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Abstract In this manuscript, we establish local exponential stability of the trivial solution
of differential equations driven by Hölder continuous paths with Hölder exponent greater
than 1/2. This applies in particular to stochastic differential equations driven by fractional
Brownian motion with Hurst parameter greater than 1/2. We motivate the study of local
stability by giving a particular example of a scalar equation, where global stability of the
trivial solution can be obtained.
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1 Introduction

This article is concerned with the study of the stability of Rd -valued differential equations
driven by Hölder continuous signals ω of the form
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du(t) = F(u(t))dt + G(u(t))dω(t), t ≥ 0, (1)

where u(0) = u0 ∈ R
d and F ,G are smooth functions defined onRd . Our canonical example

for ω is a sample path of fractional Brownian motion with Hurst index greater than 1/2.
The existence and uniqueness of solutions for differential equations driven by a Hölder

continuous function with Hölder exponent greater than 1/2 is now well understood, in the
context of fractional calculus, see e.g. [11,24,27], and in the context of rough path theory as
well, see e.g. [8,18,19].

However, the study of the stability of such equations is, to some extent, in its beginnings,
in contrast to the case when the driving signal arises from a standard Brownianmotion, where
the existing literature is huge. See Remarks 1 and 2 below for a discussion. The closest related
work we are aware of is [25], which deals with the exponential stability of a linear delay
equation additively disturbed by a Riemann–Liouville fractional Brownian motion.

Our main result can be summarized as follows: if ω is tempered, i.e. its Hölder norm over
[t, t + 1] increases subexponentially for t → ±∞, and F , G satisfy

F(x) = Ax + O
(‖x‖2) , G(x) = O

(‖x‖2) , for x → 0,

where the real parts of the eigenvalues of A are bounded from above by −λ < 0, then the
solution u to (1) satisfies for any μ < λ that

lim
t→∞ eμt‖u(t)‖ = 0,

provided that u0 is in a neighborhood of zero, which depends onμ and ω. The assumption on
ω is in particular fulfilled by a fractional Brownian motion with Hurst parameter H > 1/2.

Remark 1 Let usmention here a few pioneering investigations related to stability for classical
stochastic differential equations (SDEs). Almost sure exponential stability was considered
in [16] for linear SDEs with Brownian motion as integrator using Lyapunov exponents
and ergodic theory. In [2] a.s. exponential stability and uniform boundedness was proved.
The multiplicative ergodic theorem of Oseledets allowed the analysis of all exponents for a
stochastic flow, leading to a detailed analysis of the dynamics of random systems, see [3].
In [20] the author uses stochastic Lyapunov functions to discuss the stability of SDEs with
semimartingale integrators, making use of the exponential martingale inequality, obtaining
sufficient criteria for a.s. exponential stability and for polynomial stability. In [21] the same
author gives a consistent account of the theory of SDEs driven by a nonlinear integrator and
their exponential stability at fixed points via Lyapunov function techniques.

Remark 2 The fractional Brownian motion (FBM) BH belongs to a family of Gaussian
processes indexed by the Hurst parameter H ∈ (0, 1). When H = 1/2 FBM is standard
Brownian motion, but when H �= 1/2 the process BH has properties that differ sharply to
those of B1/2. In fact, BH is not a semimartingale nor a Markov process unless H = 1/2,
and therefore the techniques to analyse stochastic differential equations driven by fractional
Brownian motion are rather different to the Brownian motion case. Previous contributions,
which study the longtime behavior of SDEs driven by FBM belong mainly to two categories:

(i) Using the theory of random dynamical systems the existence of random attractors
has been established in [11] for a finite-dimensional setting and in [9] for an infinite-
dimensional one, in both cases under the condition H > 1/2. Precursors to theses works
are [10,22]. In [22] the existence of exponentially attracting random fixed points was
shown for linear and semilinear infinite-dimensional stochastic equations with additive
FBM with H > 1/2. Under suitable dissipativity conditions on the drift the existence
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and uniqueness of a stationary solution that attracts all other solutions was obtained in
[10] for finite-dimensional SDEs with additive FBM of any Hurst parameter.

(ii) In a series of articles [12–15] Hairer and coworkers studied the existence of “adapted”
stationary solutions to dissipative finite-dimensional SDEs driven by FBM and their
speed of convergence to the stationary state. The analysis in those papers is built on
suitable extensions of Markovian notions as strong Feller property, invariant measure
and adaptedness to the non-Markovian setting. These works cover the case of additive
noisewith anyHurst parameter andmultiplicative noisewith H > 1/3. Furthermore, the
contribution by Deya et al. [5] establishes the convergence order 1/8 (in total variation
norm) of the system to the stationary solution for multiplicative noise and H > 1/3.

This article can be seen as a first attempt to analyze the exponential stability of the solution
of (1), since we are able to obtain local stability, in the sense that the initial condition u0 must
belong to aneighborhoodof zero.Only in veryparticular situations, inwhichwecan transform
the equation into a random differential equation, we can establish global exponential stability,
see Sect. 2 below. Therefore, more efforts are needed in order to cover the global stability
and this will be the topic of our future research.

The remainder of this article is structured as follows: we begin with an example in Sect. 2,
where we can establish global stability. In Sect. 3 we recall some basic facts about fractional
Brownian motions and prove some auxiliary results, while in Sect. 4 we recall the definition
andmain properties of theYoung integral. Section 5 concerns the analysis of the existence and
uniqueness of solutions, and the study of the local exponential zero stability of our problem.

2 Global Stability for Linear Scalar Noise

In this section we want to examine the following scalar equation

du(t) = F(u(t))dt + γ u(t)dω(t), t ≥ 0, (2)

where F :R → R is continuously differentiable with bounded derivative, γ ∈ R and ω :
R

+ → R is a Hölder continuous function of order β ′ > 1/2. Moreover, we assume that we
have the splitting

F(x) = −λx + F̂(x), x ∈ R,

with λ > 0, and

|F̂(x)| ≤ δ|x |, x ∈ R, (3)

where 0 ≤ δ < λ.
We are going to see that the scalar and linear structure of the noise now allows us to obtain

global exponential stability using the Doss–Sussman transformation. For this, define first

v(t) = eλt u(t), t ≥ 0.

Then the usual change of variable formula, see e.g. Theorem 4.3.1 in [27], gives

dv(t) = b(t, v(t))dt + γ v(t)dω(t), t ≥ 0, (4)

where we have set

b(t, x) = eλt F̂
(
e−λt x

)
, t ≥ 0, x ∈ R. (5)

123



362 J Dyn Diff Equat (2018) 30:359–377

The results by Doss, see Theorem 19 in [6], state that the solution of equation (4) can be
written as

v(t) = h(D(t), ω(t)), t ≥ 0, (6)

where h:R × R → R is the solution of

∂

∂β
h(α, β) = γ h(α, β), h(α, 0) = α, α, β ∈ R, (7)

i.e.

h(α, β) = eγβα,

and D:R+ → R solves

dD(t) = e−γω(t)b
(
t, eγω(t)D(t)

)
dt, t ≥ 0, (8)

D(0) = u(0).

The idea behind this representation is to assume that the solution of (2) can be written in
the form (6) and to derive necessary and sufficient conditions for D and h, i.e. (7) and (8).
In [6] this approach is introduced for SDEs driven by Brownian motion, but with more
general diffusion coefficients, which satisfy a commutativity condition. In our context, this
representation follows by the change of variable formula from Theorem 4.3.1 in [27].

Using (5) we obtain

dD(t) = e−γω(t)+λt F̂
(
eγw(t)−λt D(t)

)
dt, t ≥ 0.

Now set r(t) = |D(t)|2. Then for t ≥ 0 we have

dr(t) = 2D(t)e−γω(t)+λt F̂
(
eγω(t)−λt D(t)

)
dt ≤ 2δ|D(t)|2dt = 2δr(t)dt,

using assumption (3). Therefore, Gronwall’s Lemma gives

|D(t)|2 = |r(t)| ≤ e2δt |u(0)|2, t ≥ 0,

and hence (6) implies that

|u(t)| ≤ eγ |ω(t)|e(δ−λ)t |u(0)|, t ≥ 0.

If

lim
t→∞

|ω(t)|
t

= 0, (9)

then it follows

lim
t→∞ eμt |u(t)| = 0,

for all 0 ≤ μ < λ − δ.
Condition (9) is in particular fulfilled for almost all sample paths of the fractionalBrownian

motion BH , see (12) below. Hence we obtain in this case almost sure exponential stability
of the zero solution for all rates smaller than λ − δ.

So, in the particular situation of a scalar equation with a linear multiplicative noise, the
above method ensures global exponential stability of the zero solution. However, this method
seems not to be applicable in general when considering amultidimensional driven signal even
if the diffusion coefficient is still linear.

123



J Dyn Diff Equat (2018) 30:359–377 363

As we have said in the Introduction, we want to consider general multidimensional noise
perturbations of the type G(u(·))dω(·). Our strategy here will be to deal directly with the
Eq. (1) to obtain local exponential zero stability.

3 Preliminaries

From now on, we denote by ‖·‖ the norm of both spaces Rd and R
m , while |·| represents as

usual the absolute value.
For β ′ ∈ (0, 1), let us consider the space Cβ ′

([0, T ];Rm) of β ′-Hölder continuous func-
tions on some interval [0, T ] with values in R

m . The norm in this space is given by

‖ω‖β ′ = ‖ω‖∞,0,T + |||ω|||β ′,0,T ,

where

‖ω‖∞,0,T = sup
r∈[0,T ]

‖ω(r)‖, |||ω|||β ′,0,T = sup
0≤q<r≤T

‖ω(r) − ω(q)‖
(r − q)β

′ .

A fractional Brownian motion (FBM) BH with Hurst parameter H ∈ (0, 1) is a centered
Gaussian process with covariance function

R(s, t) = 1

2
Q

(
|t |2H + |s|2H − |t − s|2H

)
, s, t ∈ R,

where Q is a non-negative and symmetric matrix in R
m ⊗ R

m .
LetC0(R;Rm) be the set of continuous functions which are zero at zero equipped with the

compact open topology. Then let (C0(R;Rm),B(C0(R;Rm)),PH ) be the canonical space
for fractional Brownian motion, i.e. BH (t, ω) = ω(t), where PH denotes the measure of the
FBM with Hurst parameter H . On C0(R;Rm) we can introduce the Wiener shift θ given by

θtω(·) = ω(· + t) − ω(t), t ∈ R, ω ∈ C0(R;Rm). (10)

In particular θt leaves PH invariant.
Since the fractional Brownian motion is a Gaussian process we can show that for m ∈ N

and s, t ∈ R we have

E‖BH (t) − BH (s)‖2m = cm |t − s|2Hm for all m ∈ N,

where cm = E‖B1/2(1)‖2m . Applying Kunita [17] Theorem 1.4.1 we obtain that

E‖BH‖nβ ′,0,T < ∞ (11)

for any T > 0, β ′ < H and for n ∈ N. This is in particular true for the canonical fractional

Brownian motion. Thus, we can conclude that the set Cβ ′
0 (R;Rm) of continuous functions,

which have a finite β ′-Hölder seminorm on any compact interval and which are zero at zero,
has PH -measure one for β ′ < H . This set is θ -invariant.

Moreover, since

E‖BH‖n∞,0,T ≤ Cn,HT
nH

for all n ≥ 1 and all T > 0, see e.g. Chapter 5.1 in [23], the Borel–Cantelli lemma implies
that

lim
t→∞

‖BH (t)‖
t

= 0 for almost all ω ∈ 
. (12)
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A random variable R ∈ (0,∞) is called tempered from above if

lim sup
t→±∞

log+ R(θtω)

t
= 0 for almost all ω ∈ 
. (13)

Therefore, temperedness from above describes the subexponential growth or decay of a
stochastic stationary process (t, ω) �→ R(θtω). A random variable R is called tempered from
below if R−1 is tempered from above. In particular, if the random variable R is tempered
from below and such that t �→ R(θtω) is continuous for all ω ∈ 
, then for any ε > 0 there
exists a (random) constant Cε(ω) > 0 such that

R(θtω) ≥ Cε(ω)e−ε|t | for almost all ω ∈ 
.

A sufficient condition for temperedness is that

E sup
t∈[0,1]

log+ R(θtω) < ∞.

By (11) we obtain that ‖ω‖β ′,0,1 is tempered from above because log+ r ≤ r for r ≥ 0. Note
that the set of all ω, which satisfy (13), is invariant with respect to the flow θ .

We need the following simple result.

Lemma 3 Let (Ri )i∈N and (vi )i∈N be sequences such that Ri ≥ Cεe−εi for any 0 < ε < σ ,
i ∈ N, and vi ≤ v0e−σ i for any i ∈ N, respectively. Then for sufficiently small v0 > 0 we
have

vi ≤ Ri , i ∈ N.

If for instance we assume that a random variable R > 0 is tempered from below, then we can
find a random variable Cε such that vi < R(θiω) holds for v0 < Cε(ω), where vi satisfies
the assumptions of the previous Lemma.

We finish this section with several technical results that will be applied to establish expo-
nential decay of sequences in further sections.

Lemma 4 Let ρ > 0 and T be a function from B̄Rd (0, ρ) into a Banach space (B, ‖·‖B),
which is continuously differentiable, and zero at zero. Consider the balls B̄B(0, R),
B̄Rd (0, R̂), with R̂ = R̂(R) ≤ ρ, such that the latter is the largest centered ball such
that

B̄Rd (0, R̂) ⊂ T −1 (
B̄B(0, R)

)
,

that is,
R̂ = max

{
r̂ ∈ [0, ρ]: fT (v) ≤ R for all v ∈ B̄Rd

(
0, r̂

)}
,

where fT : B̄Rd (0, ρ) → R
+ is defined by fT (v) = ‖T (v)‖B. Then there exists κ ∈ (0,∞)

such that

lim inf
R→0

R̂(R)

R
≥ κ.

Proof For every sufficiently small R there is an element vR in ∂ B̄Rd (0, R̂) such that

‖T (vR)‖B = R.

To see the existence of such an element notice that the continuous function fT is such that
fT (0) = 0 and R ≤ maxv∈B̄

Rd (0,ρ) fT (v). Then we have

f −1
T ({R}) = f −1

T ([0, R] ∩ [R,∞)) = f −1
T ([0, R]) ∩ f −1

T ([R,∞))

⊃ f −1
T ([0, R]) ∩ f −1

T ([0, R])c
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and hence all arguments from the boundary of f −1
T ([0, R]) have the value R with respect

to fT . Note that the largest radius R̂ is given by the infimum of the distances between the
boundary ∂T −1(B̄B(0, R)) = ∂ f −1

T ([0, R]) and zero. Since this boundary is a compact set in
B̄Rd (0, ρ) and the mapping v → ‖v‖ is continuous, we have an element vR ∈ ∂ f −1

T ([0, R])
such that

R̂ = inf
v∈∂ f −1

T ([0,R])
‖v‖ = ‖vR‖.

Finally, applying the mean value theorem it follows

‖vR‖
R

= ‖vR‖
‖T (vR)‖B ≥ 1

supξ∈B̄
Rd (0,ρ) ‖DT (ξ)‖L(Rd ,B)

> 0.

��
For completeness, we state the following measurability result.

Lemma 5 Let H : R+ → R
+ be continuous and non decreasing. Then the function

J :R+ → R
+, J (x) = max{r ∈ R

+:H(r) ≤ x}
is Borel-measurable.

Proof Let α ≥ 0 and consider the set

M(α) = {
x ∈ R

+:J (x) < α
}
.

Then we have to check thatM(α) belongs to B(R+). Clearly,M(0) = ∅, so assume α > 0.
By definition and since H is non decreasing, J (x) < α implies H(α) > x . Vice versa
H(α) > x implies J (x) < α. Hence

M(α) = {
x ∈ R

+: x < H(α)
} = [0,H(α)) ∈ B

(
R

+)
.

��
Now we investigate the Hölder norm of a finite-dimensional semigroup eA· generated by an
operator A, whose estimates will be used below. The main assumption is that the spectrum
of A has a negative real part.

Lemma 6 Let eA· be the fundamental solution to

du(t) = Au(t), t ≥ 0.

Let Re σ(A) < −λ < 0. Then there exists an M ≥ 1 such that

‖eAt‖ ≤ Me−λt , t ≥ 0. (14)

In addition, for 0 ≤ s < t we have

‖eAt − eAs‖ ≤ M‖A‖(t − s)e−λs, ‖eA(t−s) − id‖ ≤ M‖A‖(t − s), (15)

where ‖A‖ is the Euclidean norm of A.

The proof follows easily by the mean value theorem and Amann [1] Chapter 13. As a con-
sequence, for 0 < s < t we have

∣∣∣
∣∣∣
∣∣∣eA(t−·)

∣∣∣
∣∣∣
∣∣∣
β,0,t

= sup
0≤r1<r2<t

‖eA(t−r2) − eA(t−r1)‖
(r2 − r1)β

≤ M‖A‖t1−β (16)
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and
∣
∣
∣
∣
∣
∣
∣
∣
∣eA(t−·) − eA(s−·)

∣
∣
∣
∣
∣
∣
∣
∣
∣
β,0,s

= sup
0≤r1<r2<s

‖eA(t−r2) − eA(s−r2) − (
eA(t−r1) − eA(s−r1)

) ‖
(r2 − r1)β

= sup
0≤r1<r2<s

‖ (
eA(t−s) − id

) (
eA(s−r1) − eA(s−r2)

) ‖
(r2 − r1)β

≤ M2‖A‖2(t − s)s1−β . (17)

To finish this section, we introduce a discrete Gronwall-like lemma:

Lemma 7 Let (yn)n≥0 and (gn)n≥0 be non negative sequences and c > 0 a non negative
constant. If

yn ≤ c +
n−1∑

j=0

g j y j , n = 0, 1, . . . ,

then

yn ≤ c
n−1∏

j=0

(1 + g j ) n = 0, 1, . . . .

Proof Lemma 100 in [7] states that the inequalities

yn ≤ c +
n−1∑

j=0

g j y j , n = 0, 1, . . . ,

imply that

yn ≤ c + c
n−1∑

j=0

g j

n−1∏

k= j+1

(1 + gk) n = 0, 1, . . . .

Using that

g j

n−1∏

k= j+1

(1 + gk) =
n−1∏

k= j

(1 + gk) −
n−1∏

k= j+1

(1 + gk) ,

we obtain the assertion through a telescoping sum argument. ��

4 Integrals for a Hölder Continuous Integrator with Hölder Exponent
greater than 1/2

In this section, we present the Young integral having a Hölder continuous function with
Hölder exponent greater than 1/2 as integrator. To be more precise, let T > 0 and consider a
mapping

g : [0, T ] → L(Rm,Rd)

such that g ∈ Cβ([0, T ];L(Rm,Rd)). Assuming that β + β ′ > 1 we can define the Young
integral with integrand g and integrator ω ∈ Cβ ′

([0, T ];Rm)
∫ t

s
gdω
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for 0 ≤ s < t ≤ T , see [26]. Furthermore, one can represent this integral in terms of
fractional derivatives: for α ∈ (0, 1) we define

Dα
s+g[r ] = 1

�(1 − α)

(
g(r)

(r − s)α
+ α

∫ r

s

g(r) − g(q)

(r − q)1+α
dq

)
,

D1−α
t− ωt−[r ] = (−1)1−α

�(α)

(
ω(r) − ω(t)

(t − r)1−α
+ (1 − α)

∫ t

r

ω(r) − ω(q)

(q − r)2−α
dq

)
,

where ωt−(·) = ω(·) − ω(t). Under the condition β + β ′ > 1, there exists an α such that
α < β, α + β ′ > 1, and these inequalities ensure that the above operators are well defined.
Then the Young integral can be expressed as

∫ t

s
gdω = (−1)α

∫ t

s
Dα
s+g[r ]D1−α

t− ωt−[r ]dr, (18)

see for instance [27]. Taking into account the definition of the fractional derivatives, it is easy
to derive the following estimate

∥∥∥∥

∫ t

s
gdω

∥∥∥∥ ≤ Cα,β,β ′,T |||ω|||β ′,s,t

(
‖g‖∞,s,t + (t − s)β |||g|||β,s,t

)
(t − s)β

′
, (19)

for s, t ∈ [0, T ], which in particular implies that

[0, T ] � t �→
∫ t

0
gdω ∈ Cβ ′

([0, T ];Rd),

with ∥∥∥∥

∫ t

0
gdω

∥∥∥∥
β ′,0,T

≤ Cα,β,β ′,T ‖g‖β,0,T |||ω|||β ′,0,T .

For T ≤ 1 we shall denote Cα,β,β ′,T by Cα,β,β ′ in the following.
We also know that the integral is additive: let s ≤ τ ≤ t , then

∫ τ

s
gdω +

∫ t

τ

gdω =
∫ t

s
gdω,

see [27], and for any linear operator L : Rd → R
m

L
∫ t

s
gdω =

∫ t

s
(Lg)dω =

∫ t

s
Lgdω

because LDα
s+g = Dα

s+Lg.
Finally, for the Wiener shift flow θ = (θt )t∈R given by (10) the following shift property

of the integral holds:

Lemma 8 For any given T > 0, let g ∈ Cβ([0, T ];L(Rm,Rd)), ω ∈ Cβ ′
([0, T ];Rm) such

that β + β ′ > 1. Then for 0 ≤ s + τ < t + τ ≤ T we have

∫ t+τ

s+τ

gdω =
∫ t

s
g(· + τ)dθτω.
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Proof For 1 − β ′ < α < β we have

D1−α
t− (θτ ω)t−[r ] = (−1)1−α

�(α)

(
θτ ω(r) − θτ ω(t)

(t − r)1−α
+ (1 − α)

∫ t

r

θτ ω(r) − θτ ω(q)

(q − r)2−α
dq

)

= (−1)1−α

�(α)

(
ω(r + τ) − ω(t + τ)

(t − r)1−α
+ (1 − α)

∫ t

r

ω(r + τ) − ω(q + τ)

(q − r)2−α
dq

)

= (−1)1−α

�(α)

(
ω(r + τ) − ω(t + τ)

(t + τ − (r + τ))1−α
+ (1 − α)

∫ t+τ

r+τ

ω(r + τ) − ω(q)

(q − (r + τ))2−α
dq

)

=D1−α
(t+τ)−ω(t+τ)−[r + τ ]

and similar for Dα
s+g(· + τ)[r ] = Dα

(s+τ)+g[r + τ ]. It suffices now to apply the variable
transform r �→ r + τ in (18). ��

TheYoung integral introduced above can be applied to define pathwise stochastic integrals
for the fractional Brownian motion BH with Hurst parameter H ∈ (1/2, 1). In particular BH

can be replaced by the canonical fractional Brownian motion which is Hölder continuous
with PH probability one, see Sect. 3.

5 Local Exponential Stability

Let F : Rd → R
d and G : Rd → L(Rm,Rd), and let ω be a noisy input, considered as a

function from R
+ to R

m . Then, for T > 0 consider the equation

du(t) = F(u(t))dt + G(u(t))dω(t), t ∈ [0, T ], (20)

with initial condition u(0) = u0 ∈ R
d . This equation is interpreted as

u(t) = u0 +
∫ t

0
F(u(r))dr +

∫ t

0
G(u(r))dω(r), t ∈ [0, T ], (21)

where the first integral is defined as a standard Riemann integral while the second one is
defined as the Young integral introduced in Sect. 4.

We will assume the following regularity for F and G:

(A1) F : Rd → R
d is continuously differentiable with bounded derivative,

(A2) G : Rd → L(Rm,Rd) is twice continuously differentiable with bounded derivatives.

Regarding the existence of solutions, the next result follows by [24], although with a slight
modification of the phase spaces that appear in that reference; see also [4], but notice that in
this last article a delay equation is considered, and therefore in our setting we should take
the delay equal to zero.

Theorem 9 Suppose (A1) and (A2). If ω ∈ Cβ ′
([0, T ];Rm) with β ′ > β > 1/2, then (21)

has a unique solution u ∈ Cβ([0, T ];Rd) for any T > 0.

In what follows, we would like to consider mild solutions of (20). To this end, define a
matrix A ∈ R

d×d and a function F̂ : Rd → R
d by

A = DF(0), F̂(x) = F(x) − Ax, x ∈ R
d .

Then x �→ F̂(x) and x �→ DF̂(x) = DF(x) − DF(0) are continuous, and DF̂(0) = 0.
We also will need further assumptions:
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(A3) F(0) = 0, G(0) = 0,
(A4) DG(0) = 0.

We consider then the following equation

u(t) = eAtu0 +
∫ t

0
eA(t−r) F̂(u(r))dr +

∫ t

0
eA(t−r)G(u(r))dω(r), t ∈ [0, T ], (22)

where the last integral is understood as in Sect. 4.

Lemma 10 Let T > 0 and assume (A1) and (A2). If ω ∈ Cβ ′
([0, T ];Rm) with β ′ > β >

1/2, then Eq. (22) has a unique solution u ∈ Cβ([0, T ];Rd) that also coincides with (21).
Furthermore, if we also assume (A3), Eq. (22) possesses the trivial solution u = 0.

Proof In view of the regularity of F̂ and G, the existence and uniqueness of a solution to
(22) follows by [11]. Now we want to prove that such a solution coincides with the solution
of (21). To achieve such a result, notice that when ω is a sufficiently smooth path, then (21)
and (22) are the same solutions using classical calculus.

Now it suffices to follow an approximation argument. To be more precise, consider (22)
for a sequence of driving paths (ωn)n∈N, which are given by the piecewise linear interpolation
of w with stepsize T 2−n . Then the sequence (un)n∈N related to these piecewise linear paths
converges to the solution of (21) and (22) as well, being both of them driven byω, see Chapter
10 in [8]. Therefore both solutions are the same. ��
Note that a sufficient condition for the convergence of (ωn)n∈N to ω and of (un)n∈N to u is
that ω ∈ Cβ ′′

([0, T ];Rm) for β ′ < β ′′ ≤ 1.
In the following, we will focus on the study of the asymptotic behavior of (22). First of

all, we introduce the notion of stability that we are interested in:

Definition 11 We say that the solution u of (22) is locally exponentially zero stable with
exponential rate μ > 0, if there exists a neighborhood U (ω, μ) of zero such that

u0 ∈ U (ω, μ) �⇒ lim
t→∞ eμt‖u(t)‖ = 0.

The strategy that we will carry out to prove exponential stability is as follows:

(i) Since the norm of any solution of (22) depends on the norm of ω, we will use a cut-off
argument, by which the functions F̂ and G appearing in (22) are only required to be
defined on B̄Rd (0, ρ), for some ρ > 0. Indeed, wewill take a composition of the locally
defined functions with a cut-off function depending on a variable R̂.

(ii) With these compositions we construct a sequence (un)n∈N such that each element un

is a solution of a modified differential equation of the type (22), defined on [0, 1] and
driven by θnω, where the norm of each un depends now on the magnitude of θnω but
also on a new variable R related to R̂. By a suitable choice of these variables (which
depend on the fixed ω) we can apply the discrete Gronwall-like Lemma 7 to obtain a
subexponential estimate of every element of the sequence.

(iii) Thanks to the temperedness of R and R̂ we will end up proving that (un)n∈N describes
the solution of (22), and that it is exponentially zero stable as described in Definition 11.

Consequently, we begin by restricting the mappings F and G to be defined on some neigh-
borhood of zero. For ρ > 0 assume:

(A1)’ F : B̄Rd (0, ρ) → R
d is continuously differentiable with bounded derivative,
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(A2)’ G : B̄Rd (0, ρ) → L(Rm,Rd) is twice continuously differentiable with bounded
derivatives.

We also define χ to be the cut-off function

χ : Rd → B̄Rd (0, 1) where χ(u) =
{
u if ‖u‖ ≤ 1

2
0 if ‖u‖ ≥ 1

.

In particular the norm of χ(u) is bounded by 1. Let us assume that χ is twice continuously
differentiable with bounded derivatives Dχ and D2χ and let us denote by LDχ , LD2χ the

bounds for those derivatives. Now for u ∈ R
d and some 0 < R̂ ≤ ρ we set

χR̂(u) = R̂ χ(u/R̂) ∈ B̄Rd (0, R̂).

Then it is not difficult to see that the first derivative DχR̂ is bounded by LDχ , while the

second derivative D2χR̂ is bounded by LD2χ/R̂.
Define the functions

F̂R̂ := F̂ ◦ χR̂ : Rd → R
d , GR̂ := G ◦ χR̂ : Rd → L(Rm,Rd).

Nowwe construct the aforementioned sequence (un)n∈N, defined on [0, 1], with driving path
θnω and coefficients F̂R̂ and GR̂ , where R̂ also depends on θnω:

un(t) = eAtun(0) +
∫ t

0
eA(t−r) F̂R̂(θnω)

(un(r))dr

+
∫ t

0
eA(t−r)GR̂(θnω)

(un(r))dθnω(r), t ∈ [0, 1].

Recall here that θtω(·) = ω(· + t) − ω(t). We set u0(0) = u0 and un(0) = un−1(1) for
n ∈ N. Under (A1)’ and (A2)’, the functions F̂R̂ , GR̂ satisfy the conditions of Lemma 10, so
for any n ∈ N each one of the above problems has a unique solution un ∈ Cβ([0, 1];Rd).

In order to estimate the norm of each un , we need the following result, that gives us suitable
estimates of the localized coefficients F̂R̂ and GR̂ .

Lemma 12 Assume (A1)’, (A2)’, (A3) and (A4). Then for every R > 0 there exists a positive
R̂ ≤ ρ such that for u, z ∈ R

d we have

‖F̂R̂(u)‖ ≤ RLDχ‖u‖, (23)

‖GR̂(u)‖L(Rm ,Rd ) ≤ RLDχ‖u‖, (24)

‖GR̂(u) − GR̂(z)‖L(Rm ,Rd ) ≤ RLDχ‖u − z‖. (25)

Proof Since DF̂ : B̄Rd (0, ρ) → L(Rd ,Rd) =: L(Rd) and DG : B̄Rd (0, ρ) →
L(Rd ,L(Rm,Rd)) are continuous with DF̂(0) = 0 and DG(0) = 0, for any R > 0
we can choose an R̂ ≤ ρ such that

sup
‖v‖≤R̂

‖DF̂(v)‖L(Rd ) ≤ R and sup
‖v‖≤R̂

‖DG(v)‖L(Rd ,L(Rm ,Rd )) ≤ R.
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Then, since F̂R̂(0) = 0, for u ∈ R
d we have

‖F̂R̂(u)‖ ≤ sup
z∈Rd

‖D(F̂(χR̂(z)))‖L(Rd )‖u‖

≤ sup
‖v‖≤R̂

‖DF̂(v)‖L(Rd ) sup
z∈Rd

‖DχR̂(z)‖L(Rd )‖u‖

≤ sup
‖v‖≤R̂

‖DF̂(v)‖L(Rd )LDχ‖u‖ ≤ RLDχ‖u‖,

and we obtain (23). Due to the fact that G(0) = 0 we can follow the same steps to prove
(24).

Finally, due to the regularity of G, we have

‖GR̂(u) − GR̂(z)‖L(Rm ,Rd ) ≤ sup
‖v‖≤R̂

‖DG(v)‖L(Rd ,L(Rm ,Rd ))‖χR̂(u) − χR̂(z)‖

≤ LDχ sup
‖v‖≤R̂

‖DG(v)‖L(Rd ,L(Rm ,Rd ))‖u − z‖

≤ RLDχ‖u − z‖.
��

In what follows we want to estimate the Hölder norm of each solution un on [0, 1]. The next
assumption we need is:

(A5) Assume Re σ(A) < −λ < 0 for A = DF(0).

Regarding the standard Riemann integral, by (14) and (23) we have
∥∥∥∥

∫ ·

0
eA(·−r) F̂R̂(θnω)

(un(r))dr

∥∥∥∥∞,0,1
≤ MR(θnω)LDχ‖un‖∞,0,1.

Furthermore, for the Hölder seminorm, thanks to (15), we have
∣∣∣∣

∣∣∣∣

∣∣∣∣

∫ ·

0
eA(·−r) F̂R̂(θnω)

(un(r))dr

∣∣∣∣

∣∣∣∣

∣∣∣∣
β,0,1

= sup
0≤s<t≤1

∥∥∥∥
∫ t
s e

A(t−r) F̂R̂(θnω)
(un(r))dr + ∫ s

0

(
eA(t−r) − eA(s−r)

)
F̂R̂(θnω)

(un(r))dr

∥∥∥∥

(t − s)β

≤ sup
0≤s<t≤1

(

(t − s)1−β sup
r∈[s,t]

(
‖eA(t−r)‖‖F̂R̂(θnω)

(un(r))‖
))

+ sup
0≤s<t≤1

(
s

(t − s)β
sup

r∈[0,s]

(
‖eA(t−r) − eA(s−r)‖‖F̂R̂(θnω)

(un(r))‖
))

≤ MR(θnω)LDχ‖un‖∞,0,1 + M‖A‖R(θnω)LDχ‖un‖∞,0,1

≤ M(1 + ‖A‖)R(θnω)LDχ‖un‖∞,0,1,

and therefore
∥∥∥∥

∫ ·

0
eA(·−r) F̂R̂(θnω)

(un(r))dr

∥∥∥∥
β,0,1

≤ M(2 + ‖A‖)R(θnω)LDχ‖un‖β,0,1. (26)
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Now we estimate the β-Hölder norm of the integral containing GR̂ . Choose α such that
0 < α < 1/2, α + β ′ > 1 and assume that 0 ≤ s < t ≤ 1. Then from (19) it follows

∥
∥
∥
∥

∫ t

0
eA(t−r)GR̂(θnω)

(un(r))dθnω(r) −
∫ s

0
eA(s−r)GR̂(θnω)

(un(r))dθnω(r)

∥
∥
∥
∥

≤
∥
∥
∥
∥

∫ t

s
eA(t−·)GR̂(θnω)

(un(r))dθnω(r)

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ s

0
(eA(t−r) − eA(s−r))GR̂(θnω)

(un(r))dθnω(r)

∥
∥
∥
∥

≤ Cα,β,β ′ |||θnω|||β ′ ‖eA(t−·)GR̂(θnω)
(un(·))‖β,0,t (t − s)β

′

+ Cα,β,β ′ |||θnω|||β ′ ‖(eA(t−·) − eA(s−·))GR̂(θnω)
(un(·))‖β,0,ss

β ′
.

Here we have written |||θnω|||β ′ instead of |||θnω|||β ′,0,1 for notational simplicity. Since for any
two β-Hölder continuous functions f, g we have

‖ f g‖β,0,t ≤ ‖ f ‖∞,0,t‖g‖β,0,t + ‖g‖∞,0,t ||| f |||β,0,t ,

it follows

‖eA(t−·)GR̂(θnω)
(un(·))‖β,0,t ≤ ‖eA(t−·)‖∞,0,t‖GR̂(θnω)

(un(·))‖β,0,t

+ ‖GR̂(θnω)
(un(·))‖∞,0,t |||eA(t−·)|||β,0,t .

Thanks to (24) and (25) we obtain

‖GR̂(θnω)
(un(·))‖β,0,t = sup

s∈[0,t]
‖GR̂(θnω)

(un(s))‖L(Rm ,Rd )

+ sup
0≤r1<r2≤t

‖GR̂(θnω)
(un(r2)) − GR̂(θnω)

(un(r1))‖L(Rm ,Rd )

(r2 − r1)β

≤ R(θnω)LDχ

(
‖un‖∞,0,t + sup

0≤r1<r2≤t

‖un(r2) − un(r1)‖
(r2 − r1)β

)

= R(θnω)LDχ‖un‖β,0,t ,

hence, taking into account (14) and (16), it follows that

‖eA(t−·)GR̂(θnω)
(un(·))‖β,0,t ≤ MR(θnω)LDχ‖un‖β,0,1 + M‖A‖R(θnω)LDχ‖un‖∞,0,1

≤ MR(θnω)LDχ (1 + ‖A‖)‖un‖β,0,1.

In a similar way, using (15) and (17) we obtain

‖(eA(t−·) − eA(s−·))GR̂(θnω)
(un(·))‖β,0,s ≤ M‖A‖R(θnω)LDχ

× (1 + M‖A‖)‖un‖β,0,1(t − s),

and therefore
∣∣∣∣

∣∣∣∣

∣∣∣∣

∫ ·

0
eA(·−r)GR̂(θnω)

(un(r))dθnω(r)

∣∣∣∣

∣∣∣∣

∣∣∣∣
β,0,1

≤ Cα,β,β ′ |||θnω|||β ′ MR(θnω)LDχ

× (
1 + 2‖A‖ + M‖A‖2) ‖un‖β,0,1.
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Using the same kind of calculations we get
∥
∥
∥
∥

∫ ·

0
eA(·−r)GR̂(θnω)

(u(r))dθnω(r)

∥
∥
∥
∥∞,0,1

≤ Cα,β,β ′ |||θnω|||β ′ MR(θnω)LDχ

× (1 + ‖A‖)‖un‖β,0,1.

(27)

Collecting these estimates we have
∥
∥
∥
∥

∫ ·

0
eA(·−r)GR̂(θnω)

(u(r))dθnω(r)

∥
∥
∥
∥

β,0,1
≤ K |||θnω|||β ′,0,1 R(θnω)‖un‖β,0,1, (28)

where
K = max{1,Cα,β,β ′ }M2LDχ

(
2 + 3‖A‖ + ‖A‖2) (29)

using thatM ≥ 1. Note that the constant K is also an upper bound for the constantMLDχ (2+
‖A‖) in (26), i.e. we have

∥
∥
∥
∥

∫ ·

0
eA(·−r) F̂R̂(θnω)

(un(r))dr

∥
∥
∥
∥

β,0,1
≤ K R(θnω)‖un‖β,0,1. (30)

For n ∈ N, define now the function

u(t) = un(t − n) if t ∈ [n, n + 1]. (31)

On account of Lemma 8, for t ∈ [n, n + 1] we have

u(t) = eA(t−n)u(n) +
∫ t

n
eA(t−r) F̂R̂(θnω)

(u(r))dr +
∫ t

n
eA(t−r)GR̂(θnω)

(u(r))dω(r)

= eAtu0 +
n−1∑

j=0

eA(t− j−1)
∫ j+1

j
eA( j+1−r) F̂R̂(θ jω)

(u(r))dr

+
n−1∑

j=0

eA(t− j−1)
∫ j+1

j
eA( j+1−r)GR̂(θ jω)

(u(r))dω(r)

+
∫ t

n
eA(t−r) F̂R̂(θnω)

(u(r))dr +
∫ t

n
eA(t−r)GR̂(θnω)

(u(r))dω(r)

= eAtu0 +
n−1∑

j=0

eA(t− j−1)
∫ 1

0
eA(1−r) F̂R̂(θ jω)

(u j (r))dr

+
n−1∑

j=0

eA(t− j−1)
∫ 1

0
eA(1−r)GR̂(θ jω)

(u j (r))dθ jω(r)

+
∫ t−n

0
eA(t−n−r) F̂R̂(θnω)

(un(r))dr +
∫ t−n

0
eA(t−n−r)GR̂(θnω)

(un(r))dθnω(r).

Note that the β-Hölder norm of the last two terms of the above expression can be estimated
as above, i.e. by (28) and (30). The terms under the sum can be estimated in a different way,
since

∥∥∥∥e
A(·− j−1)

∫ 1

0
eA(1−r)GR̂(θ jω)

(u j (r))dθ jω(r)

∥∥∥∥
β,n,n+1

≤ ‖eA(·− j−1)‖β,n,n+1

∥∥∥∥

∫ ·

0
eA(·−r)GR̂(θ jω)

(u j (r))dθ jω(r)

∥∥∥∥∞,0,1
,
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and from Lemma 6, it is easy to obtain that

‖eA(·− j−1)‖β,n,n+1 ≤ M(1 + ‖A‖)e−λ(n− j−1),

giving us
∥
∥
∥
∥e

A(·− j−1)
∫ 1

0
eA(1−r)GR̂(θ jω)

(u j (r))dθ jω(r)

∥
∥
∥
∥

β,n,n+1

≤ M2(1 + ‖A‖)2e−λ(n− j−1)Cα,β,β ′ |||θ jω|||β ′ R(θ jω)LDχ‖u j‖β,0,1

≤ Ke−λ(n− j−1)|||θ jω|||β ′ R(θ jω)‖u j‖β,0,1,

where the constant K has been introduced in (29) and we have used (27). Following similar
steps we have

∥
∥
∥
∥e

A(·− j−1)
∫ 1

0
eA(1−r) F̂R̂(θ jω)

(u j (r))dr

∥
∥
∥
∥

β,n,n+1

≤ M2(1 + ‖A‖)LDχe
−λ(n− j−1)R(θ jω)‖u j‖β,0,1

≤ Ke−λ(n− j−1)R(θ jω)‖u j‖β,0,1.

Hence

‖un‖β,0,1 ≤ ‖u0‖‖eA·‖β,n,n+1 + K
n−1∑

j=0

R(θ jω)
(
1 + |||θ jω|||β ′,0,1

) ‖u j‖β,0,1e
−λ(n− j−1)

+ K R(θnω)
(
1 + |||θnω|||β ′,0,1

) ‖un‖β,0,1.

Let ε < 1 and consider
R(ω) = ε

2K
(
1 + |||ω|||β ′,0,1

) . (32)

With this choice, the coefficient in front of ‖un‖β,0,1 on the right hand side of the above
expression is less than or equal 1/2, since ε < 1. As a consequence,

1

2
‖un‖β,0,1 ≤‖u0‖‖eA·‖β,n,n+1 + ε

2

n−1∑

j=0

e−λ(n− j−1)‖u j‖β,0,1

and hence

‖un‖β,0,1 ≤ 2M(1 + ‖A‖)‖u0‖e−λn + ε

n−1∑

j=0

e−λ(n− j−1)‖u j‖β,0,1.

Taking y j = eλ j‖u j‖β,0,1, c = 2M(1 + ‖A‖)‖u0‖ and g j = εeλ, Lemma 7 ensures that

yn ≤ 2M(1 + ‖A‖)‖u0‖(1 + εeλ)n

and thus

‖un‖β,0,1 ≤ 2M(1 + ‖A‖)‖u0‖
(
ε + e−λ

)n = 2M (1 + ‖A‖) ‖u0‖en log
(
ε+e−λ

)
. (33)

We can state a first result regarding the function u defined by (31), for which we require a
bit more regularity for F :

(A1)” F : B̄Rd (0, ρ) → R
d is twice continuously differentiable with bounded derivatives.
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Lemma 13 Let β ′ > 1/2, ε + e−λ < 1 and assume that ω is such that

lim
t→±∞

log+ |||θtω|||β ′,0,1
t

= 0. (34)

Then, under (A1)”, (A2)’, (A3)–(A5), u defined by (31) solves (22) on any interval [0, T ].
Proof First of all, for R(ω) given by (32) define R̂(ω) by

R̂(ω) = max

{
r̂ ∈ [0, ρ] : ‖DF̂(v)‖L(Rd ) + ‖DG(v)‖L(Rd ,L(Rm ,Rd )) ≤ R(ω),

for all v ∈ B̄Rd

(
0, r̂

)
}
.

We apply Lemma 4 taking the space B = L(Rd) × L(Rd ,L(Rm,Rd)) equipped with the
norm ‖( f, g)‖B = ‖ f ‖L(Rd ) + ‖g‖L(Rd ,L(Rm ,Rd )). We also take T = (DF̂, DG). Then, T
is continuously differentiable (for which we have required F to be twice differentiable) and
T (0) = 0. Hence, R̂ is well-defined,

lim inf
R→0

R̂(R)

R
≥ κ ∈ (0,∞)

and, in virtue of Lemma 5, is measurable.
Furthermore, thanks to (34) and the continuity of the mapping t → |||ω|||β ′,0,t (see [9]),

for a sufficiently small ε > 0 there exists Cε(ω) such that

R̂(θtω) ≥ κ

2
R(θtω) ≥ κ

2
Cε(ω)e−ε|t |

for sufficiently large |t |.
On the other hand, due to Lemma 3 and ε + e−λ < 1, we can find a zero neighborhood

depending on ω such that for u0 contained in this neighborhood we have

‖un(t)‖ ≤ ‖un‖β,0,1 ≤ R̂(θnω)

2
for all n ∈ Z

+, t ∈ [0, 1].
Then it holds

F̂R̂(θnω)
(un(r)) = F̂(un(r)), GR̂(θnω)

(un(r)) = G(un(r))

for r ∈ [0, 1] and n ∈ Z
+, and so we see that u defined by (31) solves (22) on any interval

[0, T ]. ��
Condition (34) holds in particular if ω is a sample path of the canonical fractional Brownian
motion with Hurst parameter H > 1/2 defined on the probability space introduced in Sect. 3.
In that case, both R and R̂ are tempered from below.

Finally, we can state and prove our main result:

Theorem 14 Suppose that ω ∈ Cβ ′
0 (R;Rm) with β ′ > 1/2 and that (34), (A1)”, (A2)’,

(A3)–(A5) hold. Then for every ε ∈ (0, 1− e−λ) the solution of (22) is locally exponentially
zero stable with an exponential rate μ < − log(ε + e−λ).

Proof Take t ∈ [n, n + 1]. Then, due to the choice of ε we can easily derive that

en log
(
ε+e−λ

)
≤ e− log

(
ε+e−λ

)
et log

(
ε+e−λ

)
,
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thus, from (33) we have

eμt‖u(t)‖ ≤ 2M(1 + ‖A‖)e− log
(
ε+e−λ

)
‖u0‖et

(
μ+log

(
ε+e−λ

))
,

and therefore

lim
t→∞ eμt‖u(t)‖ = 0

since μ + log(ε + e−λ) < 0. ��
Remark 15 The solution of (22) is locally exponentially zero stable with any rate less than
λ. Indeed, for any arbitrary μ < λ we can choose ε ∈ (0, 1 − e−λ) sufficiently small such
that

λ > λ − log
(
1 + εeλ

) = − log
(
ε + e−λ

)
> μ.

Remark 16 The assumptions on ω of Theorem 14 are in particular satisfied by PH -almost
all sample paths of the canonical fractional Brownian motion with H > 1/2.
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