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Abstract In this paper, we study the time periodic traveling wave solutions for a periodic
SIR epidemic model with diffusion and standard incidence. We establish the existence of
periodic traveling waves by investigating the fixed points of a nonlinear operator defined
on an appropriate set of periodic functions. Then we prove the nonexistence of periodic
traveling via the comparison arguments combined with the properties of the spreading speed
of an associated subsystem.
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1 Introduction

The investigation on traveling wave solutions for various evolution systems arising in
biology, chemistry, epidemiology and physics has received increasing interest, see, e.g.,
[6,16,35,36,47,51,56] and references therein. As a basic but important subject, the existence
of traveling wave solutions has been widely studied. For autonomous monotone evolu-
tion systems, by standard approaches such as monotone iteration, comparison arguments
or monotone semiflow, the theory of traveling wave solutions has been well developed, see,
e.g., [13,14,28,42,48] and references therein. Meanwhile, there are a few results on the exis-
tence of traveling wave solutions for nonautonomous (in particular, time periodic) monotone
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systems: Alikakos et al. [1] established the existence and global stability of time periodic
travelingwave solutions (see the form of (1.3)) for periodic reaction–diffusion equationswith
bistable nonlinearities; Liang et al. [27] extended the theory of spreading speeds and traveling
waves for monotone autonomous semiflows to periodic semiflows in the monostable case;
Fang and Zhao [14] developed the theory of traveling waves for monotone semiflows with
bistable structure and applied it to time-periodic evolution system; Zhao and Ruan [54,55]
studied the existence, uniqueness and asymptotic stability of time periodic travelling wave
solutions to periodic reaction–diffusion, advection–reaction–diffusion Lotka–Volterra com-
petition systems, respectively; For bistable periodic traveling waves of periodic and diffusive
Lotka–Volterra competition system, we refer to Bao and Wang [2]. More recently, Fang et
al. [15] developed the theory of traveling waves and spreading speeds for time-space peri-
odic monotone semiflows with monostable structure and applied the abstract results to a two
species competition reaction–advection–diffusion model.

It is well known that many nonlinear reaction–diffusion systems modeling interaction
of multi-species, such as predator and prey, the disease transmission among the suscepti-
ble individuals and infective individuals, combustion and the chemical reaction, etc., are
non-monotone. Due to the lack of the comparison principle and monotonic properties for
such evolution systems, the study of traveling waves is very challenging, and the related
research is very limited. In the pioneering work of Dunbar [10,11], the shooting argument
was applied to prove the existence of traveling waves for a classical Lotka–Volterra predator–
prey model. This method is also used in [25,30] for predator–prey systems with different
functional response, and in [19,20] for classical Kermack–McKendrick SIR models. Huang
[21] further developed the method in [10,11] to provide a more effective way to obtain
traveling waves for a large class of predator–prey systems. Based on a fixed-point prob-
lem and the limiting argument, Ducrot and Magal [8] and Ducrot et al. [9] studied the
existence of traveling waves for an infection-age structured Kermack–McKendrick model
with diffusion. Motivated by the method in [8,9], there were also some works involving in
traveling waves for a bio-reaction model [44], an H5N1 arian influenza model [46], and
nonlocal dispersal Kermack–Mckendrick models [26,49,50]. By constructing an invari-
ant cone and applying Schauder’s fixed point theorem, Wang and Wu [45] obtained the
existence of travelling waves for a class of diffusive Kermack–McKendrick SIR models
with non-local and delayed disease transmission (see also [38,39]). Schauder’s fixed point
theorem is also applied for the existence of traveling waves for evolution systems with-
out monotonicity, see, e.g., [24,29,33,34,37,52]. More recently, Huang [22] presented a
geometrical approach to investigate the existence of traveling waves and their minimum
wave speed for non-monotone reaction–diffusion systems, which include the models of
predator–prey interaction, the combustion, Belousov-Zhabotinskii reaction, SI-type of dis-
ease transmission, and biological flow reactor in chemostat. Zhang et al. [53] introduced
the concept of weak traveling waves and obtained the necessary and sufficient condi-
tions for the existence of such solutions for a class of non-cooperative diffusion-reaction
systems. Fu and Tsai [18] employed an iteration process to construct a set of super/sub-
solutions to establish the existence of a family of traveling waves with the minimum
speed.

However, there are very few investigations on the time periodic traveling wave solutions
for periodic non-monotone evolution systems. The purpose of this paper is to study time
periodic traveling waves for the following periodic and diffusive SIR model with standard
incidence:
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⎧
⎪⎪⎨

⎪⎪⎩

∂
∂t S(t, x) = d1�S(t, x) − β(t)S(t,x)I (t,x)

S(t,x)+I (t,x) ,

∂
∂t I (t, x) = d2�I (t, x) + β(t)S(t,x)I (t,x)

S(t,x)+I (t,x) − γ (t)I (t, x),
∂
∂t R(t, x) = d3�R(t, x) + γ (t)I (t, x),

(1.1)

where S(t, x), I (t, x) and R(t, x) denote the densities of the susceptible, infected and
removed individuals at time t and in location x, respectively. Further, d1, d2 and d3 are
the diffusion rates for the susceptible, infected and removed individuals, respectively. The
infection rate β and the removal rate γ are positive T -periodic continuous functions of t.
Here the incidence reflects the recovered individuals are removed from the population, and
not involved in the contact and disease transmission, see [5,40]. Since the equation for R
of system (1.1) is decoupled from the equations for S and I, it suffices to consider a two-
dimensional system for S and I :

{
∂
∂t S(t, x) = d1�S(t, x) − β(t)S(t,x)I (t,x)

S(t,x)+I (t,x) ,

∂
∂t I (t, x) = d2�I (t, x) + β(t)S(t,x)I (t,x)

S(t,x)+I (t,x) − γ (t)I (t, x).
(1.2)

Time periodic traveling waves to system (1.2) are defined to be solutions of the form
(
S(t, x)
I (t, x)

)

=
(

φ(t, x + ct)
ψ(t, x + ct)

)

,

(
φ(t + T, z)
ψ(t + T, z)

)

=
(

φ(t, z)
ψ(t, z)

)

(1.3)

satisfying (
φ(t,±∞)

ψ(t,±∞)

)

=
(

φ±(t)
ψ±(t)

)

,

where c is called the wave speed, z = x + ct is the moving coordinate, and

(
φ+(t)
ψ+(t)

)

and
(

φ−(t)
ψ−(t)

)

are two periodic solutions of the corresponding kinetic system:

{ dS
dt = −β(t)S(t)I (t)

S(t)+I (t) ,

d I
dt = β(t)S(t)I (t)

S(t)+I (t) − γ (t)I (t).
(1.4)

The profile (φ, ψ) then solves the following time periodic parabolic system:
⎧
⎨

⎩

φt (t, z) = d1φzz(t, z) − cφz(t, z) − β(t)φ(t,z)ψ(t,z)
φ(t,z)+ψ(t,z) , (t, z) ∈ R × R,

ψt (t, z) = d2ψzz(t, z) − cψz(t, z) + β(t)φ(t,z)ψ(t,z)
φ(t,z)+ψ(t,z) − γ (t)ψ(t, z), (t, z) ∈ R × R.

(1.5)
Since the periodic system (1.2) does not admit the comparison principle, the theory and

methods developed for monotone periodic systems (see, e.g., [14,27,54,55]) cannot be used
here. In view of the profile system (1.5), the shooting arguments (see, e.g., [10,11,21,22]) for
predator–prey systems do not apply to periodic system (1.2). Although Schauder’s fixed point
theorem is a powerful tool to prove the existence of traveling wave solutions for autonomous
evolution systems (see, e.g., [24,33,38,39,45,53]), it may not be applied directly to periodic
system (1.2). Our strategy is to reduce the existence of periodic traveling waves to a fixed
point problem by constructing a non-monotone operator on an appropriate convex set of
periodic functions. To obtain the nonexistence of time periodic traveling waves, we combine
the comparison arguments for single equations and the properties of spreading speeds for
periodic and monotone systems, which is of its own interest and may apply to other non-
monotone models.
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This paper is organized as follows. In Sect. 2, we first construct some appropriate sub-
and super-solutions to obtain an invariant convex set, then define a nonlinear non-monotone
operator on it, and finally apply Schauder’s fixed point theorem to get the existence of
periodic traveling waves. More precisely, we prove that if the basic reproduction number

R0 :=
∫ T
0 β(t)dt

∫ T
0 γ (t)dt

of the periodic kinetic system (1.4) is greater than unity, then there exists

a c∗ > 0 such that for any c ∈ (c∗,∞), system (1.2) for S and I admits a time periodic,
non-trivial and non-negative traveling wave solution with speed c. Section 3 is devoted to the
nonexistence of such traveling waves for two cases where R0 ≤ 1, or R0 > 1 and c ∈ (0, c∗).

2 The Existence of Periodic Traveling Waves

In this section,we focus on the non-trivial and timeperiodic travellingwaves (φ(t, z),ψ(t, z))
of the form (1.3). Such solutions satisfy the following system:

⎧
⎨

⎩

φt (t, z) = d1φzz(t, z) − cφz(t, z) − β(t)φ(t,z)ψ(t,z)
φ(t,z)+ψ(t,z) ,

ψt (t, z) = d2ψzz(t, z) − cψz(t, z) + β(t)φ(t,z)ψ(t,z)
φ(t,z)+ψ(t,z) − γ (t)ψ(t, z).

(2.1)

This system is posedon (t, x) ∈ R+×R and is supplementedwith the following asymptotic
boundary conditions

φ(t,−∞) = S0, φ(t,∞) = S∞, ψ(t,±∞) = 0 uniformly in t ∈ R. (2.2)

Here S0 > 0 is a constant, and (S0, 0) is the initial disease-free steady state. The parameter
c > 0 is the wave speed, while constant S∞ ≥ 0 describes the density of susceptible
individuals after the epidemic. Our investigation procedure is as follows. Firstly, we construct
some appropriate sub- and super-solutions that will be essential to obtain a closed and convex
set D. Note that this set contains all the bounded and uniformly continuous functions which
lie between the sub- and super-solutions. Secondly, for any (φ̃, ψ̃) ∈ D, we find a unique T -
periodic solution (φ∗, ψ∗) to a linear integral system, and then we define a nonlinear operator
F such that F(φ̃, ψ̃) = (φ∗, ψ∗). Finally, by applying Schauder’s fixed point theorem to F,

we establish the existence of periodic traveling waves.

2.1 Construction of Sub- and Super-solutions

Linearizing system (2.1) at the disease-free steady state (S0, 0), we obtain the following
equation for the infective variable:

Jt = d2 Jzz(t, z) − cJz(t, z) + (β(t) − γ (t))J (t, z). (2.3)

Denote H = 1
T

∫ T
0 H(t)dt for any T -periodic function H(·). Define

�c(λ) : = d2λ
2 − cλ + κ0, κ0 := 1

T

∫ T

0
[β(t) − γ (t)]dt = β(·) − γ (·), c ∈ R, λ ∈ R,

Qλ(t) = exp

(∫ t

0

[
β(s) − γ (s)

]
ds − tκ0

)

.

Clearly,

κ0Q
λ(t) = [

β(t) − γ (t)
]
Qλ(t) − dQλ(t)

dt
.
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We also set

κ = d2κ0, λc = c − √
c − 4κ

2d2
if c > c∗ := 2

√
κ.

In the following, we always assume that R0 :=
∫ T
0 β(t)dt

∫ T
0 γ (t)dt

> 1, and fix c > c∗ := 2
√

κ.

Let K (t) :=exp
(∫ t

0

[
d2λ2c−cλc+(β(s) − γ (s))

]
ds

)
. We define four functions as follows:

φ+(t, z) : = S0, φ−(t, z) := max
{
S0

(
1 − M1e

ε1z
)
, 0

}
,

ψ+(t, z) : = K (t)eλcz, ψ−(t, z) := max
{
K (t)eλcz

(
1 − M2e

ε2z
)
, 0

}
,

where ε1, M1, ε2 and M2 are all positive constants and will be determined below. Then we
have the following results.

Lemma 2.1 The function ψ+(t, z) = K (t)eλcz satisfies the following linear equation:

ψt = d2ψzz − cψz + (β(t) − γ (t))ψ. (2.4)

Lemma 2.2 Suppose ε1 is sufficiently small such that 0 < ε1 < λc and M1 > 1 is sufficiently
large. Then the function φ− satisfies

φt − d1φzz + cφz ≤ −β(t)ψ+φ

ψ+ + φ
(2.5)

for any z �= z1 := −ε−1
1 lnM1.

Proof If z > −ε−1
1 lnM1, then φ−(t, z) = 0, which implies that the inequality (2.5) holds.

If z < −ε−1
1 lnM1, then φ−(t, z) = S0 (1 − M1eε1z) . Hence, the inequality (2.5) is

equivalent to

d1S0M1ε
2
1e

ε1z − cS0M1ε1e
ε1z ≤ −β(t)S0(1 − M1eε1z)K (t)eλcz

S0(1 − M1eε1z) + K (t)eλcz

for any z < z1 := −ε−1
1 lnM1. Rewriting the above inequality, we have

S0M1ε1(c − d1ε1) ≥ β(t)S0(1 − M1eε1z)K (t)e(λc−ε1)z

S0(1 − M1eε1z) + K (t)eλcz
.

So for z < z1 := −ε−1
1 lnM1, it is sufficient to verify

S0M1ε1(c − d1ε1) ≥ β(t)K (t)e−ε−1
1 (λc−ε1) lnM1 = β(t)K (t)M

−ε−1
1 (λc−ε1)

1 , ∀t ∈ R.

Note that β(t) and K (t) are positive T -periodic functions. Thus the above inequality holds
true if we choose M1 = 1/ε1 with ε1 > 0 sufficiently small. 
�
Lemma 2.3 Suppose ε2 > 0 sufficiently small such that ε2 < min{ε1, λ′

c − λc}, where
λ′
c := c+√

c−4κ
2d2

, and M2 is sufficiently large such that −ε−1
2 lnM2 < −ε−1

1 lnM1. Then the

function ψ− satisfies

ψt − d2ψzz + cψz ≤ −γ (t)ψ − A[φ−, ψ] (2.6)

for any z �= z2 := −ε−1
2 lnM2, where A[φ,ψ](t, z) is defined by

A[φ,ψ](t, z) =
{

0, φ(t, z)ψ(t, z) = 0, ∀(t, z) ∈ R × R,
β(t)φ(t,z)ψ(t,z)
φ(t,z)+ψ(t,z) , φ(t, z)ψ(t, z) �= 0, ∀(t, z) ∈ R × R.
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Proof We assume that M2 is sufficiently large such that −ε−1
2 lnM2 < −ε−1

1 lnM1. When
z > z2 := −ε−1

2 lnM2, we see that ψ−(t, z) = 0, and hence, the inequality (2.6) holds.
Let z < z2 := −ε−1

2 lnM2. Then ψ−(t, z) = K (t)eλcz (1 − M2eε2z) and φ−(t, z) =
S0(1 − M1eε1z). It suffices to verify

ψ−
t − d2ψ

−
zz+cψ−

z ≤−γ (t)ψ− − β(t)φ−ψ−

φ− + ψ− ≤(β(t) − γ (t)) ψ− − β(t)(ψ−)2

φ− + ψ− . (2.7)

In view of the expression of K (t) and ψ−(t, z), we have that

ψ−
t − d2ψ

−
zz + cψ−

z − (β(t) − γ (t)) ψ−

= K ′(t)eλcz
(
1 − M2e

ε2z
) − d2

[
λ2c K (t)eλcz

(
1 − M2e

ε2z
) − λcε2M2K (t)e(λc+ε2)z

−(λc + ε2)ε2M2K (t)e(λc+ε2)z
]

+ c
[
λcK (t)eλcz

(
1 − M2e

ε2z
) − ε2M2K (t)e(λc+ε2)z

]

−[β(t) − γ (t)]K (t)eλcz
(
1 − M2e

ε2z
)

= eλcz
{
K ′(t) − d2λ

2
c K (t) + cλcK (t) − [β(t) − γ (t)]K (t)

}

−M2e
(λc+ε2)z

{
K ′(t) − d2(λc + ε2)

2K (t) + c(λc + ε2)K (t) − [β(t) − γ (t)]K (t)
}

= −M2e
(λc+ε2)z K (t)

{[
d2λ

2
c − cλc

] − [
d2(λc + ε2)

2 − c(λc + ε2)
]}

.

= M2e
(λc+ε2)z K (t) · �c(λc + ε2)

Then the inequality (2.7) is equivalent to

M2e
(λc+ε2)z K (t) · �c(λc + ε2) ≤ − β(t)K (t)e2λcz (1 − M2eε2z)2

S0 (1 − M1eε1z) + K (t)eλcz (1 − M2eε2z)
. (2.8)

Since ε1 < λ′
c − λc, it follows that λc + ε2 ∈ (λc, λ

′
c), and hence

�c(λc + ε2) = d2(λc + ε2)
2 − c(λc + ε2) + κ0 < 0.

Due to the positivity and periodicity of both K (t) and β(t) in R, we see that the inequality
(2.8) is satisfied if and only if

−M2�c(λc + ε2)
[
S0

(
1 − M1e

ε1z
) + K (t)eλcz

(
1 − M2e

ε2z
)]

≥ β(t)e(λc−ε2)z
(
1 − M2e

ε2z
)2

for all t ∈ [0, T ]. In terms of z < −ε−1
2 lnM2, we only need to show

−M2�c(λc + ε2)S0
(
1 − M1M

−ε1/ε2
2

)
≥ β(t)M−(λc−ε2)/ε2

2 for all t ∈ [0, T ].
Since λc − ε2 > λc − ε1 > 0, when M2 tends to infinity, the right-hand side of the last
inequality tends to zero and the left-hand side of the last inequality tends to infinity, which
means the last inequality holds true for large M2. 
�
2.2 Reduction to a Fixed Point Problem

Let X = BUC(R,R) be the Banach space of all bounded uniformly continuous functions
from R into R with the usual suppremum norm ‖ · ‖X . Let

X+ = {w ∈ X : w(x) ≥ 0, x ∈ R}.
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Then X is a Banach lattice under the partial ordering induced by X+. It follows from [7,
Theorem 1.5] that the X -realization d�X of d� generates a strongly continuous analytic
semigroup T (t) on X and T (t)X+ ⊂ X+ for t ≥ 0. In addition, we have

(T (t)w) (x) = 1√
4πdt

∫

R

e− (x−y)2

4dt w(y)dy, t > 0, x ∈ R, w(·) ∈ X. (2.9)

For a given positive constant μ, denote the functional space Bμ

([0, T ] × R,R2
)
by

Bμ

([0, T ] × R,R2) :=
⎧
⎨

⎩
u = (u1, u2) :

ui ∈ BUC([0, T ] × R,R), sup
t∈[0,T ],x∈R

e−μ|x ||ui (t, x)| < ∞,

ui (0, x) = ui (T, x), x ∈ R, i = 1, 2.

⎫
⎬

⎭

equipped with the norm

‖u‖μ := max

{

sup
t∈[0,T ],x∈R

e−μ|x ||u1(t, x)|, sup
t∈[0,T ],x∈R

e−μ|x ||u2(t, x)|
}

.

Define a convex cone D as

D =
{
(φ̃, ψ̃) ∈ Bμ

([0, T ] × R,R2) : φ− ≤ φ̃ ≤ φ+, ψ− ≤ ψ̃ ≤ min{ψ+,�}
}

,

where � > 0 is sufficiently large such that β(t)S0
S0+�

− γ (t) < 0 for t ∈ [0, T ]. For any given

(φ̃, ψ̃) ∈ D, define maps

f1[φ̃, ψ̃](t, z) = α1φ̃(t, z) − A[φ̃, ψ̃](t, z)
and

f2[φ̃, ψ̃](t, z) = α2ψ̃(t, z) + A[φ̃, ψ̃](t, z) − γ (t)ψ̃(t, z),

where the functional A is defined as in Lemma 2.3, α1 and α2 are positive constants and
satisfy α1 > maxt∈[0,T ] β(t) and α2 > maxt∈[0,T ] γ (t), respectively. Fix a (φ̃, ψ̃) ∈ D.

Consider the following parabolic initial value problem:
⎧
⎪⎨

⎪⎩

φt − d1φzz + cφz + α1φ = f1[φ̃, ψ̃](t, z), 0 < t ≤ T, z ∈ R,

ψt − d1ψzz + cψz + α2ψ = f2[φ̃, ψ̃](t, z), 0 < t ≤ T, z ∈ R,

φ(0, z) = φ0(z), ψ(0, z) = ψ0(z), z ∈ R.

(2.10)

Rewrite (2.10) as an integral system:
⎧
⎨

⎩

φ(t, z) = (T1(t)φ0) (z) + ∫ t
0

(
T1(t − s) f1[φ̃, ψ̃](s)

)
(z)ds,

ψ(t, z) = (T2(t)ψ0) (z) + ∫ t
0

(
T2(t − s) f2[φ̃, ψ̃](s)

)
(z)ds,

(2.11)

where Ti (t) is the analytic semigroup (see, e.g., [7], [31]) generated by the linear differential
operator Ai : D(Ai ) → C(R) defined by

D(Ai ) =
⎧
⎨

⎩

⋂

1≤p<∞
W 2,p

loc : Aiu = diuzz − cuz − αi u ∈ C(R)

⎫
⎬

⎭
, i = 1, 2.
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Moreover, D(A) = UC(R) (see [31, Chapter 5]), and following from (2.9), it is not
difficult to obtain that

(Ti (t)w) (x) = e−αi t 1√
4πdt

∫

R

e− (x−ct−y)2

4dt w(y)dy, t > 0, x ∈ R, w(·) ∈ X. (2.12)

We note that the solution of (2.11) is the mild solution of linear system (2.10).
In what follows, we intend to prove that for any given (φ̃, ψ̃) ∈ D, there exists a unique

(φ∗, ψ∗) ∈ D satisfying
{

φ∗(t) = T1(t)φ∗(0) + ∫ t
0 T1(t − s) f1[φ̃, ψ̃](s)ds,

ψ∗(t) = T2(t)ψ∗(0) + ∫ t
0 T2(t − s) f2[φ̃, ψ̃](s)ds. (2.13)

Given a positive number η, denote a functional space B̃η(R,R2) by

B̃η

(
R,R2) :=

{

v = (v1, v2) : vi ∈ X, sup
z∈R

e−η|z||vi (z)| < ∞, z ∈ R, i = 1, 2.

}

equipped with the norm

|v|η := max

{

sup
z∈R

e−η|z||v1(z)|, sup
z∈R

e−η|z||v2(z)|
}

.

Define

D̃ :=
{

(φ0(·), ψ0(·)) ∈ B̃μ

(
R,R2) : φ−(0, z) ≤ φ0(z) ≤ φ+(0, z)

ψ−(0, z) ≤ ψ0(z) ≤ min{ψ+(0, z),�}

}

.

Clearly, D̃ is convex and closed. For a given (φ̃, ψ̃) ∈ D, fi [φ̃, ψ̃](t, ·), i = 1, 2 belong
to C([0, T ];C(R)). Moreover, f1[φ̃, ψ̃] and f2[φ̃, ψ̃] admit uniform bounds with respect
to (φ̃, ψ̃) ∈ D, respectively, uniformly for (t, x) ∈ [0, T ] × R. Thus, with the aid of [31,
Theorem 5.1.2], for any (φ0, ψ0) ∈ D̃, it follows that (φ, ψ) defined by (2.11) belongs to
C([0, T ] × R,R) ∩ Cθ,2θ ([ε, T ] × R,R) for every ε ∈ (0, T ) and θ ∈ (0, 1), and there are
C1(ε, θ) > 0,C2(ε, θ) > 0 such that

‖φ(T, ·)‖C2θ (R) ≤ C1(ε, θ)
(
ε−θ‖φ0‖∞ + ‖ f1[φ̃, ψ̃]‖∞

)
(2.14)

and
‖ψ(T, ·)‖C2θ (R) ≤ C2(ε, θ)

(
ε−θ‖ψ0‖∞ + ‖ f2[φ̃, ψ̃]‖∞

)
. (2.15)

In view of Lemma 2.1, we have the following integral equality for the function ψ+(t, z) :

ψ+(t) = T2(t)ψ
+(0) +

∫ t

0
T2(t − s)

[
α2ψ

+(s) + (β(s) − γ (s))ψ+(s)
]
ds. (2.16)

By Lemmas 2.2 and 2.3, and similar arguments to [43, Lemma 3.2], we further show the
integral inequalities for φ−(t, z) and ψ−(t, z).

Lemma 2.4 The following inequalities for φ− and ψ−

φ−(t) ≤ T1(t)φ
−(0) +

∫ t

0
T1(t − s) f1[φ−, ψ+](s)ds (2.17)

and

ψ−(t) ≤ T2(t)ψ
−(0) +

∫ t

0
T2(t − s) f2[φ−, ψ−](s)ds (2.18)

are valid, respectively.
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Proof Let φ̂−(t, z) = φ−(t, z+ct) and ψ̂+(t, z) = ψ+(t, z+ct) for any (t, z) ∈ [0, T ]×R.

Then for any t ∈ [0, T ], by Lemma 2.2,

φ̂−
t (t, z) − d1φ̂

−
zz(t, z) + α1φ̂

−(t, z) − f1[φ̂−, ψ̂+](t, z) ≤ 0

for any z �= z−(t) = 1
ε1

(− lnM1 − cε1t). Clearly,

∂φ̂−(t, z−(t0) − 0)

∂z
= lim

z→z−(t0)−0

{
−S0M1ε1e

ε1(z+ct)
}

= −ε1S0 < 0.

Define

G(t, z) := −φ̂−
t (t, z) + d1φ̂

−
zz(t, z) − α1φ̂

−(t, z) + f1[φ̂−, ψ̂+](t, z) ≥ 0

and

H(φ̂−)(t, z, r) := e−α1(t−r)

√
4πd1(t − r)

∫ ∞

−∞
e
− (z−y)2

4d1(t−r) φ̂−(r, y)dy.

Then, by a direct calculation, we have

∂

∂r
H(φ̂−)(t, z, r) = α1e−α1(t−r)

√
4πd1(t − r)

∫ ∞

−∞
e
− (z−y)2

4d1(t−r) φ̂−(r, y)dy

+ e−α1(t−r)

2(t − r)
√
4πd1(t − r)

∫ ∞

−∞
e
− (z−y)2

4d1(t−r) φ̂−(r, y)dy

− e−α1(t−r)

√
4πd1(t − r)

∫ ∞

−∞
(z − y)2

4d1(t − r)2
e
− (z−y)2

4d1(t−r) φ̂−(r, y)dy

+ d1e−α1(t−r)

√
4πd1(t − r)

∫ ∞

−∞
e
− (z−y)2

4d1(t−r)
∂2φ̂−(r, y)

∂y2
dy

− e−α1(t−r)

√
4πd1(t − r)

∫ ∞

−∞
e
− (z−y)2

4d1(t−r) α1φ̂
−(r, y)dy

+ e−α1(t−r)

√
4πd1(t − r)

∫ ∞

−∞
e
− (z−y)2

4d1(t−r)
[
f1[φ̂−, ψ̂+](r, y) − G(r, y)

]
dy.

Furthermore, integration by parts yields

d1e−α1(t−r)

√
4πd1(t − r)

∫ ∞

−∞
e
− (z−y)2

4d1(t−r)
∂2φ̂−(r, y)

∂y2
dy

= d1e−α1(t−r)

√
4πd1(t − r)

∫ z−(r)

−∞
e
− (z−y)2

4d1(t−r)
∂2φ̂−(r, y)

∂y2
dy

= d1e−α1(t−r)

√
4πd1(t − r)

e
− (z−z−(r))2

4d1(t−r)
∂φ̂−(r, z−(r) − 0)

∂z

− e−α1(t−r)

√
4πd1(t − r)

∫ z−(r)

−∞
1

2(t − r)
e
− (z−y)2

4d1(t−r) φ̂−(r, y)dy

+ e−α1(t−r)

√
4πd1(t − r)

∫ z−(r)

−∞
(z − y)2

4d1(t − r)2
e
− (z−y)2

4d1(t−r) φ̂−(r, y)dy.
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Here we have used the fact that φ̂−(t, z) = 0, ∀z > z−(t). In view of ∂φ̂−(r,z−(r)−0)
∂z =

−ε1S0, we have

∂

∂r
H(φ̂−)(t, z, r) = −ε1S0

d1e−α1(t−r)

√
4πd1(t − r)

e
− (z−z−(r))2

4d1(t−r)

+ e−α1(t−r)

√
4πd1(t − r)

∫ ∞

−∞
e
− (z−y)2

4d1(t−r)
[
f1[φ̂−, ψ̂+](r, y) − G(r, y)

]
dy.

Since
d1e−α1(t−r)

√
4πd1(t − r)

exp

{

− (z − z−(r))2

4d1(t − r)

}
∂φ̂−(r, z−(r) − 0)

∂z

is integrable in r ∈ [0, t), ∂
∂r H(φ̂−)(t, z, r) is continuous in r ∈ [0, t), and

lim
r→t−0

e−α1(t−r)

√
4πd1(t − r)

∫ ∞

−∞
e
− (z−y)2

4d1(t−r) φ̂−(r, y)dy = φ̂−(t, z),

we conclude that

φ̂−(t, z) = lim
η→0+0

H(φ̂−)(t, z, t − η)

= H(φ̂−)(t, z, 0) + lim
η→0+0

∫ t−η

0

∂

∂r
H(φ̂−)(t, z, r)dr

= e−α1t

√
4πd1t

∫ ∞

−∞
e
− (z−y)2

4d1 t φ̂−(0, y)dy

−ε1S0

∫ t

0

d1e−α1(t−r)

√
4πd1(t − r)

e
− (z−z−(r))2

4d1(t−r) dr

+
∫ t

0

e−α1(t−r)

√
4πd1(t − r)

∫ ∞

−∞
e
− (z−y)2

4d1(t−r)
[
f1[φ̂−, ψ̂+](r, y) − G(r, y)

]
dydr.

With the aid of G(r, y) ≥ 0, we see that

φ̂−(t) ≤ T̂1(t)φ̂
−(0) +

∫ t

0
T̂1(t − r) f1[φ̂−, ψ̂+](r)dr, t ∈ (0, T ],

where T̂1(t) is defined by

(
T̂1(t)φ

)
(x) = e−α1t

√
4πd1t

∫ ∞

−∞
e
− (z−y)2

4d1 t φ(y)dy.

Hence, it is not difficult to obtain the inequality (2.17) for φ−. Similarly, we can show that
the inequality (2.18) for ψ− holds. 
�

On the basis of the above integral equation and integral inequalities, we shall show the
invariance for integral equations (2.11) (see, e.g., [32]).

Lemma 2.5 Let (φ(t, z;φ0, ψ0), ψ(t, z;φ0, ψ0)) be the solutions of the system (2.11) with
the initial value (φ0, ψ0) ∈ D̃. Then

φ−(t, z) ≤ φ(t, z;φ0, ψ0) ≤ φ+(t, z),

ψ−(t, z) ≤ ψ(t, z;φ0, ψ0) ≤ min{ψ+(t, z),�}
for (t, z) ∈ [0, T ] × R.
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Proof Recall that (φ̃, ψ̃) ∈ D, (φ0, ψ0) ∈ D̃ and (φ, ψ) satisfies the system (2.11). More-
over,

φ−(t, z) ≤ φ̃(t, z) ≤ φ+(t, z), ψ−(t, z) ≤ ψ̃(t, z) ≤ min{ψ+(t, z), �}, (t, z)∈[0, T ] × R

and

φ−(0, z) ≤ φ0(z) ≤ φ+(0, z), ψ−(0, z) ≤ ψ0(z) ≤ min{ψ+(0, z), �}, (t, z)∈[0, T ] × R.

Since φ+(t, z) ≡ S0, it is easy to see that

φ+(t) = T1(t)φ
+(0) + α1

∫ t

0
T1(t − s)φ+(s)ds. (2.19)

Due to the positivity of semigroup T1(·), we have
∫ t

0
T1(t − s) f1[φ̃, ψ̃](s)ds ≤ α1

∫ t

0
T1(t − s)φ̃(s)ds

for any t ∈ (0, T ]. By (2.19), it follows that
∫ t

0
T1(t − s) f1[φ̃, ψ̃](s)ds ≤ φ+(t) − T1(t)φ

+(0) ≤ φ+(t) − T1(t)φ0

for any t ∈ (0, T ], which implies that φ(t, z) ≤ φ+(t, z) for any t ∈ [0, T ] and z ∈ R. Let
w(t, z) = φ(t, z) − φ−(t, z),∀(t, z) ∈ [0, T ] × R. By (2.17), we have

w(t) =T1(t)[φ0 − φ−(0)]
+

∫ t

0
T1(t − s)

{
α1[φ̃(s) − φ−(s)] − A[φ̃, ψ̃](s) + A[φ−, ψ+](s)

}
ds

≥ T1(t)[φ0 − φ−(0)]

+
∫ t

0
T1(t − s)

{

α1[φ̃(s) − φ−(s)] − β(s)φ̃(s)ψ+(s)

φ̃(s) + ψ+(s)
+ β(s)φ−(s)ψ+(s)

φ̃(s) + ψ+(s)

}

ds

=T1(t)[φ0 − φ−(0)] +
∫ t

0
T1(t − s)

[

α1 − β(s)ψ+(s)

φ̃(s) + ψ+(s)

]

[φ̃(s) − φ−(s)]ds

≥T1(t)[φ0 − φ−(0)] +
∫ t

0
T1(t − s)[α1 − β(s)][φ̃(s) − φ−(s)]ds.

Since α1 > maxt∈[0,T ] β(t), it follows that w(t) ≥ 0,∀t ∈ [0, T ], which implies that

φ(t, z) ≥ φ−(t, z), ∀(t, z) ∈ [0, T ] × R.

In the following, we consider ψ(t, z;φ0, ψ0) for t ∈ [0, T ], z ∈ R. It is easy to see that
∫ t

0
T2(t − s) f2[φ̃, ψ̃](s)ds =

∫ t

0
T2(t − s)

[
α2ψ̃(s) + A[φ̃, ψ̃](s) − γ (s)ψ̃(s)

]
ds

≤
∫ t

0
T2(t − s)

[
α2ψ

+(s) + (β(s) − γ (s))ψ+(s)
]
ds

for any t ∈ (0, T ]. By virtue of (2.16), we have
∫ t

0
T2(t − s) f2[φ̃, ψ̃](s)ds ≤ ψ+(t) − T2(t)ψ

+(0) ≤ ψ+(t) − T2(t)ψ0
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for all t ∈ (0, T ]. In addition, ψ(0, z) = ψ0(z) ≤ ψ+(0, z) for any z ∈ R. It then follows
that

ψ(t, z; φ̃, ψ̃) ≤ ψ+(t, z), ∀t ∈ [0, T ], z ∈ R.

Recall that � > 0 satisfies β(t)S0
S0+�

− γ (t) < 0 for t ∈ [0, T ]. It is not difficult to prove that
ψ+

�(t, z) ≡ � satisfies that

ψ+
�(t, z) = T2(t)ψ

+
�(0, z) + α2

∫ t

0
T2(t − s)ψ+

�(s, z)ds.

By a similar argument to the proof for φ+(t, z), we can prove that

ψ(t, z; φ̃, ψ̃) ≤ ψ+
�(t, z) ≡ �, ∀t ∈ [0, T ], z ∈ R.

Since T2(·) is positive and α2 > maxt∈[0,T ] γ (t), it follows that
∫ t

0
T2(t − s) f2[φ̃, ψ̃](s)ds ≥

∫ t

0
T2(t − s) f2[φ−, ψ−](s)ds

for any t ∈ (0, T ]. According to (2.18), we have
∫ t

0
T2(t − s) f2[φ̃, ψ̃](s)ds ≥ ψ−(t) − T2(t)ψ

−(0)

≥ ψ−(t) − T2(t)ψ, ∀t ∈ (0, T ],
which yields

ψ(t) = T2(t)ψ0 +
∫ t

0
T2(t − s) f2[φ̃, ψ̃](s)ds ≥ ψ−(t), ∀t ∈ (0, T ].

Additionally, ψ(0, z) = ψ0(z) ≥ ψ−(0, z),∀z ∈ R. Consequently, we have proved that

ψ(t, z; φ̃, ψ̃) ≥ ψ−(t, z), ∀t ∈ [0, T ], z ∈ R.

This completes the proof. 
�
For any given (φ̃, ψ̃) ∈ D, we denote the time-T map of system (2.11): (φ0(z), ψ0(z)) �→

(φ(T, z;φ0, ψ0), ψ(T, z;φ0, ψ0)) by

F(φ̃,ψ̃)(φ0(·), ψ0(·)) = (φ(T, ·;φ0, ψ0), ψ(T, ·;φ0, ψ0)) .

Thus, any fixed point of the T -map F(φ̃,ψ̃) gives a T -periodic solution of system (2.11).

Theorem 2.6 For any given (φ̃, ψ̃) ∈ D, there exists a unique (φ∗, ψ∗) ∈ D such that
(2.13) holds.

Proof In view of Lemma 2.5 and the definitions of φ± and ψ±, we assert that F(φ̃,ψ̃) maps

D̃ into D̃. For any compact interval I ⊂ R, due to the estimates (2.14) and (2.15), we can
conclude that {(φ(T, ·;φ0, ψ0), ψ(T, ·;φ0, ψ0)) : (φ0, ψ0) ∈ D̃} is compact on C(I,R2).
We can further show that F(φ̃,ψ̃) : D̃ → D̃ is compact with respect to |·|μ. In addition, it is not

difficult to see that F(φ̃,ψ̃) : D̃ → D̃ is continuous with respect to | · |μ. Thus, the Schauder’s

fixed point theorem implies that F(φ̃,ψ̃) admits a fixed point (φ∗
0 , ψ

∗
0 ) ∈ D̃. As a result,

(
φ(t, z;φ∗

0 , ψ
∗
0 ), ψ(t, z;φ∗

0 , ψ
∗
0 )

)
satisfies φ(T, z;φ∗

0 , ψ
∗
0 ) = φ∗

0 (z) andψ(T, z;φ∗
0 , ψ

∗
0 ) =

ψ∗
0 (z),∀z ∈ R. Furthermore, we claim that such a fixed point (φ∗

0 , ψ
∗
0 ) is unique. Suppose
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that there exists (φ∗∗
0 , ψ∗∗

0 ) ∈ D̃ such that
(
φ(t, z;φ∗∗

0 , ψ∗∗
0 ), ψ(t, z;φ∗∗

0 , ψ∗∗
0 )

)
satisfies

(2.11), and φ(T, z;φ∗∗
0 , ψ∗∗

0 ) = φ∗∗
0 (z), ψ(T, z;φ∗∗

0 , ψ∗∗
0 ) = ψ∗∗

0 (z),∀z ∈ R. Then

∣
∣φ(T, z;φ∗

0 , ψ
∗
0 ) − φ(T, z;φ∗∗

0 , ψ∗∗
0 )

∣
∣ ≤ e−α1T

∫

R

e
− (z−x−cT )2

4d1T√
4πd1T

∣
∣φ∗

0 (x) − φ∗∗
0 (x)

∣
∣ dx

≤ ∥
∥φ∗

0 (·) − φ∗∗
0 (·)∥∥L∞ e−α1T

∫

R

e
− (z−x−cT )2

4d1T√
4πd1T

dx

= e−α1T
∥
∥φ∗

0 (·) − φ∗∗
0 (·)∥∥L∞ .

On the other hand, φ(T, ·;φ∗
0 , ψ

∗
0 ) = φ∗

0 (·) and φ(T, ·;φ∗∗
0 , ψ∗∗

0 ) = φ∗∗
0 (·), we then see

that
∥
∥φ∗

0 (·) − φ∗∗
0 (·)∥∥L∞ ≤ e−α1T

∥
∥φ∗

0 (·) − φ∗∗
0 (·)∥∥L∞ .

Since e−α1T < 1, we have φ∗
0 (·) ≡ φ∗∗

0 (·). Similarly, we can also obtain ψ∗
0 (·) ≡ ψ∗∗

0 (·).
Hence, there exists a unique (φ∗, ψ∗) satisfying (2.13). 
�

Let (φ∗(t, z), ψ∗(t, z)) = (
φ(t, z;φ∗

0 , ψ
∗
0 ), ψ(t, z;φ∗

0 , ψ
∗
0 )

)
, where (φ∗

0 , ψ
∗
0 ) ∈ D̃ is the

unique fixed point of the operator F(φ̃,ψ̃). In view of Theorem 2.6, we can define an operator

F : D → Bμ by F(φ̃, ψ̃) = (φ∗, ψ∗). Thus, the existence of periodic traveling waves is
reduced to the existence of a fixed point of the operator F .

2.3 The Periodic Traveling Waves

In this section, we prove the existence of periodic traveling waves. As discussed in Sect. 2.2,
we need to study the existence of fixed points of the operator F . We start with the properties
of F . In view of Lemma 2.5, F maps D into D.

Lemma 2.7 ThemapF : D → D is continuouswith respect to the norm ‖·‖μ in Bμ([0, T ]×
R,R2).

Proof For any (φ̃1, ψ̃1) ∈ D and (φ̃2, ψ̃2) ∈ D, let (φ∗
i (t, z; φ̃i , ψ̃i ), ψ

∗
i (t, z; φ̃i , ψ̃i )) =

F(φ̃i , ψ̃i ), i = 1, 2. From the first equation of system (2.13) and (2.12), we see that

φ∗
i (T, z; φ̃i , ψ̃i ) = e−α1T

∫

R

1√
4πd1T

e
− (z−y−cT )2

4d1T φ∗
i (0, y)dy

+
∫ T

0
e−α1s

∫

R

1√
4πd1s

e
− (z−y−cs)2

4d1s f1[φ̃i , ψ̃i ](T − s, y)dyds.

Let β̃ = maxt∈[0,T ] β(t) and choose μ sufficiently small such that ed1Tμ2+cTμ−α1T ≤ 1
4 .

Consequently,
∣
∣
∣φ

∗
1 (T, z; φ̃1, ψ̃1) − φ∗

2 (T, z; φ̃2, ψ̃2)

∣
∣
∣ e−μ|z|

≤ e−α1T
∫

R

1√
4πd1T

e
− (z−y−cT )2

4d1T
∣
∣φ∗

1 (0, y) − φ∗
2 (0, y)

∣
∣ dye−μ|z|

+
∫ T

0
e−α1s

∫

R

1√
4πd1s

e
− (z−y−cs)2

4d1s
(∣
∣
∣φ̃1(T − s, y) − φ̃2(T − s, y)

∣
∣
∣

+
∣
∣
∣ψ̃1(T − s, y) − ψ̃2(T − s, y)

∣
∣
∣

)
(α1 + β̃)dydse−μ|z|
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≤ e−α1T
∫

R

1√
4πd1T

e
− (z−y−cT )2

4d1T
∣
∣φ∗

1 (0, y) − φ∗
2 (0, y)

∣
∣ e−μ|y|eμ|y−z|dy

+
∫ T

0
e−α1s

∫

R

1√
4πd1s

e
− (z−y−cs)2

4d1s
(∣
∣
∣φ̃1(T − s, y) − φ̃2(T − s, y)

∣
∣
∣ e−μ|y|

+
∣
∣
∣ψ̃1(T − s, y) − ψ̃2(T − s, y)

∣
∣
∣ e−μ|y|) eμ|y−z|(α1 + β̃)dyds

≤ e−α1T+μcT |φ∗
1 (0) − φ∗

2 (0)|μ
∫

R

1√
4πd1T

e
− (z−y−cT )2

4d1T eμ|z−y−cT |dy

+(α1 + β̃)

(∥
∥
∥φ̃1 − φ̃2

∥
∥
∥

μ
+

∥
∥
∥ψ̃1 − ψ̃2

∥
∥
∥

μ

)

×
∫ T

0
e−α1seμcs

∫

R

1√
4πd1s

e
− (z−y−cs)2

4d1s eμ|z−y−cs|dyds

= e−α1T+μcT |φ∗
1 (0) − φ∗

2 (0)|μ
∫

R

1√
4πd1T

e
− y2

4d1T eμ|y|dy

+(α1 + β̃)

(∥
∥
∥φ̃1 − φ̃2

∥
∥
∥

μ
+

∥
∥
∥ψ̃1 − ψ̃2

∥
∥
∥

μ

)

×
∫ T

0
e−α1seμcs

∫

R

1√
4πd1s

e
− y2

4d1s eμ|y|dyds

≤ 2e(d1μ2+cμ−α1)T |φ∗
1 (0) − φ∗

2 (0)|μ
+(α1 + β̃)

(∥
∥
∥φ̃1 − φ̃2

∥
∥
∥

μ
+

∥
∥
∥ψ̃1 − ψ̃2

∥
∥
∥

μ

) ∫ T

0
2e(d1μ2+cμ−α1)sds

≤ 2e(d1μ2+cμ−α1)T |φ∗
1 (0) − φ∗

2 (0)|μ

+
2(α1 + β̃)

(
e(d1μ2+cμ−α1)T − 1

)

d1μ2 + cμ − α1

(∥
∥
∥φ̃1 − φ̃2

∥
∥
∥

μ
+

∥
∥
∥ψ̃1 − ψ̃2

∥
∥
∥

μ

)

≤ 1

2
|φ∗

1 (0) − φ∗
2 (0)|μ

+
2(α1 + β̃)

(
e(d1μ2+cμ−α1)T − 1

)

d1μ2 + cμ − α1

(∥
∥
∥φ̃1 − φ̃2

∥
∥
∥

μ
+

∥
∥
∥ψ̃1 − ψ̃2

∥
∥
∥

μ

)

Let

L :=
4(α1 + β̃)

(
e(d1μ2+cμ−α1)T − 1

)

d1μ2 + cμ − α1
.

Since φ∗
i (T, z; φ̃i , ψ̃i ) = φ∗

i (0, z), i = 1, 2, we obtain from the above inequalities that

|φ∗
1 (0) − φ∗

2 (0)|μ ≤ L(‖φ̃1 − φ̃2‖μ + ‖ψ̃1 − ψ̃2‖μ).

On the other hand, φ∗
i (t, z; φ̃i , ψ̃i ) satisfies that

φ∗
i (t, z; φ̃i , ψ̃i ) = e−α1t

∫

R

1√
4πd1t

e
− (z−y−ct)2

4d1 t φ∗
i (0, y)dy

+
∫ t

0
e−α1s

∫

R

1√
4πd1s

e
− (z−y−cs)2

4d1s f1[φ̃i , ψ̃i ](t − s, y)dyds.
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Hence, by similar arguments to above, it is not difficult to conclude that φ∗(t, z; φ̃, ψ̃) is con-
tinuous in (φ̃, ψ̃) with respect to the norm ‖ · ‖μ. Similarly, we can prove that ψ∗(t, z; φ̃, ψ̃)

is continuous in (φ̃, ψ̃) with respect to the norm ‖ · ‖μ. 
�

Lemma 2.8 The map F : D → D is compact with respect to the norm ‖ · ‖μ in Bμ([0, T ]×
R,R2).

Proof For any (φ̃, ψ̃) ∈ D, let (φ∗, ψ∗) = F(φ̃, ψ̃), where (φ∗(t, z), ψ∗(t, z)), t ∈
[0, T ], z ∈ R is the solution of system (2.13). In particular, it follows from the esti-
mates (2.14) and (2.15) that there exists K ′(θ) > 0 independent of (φ̃, ψ̃) such that
‖φ∗(0)‖C2θ (R) = ‖φ∗(T )‖C2θ (R) ≤ K ′ and ‖ψ∗(0)‖C2θ (R) = ‖ψ∗(T )‖C2θ (R) ≤ K ′.
Moreover, f1[φ̃, ψ̃] and f2[φ̃, ψ̃] admit uniform bounds with respect to (φ̃, ψ̃) ∈ D, respec-
tively, uniformly for (t, x) ∈ [0, T ] × R. Thanks to [31, Theorem 5.1.2], it follows that
φ∗, ψ∗ ∈ Cθ,2θ ([0, T ] × R,R) with some θ ∈ (0, 1), and there exists Ci (θ) > 0, i = 1, 2
and K̃ (θ) > 0 such that

‖φ∗‖Cθ,2θ ([0,T ]×R) ≤ C1

(
‖φ∗(0)‖C2θ (R) + ‖ f1[φ̃, ψ̃]‖∞

)
≤ K̃ (θ) (2.20)

and
‖ψ∗‖Cθ,2θ ([0,T ]×R) ≤ C2

(
‖ψ∗(0)‖C2θ (R) + ‖ f2[φ̃, ψ̃]‖∞

)
≤ K̃ (θ). (2.21)

Let (φ∗
n , ψ

∗
n ) = F(φ̃n, ψ̃n). Since φ∗

n and ψ∗
n satisfy the estimations (2.20) and (2.21),

respectively, there is a subsequence of {(φ∗
n , ψ

∗
n )}, without loss of generality, still labeled

by {(φ∗
n , ψ

∗
n )}, such that it converges in Cloc([0, T ] × R,R2) to a function (φ∗∗, ψ∗∗) ∈

C([0, T ] × R,R∗), that is, for any N ∈ R
+,

lim
n→∞ ‖ (

φ∗
n , ψ

∗
n

) − (
φ∗∗, ψ∗∗) ‖C([0,T ]×[−N ,N ],R2) = 0. (2.22)

Clearly, (φ∗∗, ψ∗∗) ∈ D.

In the following, we are ready to prove that

lim
n→∞ ‖ (

φ∗
n , ψ

∗
n

) − (
φ∗∗, ψ∗∗) ‖μ = 0.

Note that D is uniformly bounded with respect to the norm ‖ · ‖μ. Accordingly, the norm
‖ (

φ∗
n , ψ

∗
n

) − (φ∗∗, ψ∗∗) ‖μ is uniformly bounded for all n ∈ N. Given any ρ > 0, it is not
difficult to find an M∗ > 0 such that

e−μ|z|| (φ∗
n (t, z), ψ

∗
n (t, z)

) − (
φ∗∗(t, z), ψ∗∗(t, z)

) | < ρ

for any t ∈ [0, T ], |z| > M∗ and n ∈ N. On the other hand, by virtue of (2.22), there exists
H ∈ N such that

e−μ|z|| (φ∗
n (t, z), ψ

∗
n (t, z)

) − (
φ∗∗(t, z), ψ∗∗(t, z)

) | < ρ

for any t ∈ [0, T ], z ∈ [−M∗, M∗] and n > H. As a consequence, it follows from the above
two inequalities that

(
φ∗
n (t, z), ψ

∗
n (t, z)

) → (φ∗∗(t, z), ψ∗∗(t, z)) with respect to the norm
‖ · ‖μ. 
�

To complete the proof of this section, we also need the following powerful lemma on the
Harnack inequalities of cooperative parabolic systems, which is from Földes and Poláčik
[17] (see also [41,54]).
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Lemma 2.9 ([17]) Let the differential operators

Lk :=
n∑

i, j=1

aki, j (t, x)
∂2

∂xi ∂x j
+

n∑

i=1

bki
∂

∂xi
− ∂

∂t
, k = 1, 2, . . . , l,

be uniformly parabolic in an open domain (τ, M)×� of (t, x) ∈ R×R
n, that is, there isα0 >

0 such that aki, j (t, x)ξi ξ j ≥ α0
∑n

i=1 ξ2i for any n-tuples of real numbers (ξ1, ξ2, . . . , ξn),

where −∞ < τ < M ≤ +∞ and � is open and bounded. Suppose that aki, j , b
k
i, j ∈

C((τ, M) × �,R) and

max
(t,x)∈(τ,M)�

|bki (t, x)| + |aki j (t, x)| ≤ β0

for some β0 > 0. Assume that

w = (w1, w2, . . . , wl) ∈ C((τ, M) × �̄,Rl) ∩ C1,2((τ, M) × �,Rl)

satisfies

l∑

s=1

ck,s(t, x)ws + Lkwk ≤ 0, (t, x) ∈ (τ, M) × �, k = 1, 2, . . . , l, (2.23)

where ck,s ∈ C((τ, M) × �,R) and ck,s ≥ 0 if k �= s, and

max
t,x∈(τ,M)×�

|ck,s(t, x)| ≤ γ0

(k,s=1,2,…,l) for some γ0 > 0. Let D and U be domains in � such that D ⊂⊂ U, dist(D̄,

∂U ) > �, and |D| > ε for certain positive constants � and ε. Let θ be a positive constant
with τ + 4θ < M. Then there exist positive constants p, ω1 and ω2 determined only by
α0, β0, γ0, �, ε, n, diam� and θ, such that

inf
(τ+3θ,τ+4θ)×D

wk ≥ ω1‖(wk)
+‖L p((τ+θ,τ+2θ)×D) − ω2 max

j=1,2,...,k
sup

∂P ((τ,τ+4θ)×U )

(w j )
−.

Here (wk)
+ = max{wk, 0}, (wk)

− = max{−wk, 0} and ∂P ((τ, τ + 4θ)×U ) = τ ×U ∪
[τ, τ + 4θ) × ∂U. Moreover, if all inequalities in (2.23) are replaced by equalities, then the
conclusion holds with p = ∞ and with ω1, ω2 independent of ε.

Now we are ready to prove the main result of this section.

Theorem 2.10 Assume that R0 > 1. For any c > c∗, system (1.2) admits a time periodic
travelling wave solution (φ∗, ψ∗) satisfying (2.2). Furthermore, 0 < 1

T

∫ T
0 ψ∗(t, z)dt ≤

S0 − S∞ for any z ∈ R, and

1

T

∫ ∞

−∞

∫ T

0
γ (t)ψ∗(t, z)dtdz = 1

T

∫ ∞

−∞

∫ T

0

β(t)φ∗(t, z)ψ∗(t, z)
φ∗(t, z) + ψ∗(t, z)

dtdz = c[S0 − S∞].

Proof In view of Lemmas 2.7 and 2.8, the operator F is continuous and compact on D with
respect to the norm ‖ · ‖μ.Additionally, it is easy to verify thatD is closed and convex. Then,
the Schauder’s fixed point theorem implies thatF has a fixed point (φ∗, ψ∗) ∈ D. Moreover,
(φ∗(T, ·), ψ∗(T, ·)) = (φ∗(0, ·), ψ∗(0, ·)) and (φ∗, ψ∗) satisfies that

{
φ∗(t) = T1(t)φ∗(0) + ∫ t

0 T1(t − s) f1[φ∗, ψ∗](s)ds,
ψ∗(t) = T2(t)ψ∗(0) + ∫ t

0 T2(t − s) f2[φ∗, ψ∗](s)ds (2.24)
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for t ∈ [0, T ]. Define (φ̂∗(t, z), ψ̂∗(t, z)) = (φ∗(t−kT, z), ψ∗(t−kT, z)) for any t ∈ R and
z ∈ R,where k ∈ Z satisfies kT ≤ t < (k+1)T . Then we get (φ̂∗(t+T, z), ψ̂∗(t+T, z)) =
(φ̂∗(t, z), ψ̂∗(t, z)),∀(t, z) ∈ R × R. Since (φ∗, ψ∗) ∈ Cθ,2θ ([0, T ] × R,R2) for some
θ ∈ (0, 1), we have (φ̂∗, ψ̂∗) ∈ Cθ,2θ (R × R,R2). Due to the T -periodicity of φ̂∗ and ψ̂∗,
we see that (φ̂∗, ψ̂∗) satisfies

{
φ̂∗(t) = T1(t)φ̂∗(0) + ∫ t

0 T1(t − s) f1[φ̂∗, ψ̂∗](s)ds,
ψ̂∗(t) = T2(t)ψ̂∗(0) + ∫ t

0 T2(t − s) f2[φ̂∗, ψ̂∗](s)ds (2.25)

for t ∈ R. Denote (φ̂∗, ψ̂∗) by (φ∗, ψ∗) again. It follows from [31, Theorem 5.1.2, 5.1.3 and
5.1.4] that (φ∗, ψ∗) ∈ C1,2+2θ (R × R,R2) satisfies
⎧
⎨

⎩

φ∗
t (t, z) = d1φ∗

zz(t, z) − cφ∗
z (t, z) − β(t)φ∗(t,z)ψ∗(t,z)

φ∗(t,z)+ψ∗(t,z) , t ∈ R, z ∈ R,

ψ∗
t (t, z) = d2ψ∗

zz(t, z) − cψ∗
z (t, z) + β(t)φ∗(t,z)ψ∗(t,z)

φ∗(t,z)+ψ∗(t,z) − γ (t)ψ∗(t, z), t ∈ R, z ∈ R

(2.26)
and

‖φ∗‖C1,2+2θ (R×R,R) + ‖ψ∗‖C1,2+2θ (R×R,R) < ∞ (2.27)

for some θ ∈ (0, 1).
Next, we need to verify that (φ∗, ψ∗) satisfies the boundary conditions (2.2). By the

definitions of φ± and ψ±, it follows that φ∗(t, z) → S0 and ψ∗(t, z) → 0 uniformly for
t ∈ R, as z → −∞. On the other hand, by the estimate (2.27) and Landau type inequalities
(see, e.g., [23] or [4]), we have

∣
∣φ∗

z

∣
∣
L∞([0,T ]×(−∞,M]) ≤ 2

∣
∣φ∗ − S0

∣
∣
1
2
L∞([0,T ]×(−∞,M])

∣
∣φ∗

zz

∣
∣
1
2
L∞([0,T ]×(−∞,M])

and
∣
∣ψ∗

z

∣
∣
L∞([0,T ]×(−∞,M]) ≤ 2

∣
∣ψ∗∣∣ 12

L∞([0,T ]×(−∞,M])
∣
∣ψ∗

zz

∣
∣
1
2
L∞([0,T ]×(−∞,M]) .

As a result,

lim
z→−∞(φ∗

z (t, z), ψ
∗
z (t, z)) = (0, 0) uniformly for t ∈ R.

We further discuss the asymptotic behavior of φ∗
zz and ψ∗

zz when z tends to −∞. By the
(strong) maximum principle, it follows that φ∗(t, x) > 0, ψ∗(t, x) > 0,∀t > 0, x ∈ R.

Differentiating two side of the first equation of (2.26) with respect to z yields

(φ∗
z )t = d1(φ

∗
z )zz − c(φ∗

z )z − β(t)φ∗
z (ψ

∗)2 + ψ∗
z (φ∗)2

(φ∗ + ψ∗)2
, t > 0, z ∈ R. (2.28)

Since φ∗
z ∈ Cθ,2θ (R × R,R2) for some θ ∈ (0, 1), it follows from the T -periodicity of

φ∗ and [31, Theorems 5.1.3 and 5.1.4] that φ∗
z ∈ C1,2+2θ (R × R,R) and

‖φ∗
z ‖C1,2+2θ (R×R,R) < ∞

for some θ ∈ (0, 1). By a similar argument to φ∗, we can conclude from the Landau type
inequality that

lim
z→−∞ φ∗

zz(t, z) = 0 uniformly for t ∈ R.

Similarly, we have

lim
z→−∞ ψ∗

zz(t, z) = 0 uniformly for t ∈ R.
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Consequently, we can see from the system (2.26) that

lim
z→−∞(φ∗

t (t, z), ψ
∗
t (t, z)) = (0, 0) uniformly for t ∈ R.

Define �(z) = 1
T

∫ T
0 φ∗(t, z)dt . Clearly, �z(z) → 0 as z → −∞. It then follows from the

first equation of system (2.26) that

c�z = d1�zz − 1

T

∫ T

0

β(t)φ∗(t, z)ψ∗(t, z)
φ∗(t, z) + ψ∗(t, z)

dt. (2.29)

Integrating two sides of (2.29) from y to z and letting y → −∞ yield

d1�z(z) = c [�(z) − S0] + 1

T

∫ z

−∞

∫ T

0

β(t)φ∗(t, y)ψ∗(t, y)
φ∗(t, y) + ψ∗(t, y)

dtdy. (2.30)

Due to the uniform boundedness of φ∗(t, z) and φ∗
z (t, z), it is easy to see that �(z) =

1
T

∫ T
0 φ∗(t, z)dt and �z(z) = 1

T

∫ T
0 φ∗

z (t, z)dt are uniformly bounded, respectively, and

hence, 1
T

∫ T
0

β(t)φ∗(t,z)ψ∗(t,z)
φ∗(t,z)+ψ∗(t,z) dt is integrable on R. From (2.29), we have

(
e−cz/d1�z

)

z
= e−cz/d1 (�zz − c�z/d1) = e−cz/d1

d1T

∫ T

0

β(t)φ∗(t, z)ψ∗(t, z)
φ∗(t, z) + ψ∗(t, z)

dt.

For the above equality, an integration from z to ∞ gives

e−cz/d1�z(z) = − 1

d1T

∫ ∞

z
e−cy/d1

∫ T

0

β(t)φ∗(t, y)ψ∗(t, y)
φ∗(t, y) + ψ∗(t, y)

dtdy,

which implies that �z(z) < 0 for z ∈ R. It follows that �(+∞) exists and �(+∞) <

�(−∞) = S0. With the aid of Barbălat’s lemma (see, e.g., [3,12]), we have �z(z) → 0 as
z → ∞. Furthermore, letting z → ∞ in (2.30) yields

1

T

∫ ∞

−∞

∫ T

0

β(t)φ∗(t, z)ψ∗(t, z)
φ∗(t, z) + ψ∗(t, z)

dtdz = c[S0 − �(∞)] = c[S0 − S∞],

where S∞ := �(∞) < S0.
In the following, we explore the asymptotic behavior of ψ∗(t, z) as z → ∞. Let γ̂ :=

mint∈[0,T ] γ (t) and γ̃ = maxt∈[0,T ] γ (t), and define �(z) = 1
T

∫ T
0 ψ∗(t, z)dt . Then �(z)

satisfies

− d2�zz + c�z + γ̂ � = 1

T

∫ T

0

β(t)φ∗(t, z)ψ∗(t, z)
φ∗(t, z) + ψ∗(t, z)

dt − 1

T

∫ T

0

(
γ (t) − γ̂

)
ψ∗(t, z)dt.

(2.31)
Denote by

λ̂± := c ± √
c2 + 4d2γ̂

2d2

the two roots of the characteristic equation

−d2λ
2 + cλ + γ̂ = 0.

In addition, denote

ρ̂ := d2
(
λ̂+ − λ̂−)

=
√

c2 + 4d2γ̂ .
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It is easy to see that λ̂− < 0 < λ̂+. Since 1
T

∫ T
0

β(t)φ∗(t,z)ψ∗(t,z)
φ∗(t,z)+ψ∗(t,z) dt ≤ S0

T

∫ T
0 β(t)dt = βS0,

we see from (2.31) that

�(z) = 1

ρ̂T

∫ z

−∞
eλ̂−(z−y)

[∫ T

0

β(t)φ∗(t, y)ψ∗(t, y)
φ∗(t, y) + ψ∗(t, y)

−
∫ T

0

(
γ (t) − γ̂

)
ψ∗(t, z)

]

dtdy

+ 1

ρ̂T

∫ ∞

z
eλ̂+(z−y)

[∫ T

0

β(t)φ∗(t, y)ψ∗(t, y)
φ∗(t, y) + ψ∗(t, y)

−
∫ T

0

(
γ (t) − γ̂

)
ψ∗(t, z)

]

dtdy

≤ 1

ρ̂T

∫ z

−∞
eλ̂−(z−y)

∫ T

0

β(t)φ∗(t, y)ψ∗(t, y)
φ∗(t, y) + ψ∗(t, y)

dtdy

+ 1

ρ̂T

∫ ∞

z
eλ̂+(z−y)

∫ T

0

β(t)φ∗(t, y)ψ∗(t, y)
φ∗(t, y) + ψ∗(t, y)

dtdy

= 1

ρ̂T

∫ ∞

0
eλ̂− y

∫ T

0

β(t)φ∗(t, z − y)ψ∗(t, z − y)

φ∗(t, z − y) + ψ∗(t, z − y)
dtdy

+ 1

ρ̂T

∫ 0

−∞
eλ̂+ y

∫ T

0

β(t)φ∗(t, z − y)ψ∗(t, z − y)

φ∗(t, z − y) + ψ∗(t, z − y)
dtdy.

Integrating �(z) from ζ to ξ , we obtain

∫ ξ

ζ

�(z)dz = 1

ρ̂T

∫ ∞

0
eλ̂− y

∫ ξ

ζ

∫ T

0

β(t)φ∗(t, z − y)ψ∗(t, z − y)

φ∗(t, z − y) + ψ∗(t, z − y)
dtdzdy

+ 1

ρ̂T

∫ 0

−∞
eλ̂+ y

∫ ξ

ζ

∫ T

0

β(t)φ∗(t, z − y)ψ∗(t, z − y)

φ∗(t, z − y) + ψ∗(t, z − y)
dtdzdy.

Note that
∫ T
0

β(t)φ∗ψ∗
φ∗+ψ∗ dt is integrable on R. It then follows from Fubini’s theorem that

�(z) is integral on R, and

∫ ∞

−∞
�(z)dz ≤ 1

ˆγ T

∫ ∞

−∞

∫ T

0

β(t)φ∗(t, z)ψ∗(t, z)
φ∗(t, z) + ψ∗(t, z)

dtdz.

In view of (2.27), it is easy to see that �z(z) is uniformly bounded on R, and hence,
Barbălat’s lemma guarantees that �(z) → 0 as z → ∞. On the other hand, for the second
equation of system (2.26), applying Lemma 2.9 with τ = −T, θ = T and D := Dz =
(z − 1

4 , z + 1
4 ),U = (z − 1

2 , z + 1
2 ),� = (z − 1, z + 1) with z ∈ R, we have

sup
(0,T )×D

ψ∗(t, y) ≤ C0 inf
(2T,3T )×D

ψ∗(t, z)

= C0 min
[2T,3T ]×D

ψ∗(t, y)

≤ C0 min
D

ψ∗(0, y),

where C0 is a positive constant independent of D. Due to the periodicity of ψ∗ in time t , we
see that ψ∗(t, z) → 0 uniformly for t ∈ R, as z → ∞.

We further prove that φ∗(t, z) → S∞ uniformly for t ∈ R, as z → ∞. On the basis of
the T -periodicity of φ∗, it suffices to show

lim sup
z→∞

max
t∈[0,T ] φ

∗(t, z) =: S∞+ = S∞ = S∞− := lim inf
z→∞ min

t∈[0,T ] φ
∗(t, z).
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It is clear that there exist {tn} and {zn} satisfying {tn} ⊂ [0, T ] and zn → ∞ (as n → ∞),
respectively, such that

lim
n→∞ φ∗(tn, zn) = S∞+ .

Let φn(t, z) = φ∗(t + tn, z + zn), ψn(t, z) = ψ∗(t + tn, z + zn),∀n ∈ N, t ∈ R, z ∈ R.

Due to the estimation (2.27), there exists a subsequence of (φn(t, z), ψn(t, z)), still denoted
by (φn(t, z), ψn(t, z)), converging to (φ∗(t, z), 0) in Cθ,2θ

loc (R × R) for some θ ∈ (0, 1), as
n → ∞. In particularly, we have φ∗(0, 0) = S∞+ and

φ∗(t + T, z) = φ∗(t, z), φ∗(t, z) ≤ S∞+ , ∀(t, z) ∈ R × R.

Since {tn} ⊂ [0, T ], without loss of generality, let tn → t∗ ∈ [0, T ]. Then φ+∗ (t, z) =
φ∗(t − t∗, z) satisfies

φ+∗ (t) =T1(t)φ
+∗ (0) +

∫ t

0
T1(t − s) f1[φ+∗ , 0](s)ds

=T1(t)φ
+∗ (0) +

∫ t

0
T1(t − s)α1φ

+∗ (s)ds.

Consequently, φ+∗ (t, z) satisfies

∂tφ
+∗ (t, z) = d1∂zzφ

+∗ (t, z) − c∂zφ
+∗ (t, z), (t, z) ∈ R × R.

Since φ+∗ (t∗, 0) = S∞+ and φ+∗ (t, z) ≤ S∞+ , it follows from the maximum principle that
φ+∗ (t, z) ≡ S∞+ for t < t∗.By the T -periodicity ofφ+∗ (·, z), we haveφ+∗ (t, z) ≡ S∞+ ,∀t ∈ R,

and hence �+∗ (z) := 1
T

∫ T
0 φ+∗ (t, z)dt ≡ S∞+ . On the other hand,

�+∗ (z) = 1

T

∫ T

0
φ+∗ (t, z)dt = 1

T

∫ T

0
φ∗(t − t∗, z)dt

= lim
n→∞

1

T

∫ T

0
φn(t − t∗, z)dt

= lim
n→∞

1

T

∫ T

0
φ∗(t − t∗ + tn, z + zn)dt

=S∞,

which implies S∞+ = S∞. Therefore, lim supz→∞ maxt∈[0,T ] φ∗(t, z) = S∞. Similarly, we
can prove lim inf z→∞ mint∈[0,T ] φ∗(t, z) = S∞. This implies that φ+∗ (t, z) converges to S∞
uniformly in t ∈ R as z → ∞.

Moreover, since �(z) satisfies

− d2�zz + c�z = 1

T

∫ T

0

β(t)φ∗(t, z)ψ∗(t, z)
φ∗(t, z) + ψ∗(t, z)

dt − 1

T

∫ T

0
γ (t)ψ∗(t, z)dt, (2.32)

by making an integration of (2.32) on R, we get

1

T

∫ ∞

−∞

∫ T

0
γ (t)ψ∗(t, z)dtdz = 1

T

∫ ∞

−∞

∫ T

0

β(t)φ∗(t, z)ψ∗(t, z)
φ∗(t, z) + ψ∗(t, z)

dtdz = c[S0 − S∞].

It remains to prove that 0 < 1
T

∫ T
0 ψ∗(t, z)dt ≤ S0 − S∞. In order to achieve this, we

shall use a similar argument to the proof of [45, Theorem 2.9]. First, by similar arguments to
the proof of the asymptotic behavior of φ∗

z (t, z) and φ∗
zz(t, z) as z → −∞, we can show that

lim
z→∞ ψ∗

z (t, z) = lim
z→∞ ψ∗

zz(t, z) = 0
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uniformly for t ∈ R. Thus, we have

lim
z→±∞ ψ∗

z (t, z) = lim
z→±∞ ψ∗

zz(t, z) = 0 (2.33)

uniformly for t ∈ R. For any z ∈ R, we define a function

�∗(z) = 1

cT

∫ z

−∞

∫ T

0
γ (t)ψ∗(t, y)dtdy + 1

cT

∫ ∞

z
ec/d2(z−y)

∫ T

0
γ (t)ψ∗(t, y)dtdy.

(2.34)
It is easy to see that �∗(z) satisfies the following equation:

c�∗
z (z) = d2�

∗
zz(z) + 1

T

∫ T

0
γ (t)ψ∗(t, y)dt, ∀z ∈ R.

By means of (2.33) and L’Hôpital’s rule, it follows that

lim
z→−∞ �∗(z) = 0, lim

z→∞ �∗(z) = 1

cT

∫ ∞

−∞

∫ T

0
γ (t)ψ∗(t, y)dy = S0 − S∞

and
lim

z→±∞ �∗
z (z) = 0.

Recall that �(z) = 1
T

∫ T
0 ψ∗(t, z)dt. We further introduce a function

�̂(z) := �(z) + �∗(z), ∀z ∈ R.

Consequently, it is not difficult to obtain from (2.32) and (2.34) that

c�̂z(z) = d2�̂zz(z) + 1

T

∫ T

0

β(t)φ∗(t, z)ψ∗(t, z)
φ∗(t, z) + ψ∗(t, z)

dt, ∀z ∈ R.

Multiplying two sides of the above equation by e−c/d2z and integrating from z to ∞, we
have

�̂z(z) = 1

d2T

∫ ∞

z
ec/d2(z−y)

∫ T

0

β(t)φ∗(t, z)ψ∗(t, z)
φ∗(t, z) + ψ∗(t, z)

dt.

This implies that �̂(z) is non-decreasing in R. Note that limz→∞ �̂(z) = S0 − S∞. Hence,
�̂(z) ≤ S0 − S∞ for all z ∈ R. In view of the definition of �̂(z) and �∗(z), we conclude
that �(z) ≤ �̂(z) ≤ S0 − S∞ for all z ∈ R, that is, 0 ≤ 1

T

∫ T
0 ψ∗(t, z)dt ≤ S0 − S∞ for

any z ∈ R. 
�

3 The Nonexistence of Periodic Traveling Waves

In this section, we prove the nonexistence of time periodic traveling waves for two cases. In
the case where R0 ≤ 1, there is no time periodic traveling wave. In the case where R0 > 1
and c < c∗, there is no time periodic, non-trivial and non-negative travelling waves.

Theorem 3.1 Assume that R0 =
∫ T
0 β(t)dt

∫ T
0 γ (t)dt

≤ 1. Then for any c ≥ 0, there is no time periodic

traveling wave solutions (φ, ψ) satisfying

φ(t,−∞) = S0, φ(t,∞) = S∞ < S0, ψ(t,±∞) = 0 uniformly in t ∈ R. (3.1)

Proof Suppose, byway of contradiction, that there exists a time periodic, non-trivial and non-
negative solution (φ(t, z), ψ(t, z)) of (2.1) with (3.1). Then there exists a positive constant
b such that 0 ≤ φ(t, z) ≤ b,∀t ≥ 0, x ∈ R, and hence,
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ψt (t, z) = d2ψzz(t, z) − cψz(t, z) + β(t)φ(t, z)ψ(t, z)

φ(t, z) + ψ(t, z)
− γ (t)ψ(t, z)

≤ d2ψzz(t, z) − cψz(t, z) +
[

bβ(t)

b + ψ(t, z)
− γ (t)

]

ψ(t, z).

for any t > 0 and z ∈ R. Let η := supz∈R ψ(0, z) < ∞. Then ψ(0, z) ≤ η,∀z ∈ R. By
the comparison principle, we have

ψ(t, z) ≤ v(t; η), ∀t > 0, z ∈ R,

where v(t; η) is the solution of the following ordinary differential equation:
{

v′(t) =
[

bβ(t)
b+v(t) − γ (t)

]
v(t), t > 0,

v(0) = η.

Since R0 ≤ 1, we have 1
T

∫ T
0 (β(t) − γ (t)) dt ≤ 0. Set

p(t, v) = bβ(t)

b + v(t)
− γ (t).

Then we have
∫ T

0
p(t, 0)dt = 1

T

∫ T

0
(β(t) − γ (t)) dt ≤ 0.

Hence, [56,Theorem3.1.2] implies that limt→∞ v(t; η)=0. It follows that limt→∞ ψ(t, z)
= 0,∀z ∈ R, which contradicts to the time periodicity of ψ(t, ·) in t . 
�

Next, we prove the non-existence of periodic traveling waves for the case where R0 > 1
and c < c∗. We first consider the following scalar periodic reaction–diffusion equation:

∂u

∂t
= duxx + f (t, u), t > 0, x ∈ R, (3.2)

where d > 0, f ∈ C1(R+×R+,R+), and f (t, ·) is T -periodic in t for some T > 0.Assume
that

(A1) f (t, 0) = 0 for t ≥ 0, and there is a real number H > 0 such that f (t, H) ≤ 0,
and for each t ≥ 0, f (t, ·) is strictly subhomogeneous on [0, H ] in the sense that
f (t, αu) > α f (t, u) whenever α ∈ (0, 1), u ∈ (0, H ].

(A2) fu(t, 0) := 1
T

∫ T
0

∂ f (t,0)
∂u dt > 0.

By [56, Theorem 3.1.2], it follows that the periodic ordinary differential equation

du

dt
= f (t, u), t ≥ 0 (3.3)

has a unique positive T -periodic solution q(t) with q(t) ∈ [0, H ],∀t ∈ [0, T ], and q(t)
is globally asymptotically stable in (0, H ]. By the same arguments as in [27, Sect. 4] (just
letting τ = 0 in Theorems 4.1 and 4.2), we have the following two results.

Proposition 3.2 Assume that (A1) and (A2) hold. Let c∗ = 2
√

d · fu(t, 0) and u(t, x, ϕ)

be the solution of equation (3.2) with the initial data ϕ. Then the following statements are
valid:
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(1) For any c > c∗, if ϕ ∈ Cq(0) = {ϕ ∈ C(R,R) : 0 ≤ ϕ(x) ≤ q(0),∀x ∈ R}
with ϕ(x) < q(0),∀x ∈ R, and ϕ(x) = 0 for x outside a bounded interval, then
limt→∞,|x |≥ct u(t, x, ϕ) = 0.

(2) For any c < c∗, if ϕ ∈ Cq(0) with ϕ �≡ 0, then limt→∞,|x |≤ct (u(t, x, ϕ) − q(t)) = 0.

Proposition 3.3 Assume that (A1) and (A2) hold. Let c∗ be defined as in Proposition 3.2.
Then c∗ is the minimal wave speed for the monotone periodic traveling waves U (t, x + ct)
of equation (3.2) connecting q(t) to 0.

Now we are in a position to prove the non-existence of periodic traveling wave solutions
in the case where R0 > 1 and 0 < c < c∗.
Theorem 3.4 Assume that R0 > 1 and 0 < c < c∗. Then there is no time-periodic traveling
waves (φ, ψ) satisfying

φ(t,−∞) = S0, φ(t,∞) = S∞ > 0, ψ(t,±∞) = 0 uniformly in t ∈ R. (3.4)

Proof Suppose, by contradiction, that there exists such a traveling wave satisfying (3.4) for
some c < c∗. Then there exists a > 0 such that φ(t, x + ct) ≥ a > 0,∀t ≥ 0, x ∈ R. It
follows that v(t, x) := ψ(t, x + ct) satisfies

vt ≥ d2vxx + aβ(t)

a + v(t, x)
v(t, x) − γ (t)v(t, x), t ≥ 0, x ∈ R.

Note that R0 > 1 implies that (A2) holds. Let qa(t) be the unique positive T -periodic
solution of

u′(t) = −γ (t)u(t) + aβ(t)

a + u(t)
u(t), t > 0

and choose a continuous function ψ0(x) such that 0 ≤ ψ0(x) ≤ qa(0) and ψ0(x) ≤
ψ(0, x),∀x ∈ R, and ψ0 �≡ 0. Then the comparison principle implies that

v(t, x) = ψ(t, x + ct) ≥ u(t, x, ψ0), ∀t ≥ 0, x ∈ R, (3.5)

where u(t, x, ψ0) is the unique solution of the following scalar reaction–diffusion equation
{
ut = d2uxx + aβ(t)

a+u(t,x)u(t, x) − γ (t)u(t, x), t > 0, x ∈ R,

u(0, x) = ψ0(x), x ∈ R.
(3.6)

By Proposition 3.2, c∗ = 2
√

d2 · β(t) − γ (t) is the spreading speed of system (3.6). Fix a
real number c̄ ∈ (c, c∗). It then follows from Proposition 3.2(2) that

lim
t→∞,|x |≤c̄t

(
u(t, x, ψ0) − qa(t)

) = 0. (3.7)

Since qa(t) is T -periodic, letting t = nT, x = −c̄t in (3.7), we obtain

lim
n→∞ u(nT,−c̄nT, ψ0) = qa(0).

In view of (3.5), we have

ψ(nT, (c − c̄)nT ) ≥ u(nT,−c̄nT, ψ0), ∀n ≥ 1.

It then follows that

ψ(0,−∞) = lim
n→∞ ψ(0, (c − c̄)nT ) = lim

n→∞ ψ(nT, (c − c̄)nT ) ≥ qa(0) > 0,

which contradicts ψ(0,−∞) = 0. 
�
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