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Abstract In this manuscript, we establish local exponential stability of the trivial solution
of differential equations driven by Holder continuous paths with Holder exponent greater
than 1/2. This applies in particular to stochastic differential equations driven by fractional
Brownian motion with Hurst parameter greater than 1/2. We motivate the study of local
stability by giving a particular example of a scalar equation, where global stability of the
trivial solution can be obtained.
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1 Introduction

This article is concerned with the study of the stability of R?-valued differential equations
driven by Holder continuous signals @ of the form
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du(t) = F(u(t))dt + G(u(t))dw(t), t >0, (1)

where 1(0) = ug € R? and F, G are smooth functions defined on R?. Our canonical example
for w is a sample path of fractional Brownian motion with Hurst index greater than 1/2.

The existence and uniqueness of solutions for differential equations driven by a Holder
continuous function with Holder exponent greater than 1/2 is now well understood, in the
context of fractional calculus, see e.g. [11,24,27], and in the context of rough path theory as
well, see e.g. [8,18,19].

However, the study of the stability of such equations is, to some extent, in its beginnings,
in contrast to the case when the driving signal arises from a standard Brownian motion, where
the existing literature is huge. See Remarks 1 and 2 below for a discussion. The closest related
work we are aware of is [25], which deals with the exponential stability of a linear delay
equation additively disturbed by a Riemann-Liouville fractional Brownian motion.

Our main result can be summarized as follows: if  is tempered, i.e. its Holder norm over
[#,t + 1] increases subexponentially for t — 00, and F, G satisfy

F(x)=Ax+0(IxI?), Gx) =0(IxI?), for x — 0,

where the real parts of the eigenvalues of A are bounded from above by —A < 0, then the
solution u to (1) satisfies for any p < A that

lim e lu(n)] = 0,
1—00

provided that u is in a neighborhood of zero, which depends on 1 and w. The assumption on
w is in particular fulfilled by a fractional Brownian motion with Hurst parameter H > 1/2.

Remark I Letus mention here a few pioneering investigations related to stability for classical
stochastic differential equations (SDEs). Almost sure exponential stability was considered
in [16] for linear SDEs with Brownian motion as integrator using Lyapunov exponents
and ergodic theory. In [2] a.s. exponential stability and uniform boundedness was proved.
The multiplicative ergodic theorem of Oseledets allowed the analysis of all exponents for a
stochastic flow, leading to a detailed analysis of the dynamics of random systems, see [3].
In [20] the author uses stochastic Lyapunov functions to discuss the stability of SDEs with
semimartingale integrators, making use of the exponential martingale inequality, obtaining
sufficient criteria for a.s. exponential stability and for polynomial stability. In [21] the same
author gives a consistent account of the theory of SDEs driven by a nonlinear integrator and
their exponential stability at fixed points via Lyapunov function techniques.

Remark 2 The fractional Brownian motion (FBM) B belongs to a family of Gaussian
processes indexed by the Hurst parameter H € (0, 1). When H = 1/2 FBM is standard
Brownian motion, but when H # 1/2 the process BY has properties that differ sharply to
those of B'/2. In fact, B¥ is not a semimartingale nor a Markov process unless H = 1/2,
and therefore the techniques to analyse stochastic differential equations driven by fractional
Brownian motion are rather different to the Brownian motion case. Previous contributions,
which study the longtime behavior of SDEs driven by FBM belong mainly to two categories:

(1) Using the theory of random dynamical systems the existence of random attractors
has been established in [11] for a finite-dimensional setting and in [9] for an infinite-
dimensional one, in both cases under the condition H > 1/2. Precursors to theses works
are [10,22]. In [22] the existence of exponentially attracting random fixed points was
shown for linear and semilinear infinite-dimensional stochastic equations with additive
FBM with H > 1/2. Under suitable dissipativity conditions on the drift the existence
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and uniqueness of a stationary solution that attracts all other solutions was obtained in
[10] for finite-dimensional SDEs with additive FBM of any Hurst parameter.

(i) In a series of articles [12—15] Hairer and coworkers studied the existence of “adapted”
stationary solutions to dissipative finite-dimensional SDEs driven by FBM and their
speed of convergence to the stationary state. The analysis in those papers is built on
suitable extensions of Markovian notions as strong Feller property, invariant measure
and adaptedness to the non-Markovian setting. These works cover the case of additive
noise with any Hurst parameter and multiplicative noise with H > 1/3. Furthermore, the
contribution by Deya et al. [5] establishes the convergence order 1/8 (in total variation
norm) of the system to the stationary solution for multiplicative noise and H > 1/3.

This article can be seen as a first attempt to analyze the exponential stability of the solution
of (1), since we are able to obtain local stability, in the sense that the initial condition u#¢ must
belong to aneighborhood of zero. Only in very particular situations, in which we can transform
the equation into a random differential equation, we can establish global exponential stability,
see Sect. 2 below. Therefore, more efforts are needed in order to cover the global stability
and this will be the topic of our future research.

The remainder of this article is structured as follows: we begin with an example in Sect. 2,
where we can establish global stability. In Sect. 3 we recall some basic facts about fractional
Brownian motions and prove some auxiliary results, while in Sect. 4 we recall the definition
and main properties of the Young integral. Section 5 concerns the analysis of the existence and
uniqueness of solutions, and the study of the local exponential zero stability of our problem.

2 Global Stability for Linear Scalar Noise

In this section we want to examine the following scalar equation
du(t) = F(u()dt +yu(t)dw(t), t>0, (2)

where F:R — R is continuously differentiable with bounded derivative, y € R and w :
R* — R is a Holder continuous function of order 8’ > 1/2. Moreover, we assume that we
have the splitting

F(x):—kx—l—ﬁ(x), x e R,
with A > 0, and
|F(x)] < 8lx|, x€eR, 3)

where 0 < § < A.
We are going to see that the scalar and linear structure of the noise now allows us to obtain
global exponential stability using the Doss—Sussman transformation. For this, define first

v(t) =eMur), t>0.
Then the usual change of variable formula, see e.g. Theorem 4.3.1 in [27], gives
dv(t) = b(t, v(t))dt + yv(t)dw(t), t >0, 4)
where we have set

b(t,x) =e™F(ex), 120, xeR Q)
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The results by Doss, see Theorem 19 in [6], state that the solution of equation (4) can be
written as

v(t) =h(D@), w(t)), =0, (6)
where 1: R x R — R is the solution of
0
ﬁh(a, B)=vh(a,B), h(a,0)=a, a BeR, @)
ie.
h(a, B) = e"Pa,
and D:R*T — R solves
dD(t) = e " Dh(t, e’ O D(t))dt, t >0, 8)
D(0) = u(0).

The idea behind this representation is to assume that the solution of (2) can be written in

the form (6) and to derive necessary and sufficient conditions for D and 4, i.e. (7) and (8).

In [6] this approach is introduced for SDEs driven by Brownian motion, but with more

general diffusion coefficients, which satisfy a commutativity condition. In our context, this

representation follows by the change of variable formula from Theorem 4.3.1 in [27].
Using (5) we obtain

dD(1) = e VOO (eVW<’>—“D(z)) dt, t>0.
Now set (1) = |D(r)|?. Then for r > 0 we have
dr(t) = 2D(t)e Y OM E (¥ *O=M D (1)) dt < 28|D(1)*dr = 28r (1)dt,
using assumption (3). Therefore, Gronwall’s Lemma gives
DO = 1r@®] < uOF, 120,

and hence (6) implies that

lu(t)| < e’ *OIC=P1 1)), >0,
If
t
lim 2O _ . 9)
11— 00 t

then it follows
lim e*|u(t)| =0,
—00

forall0 < u <A —34.

Condition (9) is in particular fulfilled for almost all sample paths of the fractional Brownian
motion B, see (12) below. Hence we obtain in this case almost sure exponential stability
of the zero solution for all rates smaller than A — §.

So, in the particular situation of a scalar equation with a linear multiplicative noise, the
above method ensures global exponential stability of the zero solution. However, this method
seems not to be applicable in general when considering a multidimensional driven signal even
if the diffusion coefficient is still linear.
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As we have said in the Introduction, we want to consider general multidimensional noise
perturbations of the type G (u(-))dw(-). Our strategy here will be to deal directly with the
Eq. (1) to obtain local exponential zero stability.

3 Preliminaries

From now on, we denote by ||| the norm of both spaces R? and R™, while || represents as
usual the absolute value.

For B’ € (0, 1), let us consider the space Cﬂ’([O, T); R™) of B/-Holder continuous func-
tions on some interval [0, T'] with values in R"™. The norm in this space is given by

lollg = ll@llcc,0.r + ll@llg 0.7
where
lo@r) —w(@)ll
lolloc,0.r = sup fw@®l, lllgor= sup ———-=F—
rel0,7T] 0<g<r<T (I’ - Q)

A fractional Brownian motion (FBM) B with Hurst parameter H € (0, 1) is a centered
Gaussian process with covariance function

1
RGs.0) =50 (1P +1sP7 1 5P, sireR,

where Q is a non-negative and symmetric matrix in R” @ R”.

Let Co(R; R™) be the set of continuous functions which are zero at zero equipped with the
compact open topology. Then let (Co(R; R™), B(Co(R; R™)), Py) be the canonical space
for fractional Brownian motion, i.e. BY (t, w) = w(t), where Py denotes the measure of the
FBM with Hurst parameter H. On Co(R; R™) we can introduce the Wiener shift 6 given by

o) =w(-+1) —w(@), teR, e Cy(R;R™). (10)

In particular 6, leaves Py invariant.
Since the fractional Brownian motion is a Gaussian process we can show that for m € N
and s, t € R we have

EIB(t) — B ()" = cylt — s|?H™ forallm € N,
where ¢,, = E||BY2(1)||?". Applying Kunita [17] Theorem 1.4.1 we obtain that
EIIBH |} 0.7 < 00 (11)

forany T > 0, 8/ < H and for n € N. This is in particular true for the canonical fractional

Brownian motion. Thus, we can conclude that the set Cg / (R; R™) of continuous functions,
which have a finite 8/-Holder seminorm on any compact interval and which are zero at zero,
has Py -measure one for 8/ < H. This set is #-invariant.

Moreover, since

H H
E”B ”go,()j =< Cn,HTn

foralln > 1 and all T > 0, see e.g. Chapter 5.1 in [23], the Borel-Cantelli lemma implies
that
i I BH (1)
im —— =

t—00 t

0 foralmostall w e Q. (12)
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A random variable R € (0, co) is called tempered from above if

log* R(6;0)

lim sup 0 foralmostall w € Q. (13)

t—=+o0
Therefore, temperedness from above describes the subexponential growth or decay of a
stochastic stationary process (¢, ®) — R(6;®»). A random variable R is called tempered from
below if R~! is tempered from above. In particular, if the random variable R is tempered
from below and such that t — R(6;w) is continuous for all w € €2, then for any € > 0 there
exists a (random) constant C¢(w) > 0 such that

R(f,w) > Ce(w)e " for almostall w € .
A sufficient condition for temperedness is that

E sup log™ R(6;0) < oo.
t€[0,1]
By (11) we obtain that ||w|| g7 0,1 is tempered from above because log* r < rforr > 0. Note
that the set of all w, which satisfy (13), is invariant with respect to the flow 6.
We need the following simple result.

Lemma 3 Let (R;);en and (v;)ieN be sequences such that R; > Cge_”for any(0 < ¢ <o,
i €N, andv; < voe % foranyi € N, respectively. Then for sufficiently small vy > 0 we
have
v; < R;, i eN.

If for instance we assume that a random variable R > 0 is tempered from below, then we can
find a random variable C. such that v; < R(0;w) holds for vy < C.(w), where v; satisfies
the assumptions of the previous Lemma.

We finish this section with several technical results that will be applied to establish expo-
nential decay of sequences in further sections.

Lemma4 Let p > 0 and T be a function from B]Rd (0, p) into a Banach space (B, |-||B),
which is continuously differentiable, and zero at zero. Consider the balls Bs(0, R),
ER(I (O, Ié), with R = Ié(R) < p, such that the latter is the largest centered ball such
that

Bya(0, R) c 77" (B5(0, R)),
that is,

R =max {F € [0, pl: f7(v) < R forall v € Bga (0,7)},
where fr : Bga(0, p) — R is defined by fr(v) = | T (v)| 5. Then there exists k € (0, 00)
such that .
R(R)
> K.

lim inf
R—0

Proof For every sufficiently small R there is an element vg in 8I§Rd O, Ié) such that
I7(wr)lB = R.

To see the existence of such an element notice that the continuous function f7 is such that
fr(0)=0and R < MaX, e, 0,0) fr(v). Then we have

7V ARY = £71 (10, RIN[R, 00)) = £ (10, RD N £7' ([R, 00))
> f71 (10, R) N £ ([0, R]®
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and hence all arguments from the boundary of f+ ! ([0, R]) have the value R with respect

to fr. Note that the largest radius Ris given by the infimum of the distances between the
boundary 971 (Bg(0, R)) = afgl ([0, R]) and zero. Since this boundary is a compact set in

BRd (0, p) and the mapping v — ||v|| is continuous, we have an element vg € 8fT_1 ([0, RY))
such that

R = inf vl = Jlvgll.
veaf7 (0.R])

Finally, applying the mean value theorem it follows

lorll _ lvkll 1 N
R~ ITRI5 = sWeepy 0.0 IDTE)ll e 5,

For completeness, we state the following measurability result.
Lemma 5 Let H : RY — R be continuous and non decreasing. Then the function
TRt > RY,  J(x)=max{r e RT: H(r) < x}
is Borel-measurable.
Proof Let a > 0 and consider the set
M) = {x e R": J(x) < a}.

Then we have to check that M (a) belongs to B(R™). Clearly, M (0) = , so assume o > 0.
By definition and since H is non decreasing, J(x) < o« implies H(x) > x. Vice versa
H(a) > x implies J(x) < «. Hence

M(a) = {x e RT:x < H(@)} = [0, H(@)) € B(R").
]

Now we investigate the Holder norm of a finite-dimensional semigroup e" generated by an
operator A, whose estimates will be used below. The main assumption is that the spectrum
of A has a negative real part.

Lemma 6 Let e? be the fundamental solution to
du(t) = Au(t), t > 0.
Let Reo(A) < —Xi < 0. Then there exists an M > 1 such that
le* | < Me™™,  1>0. (14)
In addition, for 0 < s < t we have
et — ™l < MIANIG —s)e™, A7 —id]| < MIAIC—5).  (5)
where | A|| is the Euclidean norm of A.

The proof follows easily by the mean value theorem and Amann [1] Chapter 13. As a con-
sequence, for 0 < s < ¢ we have

A=) H’ -
e = sup
‘H B.0.1 0<ri<ry<t (ra — 11 )ﬂ

HeA(l—rz) _ eA(t—rl)”

< M|A|t'~F (16)
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and
H‘ AG—) _ AG—) ”‘ B ”eA(t—rz) _ eA(s—rz) _ (eA(t—rl) _ eA(s—rl)) ”
e e = sup
B.0.s 0<r|<ry<s (ra — rl)ﬁ
A(t—s) _ A(s—ry) _ ,A(s—r2)
e id) (e e
o )( )
0<ri<ry<s (ra — rl)ﬁ
< MPAPP@ —s5)s' P (17)

To finish this section, we introduce a discrete Gronwall-like lemma:

Lemma 7 Let (y,)n>0 and (g,)n>0 be non negative sequences and ¢ > 0 a non negative
constant. If

n—1
yn§C+Zgjyj, n=0,1,...,
=0

then
n—1

wm=c[Ja+g) n=01,...
j=0
Proof Lemma 100 in [7] states that the inequalities

n—1

e+ gy, n=01...,
j=0

imply that
n—1 n—1
m=ctey g [[ A+e) n=0.1....
Jj=0  k=j+1
Using that
n—1 n—1 n—1
g [ a+ew =0+ - [] (1 +20.
k=j+1 k=j k=j+1
we obtain the assertion through a telescoping sum argument. O

4 Integrals for a Holder Continuous Integrator with Holder Exponent
greater than 1/2

In this section, we present the Young integral having a Holder continuous function with
Holder exponent greater than 1/2 as integrator. To be more precise, let T > 0 and consider a

mapping
g:10,T1 - LR"™,RY)

such that g € CA([0, T1; L(R™, RY)). Assuming that 8 + g’ > 1 we can define the Young
integral with integrand g and integrator € C# ([0, T]; R™)

t
/ gdw
S
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for0 < s <t < T, see [26]. Furthermore, one can represent this integral in terms of
fractional derivatives: for & € (0, 1) we define

o _ 1 g(r) "g(r) —g(q)
D”“”_ra—u)ﬁr—na+“s r =g+ q)
o —1l-« —w(t
DL’”F”]Z(ré) Cﬁ?w;i) )/1w0) §%%M>

where w;_(-) = w(-) — w(¢). Under the condition 8 + B’ > 1, there exists an « such that
a < B, o+ B’ > 1, and these inequalities ensure that the above operators are well defined.
Then the Young integral can be expressed as

' '
f gda):(—l)o‘/ DS“Jrg[r]Dll__“w,_[r]dr, (18)

see for instance [27]. Taking into account the definition of the fractional derivatives, it is easy
to derive the following estimate

t
’/gda)
S

for s, t € [0, T], which in particular implies that

s@ﬁmﬁwhmQmmw+a—wwmhwywwﬂ, (19)

t
[0,T]>1¢ »—>/ gdw € CP ([0, T); RY),
0

t
[ s
0

For T < 1 we shall denote Cy, g g/,7 by Cq g g in the following.
We also know that the integral is additive: let s < v < t, then

T t t
/ gda)—i—/ gdw =/ gdw,
s T N

see [27], and for any linear operator L : R — R”

t t t
L/ gda):/ (Lg)dw:/ Lgdw
S s s

because LDy, g = DY, Lg.
Finally, for the Wiener shift flow 0 = (6;);cr given by (10) the following shift property
of the integral holds:

with

‘ < Cupp.rlglporlelg.or-
£.0,T

Lemma 8 Forany given T > 0, let g € CP ([0, T1; LR™, R)), w € CPF ([0, T1; R™) such
that B+ B > 1. ThenforO <s+1 <t+1 < T we have

t+t t
/ gdw = / g(-+1)dbw.
s+T s
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Proof For1 — B’ < a < B we have

I—a _(=pl bro(r) —br0(1) /fezw(r) fr0(q) )
Dy =% @rw)—lr] == ( i @) a4
(=D e+ ) 0@+ 1) . w(r+1)—wlg+1) )
" T ( RIS )/ PR
(—1)1"‘(a)(r—|—f)—a)(t—|—f) y T @ +1) — w(q) )
= — o _—
F@ \(+r1—G+o)e e (q— 4o

1—
_D(HO;)_w(H,),[r + 7]

and similar for D§‘+g( + )[r] = D(3+r)+g[” + t]. It suffices now to apply the variable
transform r +— r + 7 in (18). ]

The Young integral introduced above can be applied to define pathwise stochastic integrals
for the fractional Brownian motion B with Hurst parameter H € (1/2, 1). In particular BY
can be replaced by the canonical fractional Brownian motion which is Holder continuous
with Py probability one, see Sect. 3.

S Local Exponential Stability
Let F:RY - R and G : RY — L(R™, Rd), and let w be a noisy input, considered as a
function from R™ to R™. Then, for T > 0 consider the equation

du(t) = F(u(t))dt + G(u(t))dw(t), t €0, T], (20)

with initial condition u(0) = ug € R?. This equation is interpreted as

t t
u(t) = up —I—/ F(u(r))dr —l—/ Gu(r))dw(r), tel0,T], (21)
0 0

where the first integral is defined as a standard Riemann integral while the second one is
defined as the Young integral introduced in Sect. 4.
We will assume the following regularity for F' and G:

(A1) F:RY > R9 s continuously differentiable with bounded derivative,
(A2) G :R? — £L@®R™, RY) is twice continuously differentiable with bounded derivatives.

Regarding the existence of solutions, the next result follows by [24], although with a slight
modification of the phase spaces that appear in that reference; see also [4], but notice that in
this last article a delay equation is considered, and therefore in our setting we should take
the delay equal to zero.

Theorem 9 Suppose (A1) and (A2). If v € Cﬂ/([O, T1; R™) with B’ > B > 1/2, then (21)
has a unique solution u € ch(o, T7; Rd)for any T > 0.

In what follows, we would like to consider mild solutions of (20). To this end, define a
matrix A € R?*¢ and a function F : RY — R? by

A=DF(), F(x)=Fx) —Ax, xeR%
Then x +— I:"(x) and x — DI:"(x) = DF(x) — DF(0) are continuous, and Dﬁ(O) =0.

We also will need further assumptions:
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(A3) F(0)=0,G(0) =0,
(Ad) DG(0) = 0.

We consider then the following equation
t t
u(t) = e*ug + / AT F(u(r))dr + / AIGu(r)do(r), tel0,T], (22)
0 0

where the last integral is understood as in Sect. 4.

Lemma 10 Let T > 0 and assume (A1) and (A2). If w € Cﬂ’([O, T); R™) with > B >
1/2, then Eq. (22) has a unique solution u € CA([0, T1; RY) that also coincides with (21).
Furthermore, if we also assume (A3), Eq. (22) possesses the trivial solution u = 0.

Proof In view of the regularity of F and G, the existence and uniqueness of a solution to
(22) follows by [11]. Now we want to prove that such a solution coincides with the solution
of (21). To achieve such a result, notice that when w is a sufficiently smooth path, then (21)
and (22) are the same solutions using classical calculus.

Now it suffices to follow an approximation argument. To be more precise, consider (22)
for a sequence of driving paths (@"), <N, which are given by the piecewise linear interpolation
of w with stepsize T27". Then the sequence (#"), N related to these piecewise linear paths
converges to the solution of (21) and (22) as well, being both of them driven by w, see Chapter
10 in [8]. Therefore both solutions are the same. ]

Note that a sufficient condition for the convergence of (w"),en to @ and of (u™),eN to u is
that w € CP' ([0, T]; R™) for B < B’ < 1.

In the following, we will focus on the study of the asymptotic behavior of (22). First of
all, we introduce the notion of stability that we are interested in:

Definition 11 We say that the solution u of (22) is locally exponentially zero stable with
exponential rate u > 0, if there exists a neighborhood U (w, ) of zero such that

up e Ulw, ) == lim e |lu(r)| = 0.
—00

The strategy that we will carry out to prove exponential stability is as follows:

(i) Since the norm of any solution of (22) depends on the norm of w, we will use a cut-off
argument, by which the functions Fand G appearing in (22) are only required to be
defined on BRJ (0, p), for some p > 0. Indeed, we will take a composition of the locally
defined functions with a cut-off function depending on a variable R.

(i) With these compositions we construct a sequence ("), <y such that each element u”"
is a solution of a modified differential equation of the type (22), defined on [0, 1] and
driven by 6, w, where the norm of each u” depends now on the magnitude of 6, but
also on a new variable R related to R. By a suitable choice of these variables (which
depend on the fixed w) we can apply the discrete Gronwall-like Lemma 7 to obtain a
subexponential estimate of every element of the sequence.

(iii) Thanks to the temperedness of R and R we will end up proving that (#"),cn describes
the solution of (22), and that it is exponentially zero stable as described in Definition 11.

Consequently, we begin by restricting the mappings F and G to be defined on some neigh-
borhood of zero. For p > 0 assume:

(A1) F: ERd 0, p) > R9 is continuously differentiable with bounded derivative,

@ Springer



370 J Dyn Diff Equat (2018) 30:359-377

(A2Y G : BRd 0, p) = LR™ R?) is twice continuously differentiable with bounded
derivatives.

We also define x to be the cut-off function

w o if Jlul <5

. R4 B =
x :RY - Bga(0,1) where X(”)_{O if Ju|>1"

In particular the norm of x () is bounded by 1. Let us assume that x is twice continuously
differentiable with bounded derivatives Dy and D?x and let us denote by Lp x» Lp2, the

bounds for those derivatives. Now for u € R? and some 0 < R < p we set
Xpu) = R x(u/R) € Ba(0, R).

Then it is not difficult to see that the first derivative D x B is bounded by Lp,, while the

second derivative D2 x  is bounded by L2, /R.
Define the functions

fai=Foxs :RT > RY Gpi=Goyys: R — LR, RY).

Now we construct the aforementloned sequence (u")pen, defined on [0, 1], with driving path
0w and coefficients F and G, where R also depends on 6,w:

u" (1) =eAfu"(0)+/ A Fi g, " (1)
0
t
+/0 ATG i W )AG (), 1€ [0, 1].

Recall here that ;0 () = (- + 1) — w(t). We set u’(0) = ug and u"(0) = u"~'(1) for
n € N. Under (A1)’ and (A2)’, the functions F » G ; satisfy the conditions of Lemma 10, so
for any n € N each one of the above problems has a unique solution u” € CP([0, 1]; RY).

In order to estimate the norm of each u”, we need the following result, that gives us suitable
estimates of the localized coefficients F pand Gp.

Iiemma 12 Assume (A1)’, (A2)’, (A3) and (A4). Then for every R > 0 there exists a positive
R < p such that for u, z € R9 we have

IFs)ll < RLpylull, (23)
IG 4l cm mety < RLpy llull, (24)
IG () — G 4@l c@m gty < RLpyllu — zll. (25)

Proof Since DF : Bga(0,p) — LR RY) = LRY) and DG : Bga(0,p) —
LRI, LR™,R?)) are continuous with DF(0) = 0 and DG(0) = 0, for any R > 0
we can choose an R < p such that

sup ||DF(v)||£(Rd) <R and sup IDG ) zre, crm Ry < R.
lvll<R lvll<R
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Then, since It"é (0) = 0, for u € R? we have
IFs) < sup IDCE (x g ) oy el
z€Rd4

< sup [DF)llzmwdy sup 1D xz @ £wayllull
Ivl<R zeRd

< sup [[DF)llgga)Lpyllull = RLpy |lull,
o<k

and we obtain (23). Due to the fact that G(0) = 0 we can follow the same steps to prove
(24).
Finally, due to the regularity of G, we have

G ) — G prm Ry < sup IDG W)l zre, £rm ray 1 X () — X (@]l
lvll<R

< Lpy sup DGl zwe,cqm rayllu — zll
lvli=R

< RLpyllu —z|.
O

In what follows we want to estimate the Holder norm of each solution u” on [0, 1]. The next
assumption we need is:

(A5) Assume Reo(A) < —A < 0 for A = DF(0).

Regarding the standard Riemann integral, by (14) and (23) we have

Furthermore, for the Holder seminorm, thanks to (15), we have

< MR(0,0)Lpy llu"[loc,0,1-
00,0,1

/ AT F k6, W (1))
0

f AC r)FAQw)(u (r)dr
0

8.0,1

H JL M T Fgl o @ )dr 4[5 (€A = eACT) Fr ot (r))dr

= sup

0<s<t<1 (t—s5)p
< sup ((z—s)l_ﬂ sup (IIeA(t r)|||| R0 " (V))||)>
O<s<t<l rels,t]
s At=r) _ ,AGs=r)
s G s (le 11 B4 gy ("D
O<s<t<l <( - S)ﬁ rel0,s] (9”60)

< MR(On®)Lpyllu"lloc,0,1 + MIIAIR(En@) Ly llu" loo,0,1
< M1+ [AIDRGnw)Lpy 14" ll00,0,1+

and therefore

< M2+ [AIDR@Gww)Lpy lu"llgo1.  (26)

/ AT b, @ (0)dr
0

B,0.1

@ Springer



372 J Dyn Diff Equat (2018) 30:359-377

Now we estimate the -Holder norm of the integral containing G 5. Choose o such that
0<a<1/2, a+ B > 1andassume that 0 < s < ¢ < 1. Then from (19) it follows

t N
/O ATG g o W ()0 (r) — /0 TG W (1))dOpo(r)

t
< ‘ / eA(t—-)Gé(enw)(un(r))denw(r)

s

‘|

‘/0 (eA(tfr) _ eA(Sfr))GR(G"w)(un(r))denw(r)

< Copp l6nollg €4 G go o W (Dl 0(t =)
+ Capp 6n0llg 1) —eACNG R @ (Dlposs”

Here we have written |6, w|| g instead of [|6, ]l g o, for notational simplicity. Since for any
two B-Hoélder continuous functions f, g we have

Ifglig.0.0 = I1flloc.0.c €106 + lI&lloc.0.0 Nf llg.0.0 -

it follows

164G g iy @ Mg 0.0 < 1 Mloo,0,01G g,y @ D100
+ 116 gy @ o0, 1€ Mg 0,0

Thanks to (24) and (25) we obtain
1G 2, @" DlIp0.0 = SUP 116 45,0 W" (D cm ra)
s€[0,¢]

”G]é(gnw) (un (7'2)) - Gﬁ(@,,w) (un (”))”L(Rm,]}{d)

+ sup
0<ri<m<t (ra—rp)P
lu" (r2) — u" (1)l
< RO Ly (nu"nm.o,t + osup
0<r|<ry<t (rp —r1)

= R(6,0)Lpyllu"llg,0.,:
hence, taking into account (14) and (16), it follows that
160G g o W (N g 0.0 < MRO,) LIl llg0,1 + MIAIRG,0) L pyllu" lloo.0,1
< MR@Ouw)Lpy (1 + [|AIDIu" 15,01
In a similar way, using (15) and (17) we obtain
A=) = AN G gy @ (Dllg0.s < MIAIRG,0) Ly
x (1+ MIAIDIu"llg0,1(t = 5),

and therefore

= Cot,ﬂ,f}’ |"9nw|"ﬂ’ MR(QnCU)LDX

/0 TG W ()b (r)

B.0,1
(1421 AI+ MILAIP) 14" l1g.0,1-
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Using the same kind of calculations we get

< Co.p lOnollgr MR(O,w)Lp
00,0,1 o pr e ! * 27

x (L4 ADlu"llg.0.1-

H /o MGy 0 W))dOO()

Collecting these estimates we have

/0eA('_r)Gé(enw)(u(r))d@nw(r)

< K |Owollg 0.1 RO U ligo1,  (28)
B.0.1

where
K =max{l, Cy p g }M*Lpy (24 3[1A] + |A[%) (29)

using that M > 1. Note that the constant K is also an upper bound for the constant M L p, (2+
IIA]]) in (26), i.e. we have

H f ACTD fra @A < KRGuo) 1" lg.0.1. (30)
0 8.0,1
For n € N, define now the function

u(t) =u"(t —n) ift €n,n+1]. (31)

On account of Lemma 8, for ¢ € [n, n + 1] we have

t t
u(t) = e Mu(n) + /n A F oy @(r)dr + /n AG o wr)do(r)

- . j+l
= eMug + Ze/‘“—/—‘)/ AT Fpg oy @(r))dr

j=0 /

n—1 ) Jj+1 .
P [ Gy, o

+f . r)FR( w)(u(r))d’+/ TG g0 W) ()

n—1
=eMug+ Y eI ”/ A F 0,0y @ ())dr
0
Jj=0

n—1 1
+ZeA<f*H> /0 NG 4y @ ()G ()

t—n
+ /0 M Fr " (M) + /0 AUTTG g o W (1))dO ().

Note that the S-Holder norm of the last two terms of the above expression can be estimated
as above, i.e. by (28) and (30). The terms under the sum can be estimated in a different way,
since

1
eA(~—;—1>/O MG g,y ! (1))dOj0 (1)

B.n.n+1

< eIV g gt fo NG g ) W (M)dB (1)

’

00,0,1
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and from Lemma 6, it is easy to obtain that
AT g pngr < M1+ [|AlDe™ =071,

giving us

1
A= /0 A G 0 ()80 ()

B.n,n+1
< M*(1+ |AID?e 7Dy 4 pll0j0ll g RO;0) L py 14?1501
< Ke "7 Vj1g0ll5 RO;0) 14’ l1g,0.1,

where the constant K has been introduced in (29) and we have used (27). Following similar
steps we have

1
eAC=i=D fo AU By @ )

B.n,n+1
< M*(1+ A Lpye "I DR@;0) 14’ llp,0.1
< Ke "= I=DR@;0)llu’ l1g,0,1-

Hence
n—1
™ lg.0.1 < o e Npnnt1 + K Y RO;0) (1+10;llg0.1) llul 5,017~
j=0

+ KR(G) (1 + 16,5 0.1) lu" 1 g,0.1-

Let € < 1 and consider ¢

2K (1+ llollgo,1)

With this choice, the coefficient in front of ||u"||g,0,1 on the right hand side of the above
expression is less than or equal 1/2, since € < 1. As a consequence,

R(w) =

(32)

n—1

1 . € (i :
Sl lgo1 <luollle™ lpmnst + 5 3™Vl ligo.
j=0
and hence
n—1
" llg.0.0 < 2M (1 + [ ADlluolle™ + € eI Djul|jg .
Jj=0

Taking y; = " ||u/lg,0,1, ¢ = 2M (1 + || AD|luo|l and g; = ee*, Lemma 7 ensures that
Yn < 2M(1 + [|A]D|luoll(1 + ee™)"
and thus
lu"lpo.1 < 2M (1 + [ADluoll (€ + e )" =2M (1 + Il Juglle" *2+<™). (33)

We can state a first result regarding the function u defined by (31), for which we require a
bit more regularity for F:

(A1)’ F: ERd (0, p) — RY is twice continuously differentiable with bounded derivatives.
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Lemma 13 Let 8/ > 1/2, € + e=* < 1 and assume that o is such that

log* 16;wllp 0.1
m ——o A0

t—+o0 t

Then, under (A1)”, (A2)’, (A3)—(AS), u defined by (31) solves (22) on any interval [0, T].

=0. (34)

Proof First of all, for R(w) given by (32) define ﬁ(w) by
R(w) = max {f €10, p1: [ DF )l oy + DGl pqga £ iy < R@),
forall v € BRd (0, f) }
We apply Lemma 4 taking the space 5 = LRY) x L(RY, L(R™, RY)) eguipped with the
norm |[(f, )8 = I f Il ey + 1181l c(re, £(rm Rey)- We also take T = (DF, DG). Then, T

is continuously differentiable (for which we have required F to be twice differentiable) and
T (0) = 0. Hence, R is well-defined,

. R(R)
lim inf >k € (0,00)
R—0

and, in virtue of Lemma 5, is measurable.
Furthermore, thanks to (34) and the continuity of the mapping ¢ — [lwllg o, (see [9]),
for a sufficiently small ¢ > 0 there exists C¢ (w) such that

ROw) > §R<9tw) > gcs(w)e—s"'

for sufficiently large |¢].
On the other hand, due to Lemma 3 and € + ¢~ < 1, we can find a zero neighborhood
depending on w such that for u( contained in this neighborhood we have

R(O,)
2

lu" (Ol < llu"llg0,1 < forall n € Z*, t € [0, 1].

Then it holds
Fpim @' () = F@"(r), Gpp " () = G (r)

forr € [0,1] and n € Z™, and so we see that u defined by (31) solves (22) on any interval
[0, T]. ]

Condition (34) holds in particular if w is a sample path of the canonical fractional Brownian
motion with Hurst parameter H > 1/2 defined on the probability space introduced in Sect. 3.
In that case, both R and R are tempered from below.

Finally, we can state and prove our main result:

Theorem 14 Suppose that o € Cg/ (R; R™) with B’ > 1/2 and that (34), (A1)”, (A2)’,
(A3)—(A5) hold. Then for every € € (0, 1 —e™*) the solution of (22) is locally exponentially
zero stable with an exponential rate u < —log(e 4+ e ™).

Proof Take t € [n, n 4 1]. Then, due to the choice of € we can easily derive that

enlog(e—}—e’}‘) < e—10g(6+e’)‘)ellog(e+e’)‘),
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thus, from (33) we have
M u ()] < 2M(1+ | Ale o+ g ot (oelete ™),
and therefore

lim e ||u(t)|| =0
—>00
since u + log(e + e ™) <0. O

Remark 15 The solution of (22) is locally exponentially zero stable with any rate less than
. Indeed, for any arbitrary i < A we can choose € € (0, 1 — e~*) sufficiently small such
that

A>A—log(1+eek):—log(e—i—e_)‘) > (.

Remark 16 The assumptions on @ of Theorem 14 are in particular satisfied by Py -almost
all sample paths of the canonical fractional Brownian motion with H > 1/2.
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