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Abstract In this paper we provide a full topological and ergodic description of the dynamics
of Filippov systems nearby a sliding Shilnikov orbit �. More specifically we prove that the
first return map, defined nearby �, is topologically conjugate to a Bernoulli shift with infinite
topological entropy. In particular, we see that for each m ∈ N it has infinitely many periodic
points with period m. We also study the perturbed system and obtain similar results.
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1 Introduction

Real world problems have been the main motivation on discontinuous differential systems.
They are very useful to model phenomena presenting abrupt switches such as electronic
relays, mechanical impact, mitosis of living cells, and Neuronal networks. That is one of the
reasons for this area to have such a variety of rich examples [2,8,9,22,25]. Therefore the
further we understand discontinuous differential systems the more one is prepared to analyse
real world problems.

When facing a discontinuous differential system, defining a consistent concept of solution
is the first natural issue one has to deal with. One important paradigm to tackle this issue is
due to Filippov. In his famous book [11] Filippov studied these systems taking advantage of

B Régis Varão
regisvarao@ime.unicamp.br

Douglas D. Novaes
ddnovaes@ime.unicamp.br

Gabriel Ponce
gaponce@ime.unicamp.br

1 Departamento deMatemática, Universidade Estadual de Campinas, Rua Sérgio Baruque de Holanda,
651, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-859, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-017-9580-8&domain=pdf


1570 J Dyn Diff Equat (2017) 29:1569–1583

the well developed theory of differential inclusions [1]. Then, for a class of discontinuous
vector fields Z , he provided a branch of rules for what would be a local trajectory of u̇ = Z(u)

nearby a point of discontinuity. For instance, consider

Z(u) =
{
X (u), if g(u) > 0,
Y (u), if g(u) < 0,

(1)

where u ∈ K , being K a closure of an open subset of Rn, X, Y are Cr vector fields, and
g : K → R has 0 as a regular value. The rules stated by Filippov may be applied to
establish the notion of local solution of the discontinuous differential system u̇ = Z(u) at a
point of discontinuity ξ ∈ M = g−1(0). Nowadays these rules are known as the Filippov’s
conventions, and it turns out that for many physical models these conventions are the ones
which have physical meaning [9]. Accordingly, discontinuous differential systems rulled by
Filippov’s conventions are called Filippov systems. Due to their importance, not only from
the mathematical point of view as well as the physical point of view, we shall assume the
Fillipov’s conventions throughout the paper. Under this convention the switchingmanifoldM
can be generically decomposed in three regions with distinct dynamical behaviours, namely:
crossing Mc, sliding Ms , and escaping Me. Concisely, the system u̇ = Z(u) may admit
solutions either side of the discontinuityM that can be joined continuously, forming a solution
that crosses Mc ⊂ M . Alternatively, solutionsmight be found to impinge uponM , afterwhich
they join continuously to solutions that slide insideMs,e = Ms∪Me ⊂ M . See items (i)–(v)

of Sect. 2.1 for the precise definition of the Filippov’s conventions.
Nonlinear systemsmay present intricate and complex behaviours such as chaotic motions.

Roughly speaking, chaos can be understood as the existence of an invariant compact set� of
initial conditions for which their trajectories are transitive and exhibit sensitive dependence
on � [10,16,26]. Each phenomenon from the ordinary theory of differential systems finds
its analogous in discontinuous differential systems. However Filippov systems admit a richer
variety of behaviours. New chaotic modes rising in discontinuous differential systems have
been recently investigated. For instance, in [6,7] it was studied chaotic set-valued trajectories
(nondeterministic chaos), and in [3,4] the Melnikov ideas were applied to determine the
existence of chaos in nonautonomous Filippov systems. Here we shall study deterministic
chaos in autonomous Filippov systems.

In this article we analyse 3D Filippov systems admitting a sliding Shilnikov orbit � (see
Fig. 1), which is an entity inherent to Filippov systems. It was first studied in [17]. In the
classical theory a Shilnikov homoclinic orbit of a smooth vector field is a trajectory connecting
a hyperbolic saddle–focus equilibrium to itself, bi-asymptotically. It is well known that a
chaotic behaviour may rise when the Shilnikov homoclinic orbit is perturbed [14,18,20,21].
In the Filippov context pseudo-equilibria are special points contained in Ms,e that must be
distinguished and treated as typical singularities (see Definition 1). These singularities give
rise to the definition of the sliding homoclinic orbit, that is a trajectory, in the Filippov sense,
connecting a pseudo-equilibrium to itself in an infinity time at least by one side, forward or
backward. Particularly a sliding Shilnikov orbit (seeDefinition 2) is a sliding homoclinic orbit
connecting a hyperbolic pseudo saddle–focus p0 ∈ Ms to it self. This trajectory intersects
the boundary ∂Ms of Ms at a point q0 (see Fig. 1).

In dynamics one is concerned to get the most possible complexity from a given system,
that is why often for systems which exhibit some complexity one is able to find a Bernoulli
shift as a factor. For smooth dynamical systems one may benefit from certain geometrical
structures (hyperbolicity) which imply the existence of stable and unstable manifolds. That
has been the case in many studies, we mention two classical works done by Bowen [5] and
Tresser [24]. The systems we shall study in this paper do not benefit from these geometrical
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Fig. 1 The point p0 ∈ Ms is a hyperbolic pseudo saddle–focus. The trajectory �, called Shilnikov sliding
orbit, connects p0 to itself passing through the point q0 ∈ ∂Ms . We note that the flow leaving q0 reaches the
point p0 in a finite positive time, and approaches backward to p0, asymptotically

structures, so we have to use the properties of the Filippov systems themselves to overcome
this lacking of structures (e.g. the well-posedness of the η∗ function, see Sect. 4).

Let Z be a 3D discontinuous vector field like (1) defined on K ⊂ R
3. Assume that the

Filippov system u̇ = Z(u) admits a sliding Shilnikov orbit� connecting a hyperbolic pseudo
saddle–focus p0 ∈ Ms to it self and intersecting the curve ∂Ms at a point q0. Consider a
small neighbourhood I of q0 in ∂Ms , and denote by � ⊂ I the points which return infinitely
often by the forward orbit of the flow to this neighbourhood of q0. If π denote the first return
map defined on a subset U of I , then � is the maximal set in U which is π invariant (see
Sect. 2.2 for more information). As we shall see, this set is non vanishing. The complexity
of a flow is interpreted as the complexity of its returning map π |�. In this context our main
result (see Theorem A in Sect. 3) states that π can be as much chaotic as one wishes by using
symbolic dynamics.

This paper is organized as follows. On Sect. 2 we present some basic notions on Filippov
systems and symbolic dynamics. On Sect. 3 we state our main result (Theorem A) and some
of their consequences (Corollaries A, B and C). The main result is proved on Sect. 4. Some
final words appear on Sect. 5 as well as a brief discussion of further directions.

2 Basic Notions and Preliminary Results

This section is devoted to present some basic notions needed to state our main result. On
Sect. 2.1 we introduce the basic concepts of Filippov systems as well the definition of sliding
Shilnikov orbit. Then on Sect. 2.2 we look carefully at the first return map defined nearby
the sliding Shilnikov orbit. Finally, on Sect. 2.3, we present the basic notions about symbolic
dynamics.

2.1 Filippov System and the Sliding Shilnikov Orbit

We remark that a major part of this section is constituted by a well known theory and may
be found in other works (see for instance [11,12,17]).

Let K be the closure of an open subset of Rn , and let X, Y ∈ Cr (K ,R3), be Cr vector
fields defined on K ⊂ R

3. We denote by �r
g(K ,R3) the space of piecewise vector fields

Z(u) =
{
X (u), if g(u) > 0,
Y (u), if g(u) < 0,

(2)
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defined on K , being 0 a regular value of the differentiable function g : K → R. As usual,
system (2) is denoted by Z = (X, Y ) and the surface of discontinuity g−1(0) by M .
So �r

g(K ,R3) = Cr (K ,R3) × Cr (K ,R3) is endowed with the product topology, while
Cr (K ,R3) is endowed with the Cr topology. We concisely denote�r

g(K ,R3) and Cr (K ,R3)

only by �r and Cr , respectively.
In order to understand the Filippov’s conventions for the discontinuous differential system

u̇ = Z(u) we need to distinguish some regions on M . The points on M where both vectors
fields X and Y simultaneously point outward or inward from M define, respectively, the
escaping Me or sliding Ms regions, and the interior of its complement in M defines the
crossing region Mc. The complementary of the union of those regions is the set of tangency
points between X or Y with M .

The points in Mc satisfy Xg(ξ) · Yg(ξ) > 0, where Xg(ξ) = 〈∇g(ξ), X (ξ)〉. The points
in Ms (resp. Me) satisfy Xg(ξ) < 0 and Yg(ξ) > 0 (resp. Xg(ξ) > 0 and Yg(ξ) < 0).
Finally, the tangency points of X (resp. Y ) satisfy Xg(ξ) = 0 (resp. Yg(ξ) = 0).

Now we define the sliding vector field

Z̃(ξ) = Yg(ξ)X (ξ) − Xg(ξ)Y (ξ)

Yg(ξ) − Xg(ξ)
. (3)

Definition 1 A point ξ∗ ∈ Ms,e is called a pseudo-equilibrium of Z if it is a singularity of
the sliding vector field, i.e. Z̃(ξ∗) = 0. When ξ∗ is a hyperbolic singularity of Z̃ , it is called
a hyperbolic pseudo-equilibrium. Particularly if ξ∗ ∈ Ms (resp. ξ∗ ∈ Me) is an unstable
(resp. stable) hyperbolic focus of Z̃ then we call ξ∗ a hyperbolic pseudo saddle–focus.

Let ϕW denotes the flow of a smooth vector field W . The local trajectory ϕZ (t, p), t ∈
Ip ⊂ R, of u̇ = Z(u) passing through a point p ∈ R

3 is given by the Filippov’s conventions
(see [11,12]). Here 0 ∈ Ip ⊂ R denotes a interval of definition of ϕZ (t, p). Following
straightly [12], the Filippov’s conventions is summarized as:

(i) for p ∈ R
3 such that g(p) > 0 (resp. g(p) < 0) and taking the origin of time at

p, the trajectory is defined as ϕZ (t, p) = ϕX (t, p) (resp. ϕZ (t, p) = ϕY (t, p)) for
t ∈ Ip .

(i i) for p ∈ Mc such that (Xg)(p), (Yg)(p) > 0 and taking the origin of time at p, the
trajectory is defined as ϕZ (t, p) = ϕY (t, p) for t ∈ Ip ∩ {t < 0} and ϕZ (t, p) =
ϕX (t, p) for t ∈ Ip ∩ {t > 0}. For the case (Xg)(p), (Yg)(p) < 0 the definition is
the same reversing time.

(i i i) for p ∈ Ms,e and taking the origin of time at p, the trajectory is defined as ϕZ (t, p) =
ϕZ̃ (t, p) for t ∈ Ip.

(iv) For p ∈ ∂Mc ∪ ∂Ms ∪ ∂Me such that the definitions of trajectories for points in M
in both sides of p can be extended to p and coincide, the trajectory through p is this
limiting trajectory. These points are called regular tangency points.

(v) any other point is called singular tangency points and ϕZ (t, p) = p for all t ∈ R.

Examples of regular tangency points are the regular-fold points. A tangency point p ∈ M
is called a visible fold of X (resp. Y ) if X2g(p) > 0 (resp. Y 2g(p) < 0). Analogously,
reversing the inequalities, we define an invisible fold. A fold p of X (resp. Y ), visible or
invisible, such that Yg(p) �= 0 (resp. Xg(p) �= 0) is called a regular-fold point. The next
result provides the dynamics of the sliding vector field near regular-fold points. A proof of
that can be find in [23].
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Proposition 1 ([23])Given Z = (X, Y ) ∈ �r if p ∈ ∂Me,s is a fold-regular point of Z then
the sliding vector field Z̃ (3) is transverse to ∂M at p.

The above conventions provide the unicity of the trajectories passing through a point. This
property plays an important whole in establishing the notion of local equivalence between
two Filippov systems (see [12]). However if one consider, for instance, a point p ∈ 
s ∪
e,
besides the trajectory defined above, there are two other trajectories (of X and Y ) which
arrive to p in finite time. Therefore in the study of global behavior the matching of these
distinct trajectories must be taken into account.

In [17] it has been introduced the concept of sliding Shilnikov orbits, and some of their
properties were studied. In what follows we give the definition of this object and two results.
The first one is about the co-dimension of the sliding Shilnikov orbit �r and the second one
is about the existence of sliding periodic orbits nearby a sliding Shilnikov orbit.

Definition 2 (Sliding Shilnikov orbit) Let Z = (X, Y ) be a 3D discontinuous vector field
having a hyperbolic pseudo saddle–focus p0 ∈ Ms (resp. p0 ∈ Me). We assume that there
exists a tangential point q0 ∈ ∂Ms (resp. q0 ∈ ∂Me) which is a visible fold point of the
vector field X such that

( j) the orbit passing through q0 following the sliding vector field Z̃ converges to p0
backward in time (resp. forward in time);

( j j) the orbit starting at q0 and following the vector field X spends a time t0 > 0 (resp.
t0 < 0) to reach p0.

So through p0 and q0 a sliding loop � is characterized. We call � a sliding Shilnikov orbit
(see Fig. 1). Accordingly we denote �+ = � ∩ {u ∈ K : g(u) > 0} and �s = � ∩ Ms .

Theorem 1 ([17]) Assume that Z0 = (X0, Y0) ∈ �r (with r ≥ 1) has a sliding Shilnikov
orbit �0 and let W ⊂ �r be a small neighbourhood of Z0. Then there exists a C1 function
g : W → R having 0 as a regular value such that Z ∈ W has a sliding Shilnikov orbit � if
and only if g(Z) = 0.

Theorem 2 ([17]) Assume that Z0 = (X0, Y0) ∈ �r (with r ≥ 0) has a sliding Shilnikov
orbit �0 and let Zα = (Xα, Yα) ∈ �r be an 1-parameter family of Filippov systems breaking
the sliding Shilnikov orbit for |α| �= 0, this family is called a Splitting of �0 (Fig. 2). Then
the following statements hold:

(a) for α = 0 every neighbourhood G ⊂ R
3 of �0 contains countable infinitely many

sliding periodic orbits of Z0;
(b) for every neighbourhood G ⊂ R

3 of �0 there exists |α0| �= 0 sufficiently small
such that G contains a finite number NG(α0) > 0 of sliding periodic orbits of Zα .
Moreover NG(α) → ∞ when α → 0.

Inwhat followswe present an example of a 2-parameter family of discontinuous piecewise
linear differential system Za,b admitting, for every positive real numbers α and b, a sliding
Shilnikov orbit �α,β . This family was studied in [17].
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Fig. 2 Representation of a Splitting of �0, Zα ∈ �r

Za,b(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xa,b(x, y, z) =

⎛
⎜⎜⎝

−a
x − b

y − 3b2

8a

⎞
⎟⎟⎠ if z > 0,

Ya,b(x, y, z) =

⎛
⎜⎜⎜⎝

a
3a

b
y + b

3b2

8a

⎞
⎟⎟⎟⎠ if z < 0.

(4)

The switching manifold for system (4) is given M = {z = 0}, and decomposed as M =
Mc ∪ Ms ∪ Me being

Mc =
{
(x, y, 0) : y >

3β2

8a

}
, Ms =

{
(x, y, 0) : y <

3β2

8a

}
and Me = ∅.

The origin p0 = (0, 0, 0) is a hyperbolic pseudo saddle–focus of system Za,b (4) in such
way that its projection onto M is an unstable hyperbolic focus of the sliding vector field
Z̃a,b (3) associated with (4). Moreover there exists a sliding Shilnikov orbit �a,b connecting
p0 = (0, 0, 0) to itself and passing through the fold-regular point q0 = (

3b/2, 3b2/(8a), 0
)
.

2.2 The First Return Map

The behaviour of a system close to a sliding Shilnikov orbit can be understood by studying
the first return map in a small neighbourhood I ⊂ ∂Ms of q0, wherever it is defined. In what
follows we shall define this map.

Let Z0 ∈ �r be a Filippov system admitting a sliding Shilnikov orbit �0, and let Zα be a
splitting of �0. For sake of simplicity we shall denote Z = Z0 and � = �0.

For ξ ∈ Ms and z ∈ R
3, let the functions ϕs(t, ξ) and ϕX (t, z) denote the solutions

of the differential systems induced by Z̃ and X , respectively, such that ϕs(0, ξ) = ξ and
ϕX (0, z) = z.

Take γr := Br (q0) ∩ ∂Ms . Here Br (q0) ⊂ M is the planar ball with center at q0 and radius
r . Of course γr is a branch of the fold line contained in the boundary of the sliding region
∂Ms . From Definition 2, ϕX (t0, q0) = p0 ∈ Ms , moreover, the intersection between �+
and M at p0 is transversal. So taking r > 0 sufficiently small, we find a function τ(ξ) > 0,
defined for ξ ∈ γr , such that τ(q0) = t0 and ϕs(τ (ξ), ξ) ∈ Ms for every ξ ∈ γr .

The forward saturation of γr through the flow of X meets M in a curve μr , that is μr =
{ϕX (τ (ξ), ξ) : ξ ∈ γr }. So let θ : γr → μr denote the diffeomorphism θ(ξ) = ϕs(τ (ξ), ξ).
A diffeomorphism θα : γr → μα

r can be constructed in a similar way, but now the pseudo
saddle-focus is not contained in μα

r .
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Now, Proposition 1 implies that the intersection between �s and ∂Ms at q0 is transversal.
So in addition, taking r > 0 small enough, the backward saturation Sr of γr through the flow
of Z̃ converges to p0. Therefore

Sr ∩ μr =
∞⋃
i=1

Ji ,

where Ji∩J j = ∅ if i �= j and Ji → {p0}. For each i = 1, 2, . . ., we take Ii = θ−1(J j ) ⊂ γr .
Clearly Ii ∩ I j = ∅ if i �= j and Ii → {q0}. Set I = γr and

Ur =
∞⋃
i=1

Ii ⊂ I. (5)

Therefore the first return map π : Ur → I is well defined. Moreover it can be taken as

π(ξ) = ϕs
(
τs(ϕX (τ (ξ), ξ)), ϕX (τ (ξ), ξ)

)
, (6)

where, for each ξ ′ ∈ μr\{p0}, τs(ξ ′) > 0 denotes the time such that ϕs(τs(ξ
′), ξ ′) ∈ I .

For |α| �= 0 sufficiently small one could proceed as above to construct a first return map
πα : Uα

r → I , with respect to the system Zα . We notice that, since the backward saturation of
I through the flow of Z̃α intersects μr in a finite number nα < ∞ of connected components
Jα
i , the set Uα

r will be given by a union of nα intervals Iα
i ⊂ I :

Uα
r =

nα⋃
i=1

Iα
i ⊂ I,

where Iα
i = θ−1

α (Jα
i ).

The next result estimates the derivative of the first return map.

Proposition 2 Consider Ur as defined in (5). There exists r > 0 sufficiently small such that
|π ′(ξ)| > 1 for every ξ ∈ Ur . Consequently, for |α| �= 0 sufficiently small, |π ′

α(ξ)| > 1 for
every ξ ∈ Uα

r .

Proof For each R > 0, the focus p0 ∈ Ms of the sliding vector field Z̃ is contained in μR

which is traversal to the flow of Z̃ . So there exists R0 > 0 such that, for every 0 < R ≤ R0, it
is well defined a first return map from μR into μR , for some big R > 0, which we denote by
ρ : μR → μR . Since p0 is a hyperbolic unstable fixed point of ρ, ρ admits aC1 linearization
in a neighborhood of p0 (see [13,19]), that is, there exists a neighborhoodU ⊂ μR0 and a C1
diffeomorphism H : U → U such thatρ(ζ ) = H(λH−1(ζ )), with |λ| > 1. So choose R > 0
sufficiently small such thatμR ⊂ U . Therefore if ρk−1(ζ ) ∈ U then ρk(ζ ) = H(λk H−1(ζ ))

The backward saturation of γR through the flow of Z̃ intersects U many times, indeed
it converges to p0. So denote by S the first connected component of this intersection which
is entirely contained in U . The flow of Z̃ induces a diffeomorphism ρ̃ between S and γR .
Moreover the flow of X induces a diffeomorphism ρX between γR and μR .

Since ρ̃ and ρX are diffeomorphism, there exists α̃ > 0 and αX > 0 such that α̃ =
min{|ρ̃ ′(ζ )| : ζ ∈ S} and αX = min{|ρ′

X (ξ)| : ξ ∈ γR}.
Now given k0 ∈ N, there exists a sufficiently small r ∈ (0, R) such that ρk(μr ) ∩ S = ∅

for every 0 < k < k0. In particular, we can assume that αX α̃|λ|k0 > 1.
Finally take Ur as defined in (5). For ξ ∈ Ur , let k be a positive integer such that

ρk
(
ρX (ξ)

) ∈ S. From the continuity of the map ρ, there exists a neighborhoodW ⊂ Ur of ξ
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such that ρk
(
ρX (w)

) ∈ S ⊂ U for every w ∈ W . Since ρX (ξ) ∈ μr , k ≥ k0. Therefore, for
every w ∈ W , the first return map reads

π(w) = ρ̃ ◦ ρk ◦ ρX (w)

= ρ̃ ◦ H(λk H−1(ρX (w))).

Hence |π ′(ξ)| ≥ αX α̃|λ|k ≥ αX α̃|λ|k0 > 1. ��
2.3 Basic Facts on Bernoulli Shifts

On what follows the reader may find a good introduction to the subject on [15] and the
references therein.

Let (X,A, μ) be a probability space and f : X → X be a measurable function. We say
that a measurable set B ⊂ X is f -invariant if

f −1(B) = Bmod 0,

wheremod 0means that except ameasure zero set both sets are equal.We say that f preserves
the measure μ, or that f is μ-invariant, when

μ( f −1(B)) = μ(B)

for every measurable set B ⊂ X .
Given a measurable preserving function f : X → X in a probability space (X, μ), we

say that f is ergodic if, and only if, for every f -invariant measurable set B ⊂ X we have

μ(B) = 0 or μ(B) = 1.

Ergodicity is a very important property in Dynamical Systems and it roughly means that
the dynamics cannot be broken in smaller simple dynamics. Hence it actually implies a
certain type of chaos for a system with respect to a given measure. Bernoulli shifts have a
fairly simple description and still amazingly they are the most chaotic possible examples. We
now describe the Bernoulli shifts.

Throughout this paper we denote N∗ := N\{0}. Given any natural number k ∈ N
∗, we

define the space of all sequences of natural numbers between 0 and k − 1 by


k = {0, 1, . . . , k − 1}N.

Due to a more intuitive approach in the proof of our main result (see Theorem A of Sect. 3)
we will need the set


∗
k = {1, . . . , k}N,

which we point out it is not a standard notation on symbolic dynamics.
These are a countable product space where each coordinate is a discrete compact space.

By Tychonoff’s theorem 
k (respectively 
∗
k ) is compact with the product topology induced

by the discrete topology of {0, 1, . . . , k−1} (respectively {1, . . . , k}). A metric in this space,
which generates the product topology, is given by

d : 
k × 
k → R

d(α, β) =
{

0 se α = β( 1
2

)n
, n = max{a ∈ N : α(i) = β(i), |i | ≤ a}

Acting on
k we have the so called one-sided Bernoulli shift σ : 
k → 
k , which simply
operates a left-translation on each sequence, that is, given any sequence (xn)n∈N the image
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if this sequence is the sequence

σ((xn)n∈N) = (xn+1)n∈N.

Definition 3 Given n ∈ N and m values a1, a2, .., am ∈ {0, 1, . . . , k − 1}. We denote by
C(n; a1, a2, . . . , am) the set defined by

C(n; a1, a2, . . . , am) = {(xi )i∈N : xn+1 = a1, xn+2 = a2, . . . , xn+m = am}.
The sets of this form are called cylinders.

Let C be the family of all cylinders in 
k . This family generates a σ -algebra C, which will
be the standard σ -algebra to work with on 
k .

To define a measure on 
k we take any probability vector p = (p0, . . . , pk−1) (i.e.
pi ∈ [0, 1] and ∑

i pi = 1). The probability vector p defines, in a trivial way, a measure
p on {0, 1, . . . , k − 1}. Thus, we can take μ as the product measure μ = pN on 
k . This
measure is characterized by its values on cylinders. Given a cylinder C(n; a1, a2, . . . , am),
one can easily see that

μ(C(n; a1, a2, . . . , am)) = pa1 · pa2 · · · · · pam .

The measure μ is called a Bernoulli measure. It is easy to see that μ is σ invariant
for any Bernoulli shift σ : 
k → 
k . Also, the system (σ, μ) is ergodic. A measurable
automorphism f : X → X of a probability space (X, μ) is called a Bernoulli automorphism
if it is isomorphic to a Bernoulli shift σ : 
k → 
k for some k ∈ N. By an isomorphism
we mean a bimeasurable function that conjugates the dynamics and takes μ to a Bernoulli
measure. That is a Bernoulli automorphism preserves all ergodic properties of a Bernoulli
shift.

The following proposition is a very well-known fact from the theory of Bernoulli shifts
(e.g. [15]).

Proposition 3 For any k ∈ N, the Bernoulli shift σ : 
k → 
k has periodic orbits of all
periods and the set of transitive points is a residual set.

Along the paper we will work with the spaces
2×
∗
k . For each k ∈ N

∗, on each
2×
∗
k

we have the shift on two-coordinates

σ((xn)n, (ym)m) = ((xn+1)n, (ym+1)m).

This shift on two coordinates is isomorphic to a standard shift on 
2·k , so it is also
a Bernoulli automorphism. It is also a direct fact that the two-coordinates shift above is
topologically conjugate to the standard shift on 
2·k , thus the conclusions of Proposition 3
are also true for the two-coordinates shift.

Let us define


b :=
⋃
k∈N∗


∗
k = {{xi }i |∃L ∈ R s.t. |xi | ≤ L , xi ∈ N

∗ ∀i}.

We consider the two-coordinates shift

σ : 
2 × 
b → 
2 × 
b.

To make notations easier, we will denote by σk the restriction of σ to the space 
2 × 
∗
k .

Hence σk : 
2 × 
∗
k → 
2 × 
∗

k .
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The space of sequences 
2 × 
∗
k is naturally endowed with the product topology, which

is the coarsest topology for which the cylinders are open set. And the topology on 
2 × 
b

is the coarset topology having the cylinders of 
2 × 
∗
k as open sets ∀k ∈ N

∗. We note that
σk is defined on a compact space while σ is not.

One of the most useful invariants on Dynamical Systems and Ergodic Theory is the topo-
logical entropy.Onemay think of topological entropy as ameasurement of chaos. Topological
entropy has a not so straight definition (which we recomend the reader to take a look [15])
but fortunately to our context it can be associated to the growth of periodic points. Therefore
to our purpose we consider the topological entropy as follows. For a compact π-invariant set
� ⊂ 
2 × 
b we define the topological entropy of π |� as

hσ |� := lim
n→∞

1

n
#Pern(σ |�),

where #Pern( f ) means the number of periodic point of period n. It is not difficult to prove
that hσk = log(2k).

3 Statement of Results

Using the same notations as above, our main result is:

Theorem A Let Z = (X, Y ) ∈ �r be a Filippov system (2). Assume that Z admits a sliding
Shilnikov orbit� and letπ denote the first returnmap (6) defined onUr nearby q0 = �∩∂Ms.
Then, for r > 0 sufficiently small, there is a set � ⊂ Ur such that:

(a) for each k ∈ N there exists a π -invariant cantor set�k ⊂ � such that π |�k is conjugate
to the shift on 
2 × 
∗

k , that is

hk ◦ σk = π ◦ hk

where hk : 
2 × 
∗
k → �k is a homeomorphism. In particular the dynamics on �k is

transitive, sensitive to initial conditions and has dense periodic points.
(b) There is a homeomorphism h : 
2 × 
b → � := ⋃

k �k such that h conjugates the
dynamics of σ and π and�∪{q0} is a compact set. In particular the topological entropy
of π is infinite.

Hence, given any natural number m ≥ 1 we can find infinitely many periodic points for
the first return map with periodm and, consequently, infinity many closed orbits of u̇ = Z(u)

nearby �. Indeed, given k ≥ 1, each periodic point of period m for σk is mapped by hk in
a periodic point of period m for π , thus varying k ≥ 1 we obtain infinitely many periodic
points of a fixed period m for π .

We also obtain another two consequences from Theorem A. The first one states that we
are able to understand any compact invariant set for the first returning map (or flow) by some
dynamics on a symbolic dynamics.

Corollary A Given a compact set K ⊂ Ur π -invariant, then π |K is conjugate for some k
to a σk |� where � ⊂ 
2 × 
∗

k is an σk-invariant set.

Proof Notice that for ξ ∈ �, there exists a positive number Mξ < ∞ such that n∗(ξ) < Mξ

for ∗ ∈ {0, 1}. By continuity of π there is an neighbourhood Uξ of ξ such that ∀z ∈ Uξ

n∗(z) ≤ Mξ . Since K is a compact set take a finite cover of K and consider the maximum of
n∗ for these finite cover. Let k0 be this maximum. This means that for all points in K if we
catalogue its trajectory it has to be given by a sequence in 
2 ×
∗

k0
. Proving the corollary. ��
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We are able to fully characterize the ergodic properties of the system:

Corollary B For r > 0 sufficiently small if (π, μ) is ergodic, then there exist k ∈ N such
that

• μ(�k) = 1;
• there exist a measure ν which is σk-invariant for which (π |�k), μ) is isomorphic to

(σk, ν).

Proof We know that �k ⊂ �k+1 and � = ⋃∞
k=1 �k and �k is π-invariant. Hence, by

ergodicity μ(�k) ∈ {0, 1}, if μ(�k) = 0, ∀k ∈ N then μ(�) = 0 which is an absurd.
Therefore, there exist k0 such that μ(�k0) = 1. Since there is a conjugacy from π |�k0 to σk0
the theorem is done with ν := (hk0)∗μ. ��
Corollary C Let k ∈ N be fixed. Then for any sufficiently small α the first return map πα is
defined in a neighborhood of �k and there is a cantor set �k,α for which π |�k and πα|�k,α

are topologically conjugate. In particular one has that any sufficiently small α the system Zα

exhibits infinitely many periodic orbits.

Proof The first return map π is defined on the open (in the line topology) set Ur , given k as
in the corollary we know that�k ⊂ Ur . Since�k is compact we know that we may restrict to
a smaller neighborhood of�k let us call Vr for which for a sufficiently small parameter α the
first return map of the perturbation is also defined on Vr . Hence, because �k is a hyperbolic
repeller, it is structurally stable (e.g. [15, Chapter 18]), therefore there exists �k,α which
is πα invariant such that π |�k and πα|�k,α are topologically conjugate. In particular, it has
infinitely many periodic orbits. ��

4 Proof of Theorem A

Consider the Filippov system u̇ = Z(u) = (X, Y )(u) given by (2), and denote by ϕ(t, v)

its (Filippov) solution such that ϕ(0, v) = v. Assume that Z contains a sliding Shilnikov
orbit �, and let p0 ∈ Ms and q0 ∈ ∂Ms be as in Definition 2. We consider a neighbourhood
I ⊂ ∂Ms of q0 for which the first return map π is well defined. We assume that I has end
points q1 and q2 and we denote I = [q1, q2]. The forward saturation of I through the flow
of X intersects M in a curve J.

Let us call by� the set of points in I which return infinitely often to I through the forward
flow of Z . That is

� = {ξ ∈ I | ∃{tn}n∈N, tn → ∞, ϕ(tn, ξ) ∈ I }.
We note that Theorem 2 guarantees that � �= ∅.

Call I0 := [q1, q0], I1 := [q0, q2], J0 and J1 denote the intersection ofM with the forward
saturation of I0 and I1, respectively. Given a point ξ ∈ � we denote by η∗(ξ), ∗ ∈ {0, 1}
the number of intersections that the forward flow orbit of ξ has with J∗ before returning to
� ⊂ I , that is,

η∗(ξ) := #{ϕ(t, ξ) ∩ J∗ : 0 < t < tξ }.
where tξ is the first return time of ξ on �. The intersections detected by the function η∗(ξ)

are occurring on the sliding region Ms of the switching surface M . That means, for a point
ξ ∈ ∂Ms sufficiently close to q0, the flow starting at ξ travels forward in time following the
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vector field X . After a finite time it reaches transversally the switching surface at a point of
J ⊂ Ms close to p0. Then the flow follows the sliding vector field Z̃ [see (3)], spiralling
outward around p0 until reaching the fold line ∂Ms . Since the curve J is transversal to the
sliding vector field Z̃ and contains the pseudo saddle–focus p0, the number η∗(ξ) is well
defined. Notice that η∗(ξ) counts the amount of times that the flow of Z̃ intersects J∗, it
could, of course, turn around p0 several times more before reaching � without intersect J .

We will construct a map

hk : 
2 × 
∗
k → �

that will conjugate the dynamics of σk with π (i.e. hk ◦ σk = π ◦ hk), where 
∗
k =

{1, 2, . . . , k}N.
Fix a natural number k > 0 and take a point

(X, N ) = ((xi )i∈N, (ni )i∈N) ∈ 
2 × 
∗
k

We will define hk((X, N )) through a limit process.
Define P0(X, N ) as the points which are in Ix0 , that is P0(X, N ) = Ix0 . Define P1(X, N )

as the points which are in Ix0 and before arriving by the first return maps to Ix1 touches n0
times the segment Jx1 , that is:

P1(X, N ) = {ξ ∈ P0(X, N ) | ηx1(ξ) = n0, π(ξ) ∈ Ix1}.
In general we define

Pm+1(X, N ) = {ξ ∈ Pm(X, N )|ηxm+1(π
m(ξ)) = nm, πm+1(ξ) ∈ Ixm+1}.

Now consider the following set

P(X, N ) :=
⋂
i∈N

Pi (X, N ). (7)

Notice that Pi (X, N ) ⊂ Pi−1(X, N ) and each Pi (X, N ) is a closed interval. Hence P(X, N )

is a point or a non-degenerated interval, we want to rule out the non-degenerate interval case.
We start with the following.

Lemma 1 If P(X, N ) ∩ P(X ′, N ′) �= ∅, then P(X, N ) = P(X ′, N ′). In particular
(X, N ) = (X ′, N ′).

Proof That comes directly from the definition of the sets, because P(X, N ) is solely defined
by stating what the orbit of a point “behaves”, hence if a point is also on P(X ′, N ′) that
means the sets are the same. ��
Lemma 2 π(P(X, N )) is of the form P(X ′, N ′)

Proof In fact one have π(P(X, N )) = P(σ (X, N )), this comes once again from the defini-
tion of the set. ��
Lemma 3 If π : � → � is such that |π ′(ξ)| > 1 for all ξ ∈ �, then P(X, N ) is a point
∀(X, N ) ∈ 
2 × 
∗

k .

Proof Let us consider l as the length measure. Notice that if l(P(X, N )) > 0, then
l(π(P(X, N ))) > l(P(X, N )), but since πn(P(X, N )) ⊂ I and l(I ) < ∞ the family
{πn(P(X, N )))}n∈N cannot be pairwise disjoint, otherwise one would have

∞ > l(I ) ≥ l(∪nπ
n(P(X, N ))) =

∑
n

πn(P(X, N )) >
∑
n

l(P(X, N )) = ∞,
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which is an absurd. Therefore, there must exist n1 and n2 such that

πn1(P(X, N )) ∩ πn2(P(X, N )) �= ∅,

the above lemmas imply that πn2−n1 P(X, N ) = P(X, N ), which cannot happen since
|π ′| > 1. Hence P(X, N ) is a point. ��

By Proposition 2 we know that if q1 and q2 are sufficiently close to q0, then |π ′| > 1 on
I . This means that the functions hk are well defined by the above lemma as

hk : 
2 × 
∗
k → �

(X, N ) �→ P(X, N ).

Since the domain of hk+1 contain the domain of hk and the two functions by construction
coincide on the domain of hk , the function h

h : 
2 × 
b → �

(X, N ) �→ hk(X, N ), if (X, N ) ∈ 
2 × 
∗
k .

is well defined. Recall that π(P(X, N )) = P(σ (X, N )), which implies π ◦ hk = hk ◦ σk as
well as π ◦ h = h ◦ σ .

Lemma 4 The maps hk and h are continuous.

Proof Let (X, N ) ∈ 
2 × 
∗
k and ε > 0 be given. From (7) and (8) we know that

hk(X, N ) =
⋂
n∈N

Pn(X, N ),

hence consider nε such that Pnε (X, N ) ⊂ (−ε + hk(X, N ), hk(X, N ) + ε) ⊂ I .
Let V(X,N ) be a neighborhood of (X, N ) in 
2 × 
∗

k given by the cylinder

V(X,N ) := {(Y, M)|yi = xi , mi+1 = ni+1 i, j ∈ {0, 1, . . . , nε}}.
And the continuity follows, since

hk(V(X,N )) ⊂ (−ε + hk(X, N ), hk(X, N ) + ε).

The same proof serves for h. ��

Lemma 5 The map hk and h are homeomorphisms onto their image.

Proof We prove hk is a homeomorphism onto its image, the case for h is analogous. Notice
that hk is injective by Lemma 1. To see that the inverse is continuous, consider a point
hk(X, N ) and a neighborhood U(X,N ) of (X, N ), therefore (Y, M) ∈ U(X,N ) means that the
the first digits of both sequences (X, N ) and (Y, M) coincide, using the continuity of the flow
we get that for points close enough to hk(X, N ) they must have this predefined trajectory
and the continuity follows. ��

The above lemmas imply Theorem A, where �k := hk(
2 × 
∗
k ). ��
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5 Final Comments

5.1 Conclusion and Further Directions

In this paper we studied Filippov systems admitting a sliding Shilnikov orbit �, which is a
homoclinic connection inherent to Filippov systems. This connection has been firstly studied
in [17]. Using the well known theory of Bernoulli shifts, we were able to provide a full
topological and ergodic description of the dynamics of Filippov systems nearby a sliding
Shilnikov orbit �, answering then some inquiries made in [17]. As our main result, we
established the existence of a set � ⊂ ∂Ms such that the restriction to � of the the first
return map π , defined nearby �, is topologically conjugate to a Bernoulli shift with infinite
topological entropy. This ensures π , consequently the flow, to be as much chaotic as one
wishes. In particular, given any natural number m ≥ 1 one can find infinitely many periodic
points of the first return map with period m and, consequently, infinitely many closed orbits
nearby � of the Filippov system.

As it has already been observed in [17], a possible direction for further investigations
is to consider higher dimensional vector fields, since in higher dimension it is allowed the
existence of many other kinds of sliding homoclinic connections. We feel that the techniques
applied in this papermay be straightly followed to obtain similar results in higher dimensions.
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