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Abstract In this paper, we consider the following chemotaxis systems of parabolic—elliptic—
elliptic type on RV,

u; = Au— 1V@uVuy) + 2V@uV) + ula — bu), xeRY >0,
0=(A—ArDvy + puqu, xeRY >0,

0= (A= xID)vy + pou, xeRN >0,

u(-,0) = ugp, x € RV,

where x; > 0, A; > 0, u; > 0@ = 1,2)and a > 0, b > 0 are constant real
numbers, and N is a positive integer. First, under some conditions on the parameters
Xi» i, Mi,a, b and N, we prove the global existence and boundedness of classical solutions
(u(x,t;up), v1(x,t; up), va(x, t; up)) for nonnegative, bounded, and uniformly continuous
initial functions u(x). Next, we explore the asymptotic stability of the constant equilibrium
(% ’)f—ll s ’;—; %) and prove under some further assumption on the parameters that, for every
strictly positive initial uq(x),

. a a a
lim [Ilu(-, t;u0) — —~lloo + 1A1v1C, 85 o) — —illoo + IA202(, 15 ug) — *ILZ”oo:I =0.
t—00 b b b

Finally, we investigate the spreading properties of the global solutions with compactly sup-
ported initial functions. We show that under some conditions on the parameters, there are two
positive numbers 0 < ¢* (x1, i1, A1, X2, U2, A2) < cj‘_(xl, U1, M, X2, 42, A2) such that for
every nonnegative initial function u(x) with nonempty and compact support, we have

. a a a
lim |: sup |u(x,t; ug) — ZH_ sup |Ajvy(x, 5 ug) — ZM[H- sup |Axva(x, t; ug) — p,2|i| =0

1—o0 [x|<ct |x|<ct |x|<ct b
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whenever 0 < ¢ < ¢* (x1, (41, A1, X2, 42, A2), and

lim |:sup lu(x, t; up)| + sup |vi(x,t;up)| + sup |v2(x,t;uo)|i| =0

=00 |x|zct lx|>ct |x|>ct
whenever ¢ > ci()g, U1, A1, X2, 12, A2). Furthermore we show that

(X1, 1. Ay X202, A2) = (X1 1. ML X2, m2, A2) = 24/a.

lim lim
(X1,%2)—>(0,0) (x1,x2)—>(0,0)
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1 Introduction and the Statement of the Main Results

Chemotaxis describes the oriented movement of biological cells or organism in response to
chemical gradients. The oriented movement of cells has a crucial role in a wide range of
biological phenomena. At the beginning of 1970s, Keller and Segel (see [23,24]) introduced
systems of partial differential equations of the following form to model the time evolution of
both the density u(x, t) of a mobile species and the density v(x, ¢) of a chemoattractant,

uy =V-mu)Vu — x(u,v)Vou) + f(u,v), x e Q,

(1.1)
vy = Av+g(u,v), x €,

complemented with certain boundary condition on 92 if Q is bounded, where & c R¥ is an

opendomain; T > 0is anon-negative constant linked to the speed of diffusion of the chemical;

the function yx (u, v) represents the sensitivity with respect to chemotaxis; and the functions

f and g model the growth of the mobile species and the chemoattractant, respectively. In

literature, (1.1) is called the Keller—Segel (KS) model or a chemotaxis model.

Since the works by Keller and Segel, a rich variety of mathematical models for studying
chemotaxis has appeared (see [1,6,7,13,17,18,22,33,41-43,46,49-54,57], and the refer-
ences therein). The reader is referred to [16,19] for some detailed introduction into the
mathematics of KS models. In the current paper, we consider chemoattraction-repulsion pro-
cess in which cells undergo random motion and chemotaxis towards attractant and away from
repellent [31]. Moreover, we consider the model with proliferation and death of cells and
assume that chemicals diffuse very quickly. These lead to the model of partial differential
equations as follows:

ur = Au — x1VuVvoy) + xo2VuVvr) + u(a — bu), xeQ, t>0,
0=(A—xDvy + nu, xeQ, t>0, (1.2)
0= (A —ADvy + nou, mxef, >0,

complemented with certain boundary condition on 9€2 if €2 is bounded.
When 2 is a smooth bounded domain, it is seen that (1.2) complemented with Neumann
boundary conditions
a d d
a_ v _ %%y (1.3)
on on on
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has a unique nonzero constant equilibrium (%, ’;—1‘ %, ’/\‘—; %). The global existence of classical
solutions and the stability of the above equilibrium solution of (1.2)+(1.3) are among central
dynamical issues. They have been studied in many papers (see [8,20,21,27,29-31,44,45,55,

56] and the references therein). For example, in [55], amount others, the authors proved that
o Ifb > xip1 — xam2, or N < 2, 0r X2 (x11 — xap2) < band N > 3, then for
every nonnegative initial uy € C%Q), (1.2)+(1.3) has a unique global classical solution
(u(-, ), v1(, ), v2(-, -)) which is uniformly bounded.
o Ifa = b > 2x1 1, then for every nonnegative initial uy € C°(Q), ug # 0, the global
classical solution (u(-, -), vi(-, -), v2(-, ) of (1.2)+(1.3) satisfies

. 41 12 B
Jim [llu(w 1) = Ucog + llvi(, 1) — Tl”CO(Q) + llva(, 1) — TZHCO(Q)] =0.

While attraction—repulsion chemotaxis systems on bounded domains have been studied
in many papers, there is little study of such systems on unbounded domains. The objective
of this paper is to study the dynamics of (1.2) with @ = R¥, that is,

u; = Au — 1VuVuy) + xoVwVvy) +ula — bu), xeRN >0,
0=(A—ArDvi+pu, xeRY >0,

0= (A —ArD)vy + pou, xeRN >0,

u(-,0) = ug, x € RV,

(1.4)

In the case that the chemorepellent is absent, that is, x» = 0, the authors of the current
paper studied in [36] the global existence of classical solutions and asymptotic behavior of
bounded global classical solutions of (1.4). In the current paper, we investigate the global
existence of classical solutions, stability of constant equilibria, and spreading speeds of (1.4)
when both chemoattractant and chemorepellent are present. More precisely, we identify the
circumstances under which positive classical solutions of (1.4) with nonnegative, bounded,
and uniformly continuous initial functions exist globally; investigate the asymptotic stability
of the nonzero constant equilibrium (%, ’)f—l‘% %%); and explore the spreading properties
of the global solutions with compactly supported initial functions. We pay special attention
to the combined effect of the chemoattractant and chemorepellent on the above dynamical
issues.

Note that, due to biological interpretations, only nonnegative initial functions will be
of interest. We call (u(x,t), vi(x, 1), va(x,t)) a classical solution of (1.4) on [0, T) if
u, v, v € CRY x [0, TH)NCELYRY x (0, T)) and satisfies (1.4) for (x, 1) € RN x (0, T)
in the classical sense. A classical solution (u(x, t), vi(x, 1), v2(x,t)) of (1.4) on [0, T) is
called nonnegative ifu(x, t) > 0, vi(x, ) > 0and vo(x, 1) > Oforall (x,7) € RN x [0, 7).
A global classical solution of (1.4) is a classical solution on [0, c0).

Let

chb RY) = (u e CRY) | u(x) is uniformly continuous in x € RV and sup |u(x)| < oo}
xeRN

(1.5)
equipped with the norm |[u||oc = sup, g~ |u(x)|. We have the following result on the global
existence of classical solutions of (1.4) for initial functions belonging to Cfl’nif (RM).
Theorem A Suppose that

x1=a=b=0 (1.6)
or

b> xiu1 — xou2 +M, (.7
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where
o1
M := min {Tz((xzﬂzkz — X1mAD)+ + X1 = A2)4),

}Tl((xzuzkz — X11AD)+ + xap2 (A1 — k2)+)}- (1.8)
Then for every nonnegative initial function ug € Cfm»f(RN ), (1.4) has a unique nonnegative
global classical solution (u(-, -; uo), vi(-, -; uo), v2(-, ;s ug)) with u(-, 0; ug) = uo. Further-
more, it holds that

N 5 uo)lloo < {””0”“’ ¥ (1.6) holds (1.9)

max{||uglco, m} if (1.7) holds.

Remark 1.1 M < xu». (1.6) and (1.7) provide explicit conditions for the global existence
of classical solutions. The following special and important conditions follow from (1.7).

(G1) If b > xi1pm1, (1.4) always has global bounded classical solution for any initial ug €
Ch L (RY) with ug > 0.

unit

(i) If Ay < Az and xompA2 > xiu1ry, we have that M = xous — %XIILL
In this case, it follows from Theorem A that for every nonnegative bounded and
uniformly continuous initial data uq, (1.4) has a unique bounded global classical solu-
tion (u(-, -; ug), v1(-, -; ug), v2(-, -; ug)), whenever b > xjpu1(l1 — %). Thus, in the
absence of chemoattractant, i.e x; = 0, for every nonnegative bounded and uni-
formly continuous initial data ug, (1.4) has a unique bounded global classical solution
(u(-, -5 ug), v1(-, -; ug), v2(-, -; ug)), whenever b > 0.

(iii) If A1 < A and you2Ay < x1m1A1, we have that M = 0. In this case, it follows from
Theorem A that for every nonnegative bounded and uniformly continuous initial data u,
(1.4) has aunique bounded global classical solution (u(-, -; ug), v1(-, -; ug), v2 (-, -; Ug)),
whenever b > 11 — x2M12.

(iv) We note that if Ay > X and ypuoAs > xi1pi1r1, then M = xoup — xi1pq. Thus, if
A1 > X and xouoAp > x1pM1Ag, it follows from Theorem A that for every b > 0 and
for every nonnegative bounded and uniformly continuous initial data ug, (1.4) has a
unique bounded global classical solution (u(-, -; ug), v1 (-, -; ug), V2(-, -3 Up)).

(v) If Ay > XAp and xou2A2 < xi1miAi, we have that M = % In this
case, it follows from Theorem A that for every nonnegative bounded and uniformly
continuous initial data ug, (1.4) has a unique bounded global classical solution

(., 5 u0), vi(:, -5 o), v2 (-, -5 uo)), whenever b > xije1 — 32 xapsa-

It follows from Remark 1.1 (iii)&(v), that when x» = 0, we recover as a special case
Theorem 1.5 in [36] for the case b > x; and w1 = 1. When (1.7) does not hold, we leave
it open whether for any nonnegative initial function ug € anif (RN) global solution to (1.4)
exists.

Theorem A is fundamental. Assume the conditions in Theorem A. Then (1.4) generates
a dynamical system on the infinite dimensional space X* = {u € Cfl’nif(RN Ylu = 0}.
Methods and theorems for general infinite dimensional dynamical systems in literature (e.g.
[14,38]) may then be utilized for the further study of many important dynamical aspects,
including the long time behavior of bounded solutions, stability of certain special solutions,
existence of global attractor, etc. In the following, we explore the stability of the nonzero

constant equilibrium (§, ’;—1‘ e, % o).
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We first study the stability of (7, ’;—11 5 ’)f—; %) with respect to strictly positive initial func-
tions. From now on, we shall always suppose that a > 0, unless otherwise specified. We

prove

Theorem B Suppose that
b > xipu1 — o2 + K, (1.10)

where

(1
K= min = (L — ol + il = 21).

1
o (amids = xomaral + xomalis = 2al) | (111
Then for every initial function ugy € anif(RN) with inf gy uo(x) > 0, (1.4) has a unique
bounded global classical solution (u(-, -; ug), v1(-, -; o), V2 (-, 3 uo)) with u(-, 0; ug) = uo.
Furthermore we have that

fim (w15 40) — ~lloo =0 (1.12)
t—00 b
and 4
lim [[Ajvi (-, 15 u0) — ~pilloo =0, Vi=1,2. (1.13)
t—00 b

Remark 1.2 (1) (1.10) provides explicit conditions for the global stability of the constant
equilibrium (7, %1% ‘;—22%) with respect to strictly positive initial functions. We point

out the following special and important equivalent conditions of (1.10).

(1) If Ay < g, and xou2ra > x1m1A1, then (1.10) holds if and only if b > 211 —
2%)(1#1-
(i) If Ay < Ap, and yopuoAs < x1pt1X1, then (1.10) holds if and only if b > 211 —
2x242.
(iii) If A1 > Ap, and xo2u2r2 > x1/41A1, then (1.10) holds if and only if & > 0.
(iv) If A1 > Ap,and x1u1A1 > xoM2A2, then (1.10) holds if and only if b > 2y 1 —
2%)(2#2-

(2) By (i)-(iv), if b > 2111, then (1.10) holds. Hence the hypothesis (1.10) is weaker than
the known result on bounded domain.

(3) If xo = 0, then (ii) and (iv) extend [36, Theorem 1.7].

(4) By (i) and (iii), if x; = 0, then the constant solution % is stable with respect to strictly
positive perturbation whenever b > 0.

(5) Itis interesting to know whether hypothesis (1.7) is enough to have the stability of the

constant steady solution (%, %, %) with respect to strictly positive perturbation. We

plan to study this question in our future work.

Next, we study the attraction of (%, ’;—1‘%, ’}f—; %) with respect to global classical solutions

of (1.4) with compactly supported initial functions, or equivalently, the spreading properties
of global classical solutions of (1.4) with compactly supported initial functions. For x =

1
(x1,x2, -+ ,xy) € RN et |x| = (ZIN=1 xiz)j. We obtain the following main results.
Theorem C Suppose that (1.7) holds and define

Ixomz — x| xamil/Ar — /A2l Damr — xarzl | xopzl/A —«/Mll

+ ) +
2\ NISEY) 2 2 A A (119)

D := min
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Then for every ug € Cﬁnif(RN) with ug > 0 and supp(ug) being compact and non-empty,
we have that

100 |x|=cr [x|>ct |x|=>ct

lim |:sup lu(x, t; up)| + sup |vi(x,t;up)| + sup |v2(x,t;u0)|i| =0 (1.15)

for every ¢ > ¢k (x1, 1, A, X2, U2, A2), where

Va(D+v/Na + x2u2)

(1.16)
b+ xom2 — x1mu1 — M

)

(X 11 AL X2, 2, h) = 24a +

and M is given by (1.8).

Remark 1.3 (1) If Ay < Ay and you2r2 > x1u1)r1, then
Ja(DV/Na + xap12)
b—(1=2)nm

X 11, AL X2, 2, h) = 24/a +

(i) If Ay < Az and xou2ra < x1121, then

Va(Dv/Na + xapu2)

b+ xom2 — x1m1

X 1 AL X1 2, h) = 24a +

(iii) If Ay > Az and xou2A2 > x1i1A1 then

a(Dv/Na + x2i42)
Ci()(l,m,)»l,)(l,ﬂz,?»z)22«/674-[ 3 .

(iv) If &y = Az and xou2d2 < x1i1A1, then
Va(Dv/Na + xau2)

*
O, w1y A, X1, M2, A2) = 24/a + .
b= =(amik = xamaha)

(v) Note that x» = 0 implies that D = 3 f and M = 0. Hence if x» = 0, it follows from

* _ axim VN
Theorem C that ¢} (x1, i1, A1, 0, M.’ ) = 2\/5'4— g Jir Thus, in the case
x2 = 0, and u; = Ay = 1, we obtain a better estimate for c+(X1 ni, A1, 0, na, A2)
compare to the one giving by [37, Remark 1.2(iii)].
Theorem D Suppose that (1.10) holds and
Na’D?
(b + xama — x1p1 — M)?

4a(l - L) — >0, (1.17)

where M is given by (1.8) and
(Xap22r2 — x1p1A)— + xipi (A — Ao)—
Ao (b + xapm2 — x1pu1 — M)
(Xamara — x1p1r1)— + xap2(dy — A2)— } (1.18)
MO+ xap2 — xip1 — M) ' '

k]

L := min{

Then for every ug € Cﬁnif(RN) with ug > 0 and supp(uo) being non-empty, we have that

lim [WP lu(x, t; uo)—*l-i- sup Illvl(x,t,uo)—*m\-k sup I)szz(x,t,uo)—*ltz\

=00 | |x|<ct |x|<ct |x|<ct

(1.19)
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Sforevery 0 <c < c*(x1, 11, A, x2, 2, A2), where

aD\/N
(X1, L1y ALy X20 M2, A2) =2¢/a(l = L) —

b+ xops — xip1 — M’

i (-
Remark 1.4 (1) If Ay < X and xpu2r2 > x1u1ri, then L = xip (=3 nd

TR
b=xip(1=31)

a(b—ZXlul(l—%>)_ aDVN
b—XllM(l—%) b—X1M1(1—%).

cE (X1, 1, A, X2, M2, A2) =2

(ii) If A1 < Ao and youors < x11A1, then L = % and

a(b —2(x1p1 — x2i42)) aD+/N
b+ xom2 — X111 b+ xous — xip1

(X1, 11, M, X2, U2, A2) = 2\/

(iii) If Ay > Ao and youodo > i1, then L = 0 and

aD~ N
(X1, 1, AL X2, M2, A2) = 24a — P
(iv) IfA; > A and xapohs < x1j1A1, then L = — KA =X21002 __ apq

A (b+xap2ri2—x14141)

a(b — 721()(1#1?»1 — X2M2A2))
b— ﬁ(xuu)»l — X2M222)
aD/N
b (XA — xapaka)

cE (X1, w1, A, X2, 2, A2) =2

() 1 x2 = 0, by (i1) and (1v), we have that ¢ (x1, 101, 11, Yo, 2, h) = 2,/ 24=20080)

aximivVN
2(b—x1)VA ] )
¢® (x1, 1, A1, X2, 2, A2) than the ones obtained in [37] and [36].

Hence in the case xo = 0, u1 = A1 = 1, we obtain a better estimate on

Observe that, if either x1 = xo = 0or x1 — x2 = 1 — 2 = A1 — Ao = 0, the first
equation in (1.4) becomes the following scalar reaction diffusion equation,

u; = Au+u(a — bu), xeRY, >0, (1.20)

which is referred to as Fisher or KPP equations due to the pioneering works by Fisher ([9])
and Kolmogorov, Petrowsky, Piscunov ([25]) on the spreading properties of (1.20). It follows
from the works [9,25], and [47] that ¢* and ci in Theorem C and Theorem D, respectively,
can be chosen so that ¢* = ¢ = 2/a (c* := 2,/a is called the spatial spreading speed
of (1.20) in literature), and that (1.20) has traveling wave solutions u(t, x) = ¢(x — ct)
connecting 7 and 0 (i.e. (¢(—00) = 7,¢(c0) = 0)) for all speeds ¢ > ¢* and has no
such traveling wave solutions of slower speed. Since the pioneering works by Fisher [9] and
Kolmogorov, Petrowsky, Piscunov [25], a huge amount research has been carried out toward
the spreading properties of reaction diffusion equations of the form,

ur = Au—+uft,x,u), xeRY, (1.21)
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where f(¢,x,u) < Oforu > 1,0, f(, x,u) <O foru > 0 (see [2-5,10,11,26,28,32,34,
35,39,40,47,48,58], etc.).

Remark 1.5 (i) Itis clear from Theorem C and Theorem D that

lim e (xp, pos A x2, p2, A2) = lime - eh(xn, s A xas 2, h2) = 24/a
(X1.x2)—(0,0) (x1.x2)—(0,0)

and

lim c* 81, So, A+ 683, x, 1, A
G 0o S8, A8, A+ 83, X, 4, A)

= lim cE(x+81, w82, A+83, x, 1, A
G 0o T(X + 81, m+ 82 30 Xs My A)

lim X,k X 8, e+ 8, A+ 8
G 0o (X5 s Ay X + 61, 1+ 82 3)

= lim A,k x +81, 0 +8,1+8
6500 .00 (O s A, X 81, 82 3)

=2Ja, Yx>0,u>0andx > 0.

Hence we recover the know results in the literature when x; = x2 = 0 or x; — x2 =
M1 — M2 =21 — A2 =0.
(i) Forevery x; >0, u; >0, &; > 0, let

Cup(X15 41, A1, X2, 12, A2) = inf{c™ > 0] (1.15) holds}

and
(X1 11, A1, X2, 2, A2) = sup{c® > 0] (1.19) holds}.

(€l (X1s 15 ALy X2, 12, A2), €y (X5 K1, A1, X2, 12, A2)] s called the spreading speed
interval of (1.4). Theorem C implies that if (1.7) holds, then

Cup(X1s 115 A1, X2 12, 22) < (X1, jrs A X2s 2, A2) < 00,
Under the hypotheses of Theorem D, we have that

Clow (X1 L1, AL, X2, M2, A2) = X (X1, i1, A, X2, w2, A2) > 0.

It is interesting to know the relationship between c,’;p (X1, i1, M, X2, 42, A2) and 24/a
as well as the relationship between ¢} (x1, i1, A1, X2, (2, A2) and 2/a.Itis also inter-
esting to know whether ¢, (x1, i1, A1, X2, 2, A2) = ¢, (X15 1. A1, X2, M2, A2). We
plan to study these questions in our future works.

(iii) When x2 =0, =pu; =1,and 0 < x; < %, in a very recent work [37] it was shown
that there is a positive constant c*(x1) > 2+/a such that for every ¢ > ¢*(x1) and & €
SN=1 (1.4)has atraveling wave solution (u(x, t), v(x, 1)) = (u(x-& —ct), v(x-£& —ct))
connecting the trivial solutions (7, 7) and (0, 0) and propagating in the direction of &
with speed ¢, and no such traveling wave solution exists for speed less than 2,/a. We
plan to study these questions for (1.4) when both x; > O and x, > 0.

We end up the introduction with the following remarks. First, our study is based on many
techniques developed in [36]. But, to apply these techniques to (1.4) with non-zeros x; and 2,
nontrivial modifications are needed and made in the current paper. The modified techniques
would be useful for the further study of attraction—repulsion chemotaxis systems. Second,
most results obtained in [36] for the special case x» = 0 are recovered and extended further
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in the current paper. Third, conditions explicitly depending on the sensitivity parameters
x1 and x2 of the chemoattractant and chemorepellent are provided in the current paper for
the global existence of classical solutions of (1.4) and stability of the nonzero constant
equilibrium (7, ‘;—1‘% ’;—;%), and lower and upper bounds explicitly depending on x; and
X2 are established for the spreading speeds of positive solutions with compactly supported
initial distributions. These conditions and lower and upper bounds would be of great practical
importance.

The rest of the paper is organized as follows. Section 2 is devoted to the study of global
existence of classical solutions. It is here that we prove Theorem A. In Sect. 3, we study the
asymptotic stability of the constant equilibrium (%, %1]%’ ’;—Z %) and prove Theorem B. We
study the spreading properties of global classical solutions of (1.4) with compactly supported
initial functions and prove Theorems C and D in Sect. 4.

2 Global Existence

In this section, we discuss the existence of global/bounded classical solutions and prove
Theorem A. We start with the following result which guarantees the existence of a unique
local in time classical solution of (1.4) for any nonnegative bounded and uniformly continuous
initial data.

Lemma 2.1 For any ug € Cl[fnif(RN) with ug > 0, there exists Tpqx € (0, 00] such that
(1.4) has a unique non-negative classical solution (u(x, t; ugp), vi(x, t; ug), v2(x, t, ug)) on

[0, Tiax) with lim; o u(-, t; ug) = ug in Cﬁinf(RN)-norm. Moreover, if Tyay < 00, then

lim sup [|u(-, t; up)|loco = 00. 2.1)
t—>Tnax
Proof 1t follows from the similar arguments used in the proof of [36, Theorem 1.1]. O

Proof of Theorem A Letug € anif(RN) withug > Obegivenandlet (u(-, -; uop), vi (-, -; uo),
v2 (-, -; ug)) be the classical solution of (1.4) with initial function uq defined on the maximal
interval [0, Thax) of existence. Then,

uy = Au — x1VuVvr) + xoaVuVuy) + u(a — bu)
= Au+ V(v — x1v1)Vu +ula — x1Avy + x2Avs —bu), x e RY. (2.2)

The second and third equations of (1.4) yield that Av; = A;v; — pu, i = 1,2. Hence
equation (2.2) becomes

u; = AM+V(X2U2—X1Ul)vu‘f‘u(a‘f'(xz)»zvz—)(lklUl)—(b+X2M2—X1M1)M>» x e RV,
(2.3)

Let
— [nuonoc if i =a=>b=0, o4

max {{|uo|lco. }oitb+ xopu2 — xim —M >0

a
b+xapu2—x1p1—M

where M is given by (1.8). Let T > 0 be a given positive real number and consider £7 :=
Cl (RN x [0, T]) endowed with the norm
o 1
lullgr =3 Sp Il k1xt0.7)- 2.5)
k=1
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We note that the convergence in (7, ||.|| gr) is equivalent to the uniform convergence on
compact subsets on RN x [0, T]. Next, we consider the subset € of £T defined by

Ei={uecCl R x[0,T])|u(-,0) =up, 0 <u(x,1) < Co,x e RN, 0<r<T}.

It is clear that
luller < Co, Yucekf. (2.6)

It readily follows from the definition of £ and (2.6) that £ is a closed bounded and convex
subset of £7. We shall show that u(-, -;ug) € €.
For every u € £ let us define v; (-, -; u),i = 1,2 by

o0 e~ His Jz—x[?
v; (x, 15 u) =m/ / ———e¢ & u(z,ndzds, xeRN, 1[0, T]. (.7
0 JRN (47s)7

and let U (x, t; u) be the solution of the initial value problem

Uy = AU + V(xava(x, 1 u) — yvi (x, 15 0)) VU
+U(a + (erava(x, t;u) — x1Avi(x, 5 u)) — (b + xou2 — X1M1)U), x eRN
UG, 0,u) =up(-).

(2.8)
For every u € £, using (2.7), we have that
%) =z
—A2s —A1s e s
(X2r2v2 — x1Av(x, 13 u) = [szzﬂze — X1ripe } v u(z, )dzds
0 JRN (4ms)2
0 - |x25z\2
= (xom2r2 — lekl)/ / e u(z, 1)dzds
0 JRN (4ms)2
o _lx=z?
e 4s
+xw1x1/ / (e7725 — %) u(z, 1)dzds
0 JRN (4ms)2
00 _ ‘XZZ\
_ e s
< (ar2m2 — X1MM1)+C0/ / e dzds
0 JRN (4ms)2
00 _ ‘xidz
_ _ e S
+X1//«1)\1C0/ / (e 2 MS)+ 5 dzds
0 JRN (4ms)?
Co
= E((szzuz — X1A D+ + xipr (kg — K2)+>- (2.9

Similarly, we have that
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xfzz
o —A2s —A1s e_l 4“|
(X2roav2 — x1A1v)(x, 15 u) :/ / [szzuze = Xthipure ! } ~u(z, )dzds
0 JRN (4ms) 2
_Ix—ZI2
o —A28 —1sy € 4
= XaM2A2 (e7" —e™) v u(z, t)ydzds
0 JRN (Ars)2
x—zz
* =X se_l 4x‘
+(x2m222 —le?»l)/ / e v u(z, t)dzds
0 JRN dms)?
X—Zz
* vy —A1s e
< xzu«zAzCo/ / (772 —em M)y v dzds
0 JRN @ms)?
X—ZZ
o —X\1s e | 45‘
+(x2m2r2 — xipn1A1)+Co e " ———-dzds
0 JRN (4ms) 2
C
= T?(qu«z(?»l — A+ + (xamad2 — X1M1)~1)+)« (2.10)
Thus, it follows from (2.9) and (2.10) that for every u € £, we have that
(X2r2v2 — x1rv)(x, 15 u) < MCo (2.11)
where M is given by (1.8). Thus for every u € £, we have that
Ur(x, t;u) AU (x, t;u) + V(xava — x1v) VU (x, t5 u)
+(a+MCo— b+ a2 — 1DV, ) UG 0y . (212)
LU)
Note that
£(Co) = (a = b+ xom2 = xa1 = M)Co ) Co = 0.
Thus, using comparison principle for parabolic equations, we obtain that
Ux,t;u) <Cy, YVxeRN Vrel0,T], Vueck. (2.13)

Thus U(:, -;u) € &€ for every u € £. By the arguments in [37, Lemma 4.3], the mapping
E>ur U(,;u) € £ is continuous and compact, and then by Schauder’s fixed theorem,
it has a fixed point u*. Clearly (u™, v1(-, -; u™), v2(-, -; u™)) is a classical solution of (1.4).
Thus, by Lemma 2.1, we have that Tipax > T and u(-, -; ug) = u*. Since T > 0 is arbitrary

chosen, Theorem A follows. O

3 Asymptotic Stability of the Constant Equilibrium (3, ’}f—ll

5
>R
~

s

R

In this section, we discuss the asymptotic stability of the constant equilibrium (7, ’f—l‘ £ ‘;—; 7)
of (1.4) and prove Theorem B. Throughout this section we suppose that (1.7) holds, so that
for every nonnegative, bounded, and uniformly continuous initial function ug, (1.4) has a

nonnegative bounded global classical solution (u(x, t; ug), vi(x, t; ug), va(x, t; ug)).
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For given ug € Cﬁnif(RN ) with ug > 0, define

u = liminf inf wu(x,t;up) and u :=limsup sup u(x,1t; up).
=00 xeRN =00 xeRN

Using the definition of limsup and liminf, we have that for every ¢ > 0, there is 7, > 0 such
that

u—¢e<ulx,t;uyp) <u+e Vx eRN, V¢ > T.
Hence, it follows from comparison principle for elliptic equations, that
pilw—e) < hivi(x,tiug) < pi@+e).Vx eRY, Vi=T,, i=12 (3D

We first show the following important result.

Lemma 3.1 Suppose that (1.7) holds. If inf , .pnv ug(x) > 0, then
inf u(x,t;u9) >0, Vt>O0. 3.2)

x€RN
Proof Let K := x1A1sup,crny vi(x, t; ug). Thus, it follows from (2.3) that
ur (-, -3 u0) ZAu + V(xav2(-, -3 uo) — x1vi (-, -3 u0))Vul:, -5 uo)
+(a—K— b+ xap2 — xip)ule, -5 uo))ul, -5 uo).
Hence, comparison principle for parabolic equations implies that
u(x, t;up) > W(t), Yt>0, x e RV,
where W is the solution of the ODE
Wi =W(a—K— b+ xou2— x1n)W), t >0,
W(0) = inf  cpnv up(x).

Since b + xou2 — x11 > 0, and inf  pnv up(x) > 0, we have that W(¢) is defined for

all time and satisfies W(¢) > O for every + > 0. Hence, we obtain that 0 < W(t) <

inf, cpnv u(x, t; ug) forall t > 0.

Proof of Theorem B We divide the proof into two cases.

Case I. Assume that b + xou2 — X141 — )le[b(l,ul)ﬂ — XoHaho| + xipilA — Azl] > 0.
For every t > T (T is such that (3.1) holds), and x € R¥, we have that

li—z|?

R _ e &
(x2A2v2 — x1A1vD)(x, t; up) = (szkz—xlmh)/ / e u(z, t; up)dzds
0 JRN (4rs)2

_ lr—z[?

> ) YN
+X1M1M/ / (7" — ™) ~u(z, t; ug)dzdt
0 JRN (4ms)z

1 _
< /\72 [Omara = xipikn+ + xipn (ki — A2) 1] @ + ¢)

(mara — xipihD— 4 xipui (A — A2)— | (u — &)
3.3)

_E [
and
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00 _\sz\z
ias€ B
(X2rova — x1A1v)(x, ;5 ug) = (Xap2h2 — Xlulkl)/ /N et - u(z, t; ug)dzds
0 JR dms)?
_lz?
4s

o0 e
+ X1m1Arg / / (e_)‘zs — e_)‘ls) ¥ u(z, t; ug)dzdt
0 JRN @ms)Z

1
> ” [O2m2r2 — ximAD+ + X1 — 22)+] (w — &)

(om2ra = X1k — 4+ xipm1 (i — o) ] (@ + &).
(3.4)

_)\72[

Hence, forevery t > T;, x € RN, it follows from (2.3), (3.1) and (3.3) that

1 _
ur < Au+V(xava — xqv1)Vu + <a + n [(am2ra — x1p1AD)+ + xipm (g — A2)4 | (@ +8)> u

1
- (E [Oamaro — xipidA)— + xipm1 O — )= ] (w— &) + (b + xou2 — XIHI)“) u. (3.5)
Thus, by comparison principle for parabolic equations, we have that
u(x, t;u0) < Ue(), Vx eRN, 1>T,, (3.6)
where U, (t) is the solution of the ODE
U = (a + %2 [Gam2ra = xipiAD)+ + xipm1 (g — A2)4 ] (@ + 6))U
—(i [Oamara = xipiA)— + xipmi (i — 22) =] (w — &) + (b + xou2 — XlMl)U)U t>Tg,
U(Te) = lluC, Te; up) lloo-

Since b + youz — x11 > 0 and ||u(-, Too; uo)|lco > 0, we have that U, (¢) is defined for
all time ¢ > T, and satisfies

. 1 1 _
lim U, :—{a + — [Genars — xiidAD+ + xiui (ki — A2) 4| (@ + &)
=00 b+ X212 — X1i41 A2
N [Gamara — x1pid)— + ximi (b — A2) ] (u — 8)}+
This combined with (3.6) yield that

_ 1 1 _
u =< —{a + — [Genars — xiiAD+ + xiui (i — A2) 4| (@ + &)
b+ xap2 — x1p1 A2

1
[Omara = xipikn)— + xim (= A2)— | (u — 8)}

-5 K
Letting ¢ goes to 0 in the last inequality, we obtain that
_ 1 1 _
u=< —{a + — [Gemars — x1miAD+ + xipu (g — A2) 4|
b+ xap2 — xim1 A2

— — [Camara = xiih) - + xipi (kg — Az)—]z}
A2 +
If

1 _
{a + E [Omara — xipikn+ + xipi (ki — ra) 1| @

1
W [Omara = xipih) = + xip1 (A — Az)f]zL =0,
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then u = u = 0. This in turn yields that

{ A [Oaumara = xipiin+ + xipi (ki — ra) 4|

[(xzuzkz — xiiA) - + xipm(hp — A2) - u L =a,

which is impossible, since a > 0. Hence

_ 1 1 _
u E—[a + — [Gemars — ximiAD+ + xipi (o — A2) 4|
b+ xom2 — xim1 A2

- i [(X2M2l2 — X1tA) - + xipnr (A — Az)_]g]. (3.7)
On the other hand, for every r > T, x € R¥, it follows from (2.3), (3.1) and (3.3) that
ur > Au+V(xav2 — x1v1)Vu + (a + i [(amara — 112+ + X141 (A — A2)4] (e — 8))u
,(i [2m2ka = x1pakn) =+ xia Gt = 2) - @+ 6) + B+ xoua — s ). (3.8)

Thus, by comparison principle for parabolic equations, we have that
u(x,t;up) > US(t), VxeRY 1>T,, 3.9)
where U# () is the solution of the ODE
U = (a + i [(amara = xap A+ + xapm (g = 42)+] (u — 8))U

—(i [(x2m222 — X1p1AD) = + 11 (AL — A2)— | @ + &) + (b + xou2 — X1M1)U)U, t>Tg
U(Ty) = inf __py u(x, Tp).
But, by Lemma 3.1 we have that inf . .gnv u(x, T¢; ug) > 0. Since b + xop2 — x1p1 > 0,
we have that U®(¢) is defined for all time ¢ > T, and satisfies
. 1 1
lim U = —{a + — [Genars — xiiAD+ + xiui (b — A2) 4| (w — )
=00 b+ xap2 — X141 A2

1
- ()72 [x2mara — xipmihn)— 4 i1 (M — ro) -] (@ + 8)}+

This combined with (3.9) yield that
1 1

u > —{a + — [Oemars — xipid)+ + xii (g — A2) 4| (w —e)
b+ x2m2 — X141 e

1 _
AW [x2mara — xipihkn)— + ximi (A — ra)— ] (@ + 8)}+
Letting € goes to 0 in the last inequality, we obtain that
1

1
u> —[a + — [Omara — xiwiAD+ + xiei (A — A4 | u
b+ xap2 — x1p1 A2

1 _
_ﬁghwﬁa—muﬂof+xmﬂh—kﬁJuL. (3.10)
It follows from inequalities (3.7) and (3.10) that

1 _
@+mm—mm—Emmm—mwm+mmm—hww—w§0(MD
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In this case, it follows from inequality (3.11) that # = u. Combining this with (3.7) and
(3.10), we obtain that u = u = % This ends the first case.

Case IL. Assume that b + you2 — X141 — ,\%[lxmﬂw — xom2ra| + xomalri — A2l] > 0.
Rewrite x2A2v2 — x1A1v; in the form

_lx—z?

o0
(x222v2 = 110D (¥, 15 u0) = xzuzkz/ /N(e_m — e MY — B u(z, 11 ug)dzds
0 JR (47s) 2
- _la—zf?
s € 5
+(x2m2A2 —mel)/ /Ne A (. 1 ug)dzds.
0 R (4ms) 2

(3.12)

It follows from the arguments used to establish inequalities (3.7) and (3.10) that

1 1
u < —{a + — |Oep2(h — A2) 4+ + xou2(Ar — A2) 4 |u
b+ xap2 — X141 A [ * +]

=5 [Oemans —ximrn- +xoma0a =220 Ju} - G13)

and
1

T —
b+ xom2 — x1m1

1
P+Eﬂmmm—hh+mmm—huh

5o [Oemie = w4 xemaa =2 ] G4

hold respectively. It follows from (3.13) and (3.14) that
1 _
(b + Xom2 — X1p1 — E[Ixmm — xam2ha| + xapalhy — kzl])(u —u) <0. (3.15)
Since b + x2p2 — X141 — ﬁ lximiry — xapadz| + x2m2lit — A2l] > 0, it follows from
inequality (3.15) that # = u. Combining this with (3.13) and (3.14), we obtain thatu = u =

%. This end the second case.
Therefore, it follows from the results of cases I and II that if

. 1
b+ xap2 — x1p1 > min [72 [x1midr — xopara| + xiperldy — A2l1,

1
" [ximiry — xapadz| + x2m2li — Azl] }

thenu = u = %. Thus Theorem B follows. m]

4 Spreading Properties of Classical Solutions

In this section we study how fast the mobiles species spread over time and prove Theorems
C and D. Throughout this section, we always suppose that uy € Cfnif (RM), up(x) > 0 has
compact and nonempty support. The next three lemmas will be useful in the subsequent.

Lemma 4.1 Let ug € Co.(RV), ug > 0, and (u(-, -; ug), vi(:, ; uo), v2(-, -; ug)) be the
classical solution of (1.4) with u(-,0; ug) = ug. Then for every i € {1,---, N}, we have
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that

10x; (x2v2 — x1v1) (-, 15 uo) lleo

- min { apa = xamal ximlvAr — «/)Tzl’ i1 — xamal
a 2Vha 2V Mk 2VA1
s LTI @)
2VMne
foreveryt > 0.
Proof Foreveryi € {1,---, N} and k € {1, 2}, we have that

Ox; (kak)(x 15 up)

—)LkY
- X"“k y ,e"z‘zu(x +24/52, t; up)dzds
R
00 oS —|y[?
= Xelk ¢ e [/ te " u(x + 25te; +2v5m ) uo)df] dyds
0o Jrv-U s R
00 e~ MS o —Iy?
_ Xkl . ° U _tzu(x +24/sTe; + Zﬁnﬂ ., t; uo)dr} dyds
0 RN-1 S
e~ kS —[y?
Xk Mk 7‘6 |:/ _Tzu(x —2/ste; + Zﬁni_l(y), t; u())df] dyds,
o Jry-1 s
whereei = (81i, 82i» - -+, 8n;i) with §;; = 0if i # jand §;; = 1 fori, j=1,2,---, N,and
771_]()7) = ()’1, Y2, 7yi—170’ Yiy o ’yN—])' Hence’

dx; (x2v2 — x1v1)(x, 15 ug)
_ _)&25 —IyI oo 2
(X2M2 X”“)/ /N : [/ e T ux 4+ 2ste; +2ﬁn;1(y),t;uo)dr:| dyds
R 0
(e 28 — —MY)e—\y\
RN-1
L O = xam) xzuz) ’*236"”
RN-1

_ e has —\y\z 00
X”“ / /]RN 1 e e [/(‘) e_tzu(x —2sTe; +2\/§ni_l(y),t;u0)dtj| dyds.
4.2)

Xl/ll

e 2
/ e U u(x 4+ 24/ste; + 2\/571[_] ), t; uo)dt] dyds
0

o0 2
/ e T u(x —2/ste; + 2\/571;1 ), t; uo)drj| dyds
0

Using the fact that [ ¢ wds = ‘/fk, I re~Udr = 3 Jan— ePdy = 75 it
follows from (4.2) that for every x € RN, ¢ > 0, we have

Ixom2 — xamil | xiilv/ag —«/?uzl]
Oy vy — x1v)(x, t; ug)| < + u(-, t;u .
[0x; (x2v2 — x1v1)( 0)] [ T /e flu( 0)lloo
Similarly, we have that
[x1p1 — xap2l | xem2lv/Aa — «/MI]
Oy v — x202)(x, t; up)| < + u(-, t;u .
[3x; (X1v1 — x2v2)( 0) [ Wi N/ flu( 0)lloo
The lemma thus follows. O
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Lemma 4.2 Suppose that (1.7) holds. Let uy € Cumt(RN), ug > 0, and (u(-, -; uo),
v1(-, -3 ug), v2(-, -3 ug)) be the classical solution of (1.4) with u(-,0;ug) = ug. Then we

have that 4
lim sup [|u(-, t; o) ||oo < s 4.3)
t—00 *© b+ xou2 — xip1 — M

where M is given by (1.8).
Proof 1t follows from inequalities (3.7) and (3.13) that

a+s- [((quz)uz — xiiA)+ + xim (A — A2)4) |7
b+ xop2 — X141

u <

and

a+ % [(Omadra — xipikn)+ + xapa (i — A2) )]
b+ xap2 — x1p1 ’

=
IA

Which is equivalent to

_ 1 _
(b xapa = xip)i < a+ [(Oamara = xipidn)+ + X1 O — A2)4) @
and
_ 1 _
b+ xop2 — xiuu <a+ " [(Omara — xipikD+ + xapa(hy — A2) )] @
Hence
b+ xom2 — x1puu < a+ Mu.
The lemma thus follows. m]

Lemma 4.3 1) [f there is a positive constant c* (x1, L1, A2, X2, U2, A2) such that

lim sup |u(x,; up) — *l =0 V0 <c<ct(x,u, 2, x2, h2, A2), 4.4

1=00 |y |<¢r
then for everyi = 1,2 we have

lim sup |A;v;i(x, 1 uo)—full—O VO <c<c (X1, 11, ra, X2, 2, 22). (4.5)

t—>00 Ix|<et
2) If there is a positive constant ¢y (X1, i1, A2, X2, 2, A2) such that

lim sup u(x,t;u0) =0 Ve >ci(xi, 11, A2, X2, K2, A2), (4.6)

1=00 ||t
then for each i = 1,2 we have that

lim sup vi(x,75u0) =0 Ve > cl(xi, w1, A2, X2, h2, A2). 4.

1200 |\ >¢1

The proof of Lemma 4.3 follows from the proof of Lemma 5.5 [36].
Now, we are ready to prove Theorem C.
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Proof of Theorem C Combining inequalities (4.1) and (4.3), we obtain that

aD~ N
IVGv2 — x1v1) Gt up) oo < +Dev/N, Yt>T. (48)
b+ xou2 — x1p1 — M

where D is given by (1.14) and M given by (1.8). Let

X2A2
K. := sup [[V(v2 — x1v1)(, t;up)llc and Kgo =: sup || ﬁv2(~,t;uo)|loo-

0<t<T; 0<t<T;

Choose C > 0 such that
up(x) < Ce_ﬁ‘xl, Vx e RN,
Let £ € SV~ be given and consider
Ulx,t;€) = Ce—VaxE—QJa+Ke+K: 1)
We have that
Up — AU = V((x2v2 — x1v) (. 5 up)VU = (a + (xahava — x1A1v1) (s -5 ug)
— b+ xom2 — x1p) U
= (Va@va+ Ke + Ke) = a+Vav(Gov = oD, 5 1) - € )U
- (a + (x2r2v2 — x1A1vD) (s s ugp) — (b + X212 — le)U)U
= (Va(Ke + V(Gova = 1o ¢ u0) - €) + (VaKe s = xarava (s uo) )T
+ (Xl}\lvl(w s up) + (b + xoun — X1M1)U>U
>0 VxeRN, 0<1<T,, vEe sV (4.9)

Since U (x, 0; &) = Ce VaE > CemValil > y4(x), by comparison principle for parabolic
equations, we obtain that

uCx,t;u0) <Ux,1;6), VxeRN, 0<r<T,veEesV L (4.10)
Next, consider

W(x, 1: &) = CoVAWE—QVatLetLen)(~T:) pJaQVatKe+Ke)Te - ¢ ¢ RN 4> T,

4.11)
where
D« N
L, := aDVN + De/'N
b+ xop2 — xipur — M
and
a &
Loy = Vaxapa n X242

b+ xapr —xim—M — a
It follows from (3.1), (4.3) and (4.8) that for any x € RN andr > T,

Wi — AW — V((x2v2 — x1v1)(, 5 u0) VW — (@ + (x2rav2 — x1h1v1) (-, =5 o)
—(b+ x2i2 — xip) W)W > 0.

@ Springer



J Dyn Diff Equat (2019) 31:1301-1325 1319

Observethat W (-, Ty; £) = U (-, Tx; ) > u(-, T). Hence, comparison principle for parabolic
equations implies that

0<ulx,t;up) < Wx,t;6), xeRN, 1>T,, &ecsV ! (4.12)
Hence, for every ¢ > 2./a + L¢ + L¢ 2, and t > T,, we have

— 1
sup u(x,t;up) < sup W (x, t, ﬁx>
X

[x|=cr [x|=ct

< sup Me ValemQ@VatLetLen)(=T)) Ja@VatKet+Ke)Te _, ()

[x[>ct
as t — oo. Thus by taking

Va(Dv/Na + xa12)

b+ xomus — xim1 — M’
(4.13)

L0, 1M 2 2, A2) = 2V/@+ Tim (Le+ L) = 2V/a +
£—

and using Lemma 4.3, the result of Theorem C follows.
In order to prove Theorem D, we first establish the following important Lemma.
Lemma 4.4 Let L be given by (1.18). Then,

lim  inf (4 Av2 — (1A Lt ug) — |V - 13 ug)|?
Rioomz}e,TzR((a—sz 202 — x1AvD (X, 1 u0) — [V (x2v2 — x1vD)(x, 15 u)|”)

Na?D?

>4a(l1—-L)— .
= ) (b + xam2 — x1141)?

(4.14)

Proof Using inequalities (3.4) and (4.1), we have that for every t > T, x € RV,
4(a + (arov2 — x1av) (X, 13 u0)) — [V (xava(x, 15 1g) — x1v1(x, 15 ug))|>

1
> 4(a + P [Oumara — xipikD)+ + xiwi (ki — A2)+ ]  — €))

-5 [(amara — xipidD) = + xipi (ki —A2)— ] (@ +¢) — ND*@+e)*.  (4.15)

Letting first R — oo and then ¢ — 0, it follows from (4.15) that

lim inf R (4@a + (x2h2v2 — x1vIAD (x, 15 u0) — |V (xav2 — X101 (x, 15 1) [*)

R—o0 |x|>R, T>

1
> 4(a + E [Omara — xipikn+ + xipn (ki — A2)+ | u)

4 _ .
-5 [Oamara — xipikD)— + xip1 (g — A2)- | — NDi?. (4.16)

But Theorem C implies that ¥ = 0. Hence, inequality (4.16) implies that

lim inf (4@ + Gaavs — vk (1 uo) — [V (xava — xivn) (@, 1 up) )

R—o0|x[zR, T=

1 . _
> 4(a - P [Omara — xipikD)— + xip1 (g — A2)-] ) — ND*a?. (4.17)
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Thus, it follows from (4.17) and (4.3) that
: : _ oy _ Y
Rh_)moo \xlz}Qr,lfTZR (4(a + Gr2va — xiviAD)(x, 15 u0) — [V (x2v2 — x1v)(x, 15 up)|)
a(amara — ximr)— + X1 (v — A2) -] ND?a?
> 4(a — )

b+ xop2 — x1p1 — M) b+ xama — xipr — M)
(4.18)

Similarly, by rewriting (x2p2v2 — x1141v1) (x, t; ug) in the form given by (3.12), same argu-
ments as above yield that

lim inf  (4(a + (xarav2 — x1viAD)(x, 15 ug) — |V (x2v2 — x1v1)(x, 15 up)|?)

R—o0 |x|>R, T>R

> 4a - al(xamara — ximrn)— + xapa(hy — )»2)—]) B ND*a?
- b+ xam2 — xipu1 — M) (b + xom2 — x1p1 — M)?’
(4.19)
The Lemma thus follows. ]

Proof of Theorem D The arguments used in this proof generalize some of the arguments
used in the proof of Theorem 9(i) [36]. Hence some details might be omitted. We refer the
reader to [36] for the proofs of the estimates stated below.

Since (1.17) holds, we have

aD~ N
(X1, 1, M, X2, H2, A2) == 2y/a(1 — L) — > 0,
b+ xopa2 — xipmr — M

where M, D and L are given by (1.8) and (1.14) and (1.18) respectively. We first note
that, it follows from Lemma 4.4 and the proof of Lemma 5.4 [36] that for every 0 < ¢ <
c* (X1, 1, A1, X2, 42, A2) we have

liminf inf wu(x,t; ug) > 0. (4.20)

=00 |x|<ct

It suffices to prove the following claim.
Claim. Forevery 0 < c¢ < ¢* (x1, 1, A1, X2, 42, A2), we have that

lim sup |u(x, £; uo) — %| —0. “.21)

—00 |X|§Ct

Suppose that the claim is not true. Then there is 0 < ¢ < ¢* (x1, 1, A1, X2, U2, A2),

8 > 0, asequence {x,},>1, a sequence of positive numbers {t,},>1 with#, — coasn — oo
such that

|xn| < cty, Vn=>1, (4.22)

and p
[ (s tns 10) — B' >8, Vnx>1. (4.23)

For every n > 1, let us define
Up (X, 1) = u(x + Xp, £ +1y; U0)s  Vin(x, 1) = k(X + X, ty; uo) (k=1,2)  (4.24)

forall x € RN and ¢ > —t,.
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We first show that there is a subsequence of {(u,, vi,, v2,)} Which converges locally
uniformly. To this end, let {T'(¢)},>0 denote the analytic semigroup generated by the closed
linear operator (A — I)u on Cgm»f (RM). Then the variation of constant formula yield that

t
u(x, t; ug) =T (H)ug +/ T(t =)V - ((x2uVvy — x1uVv)(-, 55 up))ds
0

t
+ / T —s)(((a+ Du — buz)(~, s;ug))ds. (4.25)
0

Let0 <o < % be fixed and let X* denotes the fractional powers associated to the semigroup
{T(¢)};>0- Thus, there is a constant C(see [15]) depending only on « and the dimension N

such that
1
llin (. O) I xe < Caty “lltglloc + Ca fg" €™ (ty — )" 27| (xouVvy — x1uV V1), 831 ) loods
+Co [ e 1y — )7 ((@ + Du — bu)(-, 51 up) | oods. (4.26)

Using the facts that sup,>¢ [lu(-, t)llec < 00, t; — 00 asn — 00, fooo e Ty =
F(% —a) < oo and fooo e Tt7% 1t =T(1 —a) < 00, it follows from (4.26) that
sup [lun (-, 0) [ x« < 00. (4.27)
n>1
Similar arguments as those used in the proof of Theorem 1.1 [36] yield that the functions u,, :
[-T , T] - X are equicontinuous for every T > 0. Hence Arzela-Ascili’s Theorem and
Theorem 15 (page 80 of [12]) imply that there is a function (i, V1, v2) € [Cz'] (RN x R)]3
and a subsequence {(u,/, V1, Vo) }n>1 Of {(tn, V1n, V2n)}n>1 such that (u,/, viy, V2) —
(it D1, ) in €00

loc

i = 1, 2. Note that

(RN x R) for some 8’ > 0. Moreover u;ii = (A;I — A)¥; for every

u(x,r) :nlin;ou(x+xn/,t+tn/;uo), VxeRY, reR.

Hence u
|i£(0, 0) — Z' > 6. (4.28)

lx[+cle]
—

Choose & € (¢, ¢* (X1, ft1, M, X2, 2, 12)). Forevery x € RV, t e Rand 1, >
have

X 4+ x| < |x| + ety <t +1).
It follows from last inequality and (4.20) that

u(x,t) = lim u(x + x,, t + ty; ug) > liminf inf wu(y, s;ug) >0, Vx eRN, teR.
n—00 §—>00 |y|<cs

Hence inf (, jyepn+1 (x, 1) > 0.

Next, we claim that u(x,t) = % for every x € RN, ¢t € R. Indeed, let Uy =
inf , ey i(x, 1) and Ho(x, 1) = sup, ,epn+1U(x, 7). For every 7o € R, let U, 1)
and U(t, tp) be the solution of the ODEs

Ui =(a— b+ xop2— xip)U)U

+i([(X2M2)»2 — x1iiA)+ + xip (ki — A2) 4 o

— [OGepara — xipir) - + xipi (A — kz)—]go)ﬁ, r>1p
Ul(to, to) = o
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and
U, =(a= 0+ xap2— xipnU)U

+,\17<[(X2M2)»2 — xtihD)+ + xim (= A2) 4 | ug
— [Gemars — xiuiiD)— + xipu1 (g — Xz)f]ﬁo)ﬁ, t >ty
Ulto, t0) = uy

respectively. It follows from the arguments used to establish (3.6) and (3.9) that

Ut —19,0) = U(t, tg) < ii(x,1), YxeRY 1> (4.29)
and o o

Ut —19,0) = U@, 1p) > ii(x,1), YxeRY, 1> (4.30)
respectively. Note that for every ¢ € R fixed, we have that

1

1
—————1a+ —([(er2r2 — xip1AD+ + x1r1( — A2)+ | uo
b+x2M2—X1M1{ )»2([ ]

lim U, 19) =
p——00
—[xamara = xipi2)— + xie1 (kg — Xz)—]ﬂo)} (4.31)

and

1

1
—————1a+ —([(ap2r2 — xip1AD+ + xin1 (i — A2)+ | ug
b+x2u2—X1M1{ )\2([ Juo

lim U, 1) =
1h—>—00
—[(xam2ra = xamir)— + x1u1 by — Xz)—]ﬁo)}- (4.32)

Combining (4.29) and (4.32), we have that
: fa+ L ([Ganat M4+ X (o = 22)+]
—————1a+ — (| Geprr — x1p1A 11 (A — A2)4 | u,
b+ xam2 — X111 PR x A 10
— [Gerara = imir) - + 111G = x2)-]T0) | g (433)

Combining (4.30) and (4.31), we have that
%{a + i( [Omara = xipir)+ + xim (ki — A2)4 o
b+ xopm2 — x1i01 A2
— [(amara — ximd) - + xipr (g — X2)7]£0)] >ug. (4.34)

Thus, it follows from inequalities (4.33) and (4.34) that

1 _
(b + Xop2 — X1i1 — E(b{lﬂ«l}\l — Xam2A2| + x1p1lAr — le)) (o — up) < 0.

(4.35)
Similarly, for every #o € R, by considering V(z, tp) and V(t, tp) to be the solutions of the
ODEs

Vi=(a— b+ xopu2— xin)V)V

+%([(X2M2)»2 — x1i1A)+ + xapa (ki — A2) 4 | o

— [Omara — xipirn) - + xapa (g — kz)—]zo)V, t>1o
V10, 10) = o
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and
V,=(a— 0+ um—xm)Y)V

+,\1*1<[(X2,u2)»2 = Xtl1A)+ + xapa(hr = 22)+ ] ug
— [Oamara — xipiin) - + xapa (i — kzL]%)Z, 1> 1
V(to, to) = u

respectively. Using systems (4.36) and (4.36), similar arguments used to establish (4.35)
yield that

1 _
(b + XoM2 — X1H1 — *(leMlM — Xom2A2| + x2m2lAr — le)) (o — up) < 0.

Al
(4.36)
It follows from inequalities (4.35) and (4.36) that
b+ x2m2 — x1i01 — K)o —ug) <0. (4.37)

Since (1.10) holds, it follows from the last inequality that #y = u,. Combining this with
inequalities (4.33) and (4.34) we obtain that #1p = u, = . Hence, we have that ii(x, ) = §
for every x € RN and ¢t € R. In particular, we have that (0, 0) = %’ which contradicts
(4.28).

Hence the claim is true and Theorem D is thus proved. O
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