isomorphism.

By (S1) we know that the linear operator Ñ0 is continuous. By Lemma 3, we know
that N0(·, σ, β) : V → V is continuous. Moreover, by Lemma 2 the operator (L0 +
K )−1 : V → V is compact and hence (L0 + K )−1 ◦ ( 1

β
N0(·, α, β) + K ) : V → V and

(L0 + K )−1 ◦ ( 1
β
Ñ0(·, α, β) + K ) : V → V are completely continuous and hence are

condensing maps. That is, (A2) and (A4) are satisfied.
Since (xσ0 , σ0) = (yσ0 , σ0) is an isolated center of system (2.1) with a purely imaginary

characteristic value iβ0, β0 > 0, (yσ0 , σ0, β0) ∈ V × R × (0, +∞) is an isolated V -
singular point of F̃ . That is, (yσ0 , σ0, β0) is the only point in V such that the derivative
DyF(yσ0 , σ0, β0) is not an automorphism of V . We define the following two-dimensional
submanifold M ⊂ V0 × R × (0, +∞) by

M := {(yσ , σ, β) : σ ∈ (σ0 − δ, σ0 + δ), β ∈ (β0 − ε, β0 + ε)},
such that the point (yσ0 , σ0, β0) is the only V -singular point of F̃ in M . M is the set of trivial
solutions to the system (2.1) and satisfies the assumption (A3).

Since (yσ0 , σ0, β0) ∈ V ×R× (0, +∞) is an isolated V -singular point of F̃ , for ρ > 0
sufficiently small, the linear operator DuF̃(yσ , σ, β) : V → V with |(σ, β)−(σ0, β0)| < ρ,
is not an automorphism only if (σ, β) = (σ0, β0). Then, by the Implicit Function Theorem,
there exists r > 0 such that for every (y, σ, β) ∈ V×R×(0, +∞)with |(σ, β)−(σ0, β0)| =
ρ and 0 < ‖y− yσ ‖ ≤ r , we have F̃(y, σ, β) �= 0. Then the set B(x0, σ0, β0; r, ρ) defined
by

{(y, σ, β) ∈ V × R × (0, +∞); |(σ, β) − (σ0, β0)| < ρ, ‖y − yσ ‖ < r},
is a special neighborhood for F̃ .

By Lemma 5, there exists a special neighborhood U = B(yσ0 , σ0, β0; r ′, ρ) such that
F and F̃ are nonzero for (y, σ, β) ∈ B(yσ0 , σ0, β0; r ′, ρ) with y �= yσ and |(σ, β) −
(σ0, β0)| = ρ. That is, (A5) is satisfied.

Let θ be a completing function on U . It follows from Lemma 6 that (F, θ) is homotopic
to (F̃, θ) on U .

It is known that V has the following isotypical direct sum decomposition

V =
∞⊕
k=0

Vk,

where V0 is the space of all constant mappings from R into R
N , and Vk with k > 0, k ∈ N

is the vector space of all mappings of the form

x cos k · +y sin k· : R � t → x cos kt + y sin kt ∈ R
N ,

where x, y ∈ R
N . Then Vk , k > 0, k ∈ N, are finite dimensional. Then, (A1) is satisfied.

For (σ, β) ∈ D(σ0, β0), we denote by Ψ (σ, β) the map DyF̃(y(σ ), σ, β) : V → V .
Then we have Ψ (σ, β)(Vk) ⊂ Vk for all k = 0, 1, 2, . . .. Therefore, we can define Ψk :
D(σ0, β0) → L(Vk, Vk) by

Ψk(σ, β) := Ψ (σ, β)|Vk .
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We note that Vk , k ≥ 1, k ∈ N, can be endowed with the natural complex structure J : Vk →
Vk defined by

J (x cos k · +y sin k·) = −(x sin k · +y cos k·), x y ∈ R
N .

By extending the linearity of J to the vector space spanned over the field of complex numbers
by eik· · ε j : R � t → eikt · ε j ∈ C

N , j = 1, 2, . . . , N , we know that

{eik· · ε j , J (eik· · ε j )}Nj=1 = {eik· · ε j , ie
ik· · ε j }Nj=1

is a basis of Vk , where {ε1, ε2, . . . , εN } denotes the standard basis of RN . Then we identify
Vk with the vector space over the complex numbers spanned by eik· · ε j , j = 1, 2, . . . , N .

Then we have for vk ∈ Vk , k ∈ Z, k ≥ 1,

Ψk(σ, β)vk = vk − (L0 + K )−1
(
1

β
Du Ñ0(u(σ ), σ, β) + K

)
vk

= vk − 1

β
(L0 + K )−1 (∂1 f (σ )vk + ∂2 f (σ )(vk)βzσ

)
,

where (vk)βzσ = vk(· − βzσ ). Then we have, for eik·ε j ∈ Vk ,

Ψk(σ, β)(eik·ε j )

= 1

ikβ

(
ikβ Id − ∂1 f (σ ) − ∂2 f (σ )e−ikβzσ

)
· (eik·ε j )

= 1

ikβ
Δ(u(σ ), σ )(ikβ) · (eik·ε j ),

where the last equality follows from (2.3). Therefore, the matrix representation [Ψk] of
Ψk(σ, β) with respect to the ordered C-basis {eik·ε j }Nj=1 is given by

1

ikβ
Δ(yσ , σ )(ikβ).

Next we show that there exists some k ∈ Z, k ≥ 1, such that μk(yσ0 , σ0, β0) :=
degB(detC[Ψk]) �= 0.

Define ΨH : D(σ0, β0) → R
2 � C by

ΨH (σ, β) = detΔ(yσ , σ )(iβ).

The number μ1(yσ0 , σ0, β0) can be written as follows (see Theorem 7.1.5 of [8]):

μ1(u(σ0), σ0, β0) = ε · deg (ΨH ,D(σ0, β0)) ,

where ε = sign detΨ0(σ, β) for (σ, β) ∈ D(σ0, β0). For a constant map v0 ∈ V0,

Ψ0(σ, β)v0 = − 1

β
(∂1 f (σ ) + ∂2 f (σ ))v0.

Then, by (S3), we have ε �= 0 and therefore (A6) is satisfied.
Note that α0, β0, δ and ε are chosen at (2.5). Define the function H : [σ0 − δ, σ0 + δ] ×

� → R
2 � C by

H(σ, α, β) := detΔ(yσ , σ )(α + iβ),
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where � = (0, α0) × (β0 − ε, β0 + ε), α0 = α0(σ0, β0) > 0. By the same argument for
(2.4) and (2.5), we know that H satisfies all the conditions of Lemma 2.1 of [6] (or Lemma
7.2.1 of [8]) by the choice of α0, β0, ε and δ. So we have

deg (ΨH ,D(σ0, β0)) = γ (yσ0 , σ0, β0) �= 0.

Thus, μ1(yσ0 , σ0, β0) �= 0 which, by Theorem 2.4 of [6], implies that (yσ0 , σ0, β0) is a
bifurcation point of the system (2.46). Consequently, there exists a sequence of non-constant
periodic solutions (xn, σn, βn) such that σn → σ0, βn → β0 as n → ∞, and xn is a 2π/βn-
periodic solution of (1.5) such that the associated pair (xn, τn) with τn(t) = g(xn(t), xn(t −
τn(t)), σn) satisfies (1.5) with limn→+∞ ‖(xn, τn) − (xσ0 , τσ0)‖ = 0. ��

3 Local Hopf Bifurcation for System (1.1)

Nowwe consider the local Hopf bifurcation problem of system (1.1). By Lemma 1, we know
that if x ∈ C1(R;RN ) is p-periodic and is in a small neighborhood O(ε) of xσ , there exists
a unique p-periodic τ ∈ C1(R;R) such that τ(t) = g(x(t), x(t − τ(t)), σ ), t ∈ R. We call
x a solution if (x, τ ) satisfies system (1.1).

For a stationary state xσ0 of system (1.1) with the parameter σ0, we say that (xσ0 , σ0)

is a Hopf bifurcation point of system (1.1), if there exist a sequence {(xk, σk, Tk)}+∞
k=1 ⊆

C1(R;RN ) × R
2 and T0 > 0 such that

lim
k→+∞ ‖(xk, σk, Tk) − (xσ0 , σ0, T0)‖C1(R;RN )×R2 = 0,

and (xk, σk) is a nonconstant Tk-periodic solution of system (1.1).
We freeze the state-dependent delay in system (1.1) at its stationary state and linearize

the resulting differential equation of x with constant delay at the stationary state. For σ ∈
(σ0 − ε0, σ0 + ε0), the following formal linearization of system (1.1) at the stationary point
xσ :

ẋ(t) = ∂1 f (σ ) (x(t) − xσ ) + ∂2 f (σ ) (x(t − τσ ) − xσ ) , (3.1)

where

∂1 f (σ ) := ∂1 f (xσ , τσ , σ ), ∂2 f (σ ) := ∂2 f (xσ , τσ , σ ), τσ = g(xσ , xσ , σ ).

Notice that the system (3.1) is the same as system (2.1) and hence they share the same
characteristic equations.

Let (xσ0 , σ0) be an isolated center of (2.1) and let O(ε∗) ⊂ C1(R;RN ) be a neighborhood
of xσ0 . In the following we confine the discussion with x ∈ O(ε∗) ⊂ C1(R;RN ), where by
Lemma 1, ε∗ > 0 is chosen so that every p-periodic x ∈ O(ε∗) ⊂ C1(R;RN ) determines a
unique continuously differentiable p-periodic τ .

Now we formulate the Hopf bifurcation problem as a fixed point problem in C1(R;RN ).
We normalize the period of the 2π/β-periodic solution x ∈ O(ε∗) of (1.5) and the associated
τ ∈ C1(R;R) by setting (x(t), τ (t)) = (y(βt), z(βt)). We obtain

(
ẏ(t)
z(t)

)
=
( 1

β
f (y(t), y(t − βz(t)), σ )

g(y(t), y(t − βz(t)), σ )

)
. (3.2)
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Let W = O(ε∗) ∩ C1
2π (R;RN ). Define N1 : W � (y, σ, β) × R

2 → N1(y, σ, β) ∈
C1
2π (R;RN ) by

N1(y, σ, β)(t) = f (y(t), y(t − βz(t)), σ ), (3.3)

where z is chosen according to y in light of Lemma 1 so that (y, z) is a solution of the second
line of (3.2). Then the equation for ẏ in system (3.2) is rewritten as

ẏ(t) = 1

β
N1(y, σ, β)(t). (3.4)

Correspondingly, (3.1) is transformed into

ẏ(t) = 1

β
Ñ1(y, σ, β)(t), (3.5)

where Ñ1 : W � (y, σ, β) × R
2 → Ñ1(y, σ, β) ∈ C1

2π (R;RN ) is defined by

Ñ1(y, σ, β)(t) = ∂1 f (σ ) (y(t) − yσ ) + ∂2 f (σ ) (y(t − βzσ ) − yσ ) .

with (yσ , zσ ) = (xσ , τσ ). We note that y is 2π -periodic if and only if x is (2π/β)-periodic.
Let L0 : C1

2π (R; RN ) → C2π (R; RN ) be defined by L0y(t) = ẏ(t), t ∈ R and K :
C1
2π (R;RN ) → R

N be defined by

K (y) = 1

2π

∫ 2π

0
y(t)dt. (3.6)

Define the map F̃ : W × R
2 → C1

2π (R;RN ) by

F̃(y, σ, β) := y − (L0 + K )−1
[
1

β
Ñ0(y, σ, β) + K (y)

]
. (3.7)

We suppose that the set defined by

B(y0, σ0, β0; r, ρ) = {(y, σ, β) : ‖y − yσ ‖C1 < r, |(σ, β) − (σ0, β0)| < ρ},
is a special neighborhood of F̃ which satisfies

(i) F̃(y, σ, β) �= 0 for every (y, σ, β) ∈ B(y0, σ0, β0; r, ρ)with |(σ, β)−(σ0, β0)| = ρ

and ‖y − yσ ‖C1 �= 0;
(ii) (y0, σ0, β0) is the only isolated center in B(y0, σ0, β0; r, ρ).

Before we state and prove the local Hopf bifurcation theorem for system (1.1), we need the
following technical Lemmas.

Lemma 7 Let L0 : C1
2π (R; RN ) → C2π (R; RN ) be defined by L0y(t) = ẏ(t), t ∈ R

and let K : C1
2π (R; RN ) → R

N be defined at (3.6). Then the inverse (L0 + K )−1 :
C2π (R; RN ) → C1

2π (R; RN ) exists and is continuous.

Proof By the proof of Lemma 3.1 in [6], L0 + K : C1
2π (R; RN ) → C2π (R; RN ) is one-

to-one and onto. Moreover, (L0 + K )−1 : C2π (R; RN ) → C1
2π (R; RN ) is continuous.

��
Lemma 8 For any σ ∈ R and β > 0, the map N1(·, σ, β) : W → C1

2π (R; RN ) defined by
(3.3) is continuous.
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Proof Let {yn}∞n=1 ⊂ W be a convergent sequence with limit y0 ∈ W . By Lemma 1,
{yn}∞n=1 ⊂ W uniquely determines a sequence {zn}∞n=1 ⊂ C1

2π (R; R) satisfying

zn(t) = g(yn(t), yn(t − βzn(t)), σ ), t ∈ R.

Moreover, there exists z0 ∈ C1
2π (R; R) such that z0(t) = g(y0(t), y0(t−βz0(t)), σ ), t ∈ R

and by Lemma 1 we have,

lim
n→∞ sup

t∈[0, 2π ]
|zn(t) − z0(t)| = 0. (3.8)

By taking derivatives on both sides of zn(t) = g(yn(t), y(t − βzn(t), σ ) we obtain that

żn(t) = ∂1g(yn(t), yn(t − βzn(t)), σ )ẏn(t)

1 + β∂2g(yn(t), yn(t − βzn(t)), σ )ẏn(t − βzn(t))
. (3.9)

Notice that, we have

ż0(t) = ∂1g(y0(t), y0(t − βz0(t)), σ )ẏ0(t)

1 + β∂2g(y0(t), y0(t − βz0(t)), σ )ẏ0(t − βz0(t))
. (3.10)

Using the Triangle Inequality and the Integral Mean Value Theorem, and noticing from (S2)
that g is C2, we can show that

sup
t∈[0, 2π ]

∣∣∣∣ ∂1g(yn(t), yn(t − βzn(t)), σ )ẏn(t)

1 + β∂2g(yn(t), yn(t − βzn(t)), σ )ẏn(t − βzn(t))

− ∂1g(y0(t), y0(t − βz0(t)), σ )ẏ0(t)

1 + β∂2g(y0(t), y0(t − βz0(t)), σ )ẏ0(t − βz0(t))

∣∣∣∣
→ 0, as n → ∞. (3.11)

Therefore, by (3.9) and (3.10) we have limn→∞ supt∈[0, 2π ] |żn(t) − ż0(t)| = 0 which com-
bined with (3.8) leads to limn→∞ ‖zn − z0‖C1 = 0.

Next we show that N1 : W → C1
2π (R; RN ) defined by N1(y, σ, β)(t) = f (y(t), y(t −

βz(t)), σ ) is continuous. That is,

lim
n→∞ ‖N1(yn(t), yn(t − βzn(t)), σ ) − N1(y0(t), y0(t − βz0(t)), σ )‖C1 = 0. (3.12)

By the proof of Lemma 3.2 in [6], we know that the restriction N1 C2π (R;RN ) is a continuous
map from C2π (R; RN ) to C2π (R; RN ). Therefore, we have

lim
n→∞ sup

t∈[0, 2π ]
| f (yn(t), yn(t − βzn(t)), σ ) − f (y0(t), y0(t − βz0(t)), σ )| = 0. (3.13)

Moreover, since limn→∞ ‖yn − y0‖C1 = 0 and limn→∞ ‖zn − z0‖C1 = 0. We can use the
Triangle Inequality and the Integral Mean Value Theorem to obtain that

lim
n→∞ sup

t∈[0, 2π ]

∣∣∣∣ ddt N1(yn, yn(t − τn(t)), σ ) − d

dt
N1(y0, y0(t − τ0(t)), σ )

∣∣∣∣
= lim

n→∞ sup
t∈[0, 2π ]

|∂1 f (yn(t), yn(t − βzn(t)), σ )ẏn(t) + ∂2 f (yn(t), yn(t − βzn(t)), σ )

× ẏn(t − βzn(t))(1 − β żn(t)) − ∂1 f (y0(t), y0(t − βz0(t)), σ )ẏ0(t)
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− ∂2 f (y0(t), y0(t − βz0(t)), σ )

× ẏ0(t − βz0(t))(1 − β ż0(t))| ,
= 0. (3.14)

By (3.13) and (3.14), N1 : W → C1
2π (R; RN ) is continuous. ��

To establish the S1-degree on some special neighborhood near the stationary state , we
have

Lemma 9 Assume (S1)–(S3) hold. Let L0 and K be as in Lemma 7 and Ñ1 : W × R ×
(0, +∞) → C1

2π (R;RN ) be as in (3.5). Let F̃ : W × R × (0, +∞) → C1
2π (R;RN ) be

defined at (2.11). If B(y0, σ0, β0; r, ρ) is a special neighborhood of F̃ with 0 < ρ < β0,
then there exists r ′ ∈ (0, r ] such that the neighborhood

B(y0, σ0, β0; r ′, ρ) = {(u, σ, β) : ‖y − yσ ‖C1 < r ′, |(σ, β) − (σ0, β0)| < ρ}
satisfies

ẏ(t) �≡ 1

β
f (y(t), y(t − βz(t)), σ )

for (y, σ, β) ∈ B(y0, σ0, β0; r ′, ρ) with y �= yσ and |(σ, β) − (σ0, β0)| = ρ.

Proof We prove by contradiction. Suppose the statement is not true, then for any 0 < r ′ ≤ r ,
there exists (y, σ, β) such that 0 < ‖y − yσ ‖C1 < r ′, |(σ, β) − (σ0, β0)| = ρ and

ẏ(t) = 1

β
f (y(t), y(t − βz(t)), σ ) for t ∈ R. (3.15)

Then there exists a sequence of nonconstant periodic solutions {(yk, σk, βk)}∞k=1 of (3.15)
such that

lim
k→+∞ ‖yk − yσk‖C1 = 0, |(σk, βk) − (σ0, β0)| = ρ, (3.16)

and

ẏk(t) = 1

βk
f (yk(t), yk(t − βk zk(t)), σk) for t ∈ R, (3.17)

where zk is chosen according to yk in light of Lemma 1 so that (yk, zk) is a solution of
system (3.2).

Note that 0 < ρ < β0 implies that βk ≥ β0 − ρ > 0 for every k ∈ N. Also, since the
sequence {σk, βk}∞k=1 belongs to a bounded neighborhood of (σ0, β0) in R

2, there exists a
convergent subsequence, still denoted by {(σk, βk)}∞k=1 for notational simplicity, that con-
verges to (σ ∗, β∗) so that |(σ ∗, β∗) − (σ0, β0)| = ρ and β∗ > 0. Then we have

lim
k→+∞ ‖yk − yσk‖C1 = 0, lim

k→+∞ |(σk, βk) − (σ ∗, β∗)| = 0, (3.18)

and

ẏk(t) = 1

βk
f (yk(t), yk(t − βk zk(t)), σk) for t ∈ R. (3.19)

We need to show that the system

v̇(t) = 1

β∗ ∂1 f (σ
∗)v(t) + 1

β∗ ∂2 f (σ
∗)v(t − β∗zσ ∗), (3.20)
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has a nonconstant periodic solution which contradicts the assumption that (yσ0 , σ0, β0) is
the only center of (3.5) in B(u0, σ0, β0; r, ρ). But (3.18) implies that

lim
k→+∞ ‖yk − yσk‖ = 0, lim

k→+∞ |(σk, βk) − (σ ∗, β∗)| = 0, (3.21)

Then by the same argument in the proof of Lemma 5, (3.20) has a nonconstant periodic
solution. This completes the proof. ��

To apply the homotopy argument of S1-degree, we show the following

Lemma 10 Assume (S1)–(S3) hold. Let L0, K , Ñ1, F̃ be as in Lemma 9 and N1 : W ×R
2 →

C1
2π (R;RN ) be as in (3.2). Define the map F : W × R × (0, +∞) → C1

2π (R;RN ) by

F(y, σ, β) := y − (L0 + K )−1
[
1

β
N1(y, σ, β) + K (y)

]
.

If U = B(y0, σ0, β0; r, ρ) ⊆ W × R × (0, +∞) is a special neighborhood of F̃ with
0 < ρ < β0, then there exists r ′ ∈ (0, r ] such that Fθ = (F, θ) and F̃θ = (F̃, θ)

are homotopic on B(y0, σ0, β0; r ′, ρ), where θ is a completing function (or Ize’s function)
defined on B(y0, σ0, β0; r ′, ρ) which satisfies

(i) θ(yσ , σ, β) = −|(σ, β) − (σ0, β0)| if (yσ , σ, β) ∈ Ū;
(ii) θ(y, σ, β) = r ′ if ‖y − yσ ‖C1 = r ′.

Proof Since U = B(y0, σ0, β0; r, ρ) ⊆ W × R
2 is a special neighborhood of F̃ with

0 < ρ < β0, then by Lemma 9, both Fθ = (F, θ) and F̃θ = (F, θ) are U-admissible. For
contradiction, suppose that the conclusion is not true. Then for any r ′ ∈ (0, r ], Fθ = (F, θ)

and F̃θ = (F̃, θ) are not homotopic on B(y0, σ0, β0; r ′, ρ). That is, any homotopy map
between Fθ and F̃θ has a zero on the boundary of B(y0, σ0, β0; r ′, ρ). In particular, the
linear homotopy h(·, α) := αFθ + (1 − α)F̃θ = (αF + (1 − α)F̃, θ) has a zero on the
boundary of B(y0, σ0, β0; r ′, ρ), where α ∈ [0, 1].

Note that θ(y, σ, β) > 0 if ‖y − yσ ‖C1 = r ′. Then, there exist (y, σ, β) and α ∈ [0, 1]
such that ‖y − yσ ‖C1 < r ′, |(σ, β) − (σ0, β0)| = ρ and

H(y, σ, β, α) := αF + (1 − α)F̃ = 0. (3.22)

Since r ′ > 0 is arbitrary in the interval (0, r ], there exists a nonconstant sequence
{(yk, σk, βk, αk)}∞k=1 of solutions of (3.22) such that

lim
k→+∞ ‖yk − yσk‖C1 = 0, |(σk, βk) − (σ0, β0)| = ρ, 0 ≤ αk ≤ 1, (3.23)

and

H(yk, σk, βk, αk) = 0, for all k ∈ N. (3.24)

Note that 0 < ρ < β0 implies that βk ≥ β0 − ρ > 0 for every k ∈ N. From (3.23)
we know that {(σk, βk, αk)}∞k=1 belongs to a compact subset of R3. Therefore, there exist
a convergent subsequence, denoted for notational simplicity by {(σk, βk, αk)}∞k=1 without
loss of generality, and (σ ∗, β∗, α∗) ∈ R

3 such that β∗ ≥ β0 − ρ > 0, α∗ ∈ [0, 1] and
lim

k→+∞ |(σk, βk, αk) − (σ ∗, β∗, α∗)| = 0. (3.25)

By the same token for the proof of Lemma 5, we show that the system

v̇(t) = 1

β∗ ∂1 f (σ
∗)v(t) + 1

β∗ ∂2 f (σ
∗)v(t − β∗zσ ∗) (3.26)

123



J Dyn Diff Equat (2019) 31:93–128 113

with ∂i f (σ ∗), ∂i g(σ ∗), i = 1, 2, defined at (2.1), has a nonconstant periodic solution which
contradicts the assumption that B(u0, σ0, β0; r, ρ) is a special neighborhoodwhich contains
an isolated center of (3.5). Since (3.23) implies limk→+∞ ‖yk − yσk‖ = 0, by the same
argument in the proof of Lemma 10 we know that system (3.26) has a nonconstant periodic
solution. This is a contradiction. ��

Now we are in the position to prove the local Hopf bifurcation theorem for system (1.1).

Theorem 2 Assume (S1)–(S3) hold. Let (xσ0 , σ0) be an isolated center of system (2.1). If
the crossing number defined by (2.5) satisfies

γ (xσ0 , σ0, β0) �= 0,

then there exists a bifurcation of nonconstant periodic solutions of (1.1) near (xσ0 , σ0). More
precisely, there exists a sequence {(xn, σn, βn)} such that σn → σ0, βn → β0 as n → ∞,
and limn→∞ ‖xn − xσ0‖C1 = 0, where

(xn, σn) ∈ C1(R;RN ) × R

is a nonconstant 2π/βn-periodic solution of system (1.1).

Proof Let (x, τ ) be a solution of system (1.1) with x being 2π/β-periodic and β > 0. Let
(x(t), τ (t)) = (y(βt), z(βt)). Then system (1.1) is transformed to{

ẏ(t) = 1
β
f (y(t), y(t − βz(t)), σ ),

z(t) = g(y(t), y(t − βz(t)), σ ).
(3.27)

Let W = O(ε∗) ∩ C1
2π (R; RN ). For any ξ = eiν ∈ S1, u ∈ W , (ξu)(t) := u(t + ν). By

results in [6], it is sufficient to verify the following conditions (A1)-(A6) listed in the proof
of Theorem 1.

Recall that δ and ε are defined before (2.5). Let D(σ0, β0) = (σ0 − δ, σ0 + δ) × (β0 −
ε, β0 + ε) and define the maps

L0y(t) := ẏ(t), y ∈ C1
2π (R; RN ),

N1(y, σ, β)(t) := f (y(t), y(t − βz(t)), σ ), y ∈ W,

Ñ1(y, σ, β)(t) := ∂1 f (σ )(y(t) − yσ ) + ∂2 f (σ )(y(t − βzσ ) − yσ ), y ∈ W,

where (σ, β) ∈ D(σ0, β0) and t ∈ R, and (yσ , zσ ) is the stationary state of the system at σ
such that yσ0 = xσ0 . The spaceC

1
2π (R; RN ) is a Banach representation of the groupG = S1.

Define the operator K : C1
2π (R; RN ) → R

N by

K (y) := 1

2π

∫ 2π

0
y(t)dt, y ∈ C1

2π (R; RN ).

By Lemma 2, the operator L0 + K : C1
2π (R;RN ) → C2π (R; RN ) has a compact inverse

(L0 + K )−1. Then, finding a 2π/β-periodic solution for the system (1.1) is equivalent to
finding a solution of the following fixed point problem:

y = (L0 + K )−1
[
1

β
N1(y, σ, β) + K (y)

]
, (3.28)

where (y, σ, β) ∈ W × R × (0, +∞).
By (S1) we know that the linear operator Ñ1 is continuous. By Lemma 8, we know

that N1(·, σ, β) : W → C1
2π (R;RN ) is continuous. Moreover, by Lemma 7 the operator
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(L0 + K )−1 : C2π (R;RN ) → C1
2π (R;RN ) is continuous. Noticing that the embedding

j : C1
2π (R;RN ) ↪→ C2π (R;RN ) is compact, we obtain that (L0 + K )−1 ◦ ( 1

β
N1(·, α, β) +

K ) : W → C1
2π (R;RN ) and (L0 + K )−1 ◦ ( 1

β
Ñ1(·, α, β) + K ) : W → C1

2π (R;RN ) are
completely continuous and hence are condensing maps. That is, (A2) and (A4) are satisfied.

Define the following maps F : W × R × (0, +∞) → C1
2π (R;RN ) and F̃ : W × R ×

(0, +∞) → C1
2π (R;RN ) by

F(y, σ, β) := y − (L0 + K )−1
[
1

β
N1(y, σ, β) + K (y)

]
,

F̃(y, σ, β) := y − (L0 + K )−1
[
1

β
Ñ1(y, σ, β) + K (y)

]
,

which are equivariant condensing fields. Finding a 2π/β-periodic solution of system (1.1)
is equivalent to finding the solution of the problem

F(y, σ, β) = 0, (y, σ, β) ∈ W × R × (0, +∞).

Since (xσ0 , σ0) = (yσ0 , σ0) is an isolated center of system (2.1) with a purely imaginary
characteristic value iβ0, β0 > 0, (yσ0 , σ0, β0) ∈ W × R × (0, +∞) is an isolated sin-
gular point of F̃ . That is, (yσ0 , σ0, β0) is the only point in W such that the derivative
DyF(yσ0 , σ0, β0) is not an automorphism of C1

2π (R;RN ). One can define the following
two-dimensional submanifold M ⊂ V0 × R × (0, +∞) by

M := {(yσ , σ, β) : σ ∈ (σ0 − δ, σ0 + δ), β ∈ (β0 − ε, β0 + ε)},
such that the point (yσ0 , σ0, β0) is the only singular point of F̃ in M . M is the set of trivial
solutions to the system (2.1) and satisfies the assumption (A3).

Since (yσ0 , σ0, β0) ∈ W × R × (0, +∞) is an isolated singular point of F̃ , for ρ > 0
sufficiently small, the linear operator DuF̃(yσ , σ, β) : W → C1

2π (R;RN ) with |(σ, β) −
(σ0, β0)| < ρ, is not an automorphism only if (σ, β) = (σ0, β0). Then, by the Implicit
Function Theorem, there exists r > 0 such that for every (y, σ, β) ∈ W × R × (0, +∞)

with |(σ, β) − (σ0, β0)| = ρ and 0 < ‖y − yσ ‖ ≤ r , we have F̃(y, σ, β) �= 0. Then the
set B(x0, σ0, β0; r, ρ) defined by

{(y, σ, β) ∈ W × R × (0, +∞); |(σ, β) − (σ0, β0)| < ρ, ‖y − yσ ‖C1 < r},
is a special neighborhood for F̃ .

By Lemma 9, there exists a special neighborhood U = B(yσ0 , σ0, β0; r ′, ρ) such that
F and F̃ are nonzero for (y, σ, β) ∈ B(yσ0 , σ0, β0; r ′, ρ) with y �= yσ and |(σ, β) −
(σ0, β0)| = ρ. That is, (A5) is satisfied.

Let θ be a completing function on U . It follows from Lemma 10 that (F, θ) is homo-
topic to (F̃, θ) on U . It is known that C1

2π (R;RN ) has the following isotypical direct sum
decomposition

C1
2π (R;RN ) =

∞⊕
k=0

Vk,

where V0 is the space of all constant mappings from R into R
N , and Vk with k > 0, k ∈ N

is the vector space of all mappings of the form

x cos k · +y sin k· : R � t → x cos kt + y sin kt ∈ R
N ,
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where x, y ∈ R
N . Then Vk , k > 0, k ∈ N, are finite dimensional. Then, (A1) is satisfied.

The verification of (A6) and the computation of the crossing number γ (yσ0 , σ0, β0) �= 0
is the same as that in the proof of Theorem 1. We omit the details here. Then by Theorem 2.4
of [6], (yσ0 , σ0, β0) is a bifurcation point of the system (3.27). Consequently, there exists
a sequence of non-constant periodic solutions (xn, σn, βn) such that σn → σ0, βn → β0

as n → ∞, and xn is a 2π/βn-periodic solution of (1.1) such that xn satisfies (1.1) with
limn→+∞ ‖xn − xσ0‖C1 = 0. ��

4 Global Bifurcation of DAEs with State-Dependent Delays

In this section we use a Rabinowitz-type global Hopf bifurcation theorem (Theorem 2.5
developed in [6]) to describe the maximal continuation of bifurcated periodic solutions with
large amplitudes when the bifurcation parameter σ is far away from the bifurcation value.
Note that systems (1.1) and (1.5) share the same differential equation for x and differ only
in the algebraic equation for the state-dependent delay τ . Moreover, by Theorems 1 and 2,
both systems share the same set of Hopf bifurcation points. In the following, we state results
in terms of system (1.1), which are also applicable to system (1.5).

Lemma 11 (Vidossich [17]) Let X be a Banach space, v : R → X be a p-periodic function
with the following properties:

(i) v ∈ L1
loc(R, X);

(ii) there exists U ∈ L1([0, p
2 ];R+) such that |v(t) − v(s)| ≤ U (t − s) for almost every

(in the sense of the Lebesgue measure) s, t ∈ R such that s ≤ t , t − s ≤ p
2 ;

(iii)
∫ p
0 v(t) dt = 0.

Then

p ‖v‖L∞ ≤ 2
∫ p

2

0
U (t) dt.

We make the following assumption on f :

(S4) There exists constant L f > 0 such that

| f (θ1, θ2, σ ) − f (θ1, θ2, σ )| ≤ L f (|θ1 − θ1| + |θ2 − θ2|),
for every θ1, θ2, θ1, θ2, σ ∈ R.

Lemma 12 Suppose that system (1.1) satisfies the assumption (S4) and x is a nonconstant
periodic solution. The following statements are true.

(i) If ‖τ‖L∞ < 1
2L f

, then the minimal period p of x satisfies

p ≥ 2

1 − 2L f ‖τ‖L∞
.

(ii) If τ is continuously differentiable in R, then the minimal period p of x satisfies

p ≥ 4

L f (2 + ‖τ̇‖L∞)
.
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(iii) Suppose there exists a constant Lg > 0 such that

|g(θ1, θ2, σ ) − g(θ1, θ2, σ )| ≤ Lg(|θ1 − θ1| + |θ2 − θ2|),
for every θ1, θ2, θ1, θ2, σ ∈ R. If ‖ẋ‖L∞ < 1

Lg
, then the minimal period p of x

satisfies

p ≥ 2(1 − Lg‖ẋ‖L∞)

L f
.

Proof Assume that x is a nonconstant periodic solution with minimal period p. Let v(t) =
ẋ(t). Then we have

∫ p
0 v(t)dt = 0. For s ≤ t , by (S4) and the Integral Mean Value Theorem,

we have

|v(t) − v(s)| ≤ |ẋ(t) − ẋ(s)|
≤ L f (|x(t) − x(s)| + |x(t − τ(t)) − x(s − τ(s))|)
≤ L f ‖ẋ‖L∞(t − s) + L f ‖ẋ‖L∞(t − s + |τ(t) − τ(s)|)
≤ (2L f ‖ẋ‖L∞ + L f ‖ẋ‖L∞ · ‖τ̇‖L∞

)
(t − s). (4.1)

(i) By (4.1) we have

|v(t) − v(s)| ≤ L f ‖ẋ‖L∞(t − s) + L f ‖ẋ‖L∞(t − s + |τ(t) − τ(s)|)
≤ 2L f ‖ẋ‖L∞(t − s) + 2L f ‖τ‖L∞ · ‖ẋ‖L∞ .

Let

U (t) = 2L f ‖ẋ‖L∞ t + 2L f ‖τ‖L∞ · ‖ẋ‖L∞ .

Then, by Lemma 11, we obtain

p‖ẋ‖L∞ ≤ 2
∫ p

2

0
U (t)dt = p2

4
· 2L f ‖ẋ‖L∞ + p · 2L f ‖τ‖L∞ · ‖ẋ‖L∞ .

If ‖τ‖L∞ < 1
2L f

, then

p ≥ 2

(1 − 2L f ‖τ‖L∞)
.

(ii) If τ is continuously differentiable in R, then we have ‖τ̇‖L∞ < ∞. Moreover, by (4.1)
we have

|v(t) − v(s)| ≤ L f ‖ẋ‖L∞(t − s) + L f ‖ẋ‖L∞(t − s + |τ(t) − τ(s)|)
≤ (2 + ‖τ̇‖L∞)L f · ‖ẋ‖L∞(t − s).

Let

U (t) = (2 + ‖τ̇‖L∞)L f · ‖ẋ‖L∞ t.

Then, by Lemma 11, we obtain

p‖ẋ‖L∞ ≤ 2
∫ p

2

0
U (t)dt = p2

4
· (2 + ‖τ̇‖L∞)L f · ‖ẋ‖L∞ .

Therefore,

p ≥ 4

L f (2 + ‖τ̇‖L∞)
.
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(iii) If g is Lipschitz continuous, then we have

|τ(t) − τ(s)| ≤ Lg|x(t) − x(s)| + Lg|x(t − τ(t)) − x(s − τ(s))|
≤ Lg‖ẋ‖L∞(t − s) + Lg‖ẋ‖L∞(t − s + |τ(t) − τ(s)|).

If ‖ẋ‖L∞ < 1
Lg
, then we have

|τ(t) − τ(s)| ≤ 2Lg‖ẋ‖L∞(t − s)

1 − Lg‖ẋ‖L∞
. (4.2)

By (4.1) and (4.2)

|v(t) − v(s)| ≤ L f ‖ẋ‖L∞(t − s) + L f ‖ẋ‖L∞(t − s + |τ(t) − τ(s)|)

≤ 2L f · ‖ẋ‖L∞(t − s) + 2L f Lg‖ẋ‖2L∞(t − s)

1 − Lg‖ẋ‖L∞

= 2L f ‖ẋ‖L∞

1 − Lg‖ẋ‖L∞
(t − s).

Let

U (t) = 2L f ‖ẋ‖L∞

1 − Lg‖ẋ‖L∞
t.

We obtain

p‖ẋ‖L∞ ≤ 2
∫ p

2

0
U (t)dt = p2

4
· 2L f ‖ẋ‖L∞

1 − Lg‖ẋ‖L∞
,

and

p ≥ 2(1 − Lg‖ẋ‖L∞)

L f
.

��
To describe the minimal periods of the periodic solutions near the bifurcation point, we

need the following result which was first established in [9] for ordinary differential equations
and was extended to other types of delay differential equations in [6,19].

Lemma 13 Suppose that system (1.1) satisfies (S1–S4). Assume further that there exists a
sequence of real numbers {σk}∞k=1 such that:

(i) For each k, system (1.5) with σ = σk has a nonconstant periodic solution xk ∈
C(R;RN+1) with the minimal period Tk > 0, and one of the conditions (i), (ii) and (iii)
at Lemma 12 is satisfied by (xk, τk);

(ii) lim
k→∞ σk = σ0 ∈ R, lim

k→∞ Tk = T0 < ∞, and lim
k→∞ ‖xk − x0‖ = 0, where x0 : R → R

N

is a constant map with the value x0.

Then x0 is a stationary state of (1.1) and there exists m ≥ 1, m ∈ N such that ±im 2π/T0
are the roots of the characteristic equation (2.2) with σ = σ0.

Proof By Lemma 12 and the uniform convergence of {(xk, σk, Tk)}∞k=1 we conclude that
there exists T ∗ > 0 such that Tk ≥ T ∗ and therefore T0 ≥ T ∗. We can show that (x0, σ0) is
a stationary state of (1.5), and that the following linear system

v̇(t) = ∂1 f (σ0)v(t) + ∂2 f (σ0)v(t − τ0) (4.3)
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has a nonconstant periodic solution, the proofs of which are just simplified versions of the
proof for Lemma 4.3 in [6] without the equations for τk . Hence we omit the details here. Then
by Lemma 4, there exists m ≥ 1, m ∈ N, such that ±im 2π/T0 are characteristic values of
(2.2). This completes the proof. ��

Now we can describe the relation between 2π/βk and the minimal period of uk in Theo-
rem 1.

Theorem 3 Assume (S1–S4) hold and every point in the sequence {(xk, τk)}∞k=1 at Theo-
rem 1 satisfies one of the conditions among (i), (ii) and (iii) at Lemma 12, then every limit
point of the minimal period of xk as k → +∞ is contained in the set{

2π

(nβ0)
: ±im nβ0 are characteristic values of (x0, σ0), m, n ≥ 1, m, n ∈ N

}
.

Moreover, if ±i m nβ0 are not characteristic values of (x0, σ0) for any integers m, n ∈ N

such that m n > 1, then 2π/βk is the minimal period of uk(t) and 2π/βk → 2π/β0 as
k → ∞.

Proof Let Tk denote the minimal period of xk(t). Then there exists a positive integer nk such
that 2π/βk = nkTk . Since Tk ≤ 2π/βk → 2π/β0 as k → ∞, there exists a subsequence
{Tk j }∞j=1 and T0 such that T0 = lim j→∞ Tk j . Since 2π/βk j → 2π/β0, Tk j → T0 as
j → ∞, nk j is identical to a constant n for k large enough. Therefore, 2π/β0 = nT0. Thus
Tk j → 2π/(nβ0) as j → ∞. By Lemma 13, ±im 2π/T0 = ±im nβ0 are characteristic
values of (x0, σ0) for some m ≥ 1, m ∈ N.

Moreover, if ±i m nβ0 are not characteristic values of (u0, σ0) for any integers m ∈ N

and n ∈ N with mn > 1, then m = n = 1. Therefore, for k large enough nk j = 1 and
2π/βk = Tk is the minimal period of xk(t) and 2π/βk → 2π/β0 as k → ∞. This completes
the proof. ��
The following lemma shows that we can locate all the possible Hopf bifurcation points of sys-
tem (1.1) with state-dependent delay at the centers of its corresponding formal linearization.
Since the proof is similar to that for Lemma 4.5 in [6], we omit the details here.

Lemma 14 Assume (S1–S3) hold. If (x0, σ0) is a Hopf bifurcation point of system (1.1),
then it is a center of (2.1).

Now we are in the position to consider the global Hopf bifurcation problem of system
(1.1). Letting (x(t), τ (t)) = (y( 2πp t), z( 2πp t)), we can reformulate the problem as a problem
of finding 2π-period solutions to the following equation:

ẏ(t) = p
2π

N0(y(t), σ, 2π/p), (4.4)

where the z satisfies the algebraic equation z(t) = g(y(t), y(t − p
2π z(t)), σ ). Accordingly,

the formal linearization (2.1) becomes

ẋ(t) = p
2π

Ñ0(x(t), σ, 2π/p). (4.5)

Using the same notations as in the proof of Theorem 1, we can define

N0(x, σ, p) = N0(x, σ, 2π/p), ˜N0(x, σ, p) = Ñ0(x, σ, 2π/p).
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Then the following system

L0x = p
2π

N0(x, σ, p), p > 0, (4.6)

is equivalent to (4.4) and

L0x = p
2π

˜N0(x, σ, p), p > 0, (4.7)

is equivalent to (4.5). Let S denote the closure of the set of all nontrivial periodic solutions
of system (4.6) in the space V × R × R+, where R+ is the set of all nonnegative reals. It
follows from Lemma 12 that the constant solution (x0, σ0, 0) does not belong to this set if
the sequence {(xk, τk)}∞k=1 in Theorem 1 satisfies one of the conditions among i), ii) and iii)
at Lemma 12. Consequently, we can assume that problem (4.6) is well posed on the whole
space V ×R

2, in the sense that if S exists in V ×R
2, then it must be contained in V ×R×R+.

Then by the global Hopf bifurcation theorem 2.5 developed in [6] and with similar argu-
ments leading to Theorem 4.6 in [6], we obtain the following global Hopf bifurcation theorem
for system (1.1) with state-dependent delay.

Theorem 4 Suppose that system (1.1) satisfies (S1–S4) and (S3) holds at every center of
(4.7). Assume that all the centers of (4.7) are isolated and every periodic solution x of system
(1.1) satisfies one of the conditions among (i), (ii) and (iii) at Lemma 12. LetM be the set of
trivial periodic solutions of (4.6) and assume that M is complete. If (x0, σ0, p0) ∈ M is a
bifurcation point, then either the connected component C(x0, σ0, p0) of (x0, σ0, p0) in S
is unbounded, or

C(x0, σ0, p0) ∩ M = {(x0, σ0, p0), (x1, σ1, p1), . . . , (xq , σq , pq)},
where pi ∈ R+, (xi , σi , pi ) ∈ M, i = 0, 1, 2, . . . , q. Moreover, in the latter case, we have

q∑
i=0

εiγ (xi , σi , 2π/pi ) = 0,

where γ (xi , σi , 2π/pi ) is the crossing number of (xi , σi , pi ) defined by (2.5) and

εi = sgn det(∂1 f (σi ) + ∂2 f (σi )).

5 Global Hopf Bifurcation of a Model of Regulatory Dynamics

We consider the following extended Goodwin’s model for regulatory dynamics:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx(t)
dt = −μmx(t) + αm

1+
(
z(t−τ)

z̃

)h ,

dy(t)
dt = −μp y(t) + αpx(t − τ),

dz(t)
dt = −μez(t) + αe y(t − τ),

τ (t) = c(x(t) − x(t − τ)),

(5.1)

where x is the concentration of mRNA, y is the concentration of the related protein; z is the
concentration of an active enzyme which controls the level of the metabolite functioning as
repressor at the DNA level; μm , μp and μe are nonnegative degradation rates; αm , αp and
αe are positive coefficients for the inhibition/activation terms; c and z̃ are positive constants;
h is an even positive integer. The Goodwin’s model [3] without delay (τ = 0) has been
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extensively studied in system biology modeling various regulatory dynamics. Note that if we
freeze the delay τ at the stationary state in system (5.1), it becomes the classic Goodwin’s
model without delay.

We are interested in the onset and termination of each Hopf bifurcation branch of periodic
solutions which are described as one of the alternatives given in Theorem 4. To be specific,
we need to obtain the boundedness or unboundedness of the connected component of the
pairs of nonconstant periodic solution and parameter in the product space of the state and the
parameter space. In the following, we first analyze the local Hopf bifurcation of system (5.1)
and then consider the boundedness of periodic solutions of system (5.1) for a global Hopf
bifurcation in light of Theorem 4.

5.1 Local Hopf Bifurcation

Note that h is an even positive integer. Every stationary point (x, y, z) of System (5.1)
satisfies that ⎧⎪⎨

⎪⎩
−μmx + αm

1+
(
z
z̃

)h = 0,

−μp y + αpx = 0,
−μez + αe y = 0,

(5.2)

and (x, y, z) =
(
x0,

αp
μp

x0,
αeαp
μeμp

x0
)
, where by Descartes’ rule of signs we know that

x = x0 is the unique solution of

μm

(
αeαp

μeμp z̃

)h

xh+1 + μmx − αm = 0.

Freezing the delay of system (5.1) at τ = 0 and linearizing the resulting nonlinear system at

the stationary state (x, y, z) =
(
x0,

αp
μp

x0,
αeαp
μeμp

x0
)
leads to the characteristic polynomial

det

⎛
⎜⎜⎜⎝λI −

⎡
⎢⎢⎢⎣

−μm 0 − hαmzh−1

z̃h
(
1+
(
z
z̃

)h)2

αp −μp 0
0 αe −μe

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

= (λ + μm)(λ + μp)(λ + μe) + hαmzh−1

z̃h
(
1 +

(
z
z̃

)h)2 , (5.3)

which has a unique negative root and a pair of imaginary roots. In the following, we discuss
the existence of purely imaginary eigenvalues as the parameter αm varies. We have

Lemma 15 Let (x, y, z) be a stationary state of system (5.1). Then the following equation
of (x, αm) ⎧⎪⎨

⎪⎩
(μm + μp)(μe + μp)(μe + μm) = hα3

m
z̃hμ2

m
·
(

αeαp
μeμp

)h−1
xh−3,

μmx = αm

1+
(

αeαp
μeμp z̃

x
)h ,

(5.4)

has a unique solution for (x, αm) = (x∗, α∗
m).
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Proof Noticing that by the second equation of (5.4), αm
x = μm

(
1 +

(
αeαp

μeμp z̃
x
)h)

, we rewrite

the first equation of (5.4) into

xh
(
1 +

(
αeαp

μeμp z̃
x

)h
)3

= (μm + μp)(μe + μp)(μe + μm)

hμm
z̃h

(
αeαp

μeμp z̃

)h−1 ,

which has a unique positive solution for xh and hence for x with x = x∗ for some x∗ > 0.

Then αm = α∗
m with α∗

m = x∗μm

(
1 +

(
αeαp

μeμp z̃
x∗
)h)

. The solution of (5.4) is (x, αm) =
(x∗, α∗

m). ��
Lemma 16 Let α∗

m be as in Lemma 15 and λ = u ± iv be the imaginary roots of the
characteristic polynomial at (5.3). Then u and v are continuously differentiable with respect
to αm and u = 0 if and only if αm = α∗

m. Moreover,

du

dαm
αm=α∗

m
> 0.

Proof Let (x, y, z) =
(
x0,

αp
μp

x0,
αeαp
μeμp

x0
)
be a stationary state of System (5.1) and let

F(λ, αm) = (λ + μm)(λ + μp)(λ + μe) + hαmzh−1

z̃h
(
1 +

(
z
z̃

)h)2 .

Noticing that z = αeαp
μeμp

x0 and

dx0
dαm

= 1

μm + μm(h + 1)
(

αeαp
μeμp z̃

)h
xh0

,

we know that F is continuously differentiable with respect to (λ, αm). Let (λ, αm) be such
that F(λ, αm) = 0. Then we have

dF

dλ
= (λ + μm)(λ + μp)(λ + μe)

(
1

λ + μm
+ 1

λ + μp
+ 1

λ + μe

)

= − hαmzh−1

z̃h
(
1 +

(
z
z̃

)h)2

(
1

λ + μm
+ 1

λ + μp
+ 1

λ + μe

)
.

Next we show that dF
dλ �= 0 at every solution of F(λ, αm) = 0. Otherwise, F has a repeated

root and the root satisfies

1

λ + μm
+ 1

λ + μp
+ 1

λ + μe
= 0

which leads to two distinct negative roots:

λ =
−(μm + μp + μe) ±

√
(μm + μe)2 + μ2

p − μp(μm + μe)

3
.

This is a contradiction. Then by the Implicit Function Theorem, λ is continuously differen-
tiable with respect to αm .
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Next we bring λ = u + iv into the characteristic polynomial at (5.3) we have{
((u + μm)(u + μp) − v2)(u + μe) − (μm + μp + 2u)v2 + c0 = 0
[(u + μm)(u + μp) − v2 + (u + μe)(μm + μp + 2u)]v = 0,

(5.5)

where c0 = hαmzh−1

z̃h
(
1+
(
z
z̃

)h)2 = hα3
m

z̃hμ2
m

·
(

αeαp
μeμp

)h−1
xh−3. If u = 0, then (5.5) leads to

{
(μm + μp)(μe + μp)(μe + μm) = c0,
μmμp + μe(μm + μp) = v2.

(5.6)

where x satisfiesμmx = αm

1+
(

αeαp
μeμp z̃

x
)h .By Lemma 5.4, we have αm = α∗

m .By the uniqueness

of α∗
m , u = 0 if and only if αm = α∗

m .
To compute du

dαm
at αm = α∗

m , we take derivatives with respect to αm on both sides of the
equations at (5.5) and then letting u = 0, we obtain{ [(μeμp + μeμm + μmμp) − 3v2]u′ − 2v(μm + μp)v

′ + c′
0 = 0,

[2(μm + μp + μe)v]u′ + [(μeμp + μeμm + μmμp) − 3v2]v′ = 0.

Then we have

du

dαm
αm=α∗

m
= −c′

0((μeμp + μeμm + μmμp) − 3v2)

[(μeμp + μeμm + μmμp) − 3v2]2 + 4v2(μm + μp)(μm + μp + μe)
.

By the second equation of (5.6), we have

du

dαm
αm=α∗

m
= 2c′

0(μeμp + μeμm + μmμp)

[(μeμp + μeμm + μmμp) − 3v2]2 + 4v2(μm + μp)(μm + μp + μe)
.

Noticing that

c0 = hα3
m

z̃hμ2
m

·
(

αeαp

μeμp

)h−1

xh−3

= h

z̃hμ2
m

·
(

αeαp

μeμp

)h−1

xh
(αm

x

)3

= hμm

z̃h
·
(

αeαp

μeμp

)h−1

xh
(
1 +

(
αeαp

μeμp z̃
x

)h
)3

can be regarded as a fourth order polynomial of xh with positive coefficients, and that dx0
dαm

=
1

μm+μm (h+1)
(

αeαp
μeμp z̃

)h
xh0

> 0, we have

dc0
dαm

αm=α∗
m

> 0,

hence du
dαm αm=α∗

m
> 0. ��

Notice that du
dαm αm=α∗

m
> 0 implies the crossing number at the stationary point

(x(α∗
m), y(α∗

m), z(α∗
m)) satisifes:

γ (x(α∗
m), y(α∗

m), z(α∗
m), α∗

m, v(α∗
m)) �= 0.

123



J Dyn Diff Equat (2019) 31:93–128 123

Moreover, we can check that conditions (S1–S3) for Theorem 1 are satisfied. Then we have
the following local Hopf bifurcation theorem for system (5.1).

Theorem 5 Let α∗
m be as in Lemma 15. Then system (5.1) undergoes Hopf bifurcation near

the stationary point (x(α∗
m), y(α∗

m), z(α∗
m)) as αm varies near α∗

m.

5.2 Global Hopf Bifurcation

In this section, we develop a global Hopf bifurcation theory for system (5.1). By Lemma
5.4 and Theorem 5, we know that (x(α∗

m), y(α∗
m), z(α∗

m)) is the only Hopf bifurcation point
and is an isolated center. To apply the global Hopf bifurcation Theorem 4, it remains to
check condition (S4) and one of the conditions among (i), (ii) and (iii) at Lemma 12. We first
consider the boundedness of periodic solutions.

Theorem 6 Let (x, y, z) be a periodic solution of system (5.1). Then (x, y, z) satisfies for
every t ∈ R,

0 < x(t) ≤ αm

μm
, 0 < y(t) ≤ αpαm

μpμm
, 0 < z(t) ≤ αeαpαm

μeμpμm
.

Proof Note that h > 0 is an even integer. We have ẋ(t) ≤ −μmx(t) + αm , which by
Gronwall’s inequality leads to

x(t) ≤ e−μmt x(0) + αm

μm

(
1 − e−μmt

)
. (5.7)

Since x is periodic, there exists p > 0 such that x(t) = x(t + p) for every t ∈ R and for
every n ∈ N, we have x(t) = x(t + np). Then for every t ∈ R we have x(t) = x(t + np) ≤
e−μm (t+np)x(0) + αm

μm

(
1 − e−μm (t+np)

) → αm
μm

as n → ∞. Therefore, we have x(t) ≤ αm
μm

for every t ∈ R.
By the same token,with x(t−τ) ≤ αm

μm
, we obtain from the second equation of system (5.1)

that y(t) ≤ αpαm
μpμm

, t ∈ R, and subsequently from the third equation of system (5.1) that

z(t) ≤ αeαpαm
μeμpμm

for every t ∈ R.
To obtain lower bounds of x, y and z, let x̄ = −x , ȳ = −y and z̄ = −z. Then system (5.1)

becomes ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx̄(t)
dt = −μm x̄(t) − αm

1+
(
z̄(t−τ)

z̄

)h ,

d ȳ(t)
dt = −μp ȳ(t) + αp x̄(t − τ),

dz̄(t)
dt = −μe z̄(t) + αe ȳ(t − τ),

τ (t) = c(x̄(t − τ) − x̄(t)).

(5.8)

We have ˙̄x(t) < −μm x̄(t), which leads to

x̄(t) < e−μmt x̄(0). (5.9)

Note that x̄ is also p-periodic. For every t ∈ R we have

x̄(t) = x̄(t + np) < e−μm (t+np) x̄(0) → 0 as n → ∞.

Therefore, we have x̄(t) ≤ 0 for every t ∈ R. By the same token, with x̄(t − τ) ≤ 0, we
obtain from the second equation of system (5.8) that ȳ(t) ≤ 0, t ∈ R, and subsequently from
the third equation of system (5.8) that z̄(t) ≤ 0 for every t ∈ R. Then by the definition of
(x̄, ȳ, z̄), we obtain that for every t ∈ R, x(t) ≥ 0, y(t) ≥ 0, z(t) ≥ 0.
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If there exists t0 ∈ R such that x(t0) = 0, then by the first equation of system (5.1) we
have ẋ(t0) > 0. By the continuity of ẋ , there exists δ > 0 such that x is strictly increasing
in (t0 − δ, t0 + δ). so that x(t) < 0 for t ∈ (t0 − δ, t0). This is a contradiction. By the same
token we have y(t) > 0 and z(t) > 0 for every t ∈ R. ��
Lemma 17 Let f0 : R3 × R

3 × R → R
3 be defined by

f0(θ1, θ2) = −
⎛
⎝μm

μp

μe

⎞
⎠ · θ1 +

⎛
⎜⎝

αm

1+
(
z2
z̃

)h
αpx2
αe y2

⎞
⎟⎠

where θ1 = (x1, y1, z1) and θ2 = (x2, y2, z2). Then f0 is Lipschitz continuous with a
Lipschitz constant

L f = max

{
μm, μp, μe, αp, αe,

αmh0
z̃

}
,

where h0 = h
(
1− 2

h+1

) h−1
h

(
1+ h−1

h+1

)2 .

Proof We use the Mean Value theorem for integrals to obtain a Lipschitz constant. Let
θ̃1 = (x̃1, ỹ1, z̃1) and θ̃2 = (x̃2, ỹ2, z̃2). Then we have∣∣∣ f0(θ1, θ2) − f0(θ̃1, θ̃2)

∣∣∣ ≤ max
{
μm, μp, μe

} |θ1 − θ̃1|

+ max

⎧⎪⎨
⎪⎩αp, αe, sup

z2

∣∣∣∣∣∣∣
d

dz2

αm

1 +
(
z2
z̃

)h
∣∣∣∣∣∣∣

⎫⎪⎬
⎪⎭ |θ2 − θ̃2|. (5.10)

We have

d

dz2

αm

1 +
(
z2
z̃

)h = αmh

z̃

(
z2
z̃

)h−1

(
1 +

(
z2
z̃

)h)2 .

Noticing that the map R � t → th−1

(1+th)2
vanishes at t = 0 and t = ∞ and that

d

dt

th−1

(1 + th)2
= 0,

if and only if t = ±
(
1 − 2

h+1

) 1
h
, we obtain that supz2

∣∣∣∣∣ d
dz2

αm

1+
(
z2
z̃

)h
∣∣∣∣∣ = αmh0

z̃ with

h0 =
h
(
1 − 2

h+1

) h−1
h

(
1 + h−1

h+1

)2 ,

and the supremum is achieved at z2z̃ =
(
1 − 2

h+1

) 1
h
. Thenby (5.10) f0 isLipschitz continuous

with a Lipschitz constant L f = max
{
μm, μp, μe, αp, αe,

αmh0
z̃

}
. ��
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To apply the globalHopf bifurcation theorem,we also useLemma12 to show the closure of
all nontrivial periodic solutions bifurcating from the stationary point (x(α∗

m), y(α∗
m), z(α∗

m))

will not include constant solution with zero period.

Lemma 18 Let (x, y, z) be a periodic solution of system (5.1). If αm < 1
c , then τ : R → R

given by τ(t) = c(x(t) − x(t − τ(t))) exists and is continuously differentiable.

Proof The existence and continuity of τ follows fromLemma 1. Let f1 : R2 → R be defined
by

f1(τ, t) = τ − c(x(t) − x(t − τ)).

Then f1 is continuously differentiable with respect to (τ, t). Moreover, by (5.11) we have

∂ f1(τ, t)

∂τ
= 1 − cẋ(t − τ).

By the first equation of system (5.1) and by Lemma 6 we have for every t ∈ R, ẋ(t) < αm

and

ẋ(t) ≥ −μm
αm

μm
+ αm

1 +
(

αeαpαm
μeμp z̃

)h > −αm . (5.11)

Then we have |ẋ | < αm and by (5.11) we have

∂ f1(τ, t)

∂τ
= 1 − cẋ(t − τ) > 0.

By the Implicit Function Theorem, τ is continuously differentiable at t ∈ R. ��

It follows from Lemma 18 and (ii) of Lemma 12 that if αm < 1
c , then the period p of every

nonconstant periodic solution satisfies p ≥ 4
L f (2+‖τ̇‖L∞ )

> 0.
Now we are in the position to state the global Hopf bifurcation theorem.

Theorem 7 Let α∗
m be as in Lemma 15 and p∗ = 2π

v∗ where v∗ > 0 is the imaginary part
of eigenvalue of the formal linearization of system (5.1) at αm = α∗

m. Suppose that α
∗
m < 1

c .
There exists a connected component C of the closure of all nonconstant periodic solution
of system (5.1) bifurcating from (α∗

m, p∗, x(α∗
m), y(α∗

m), z(α∗
m)) ∈ R

2 × C(R;R3), which
satisfies that

(i) either the projection of C onto the parameter space of the period p is unbounded.
(ii) or the projection of C onto the parameter space of αm does not cross α = 0 but is not

contained in any compact subset of the interval (0, 1
c ).

Proof We first show that if αm = 0, system (5.1) has no nonconstant periodic solutions. Oth-
erwise, let (x, y, z) be a nonconstant periodic solution with αm = 0. Then from system (5.1)
ẋ = −μmx implies that x = 0 and subsequently y = z = 0. This is a contradiction. ��

In the followingwe consider αm in (0, 1
c ) and introduce the following change of variables:

αm = q(α) = 2

cπ

(
arctan α − π

2

)
+ 1

c
, (5.12)
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where q is an increasing function of α with limα→−∞ q(α) = 0 and limα→+∞ q(α) = 1
c .

Then system (5.1) is rewritten as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx(t)
dt = −μmx(t) + q(α)

1+
(
z(t−τ)

z̃

)h ,

dy(t)
dt = −μp y(t) + αpx(t − τ),

dz(t)
dt = −μez(t) + αe y(t − τ),

τ (t) = c(x(t) − x(t − τ)),

(5.13)

with α ∈ R and α∗ = q−1(α∗
m) the critical value of α for a unique Hopf bifurca-

tion point. By Theorem 5 There exists a connected component C0 of the closure of
all nonconstant periodic solution of system (5.13) bifurcating from the stationary point
(α∗, p∗, x(α∗), y(α∗), z(α∗)) ∈ R

2 × C(R;R3).
By Lemma 17, condition (S4) is satisfied by system (5.13). By Lemma 18, the func-

tion τ defined by τ(t) = c(x(t) − x(t − τ(t))) for a nonconstant periodic solution
(x, y, z) of system (5.13) is continuously differentiable. Hence by Lemma 12, the period
p of every nonconstant periodic solution (x, y, z) of system (5.13) is positive. Notice that
(α∗, p∗, x(α∗), y(α∗), z(α∗)) is the only bifurcation point of system (5.13), by Theorem 4,
the connected component C0 is unbounded in R

2 × C(R;R3).
Notice that by Theorem 6, the projection of C0 onto the space of (x, y, z) ∈ C(R;R3) is

bounded. The unboundedness of C0 is either because of the unbounded projection onto the
parameter space of the period p, or the projection of C onto the parameter space of α.

Notice that q induces a homeomorphism (q, id) : R2 × C(R;R3) → R
2 × C(R;R3)

defined by

(q, id)(α, h) = (q(α), h).

The image C = (q, id)(C0) of C0 under (q, id) is a connected component of the closure of
all nonconstant periodic solution of system (5.1) bifurcating from the bifurcation point

(α∗
m, p∗, x(α∗

m), y(α∗
m), z(α∗

m)) ∈ R
2 × C(R;R3),

which satisfies that either the projection of C onto the parameter space of the period p
is unbounded, or the projection of C onto the parameter space of αm does not cross the
hyperplane αm = 0 but is not contained in any compact subset of the interval (0, 1

c ). ��

6 Concluding Remarks

Motivated by the extended Goodwin’s model with a state-dependent delay governed by an
algebraic equation, we developed global Hopf bifurcation theories for differential-algebraic
equations with state-dependent delay, using the S1-equivariant degree. This is based on
the framework described in [6] where the technique of formal linearization is employed to
obtain auxiliary linear systems at the stationary states which indicate local and global Hopf
bifurcation using a homotopy argument. We remark that the work discussed two types of
state-dependent delays: the one in system (1.5) depends on the state variable explicitly and
the other in system (1.1) depends on the state variable implicitly. We also remark that the
local and global Hopf bifurcation theory we developed for system (1.5) is also applicable for
systems with the delay given by τ(t) = h(xt )where h is a function of xt (s) = x(t+s),−r ≤
s ≤ 0, r > 0, provided that τ is continuous.
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The local and global Hopf bifurcation theories are applied to the extended Goodwin’s
model which describes intracellular processes in the genetic regulatory dynamics. We
obtained two alternatives for the connected component C of periodic solutions in the Fuller
spaceR2×C(R;R3). Namely, the projection of C onto the parameter space of the period p is
unbounded, or the projection onto the parameter space of αm is not contained in any compact
subset of the interval (0, 1

c ). We remark that in the previous case, there exists a sequence of
periodic solutions with periods going to ∞. From (4.6), system (5.1) can be represented as

2π

p
dx

dt
= N0(x, αm, p), p > 0,

where x is normalized to be 2π -periodic. Notice from the definition of N0 at (2.7) that p
appears only in the time domain of N0. Note also that the periodic solutions are uniformly
boundedwith αm ∈ (0, 1

c ). Thenwith p → ∞, this alternative implies the possibility that the
system has a sequence of nonconstant periodic solutions with the limiting profile satisfying
the algebraic equationN0(x, αm, p) = 0. See ([10–12]) for a discussion of limiting profiles
for differential equations with state-dependent delays.

If the projection of C onto the parameter space of the period p is bounded, we have the
latter alternative that the projection of C onto the parameter space of the period αm is not
contained in any compact subset of the interval (0, 1

c ). Since C will not cross the hyperplane
αm = 0, and will not blow up at αm = 1

c with the boundedness of the solutions and periods,
C must cross the hyperplane αm = 1

c leaving the solutions at αm ≥ 1
c out of the scope of the

discussion.
We also remark that the state-dependent delay in system (1.5) may be negative or positive

and is not a priori advanced or retarded type delay differential equations. It remains open to
investigate this type of systems in general settings for a qualitative theory including existence
and uniqueness of solutions. For systems with mixed type constant delays, see, among many
others [13,14].
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comments.
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