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Abstract The averaging theory for studying periodic orbits of smooth differential systems
has a long history. Whereas the averaging theory for piecewise smooth differential systems
appeared only in recent years, where the unperturbed systems are smooth. When the unper-
turbed systems are only piecewise smooth, there is not an existing averaging theory to study
existence of periodic orbits of their perturbed systems. Here we establish such a theory for
one dimensional perturbed piecewise smooth periodic differential equations. Then we show
how to transform planar perturbed piecewise smooth differential systems to one dimensional
piecewise smooth periodic differential equations when the unperturbed planar piecewise
smooth differential systems have a family of periodic orbits. Finally as application of our
theory we study limit cycle bifurcation of planar piecewise differential systems which are
perturbation of a �-center.
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1 Introduction and Statement of the Main Results

Piecewise smooth differential systems have appeared in for example control theory, electronic
circuits with switches and mechanical engineering with impact and dry frictions, see e.g.
[3,8,10,14,15,23] and the references therein. Their dynamics becomes an important subject
to be studied. It has been attracting lots of mathematicians, physicists and engineers focusing
on the study of their dynamics. In the past three decades the theory of piecewise smooth
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differential systems has been greatly developed, and there appeared many nice results, see
e.g. [5,7,13,16,21–25] and the references therein.

At the moment there are many tools and theories to investigate dynamics of piecewise
smooth differential systems. Of which the averaging theory is a newly developed one.
Whereas this theory is classical and powerful in the study of dynamics of nonlinear smooth
dynamical systems. The first formalization of the averaging theory for smooth differential
systems was provided by Fatou [9] in 1928. Its practical applications were made by Krylov
and Bogoliubov [2] in 1930, and by Bogoliubov [1] in 1945, to study stationary oscillation
of nonlinear mechanical systems and so on. Recent years, the averaging theory for smooth
differential systems has been greatly developed, and there have appeared plenty of excel-
lent results. Buica and Llibre [4] developed the averaging theory to study periodic orbits
of Lipschitz continuous differential systems via the theory of Brouwer degree. Buică et al.
[6] improved their theory to the case that the unperturbed system has a lower dimensional
submanifold filled with periodic orbits. Giné et al. [11] presented an averaging theory of
arbitrary order for one dimensional perturbed analytic differential equation. Llibre et al. [19]
generalized the results in [11] to any finite dimensional smooth differential systems with the
unperturbed differential systems having periodic orbits filled with a region. In the case that
the unperturbed differential systems have periodic orbits filling only a lower dimensional
submanifold, the averaging theory of arbitrary order was established only recently in [12].

Whereas the averaging theory of piecewise smooth differential system has a starting point
only in recent years. Llibre et al. [20] developed a variation of the classical averaging method
for detecting limit cycle of certain piecewise continuous dynamical systems. Llibre et al.
[17] further consider the averaging theory of first and second order for studying periodic
solutions of any finite dimensional piecewise smooth differential systems. We note that the
averaging theories in [17] can deal with only the piecewise smooth differential systemswhose
unperturbed systems are smooth. Llibre and Novaes [18] recently obtained an averaging
theory of first order for studying periodic orbits of the piecewise smooth differential systems,
whose unperturbed systems have periodic orbits filledwith a lower dimensional submanifold.
This result is a generalization of that in [6] for smooth differential systems to discontinuous
piecewise smooth differential systems. The author provided also an application of their theory
to piecewise linear differential systems with the unperturbed system is smooth. As we knew,
all examples in [17,18,20] showing applications of the averaging theories for piecewise
smooth differential systems have smooth unperturbed differential systems.

In this paper we first establish an averaging theory of arbitrary order for studying periodic
orbits of one dimensional piecewise smooth periodic differential equations. We will see the
averaging functions will be more complicated than the smooth cases. The reason is that the
variational equations of the unperturbed systems along their periodic orbits are piecewise
smooth, and their solutions have complicated expressions than the smooth cases. Second we
use our developed averaging theory to study planar piecewise smooth autonomous differential
systems whose unperturbed systems have a family of periodic orbits, which are separated
by a straight line. For doing so, we use a generalized polar coordinate change of variables
to transform the planar piecewise smooth differential systems to one dimensional piecewise
smooth periodic differential equations, and then we compute the exact expressions of the
averaging functions. Finally we apply our averaging theory to study limit cycle bifurcation
of planar piecewise polynomial differential systems with a nondegenerate �-center, which
is a normal form of a family of piecewise differential systems with�-center (posed by Buzzi
et al. [5]). We prove that for any n ∈ N there exists a piecewise polynomial perturbation
of degree n which can have n limit cycles using the first order averaging method; and that
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piecewise linear perturbations of the nondegenerate �-center can produce 2 limit cycles
using the second order averaging method.

Consider a piecewise analytic and periodic differential equation

dx

dt
=

∑

k≥0

εk Fk(t, x) =: F(t, x, ε), (t, x) ∈ S
1 × D, (1)

with S
1 = R/(TZ), D ⊂ R an open interval, and

Fk(t, x) =
{

F1
k (t, x), t ∈ [0, T1],

F2
k (t, x), t ∈ [T1, T ],

where T1 ∈ [0, T ), Fi
k : S1 × D −→ R, i = 1, 2, are analytic functions, and are periodic of

period T in t , and ε ∈ (−ε0, ε0) with ε0 a small positive real number. Of course, if T1 = 0
then Eq. (1) is smooth. Here ‘piecewise analytic’ means that F(t, x, ε) are analytic in both
of the regions [0, T1] × D × (−ε0, ε0) and [T1, T ] × D × (−ε0, ε0).

Denote by x(t; z, ε) the solution of system (1) with the initial condition x(0) = z. In what
follows we also use the notation x(t; T1, z, ε) to denote the solution of system (1) satisfying
the initial condition x(T1) = z.

Assume that the unperturbed equation of Eq. (1), i.e.

dx

dt
= F0(t, x), (2)

has a family of periodic orbits of period T , which are filled with a region of S1 × D. Let
x0(t; z) be a solution of the unperturbed system (2) satisfying x0(0) = z. Note that the
solution x0(t; z) of Eq. (2) can be seen as a composition of the solution x10 (t; z) of the initial
value problem

dx

dt
= F1

0 (t, x), x(0) = z, (3)

when t ∈ [0, T1], and of the solution x20 (t; T1, w) of the initial value problem

dx

dt
= F2

0 (t, x), x(T1) = w := x10 (T1, z),

when t ∈ [T1, T ]. That is,

x0(t, z) =
{

x10 (t; z), t ∈ [0, T1],
x20 (t − T1; x10 (T1, z)) = x20 (t; T1, w), t ∈ [T1, T ].

So x0(t; z) is analytic in z because of the analyticity of the composition of two analytic
functions. Since x0(t; z) are a family of periodic orbits for z ∈ D, it follows that the solution
x0(t; z) is monotonic in the initial value z. So one has

∂x0(t; z)

∂z
�= 0, for t ∈ [0, T ], and z is not a constant solution of (2).

In what follows, for simplicity we use x20 (t, z) to represent x20 (t; T1, x10 (T1, z)).
Due to the piecewise analyticity of system (1), by similar arguments than x0(t; z) we get

that the solution x(t; z, ε) of system (1) satisfying x(0) = z is analytic in z and ε. Hence it
can be written as

x(t; z, ε) =
∑

n≥0

xn(t, z)εn . (4)
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The following result provides exact expressions of the functions xn(t, z) in (4).

Theorem 1 Assume that x0(t; z) is the solution of Eq. (2) satisfying the initial condition
x0(0) = z. Then the solution (4) of Eq. (1) with the initial condition x(0) = z has the
expressions

x1(t, z) = ∂x0(t; z)

∂z

t∫

0

F1(s, x0(s; z))
∂x0(s;z)

∂z

ds,

xk(t, z) = ∂x0(t; z)

∂z

t∫

0

Rk(s, z)
∂x0(s;z)

∂z

ds, k ≥ 2,

where

Rk(t, z) = Fk(t, x0(t; z)) +
k−2∑

l=0

k−l∑

j=1

(
1

j !
∂ j Fk−l− j

∂x j
(t, x0(t; z))

×
∑

m1+···+m j =l+ j

xm1(t, z) × · · · × xm j (t, z)

⎞

⎠ ,

is analytic in both of the regions [0, T1] × D and [T1, T ] × D, and mi ≥ 1 is an integer for
i = 1, 2, · · · , j .

The proof of Theorem 1 will be given in Sect. 2. As we will see, the treatments for
smooth differential systems will not work here well, because now the variational equations
of unperturbed systems along the given periodic solutions are piecewise smooth. We will
carefully compute the solutions of the piecewise linear variational equations, and use them to
express the averaging functions of arbitrary order, formore details, see the proof ofTheorem1,
and especially of Lemma 6.

We remark that Theorem 1 also holds for system (1) to be piecewise C∞ instead of
piecewise analytic when we study any finite order averaging function. The proof follows
from the same arguments as those of Theorem 1 by taking a sufficiently high cutoff of (4).

We define the averaging functions h1, hk : D → R, k = 2, 3, . . ., as

h1(z) =
T∫

0

F1(s, x0(s; z))
∂x0(s;z)

∂z

ds, (5)

hk(z) =
T∫

0

Rk(s, z)
∂x0(s;z)

∂z

ds, k = 2, 3, . . . (6)

Recall that ∂x0(s;z)
∂z �= 0. So hk(z)’s are well defined for all k ∈ N. For the later application

we present the precise expression of h2.

h2(z) =
T∫

0

1
∂x0(s;z)

∂z

(
F2(s, x0(s; z)) + ∂ F1

∂x
(s, x0(s; z))x1(s, z)

+1

2

∂2F0

∂x2
(s, x0(s; z))(x1(s, z))2

)
ds. (7)
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Now we can state the arbitrary order averaging theory for piecewise smooth periodic
differential equations (1).

Theorem 2 Assume that the solution x0(t; z) of Eq. (2) satisfying the initial condition
x0(0) = z, is of T –periodic for all z ∈ D. The following statements hold.

(a) If h1(z) is not identically zero, then for each simple root z∗ of h1(z) = 0 and |ε| �= 0
sufficiently small, there exists a T –periodic solution x(t;φ(ε), ε) of Eq. (1) such that
x(0;φ(ε), ε) → z∗ as ε → 0, where φ is an analytic function which satisfies φ(0) = z∗.

(b) Assume h1(z), · · · , hn−1(z) are identically zero in D. If hn(z) is not identically zero,
then for each simple root z∗ of hn(z) = 0 and |ε| �= 0 sufficiently small, there exists a
T –periodic solution x(t;φ(ε), ε) of Eq. (1) such that x(0;φ(ε), ε) → z∗ as ε → 0,
where φ is an analytic function which satisfies φ(0) = z∗.

The proof of Theorem 2 will be given in Sect. 2.
Next we will apply Theorems 1 and 2 to study limit cycle bifurcation of planar piecewise

smooth differential systems. Consider the planar piecewise smooth differential system

ẋ =
∞∑

k=0

εk pk(x, y),

ẏ =
∞∑

k=0

εkqk(x, y),

(x, y) ∈ � ⊂ R
2, (8)

with � a connected open subset and � ∩ {y = 0} �= ∅, where

pk(x, y) =
{

p+
k (x, y), (x, y) ∈ �+ := � ∩ {y ≥ 0},

p−
k (x, y), (x, y) ∈ �− := � ∩ {y ≤ 0},

qk(x, y) =
{

q+
k (x, y), (x, y) ∈ �+ := � ∩ {y ≥ 0},

q−
k (x, y), (x, y) ∈ �− := � ∩ {y ≤ 0}.

We assume that the unperturbed systems of (8), i.e.

ẋ = p0(x, y), ẏ = q0(x, y), (x, y) ∈ �,

has periodic orbits filled with an open region around the origin. Here we assume that the
origin is in the region �. We take a generalized polar coordinate change of coordinates

x = ξ±
1 (r)η±

1 (θ), y = ξ±
2 (r)η±

2 (θ), (9)

in the upper and lower half planes respectively, to transform system (8) to a one dimensional
piecewise smooth periodic differential equation of form (1), i.e.

dr

dθ
= F̃(θ, r, ε) =

⎧
⎪⎨

⎪⎩

∑
k≥0

εk F+
k (θ, r), θ ∈ [0, π],

∑
k≥0

εk F−
k (θ, r), θ ∈ [π, 2π], (10)

where F̃(θ, r, ε) is 2π periodic in θ , and F+
k (θ, r) and F−

k (θ, r) are analytic in respectively
the regions [0, π] × J and [π, 2π ] × J with J = (0, σ ) an open interval. The concrete
expressions of F±

k (θ, r) will be given in (29) for k = 0, 1, 2. We remark that the concrete
expression of the transformation (9) depends on specific differential systems.
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Denote by r+
0 (θ, z) the solution of Eq. (10) with the initial condition r+

0 (0, z) = z in the
upper half plane, and by r−

0 (θ, z) the solution of differential equation (10) with the initial
condition r−

0 (π, z) = r+
0 (π, z) in the lower half plane. In order to simplify notations, we set

r±
0 := r±

0 (θ, z),

p̃±
i := p±

i

(
ξ±
1 (r±

0 (θ, z))η±
1 (θ), ξ±

2 (r±
0 (θ, z))η±

2 (θ)
)
,

q̃±
i := q±

i

(
ξ±
1 (r±

0 (θ, z))η±
1 (θ), ξ±

2 (r±
0 (θ, z))η±

2 (θ)
)
, i = 0, 1, 2, . . .

Applying Theorem 1 to Eq. (10), we can get the averaging functions associated to system
(8). But since their expressions are very complicated, we only present the first order averaging
function here.

Theorem 3 For the planar piecewise analytic system (8), if its unperturbed system has a
family of periodic orbits filled with a period annulus, which can be parameterized by the
generalized polar coordinates (9), then the first order averaging function has the expression

H1(z) =
∫ π

0

− p̃+
1 q̃+

0 + p̃+
0 q̃+

1

∂r+
0 (θ,z)
∂z

(
− (ξ+

2 )′(r+
0 )η+

2 p̃+
0 + (ξ+

1 )′(r+
0 )η+

1 q̃+
0

)2

×
(
ξ+
1 (r+

0 )(ξ+
2 )′(r+

0 )(η+
1 )′η+

2 − (ξ+
1 )′(r+

0 )ξ+
2 (r+

0 )η+
1 (η+

2 )′
)

dθ

+
∫ 2π

π

− p̃−
1 q̃−

0 + p̃−
0 q̃−

1

∂r−
0 (θ,z)
∂z

(
− (ξ−

2 )′(r−
0 )η−

2 p̃−
0 + (ξ−

1 )′(r−
0 )η−

1 q̃−
0

)2

×
(
ξ−
1 (r−

0 )(ξ−
2 )′(r−

0 )(η−
1 )′η−

2 − (ξ−
1 )′(r−

0 )ξ−
2 (r−

0 ) − η−
1 (η−

2 )′
)

dθ,

where (ξ+
i )′(r+

0 ) = dξ+
i

dr
◦ r+

0 (θ, z), (ξ−
i )′(r−

0 ) = dξ−
i

dr
◦ r−

0 (θ, z), i = 1, 2, and the ◦
denotes the composition of two functions.

The proof of Theorem 3 will be given in Sect. 3. In appendix we present the formula and
its derivation of the associated second order averaging function of system (8).

Finally we will apply Theorems 2 and 3 to study limit cycle bifurcations under the per-
turbation of the piecewise linear vector field

Z0 :=
{

(ẋ, ẏ) = (−1, 2x), for y ≥ 0,

(ẋ, ẏ) = (1, 2x), for y ≤ 0,

which is the topological normal form of a kind of piecewise smooth differential systems
around a nondegenerate �-center, see [5] for details about the results and definition of �-
center. The authors in [5] provided an example showing that for any m ∈ N there exists a
C∞ perturbation of Z0, which has m limit cycles. Next we will prove that for any m ∈ N

there exists a piecewise polynomial perturbation of degree m which can have m limit cycles.
Consider the perturbed piecewise polynomial differential system

(
ẋ
ẏ

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
−1

2x

)
+ ε

(
F+
11 + εF+

12

F+
21 + εF+

22

)
, y ≥ 0,

(
1

2x

)
+ ε

(
F−
11 + εF−

12

F−
21 + εF−

22

)
, y ≤ 0,

(11)
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where

F±
11 =

n∑

i+ j=0

a±
i j x i y j , F±

12 =
n∑

i+ j=0

c±
i j x i y j ,

F±
21 =

i+ j=n∑

i, j=0

b±
i j x i y j , F±

22 =
n∑

i+ j=0

d±
i j x i y j .

The next result provides the expression of the first order averaging function associated to
system (11).

Theorem 4 For the piecewise smooth system (11), the following statements hold.

(a) The first order averaging function M1(r) associated to system (11) has the form

M1(r) =
n∑

l=0

Blr
2l .

(b) System (11) has at most n limit cycles which bifurcate from the �-center via the first
order averaging method.

(c) There exists a system of form (11) with F±
i2 ≡ 0, i = 1, 2, which has k limit cycles for

k = 0, 1, · · · , n.

We now turn to piecewise linear differential systems.Wewill use the second order averag-
ing methods to prove that there exist piecewise linear differential systems of form (11) which
can have 2 limit cycles. For system (11) with n = 1, we denote by A the set of parameters
of system (11) which satisfy

b+
00 − b−

00 = 0, b+
01 + b−

01 + a+
10 + a−

10 = 0.

This is in fact the condition for the first order averaging function vanishing identically.
Our next result is the following.

Theorem 5 For |ε| �= 0 sufficiently small, system (11) when n = 1 has at most 2 limit cycles
for the parameters inside A by using the second order averaging method, and the maximum
number can be achieved.

We remark that when applying the third order averaging method to system (11) with third
order linear perturbation we can only get at most 2 limit cycles bifurcated from the �-center.
At the end of the proof of Theorem 5, i.e. the end of Sect. 4, we will give detail explanation.

This paper is arranged as follows. In Sect. 2 we will prove Theorems 1 and 2. The proof
of Theorem 3 will be presented in Sect. 3. The proofs of Theorems 4 and 5 will be given in
Sect. 4.

2 Proof of Theorems 1 and 2

2.1 Proof of Theorem 1

Recall that x(t; z, ε) is the solution of equation (1) satisfying the initial condition x(0) = z.
Set

x(t; z, ε) =
{

x1(t, z, ε), t ∈ [0, T1],
x2(t, z, ε), t ∈ [T1, T ].
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Then x2(T1, z, ε) = x1(T1, z, ε), and each function xi (t, z, ε) satisfies the piecewise smooth
differential equation (1) for i = 1, 2. That is,

∂

∂t
xi (t, z, ε) =

∑

k≥0

εk Fi
k (t, xi (t, z, ε)), i = 1, 2. (12)

Note that x1(0, z, ε) = z, we will also write x1(t, z, ε) in x1(t; z, ε) for reminding readers
the initial condition taking at t = 0.

Since Fi
k (t, x) in equation (1) are analytic for i = 1, 2, the solution xi (t, z, ε) of system

(12) can be written as

xi (t, z, ε) =
∑

j≥0

xi
j (t, z)ε j . (13)

Then the functions x j (t, z) in (4) can be expressed in

x j (t, z) =
{

x1j (t, z), t ∈ [0, T1],
x2j (t, z), t ∈ [T1, T ],

with x1j (T1, z) = x2j (T1, z) for all nonnegative integers j . As explained in the introduction
for equation (2), the functions x j (t, z)’s are analytic in z. Substituting the solution (13) into
the differential equation (12), and expanding Fi

k (t, xi (t, z, ε)) in Taylor series give

Fi
k (t, xi (t, z, ε)) = Fi

k

⎛

⎝t, xi
0(t, z) +

∑

j≥1

xi
j (t, z)ε j

⎞

⎠

= Fi
k (t, xi

0(t, z)) +
∑

l≥1

1

l!
∂ l

∂xl
Fi

k (t, xi
0(t, z))

⎛

⎝
∑

j≥1

xi
j (t, z)ε j

⎞

⎠
l

= Fi
k (t, xi

0(t, z)) +
∑

l≥1

εl
l∑

j=1

�i
kl j (t, z),

where i = 1, 2, and

�i
kl j (t, z) = 1

j !
∂ j

∂x j
Fi

k (t, xi
0(t, z))

∑

m1+···+m j =l

x i
m1

(t, z) × · · · × xi
m j

(t, z), (14)

with mn ∈ N for n = 1, 2, · · · , j . Then the right hand side of (12) can be written as

∑

k≥0

εk Fi
k (t, xi (t, z, ε)) =

∑

k≥0

εk Fi
k (t, xi

0(t, z)) +
∑

k≥0

∑

l≥1

εk+l
l∑

j=1

�i
kl j (t, z)

=
∑

k≥0

εk Fi
k (t, xi

0(t, z)) +
∑

n≥1

εn
n∑

l=1

l∑

j=1

�i
n−l,l j (t, z)

= Fi
0(t, xi

0(t, z))+
∑

k≥1

εk

⎛

⎝Fi
k (t, xi

0(t, z))+
k∑

l=1

l∑

j=1

�i
k−l,l j (t, z)

⎞

⎠ .

(15)
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It is clear that

∂

∂t
xi (t, z, ε) =

∑

j≥0

∂

∂t
xi

j (t, z)ε j . (16)

Using (15) and (16), and equating the coefficients of ε in (12) yield

∂

∂t
xi
1(t, z) = Fi

1(t, xi
0(t, z)) + ∂

∂x
Fi
0(t, xi

0(t, z))xi
1(t, z), i = 1, 2, (17)

which are nonhomogeneous linear differential equations.
Let u(t, z) be the solution of the variational equation

∂u

∂t
= ∂

∂x
F0(t, x0(t; z))u, u(0, z) = 1 (18)

of the unperturbed equation of (1) along the solution x0(t; z). Set

u(t, z) =
{

u1(t, z), t ∈ [0, T1],
u2(t, z), t ∈ [T1, T ]. (19)

Then ui (t, z) satisfies the variational equation

∂

∂t
ui (t, z) = ∂

∂x
Fi
0(t, xi

0(t, z))ui (t, z), i = 1, 2. (20)

The next result characterizes properties of the solution ui (t, z) of the variational equation.

Lemma 6 Assume that the unperturbed equation of (1) has a solution x0(t; z) which satisfies
x0(0) = z for each z ∈ D and is T –periodic. Let u(t, z) be the solution of the variational
problem (18). Using the notations in (19), we have

u1(t, z) = ∂

∂z
x10 (t, z), u2(t, z) = 1

∂
∂z x10 (T1, z)

∂

∂z
x20 (t, z),

and they satisfy u1(T1, z)u2(T, z) = 1 and u1(0, z) = u2(T1, z) = 1.

Proof Since x0(t; z) is a solution of the unperturbed differential equation of equation (1),
one has

∂

∂t
x0(t; z) = F0(t, x0(t; z)), x0(0; z) = z.

It follows that

∂

∂t
xi
0(t, z) = Fi

0(t, xi
0(t, z)), i = 1, 2. (21)

For i = 1, x10 (t, z) satisfies the initial condition x10 (0, z) = z. So it will also be denoted by
x10 (t; z). Since Fi

0 ∈ Cω(S1× D), it follows that x10 (t; z) is analytic in [0, T1]× D. Moreover
the variational equation (20) with i = 1 satisfying u1(0, z) = 1 has the solution

u1(t, z) = ∂

∂z
x10(t; z).

For i = 2, note that the solution x20 (t, z) satisfies the condition x20 (T1, z) = x10 (T1; z). Set

w := x10 (T1; z).
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One has

x20 (t, z) = x20 (t; T1, x10 (T1, z)) = x20 (t; T1, w).

Then

∂

∂t
x20 (t; T1, w) = F2

0 (t, x20 (t; T1, w)), x20 (T1; T1, w)) = w.

So its associated variational initial value problem

∂u2

∂t
= ∂ F2

0 (t, x20 (t; T1, w))

∂x
u2, u2(T1, z) = 1,

has the solution

u2(t, z) = φ2(t, w) = ∂x20 (t; T1, w)

∂w
.

In addition, since

∂x20 (t; T1, w)

∂w
= ∂

∂w
x20 (t; T1, x10 (T1, z)) = 1

∂
∂z x10 (T1; z)

∂

∂z
x20 (t; T1, x10 (T1, z)),

and x20 (t, z) = x20 (t; T1, x10 (T1, z)), it follows that

u2(t, z) = φ2(t, w) = 1
∂
∂z x10 (T1; z)

∂

∂z
x20 (t, z). (22)

Consequently we have

u2(T1, z) = 1,

where we have used the fact that x20 (T1, z) = x10 (T1; z). Furthermore, since u1(t, z) =
∂
∂z x10 (t; z), one gets from (22) that

u1(T1, z)u2(T, z) = ∂

∂z
x20 (T, z) = 1,

where in the last equality we have used the fact that x20 (T, z) = z. This completes the proof
of the lemma.

In order to study the solutions xi
1(t, z) of Eq. (17) for i = 1, 2, we set

xi
1(t, z) = ui (t, z)ui

1(t, z), i = 1, 2 (23)

Since x11 (0, z) = 0 and u1(0, z) = u2(T1, z) = 1 by Lemma 6, we have

u1
1(0, z) = 0, and u2

1(T1, z) = x21 (T1, z) = x11(T1, z).

Substituting (23) into (17), we get respectively

u1
1(t, z) =

∫ t

0

1

u1(s, z)
F1
1 (s, x10 (s, z))ds, (24)

u2
1(t, z) = x11 (T1, z) +

∫ t

T1

1

u2(s, z)
F2
1 (s, x20 (s, z))ds. (25)
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For t ∈ [0, T1], substituting (24) into the expression (23) we get from Lemma 6 that

x1(t, z) = x11 (t, z) = u1(t, z)
∫ t

0

1

u1(s, z)
F1
1 (s, x10 (s, z))ds

= ∂x10 (t, z)

∂z

∫ t

0

1
∂x10 (s,z)

∂z

F1
1 (s, x10 (s, z))ds.

For t ∈ [T1, T ], substituting (25) into the expression (23), together with Lemma 6 and the
last expression, one has

x1(t, z) = x21 (t, z)

= u2(t, z)

(
x11 (T1, z) +

∫ t

T1

1

u2(s, z)
F2
1 (s, x20 (s, z))ds

)

= u2(t, z)

(
u1(T1, z)

∫ T1

0

1

u1(s, z)
F1
1 (s, x10 (s, z))ds

+
∫ t

T1

1

u2(s, z)
F2
1 (s, x20 (s, z))ds

)

= ∂x20 (t, z)

∂z

⎛

⎝
∫ T1

0

1
∂x10 (s,z)

∂z

F1
1 (s, x10 (s, z))ds

+
∫ t

T1

1
∂x20 (s,z)

∂z

F2
1 (s, x20 (s, z))ds

⎞

⎠

= ∂x0(t, z)

∂z

∫ t

0

1
∂x0(s,z)

∂z

F1(s, x0(s, z))ds.

where in the third and fourth equalities we have used Lemma 6.
For k ≥ 2, equating the coefficients of εk in (12) together with the expansions (16) and

(15) gives

∂

∂t
xi

k(t, z) = Fi
k (t, xi

0(t, z)) +
k∑

l=1

l∑

j=1

�i
k−l,l j (t, z)

= Fi
k (t, xi

0(t, z)) +
k−1∑

l=0

k−l∑

j=1

�i
k−l− j,l+ j, j (t, z)

= Fi
k (t, xi

0(t, z)) +
k−1∑

l=0

k−2∑

j=1

�i
k−l− j,l+ j, j (t, z)

+ �i
0,k,1(t, z)

= ∂

∂x
Fi (t, xi

0(t, z))xi
k(t, z) + Ri

k(t, z), (26)

where

Ri
k(t, z) = Fi

k (t, xi
0(t, z))) +

k−2∑

l=0

k−l∑

j=1

�i
k−l− j,l+ j, j (t, z).
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Clearly,

Rk(t, z) =
{

R1
k (t, z), t ∈ [0, T1],

R2
k (t, z), t ∈ [T1, T ],

with R1
k (t, z) and R2

k (t, z) analytic in respectively [0, T1] × D and [T1, T ] × D. Note that
equations (26) are linear differential equations. Working in a similar way to solve equation
(17), one gets the solution of the linear differential equation (26):

xk(t, z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x10 (t,z)
∂z

∫ t

0

1
∂x10 (s,z)

∂z

R1
k (s, x10 (s, z))ds, t ∈ [0, T1],

∂x20 (t,z)
∂z

⎛

⎝
∫ T1

0

1
∂x10 (s,z)

∂z

R1
k (s, x10 (s, z))ds

+
∫ t

T1

1
∂x20 (s,z)

∂z

R2
k (s, x20 (s, z))ds

⎞

⎠ , t ∈ [T1, T ].

We complete the proof of the theorem. ��
2.2 Proof of Theorem 2

By assumption that the unperturbed equation of (1) has a family of periodic solutons x0(t; z)
of period T , z ∈ D, we can define the Poincaré map of the perturbed periodic differential
equation (1) for |ε| sufficiently small:

Pε(z) = x(T ; z, ε) − z =
∑

j≥1

x j (T, z)ε j ,

where x(t; z, ε) is the solution of equation (1) satisfying the initial condition x(0) = z. In
expansion of Pε(z) we have used the fact that x(T ; z, 0) = x0(T ; z) = z.
(a) Define

f (z, ε) = (x(T ; z, ε) − z)/ε.

Clearly it is analytic in its variables. Note from Theorem 1 that the averaging function h1(z)
is x1(T, z). One has

f (z, ε) = h1(z) + εϕ(z, ε).

Clearly, x(t; z, ε) is a T –periodic solution for z ∈ D if and only if f (z, ε) = 0. According
to the conditions in Theorem 2(a), the function f (z, ε) satisfies

f (z∗, 0) = 0,
∂ f (z∗, 0)

∂z
= ∂h1(z∗)

∂z
�= 0.

By the Implicit Function Theorem, there exists a unique analytic function z = φ(ε) defined
in a neighborhood of ε = 0 such that f (φ(ε), ε) = 0 with φ(0) = z∗. That is

x(T ;φ(ε), ε) ≡ φ(ε).

Therefore x(t;φ(ε), ε) is a periodic solution of period T of the perturbed differential equation
(1) such that x(t, φ(ε), ε) → z∗ when ε → 0.
(b) Since h1(z) = . . . = hn−1(z) ≡ 0, and hn(z) �≡ 0, n ≥ 2, we define

g(z, ε) = (x(T, z, ε) − z)/εn .
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Clearly it is analytic. We have

g(z, ε) = xn(T, z) + O(ε).

Note from Theorem 1 that the averaging function hn(z) is xn(T, z). Then the proof follows
from the same arguments as those in the proof of (a).

We complete the proof of the theorem. ��

3 Proof of Theorem 3

For the planar piecewise smooth differential system (8), we transform it, by a generalized
polar coordinate change of variables (x, y) = ξ+(r)η+(θ) in the upper half plane and
(x, y) = ξ−(r)η−(θ) in the lower half plane respectively, to a one dimensional piecewise
smooth differential equation of form (1). And the averaging functions can be presented by
(5) and (6). Some calculations show that system (8) can be written in the upper and lower
half planes respectively as

dr

dθ
=

∑
k≥0

εk
(
ξ±
2 (η±

2 )′ p±
k − ξ±

1 (η±
1 )′q±

k

)

∑
k≥0

εk
(−(ξ±

2 )′η±
2 p±

k + (ξ±
1 )′η±

1 q±
k

) , (27)

where ′ denotes the derivative of the functions with respect to their variables, ξ±
i :=

ξ±
i (r), η±

i := η±
i (θ), i = 1, 2, and for k ∈ Z+ = N ∪ {0}

p+
k := p+

k (ξ+
1 (r)η+

1 (θ), ξ+
2 (r)η+

2 (θ)), q+
k := q+

k (ξ+
1 (r)η+

1 (θ), ξ+
2 (r)η+

2 (θ)),

p−
k := p−

k (ξ−
1 (r)η−

1 (θ), ξ−
2 (r)η−

2 (θ)), q−
k := q−

k (ξ−
1 (r)η−

1 (θ), ξ−
2 (r)η−

2 (θ)).

Set

f ±
k (θ, r) := ξ±

2 (η±
2 )′ p±

k − ξ±
1 (η±

1 )′q±
k ,

g±
k (θ, r) := −(ξ±

2 )′η±
2 p±

k + (ξ±
1 )′η±

1 q±
k .

We have

dr

dθ
=

∑

k≥0

εk f ±
k (θ, r)

g±
0 (θ, r)

⎛

⎝1 +
∑

j≥1

(− 1

g±
0 (θ, r)

) j

(
∑

k=1

εk g±
k (θ, r)

) j
⎞

⎠

=
∑

k≥0

εk f ±
k (θ, r)

g±
0 (θ, r)

×
⎛

⎝1 +
∑

l≥1

εl
l∑

j=1

(
− 1

g±
0 (θ, r)

) j ∑

m1+···+m j =l

g±
m1

(θ, r) × · · · × g±
m j

(θ, r)

⎞

⎠

= f ±
0 (θ, r)

g±
0 (θ, r)

+ 1

g±
0 (θ, r)

∑

k≥1

εk

(
f ±
k (θ, r) +

k∑

l=1

f ±
k−l(θ, r)
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×
l∑

j=1

(
− 1

g±
0 (θ, r)

) j ∑

m1+···+m j =l

g±
m1

(θ, r) × · · · × g±
m j

(θ, r)

⎞

⎠

=
∑

k≥0

εk F±
k (θ, r), (28)

where

F±
0 (θ, r) = f ±

0 (θ, r)

g±
0 (θ, r)

= ξ±
2 (η±

2 )′ p±
0 − ξ±

1 (η±
1 )′q±

0

−(ξ±
2 )′η±

2 p±
0 + (ξ±

1 )′η±
1 q±

0

,

F±
1 (θ, r) = 1

(g±
0 (θ, r))2

(
f ±
1 (θ, r)g±

0 (θ, r) − f ±
0 (θ, r)g±

1 (θ, r)
)

=
(
ξ±
1 (ξ±

2 )′(η±
1 )′η2 − (ξ±

1 )′ξ±
2 η1(η

±
2 )′

)
(−p±

1 q±
0 + p±

0 q±
1 )

(−(ξ±
2 )′η±

2 p±
0 + (ξ±

1 )′η±
1 q±

0

)2 ,

F±
2 (θ, r) = 1

(g±
0 (θ, r))3

(
g±
0 (θ, r)

(
f ±
2 (θ, r)g±

0 (θ, r) − f ±
0 (θ, r)g±

2 (θ, r)
)

+g±
1 (θ, r)

(
f ±
0 (θ, r)g±

1 (θ, r) − f ±
1 (θ, r)g±

0 (θ, r)
))

=
(
ξ±
1 (ξ±

2 )′(η±
1 )′η2 − (ξ±

1 )′ξ±
2 η1(η

±
2 )′

)
(−p±

2 q±
0 + p±

0 q±
2 )

(−(ξ±
2 )′η±

2 p±
0 + (ξ±

1 )′η±
1 q±

0

)2

+
(
ξ±
2 (ξ±

1 )′(η±
2 )′η1 − (ξ±

2 )′ξ±
1 η2(η

±
1 )′

)
(−p±

1 q±
0 + p±

0 q±
1 )

(−(ξ±
2 )′η±

2 p±
0 + (ξ±

1 )′η±
1 q±

0

)3

× (−(ξ±
2 )′η±

2 p±
1 + (ξ±

1 )′η±
1 q±

1

)
. (29)

From the expression (5), we have

H1(z) =
π∫

0

F+
1 (s, r+

0 (s, z))
∂r+

0 (s,z)
∂z

ds +
2π∫

π

F−
1 (s, r−

0 (s, z))
∂r−

0 (s,z)
∂z

ds, (30)

Substituting F±
i (θ, r) for i = 0, 1, 2 in (29) into this last expression, we get the concrete

expression of H1(z) as shown in Theorem 3.
We complete the proof of the theorem. ��

4 Proof of Theorems 4 and 5

For the planar piecewise smooth differential system (11), we can parameterize it in the
generalized polar coordinates (x, y) = (r cos θ, r2 sin θ). As we will see, this change of
coordinates are more useful than the standard one. After this change system (11) can be
written in

dr

dθ
=

⎧
⎪⎪⎨

⎪⎪⎩

r
−r cos θ + 2r sin θ cos θ + εU+(θ, r)

2r cos2 θ + 2r sin θ + εV +(θ, r)
, θ ∈ [0, π],

r
r cos θ + 2r sin θ cos θ + εU−(θ, r)

2r cos2 θ − 2r sin θ + εV −(θ, r)
, θ ∈ [π, 2π],

(31)
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where

U+(θ, r) = r cos θ F+
11 + sin θ F+

21

+ ε(r cos θ F+
12 + sin θ F+

22) + ε2(r cos θ F+
13 + sin θ F+

23),

V +(θ, r) = cos θ F+
21 − 2r sin θ F+

11

+ ε(cos θ F+
22 − 2r sin θ F+

12) + ε2(cos θ F+
23 − 2r sin θ F+

13),

U−(θ, r) = r cos θ F−
11 + sin θ F−

21

+ ε(r cos θ F−
12 + sin θ F−

22) + ε2(r cos θ F−
13 + sin θ F−

23),

V −(θ, r) = cos θ F−
21 − 2r sin θ F−

11

+ ε(cos θ F−
22 − 2r sin θ F−

12) + ε2(cos θ F−
23 − 2r sin θ F−

13).

We can check that cos2 θ + sin θ > 0, θ ∈ [0, π ], and cos2 θ − sin θ > 0, θ ∈ [π, 2π]. Then
we can expand the right hand side of equation (31) in Taylor series.

For θ ∈ [0, π], by Taylor expansion in a neighborhood of ε = 0 one has

dr

dθ
= F+

0 (θ, r) + εF+
1 (θ, r) + ε2F+

2 (θ, r) + O(ε3), (32)

where

F+
0 (θ, r) = − cos θ + 2 sin θ cos θ

2(cos2 θ + sin θ)
r,

F+
1 (θ, r) = 1

4(cos2 θ + sin θ)2

(
2r cos θ(1 + sin2 θ)F+

11 + (1 + sin2 θ)F+
21

)
,

F+
2 (θ, r) = 1

8(cos2 θ + sin θ)3

(
4r cos θ sin θ(1 + sin2 θ)

(
F+
11

)2

+2(1 + sin2 θ)(sin θ − cos2 θ)F+
11F+

21 − 1

r
cos θ(1 + sin2 θ)

(
F+
21

)2

+4r cos θ(1 + sin2 θ)(sin θ + cos2 θ)F+
12

+2(1 + sin2 θ)(sin θ + cos2 θ)F+
22

)
, (33)

with F+
i j := F+

i j (r cos θ, r2 sin θ). Some calculations show that the unperturbed equation
(32)|ε=0 with the initial point (θ, r) = (0, z), z ≥ 0, has the solution

r+
0 (θ, z) = z√

cos2 θ + sin θ
. (34)

For θ ∈ [π, 2π], similar to the manipulations in the case θ ∈ [0, π] one gets

dr

dθ
= F−

0 (θ, r) + εF−
1 (θ, r) + ε2F−

2 (θ, r) + O(ε3), (35)
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where

F−
0 (θ, r) = cos θ + 2 sin θ cos θ

2(cos2 θ − sin θ)
r,

F−
1 (θ, r) = 1

4(cos2 θ − sin θ)2

(
2r cos θ(1 + sin2 θ)F−

11 − (1 + sin2 θ)F−
21

)
,

F−
2 (θ, r) = 1

8(cos2 θ − sin θ)3

(
4r cos θ sin θ(1 + sin2 θ)

(
F−
11

)2

−2(1 + sin2 θ)(sin θ + cos2 θ)F−
11F−

21 + 1

r
cos θ(1 + sin2 θ)

(
F−
21

)2

+4r cos θ(1 + sin2 θ)(cos2 θ − sin θ)F−
12

−2(1 + sin2 θ)(cos2 θ − sin θ)F−
22

)
, (36)

with F−
i j := F−

i j (r cos θ, r2 sin θ). Recall that cos2 θ − sin θ > 0, θ ∈ [π, 2π]. It follows that
all functions F−

i j ’s are analytic. Clearly, the unperturbed equation (35)|ε=0 with the initial

point (0, r+
0 (π, z)) = (0, z) has the solution

r−
0 (θ, z) = z√

cos2 θ − sin θ
. (37)

4.1 Proof of Theorem 4

For computing the first order averaging function, which is associated to system (8), we can
set F±

i2 ≡ 0, i = 1, 2.
According to the expression (30), set

H11(z) :=
π∫

0

F+
1 (s, r+

0 (s, z))
∂r+

0 (s,z)
∂z

ds, H12(z) :=
2π∫

π

F−
1 (s, r−

0 (s, z))
∂r−

0 (s,z)
∂z

ds.

From (11) and (32) one has

F+
1 (s, r+

0 (s, z))
∂r+

0 (s,z)
∂z

= 1

4
(cos2 θ + sin θ)−

3
2

⎛

⎝2(1 + sin2 θ)

n∑

i+ j=0

a+
i j (r

+
0 (s, z))i+2 j+1 cosi+1 θ sin j θ

+(1 + sin2 θ)

n∑

i+ j=0

b+
i j (r

+
0 (s, z))i+2 j cosi θ sin j θ

⎞

⎠

= 1

2

n∑

i+ j=0

a+
i j zi+2 j+1(cos2 θ + sin θ)−

i+2 j+4
2 cosi+1 θ sin j θ(1 + sin2 θ)

+ 1

4

n∑

i+ j=0

b+
i j z

i+2 j+1(cos2 θ + sin θ)−
i+2 j+3

2 cosi θ sin j θ(1 + sin2 θ).

Then

H11 = 1

2

n∑

i+ j=0

a+
i j I +

i+1, j z
i+2 j+1 + 1

4

n∑

i+ j=0

b+
i j I +

i j zi+2 j , (38)
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where

I +
i j =

π∫

0

(cos2 θ + sin θ)−
i+2 j+3

2 cosi θ sin j θ(1 + sin2 θ)dθ. (39)

For k ∈ {1, . . . , 2n}, collecting the coefficients of zk in the two summations
∑

’s of the
expression (38), one gets

H11 = 1

2

⎛

⎜⎝
n+1∑

k=1

zk
[ k−1

2 ]∑

j=0

a+
k−2 j−1, j I +

k−2 j, j +
2n+1∑

k=n+2

zk
[ k−1

2 ]∑

j=k−n−1

a+
k−2 j−1, j I +

k−2 j, j

⎞

⎟⎠

+1

4

⎛

⎜⎝
n∑

k=0

zk
[ k
2 ]∑

j=0

b+
k−2 j, j I +

k−2 j, j +
2n∑

k=n+1

zk
[ k
2 ]∑

j=k−n

b+
k−2 j, j I +

k−2 j, j

⎞

⎟⎠

=
2n+1∑

k=0

J̃k zk, (40)

where

J̃k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4b+

00 I +
00, k = 0,

1
2

[ k−1
2 ]∑

j=0
a+

k−2 j−1, j I +
k−2 j, j + 1

4

[ k
2 ]∑

j=0
b+

k−2 j, j I +
k−2 j, j , 1 ≤ k ≤ n,

1
2

[ n
2 ]∑

j=0
a+

n−2 j, j I +
n−2 j+1, j + 1

4

[ n+1
2 ]∑

j=0
b+

n−2 j+1, j I +
n−2 j+1, j , k = n + 1,

1
2

[ k−1
2 ]∑

j=k−n−1
a+

k−2 j−1, j I +
k−2 j, j + 1

4

[ k
2 ]∑

j=k−n
b+

k−2 j, j I +
k−2 j, j , n + 2 ≤ k ≤ 2n,

1
2a+

0n I +
1n, k = 2n + 1.

(41)

In order to study the properties of the functions I +
i j , we need the formulas

∫
(cos2 θ + sin θ)−

i+3
2 cosi θ(1 + sin2 θ)dθ

= − 2

i + 1
cosi+1 θ(cos2 θ + sin θ)−

i+1
2 ,

(42)

where we omit the integrating constant. By this we get
∫

(cos2 θ + sin θ)−
i+2 j+3

2 cosi θ sin j θ(1 + sin2 θ)dθ

=
j∑

l=0

(−1) j−lCl
j

∫
(cos2 θ + sin θ)−

i+2( j−l)+3
2 cosi+2( j−l) θ(1 + sin2 θ)dθ,

(43)

where Cl
j =

(
j
l

)
= j !

l!( j−l)! . So it follows from (42) that

I +
i0 =

⎧
⎨

⎩
0, i odd,
4

i + 1
, i even,
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and from (43) that

I +
i j =

⎧
⎪⎨

⎪⎩

0, i odd,
j∑

l=0
(−1) j−l

4Cl
j

i + 2( j − l) + 1
, i even.

(44)

Using those expressions of I +
i j ’s we get easily that

J̃k = 0, for k odd.

From the expressions of H11 in (40) and of J̃k in (41), one can rewrite H11 as

H11 =
n∑

k=0

J+
k z2k, (45)

where

J+
k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4
b+
00 I +

00, k = 0,

1

2

k−1∑
j=0

a+
2k−2 j−1, j I +

2k−2 j, j + 1

4

k∑
j=0

b+
2k−2 j, j I +

2k−2 j, j , 2k ∈ {1, . . . n},

1

2

[ n
2 ]∑

j=0
a+

n−2 j, j I +
n−2 j+1, j + 1

4

[ n+1
2 ]∑

j=1
b+

n−2 j+1, j I +
n−2 j+1, j , 2k = n + 1,

1

2

k−1∑
j=2k−n−1

a+
2(k− j)−1, j I +

2(k− j), j

+1

4

k∑
j=2k−n

b+
2(k− j), j I +

2(k− j), j , 2k ∈ {n + 2, . . . , 2n}.
(46)

Some similar calculations to those of H11 show that

H12 =
n∑

k=0

J−
k z2k, (47)

where

J−
k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1

4
b−
00 I −

00, k = 0,

1

2

k−1∑
j=0

a−
2k−2 j−1, j I −

2k−2 j, j − 1

4

k∑
j=0

b−
2k−2 j, j I −

2k−2 j, j , 2k ∈ {1, . . . , n},

1

2

[ n
2 ]∑

j=0
a−

n−2 j, j I −
n−2 j+1, j − 1

4

[ n+1
2 ]∑

j=1
b−

n−2 j+1, j I −
n−2 j+1, j , 2k = n + 1,

1

2

k−1∑
j=2k−n−1

a−
2(k− j)−1, j I −

2(k− j), j

−1

4

k∑
j=2k−n

b−
2(k− j), j I −

2(k− j), j , 2k ∈ {n + 2, . . . , 2n},
(48)

with

I −
i j =

⎧
⎪⎨

⎪⎩

0, i odd,
j∑

l=0
(−1)l 4Cl

j
i+2( j−l)+1 , i even,

(49)
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Substituting (44)–(49) into (30), one gets the first order averaging function

H1 =
n∑

k=0

Bk z2k, (50)

where

Bk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b+
00 − b−

00, k = 0,
k−1∑
j=0

j∑
l=0

2(−1)lCl
j

2k − 2l + 1

(
(−1) j a+

2k−2 j−1, j + a−
2k−2 j−1, j

)

+
k∑

j=0

j∑
l=0

(−1)lCl
j

2k − 2l + 1

(
(−1) j b+

2k−2 j−1, j − b−
2k−2 j−1, j

)
, 1 ≤ 2k ≤ n,

[ n
2 ]∑

j=0

j∑
l=0

2(−1)lCl
j

n − 2l + 2

(
(−1) j a+

n−2 j, j + a−
n−2 j, j

)

+
[ n+1

2 ]∑
j=1

j∑
l=0

(−1)lCl
j

n − 2l + 2

(
(−1) j b+

n−2 j+1, j − b−
n−2 j+1, j

)
, 2k = n + 1,

k−1∑
j=2k−n−1

j∑
l=0

2(−1)lCl
j

2k − 2l + 1

(
(−1) j a+

2k−2 j−1, j + a−
2k−2 j−1, j

)

+
k∑

j=2k−n

j∑
l=0

(−1)lCl
j

2k − 2l + 1

(
(−1) j b+

2k−2 j−1, j − b−
2k−2 j−1, j

)
, n + 2 ≤ 2k ≤ 2n.

(51)
From the expression of Bk in (51), we know that the coefficients of H1 can be chosen

arbitrarily provided that the coefficients of F±
11 and F±

21 in system (11) are arbitrarily chosen.
This shows that H1(z) has at most n simple roots, and that by suitable choices of the coef-
ficients of F±

11 and F±
21, H1(z) do have exactly k simple roots for k = 0, 1, · · · , n. Then it

follows from Theorem 2 that by suitably choosing the values of a±
i j in F±

11 and of b±
i j in F±

21,
system (11) can have k, k = 0, 1, · · · , n, hyperbolic limit cycles via the first order averaging
method.

We complete the proof of Theorem 4. ��
4.2 Proof of Theorems 5

Now the perturbed differential system (11) is piecewise linear, i.e. n = 1. From the proof
of Theorem 4 it follows that the first order averaging function which is associated to system
(11) with n = 1 is

H1(z) = 2

3

(
a+
10 + b+

01 + a−
10 + b−

01

)
z2 + b+

00 − b−
00. (52)

According to Theorem 1, substituting (33)–(34) and (36)–(37) into (6) and (7) together with
some calculations we get that the second order averaging function associated to system (11)
is

H2(z) = I0 + I1z + I2z2 + I3z3 + I4z4, (53)
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where

I0 = 1

2
(b−

00b−
10 − b+

00b+
10) + d+

00 − d−
00,

I1 = 2

3

(
b+
00(a

+
10 + b+

01) + (2b+
00 − b−

00)(a
−
10 + b−

01)
)
,

I2 = 2

3

(
a+
00(a

+
10 + b+

01) − a−
00(a

−
10 + b−

01) + c+
10 + c−

10 + d+
01 + d−

01

)
,

I3 = 4

9
(a+

10 + b+
01 + a−

10 + b−
01)

2,

I4 = 4

15

(
a+
01(a

+
10 + b+

01) + a−
01(a

−
10 + b−

01)
)
.

Proof of Theorem 5. Under the conditions A, that is H1(z) ≡ 0 in (52), the expression of
H2(z) in (53) can be simplified to

H2(z) = 4

15
(a+

10 + b+
01)(a

+
01 − a−

01)z
4

+ 2

3
((a+

10 + b+
01)(a

+
00 + a−

00) + c+
10 + c−

10 + d+
01 + d−

01)z
2

+ 1

2
b−
00(b

−
10 − b+

10) + d+
00 − d−

00.

Clearly, H2(z) can have 2 simple roots when we choose suitable values of the parameters.
Consequently the piecewise linear differential system (11) can have 2 hyperbolic limit cycles,
which are obtained by the second order averaging method. Clearly through the second order
averaging method we can get at most two limit cycles. This proves the theorem. ��

Remark 1 Of course, by suitable choice of the parameters H2(z) can have exactly k simple
roots for k = 0, 1, 2. Then system (11) can have k hyperbolic limit cycles, which are obtained
by the second order averaging method.

Remark 2 Under the conditions H1(z) ≡ 0 in (52) and H2(z) ≡ 0 in (53), applying the
third order averaging function in Theorem 1, together with some calculations, we get the
expression of H3(z) as

H3(z) = 4

15
(a−

01 − a+
01)(c

−
10 + d−

01)z
4 − 2

3
(a+

00 + a−
00)(c

−
10 + d−

01)z
2

+ 1

4
b−
00b−

10(b
+
10 − b−

10) + 1

2
b−
00(d

−
10 − d+

10)

+ 1

2
d−
00(b

−
10 − b+

10) + q+
00 − q−

00.

Clearly H3(z) has at most 2 simple positive zeros. Consequently system (11) has at most 2
limit cycles using the third order averaging method.
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Appendix: The SecondOrderAveraging Function for Planar Piecewise Sys-
tems

In this appendix we present the formula and its derivation of the associated second order
averaging function for the planar piecewise smooth differential system (8).

Continuing the computations given in the proof of Theorem 3, we get

∂ F±
1 (θ, r)

∂r
= g±

0 ( f ±
1 )′ − f ±

0 (g±
1 )′ − ( f ±

0 )′g±
1 − f ±

1 (g±
0 )′

(g±
0 )2

+ 2 f ±
0 g±

1 (g±
0 )′

(g±
0 )3

= 1
(
(ξ±

1 )′η±
1 q±

0 − (ξ±
2 )′η±

2 p±
0

)2

(
(ξ±

1 )′(ξ±
2 )′((η±

1 )′η±
2 − (η±

2 )′η±
1 )(p±

0 q±
1

− q±
0 p±

1 ) − ((ξ±
1 )′′ξ±

2 η±
1 (η±

2 )′ + (ξ±
2 )′′ξ±

1 η±
2 (η±

1 )′)(p±
0 q±

1 + q±
0 p±

1 )

+ 2((ξ±
1 )′′ξ±

1 η±
1 (η±

1 )′q±
0 q±

1 +(ξ±
2 )′′ξ±

2 η±
2 (η±

2 )′ p±
0 p±

1 )+(
ξ±
1 (ξ±

2 )′(η±
1 )′η±

2 −

(ξ±
1 )′ξ±

2 η±
1 (η±

2 )′
)(

(ξ±
1 )′

(
p±
0

∂q±
1

∂x
−q±

0
∂p±

1

∂x

)
+(ξ±

2 )′
(

p±
0

∂q±
1

∂y
−q±

0
∂p±

1

∂y

))

− (
ξ±
1 (ξ±

2 )′(η±
1 )′η±

2 + (ξ±
1 )′ξ±

2 η±
1 (η±

2 )′
)(

(ξ±
1 )′

(
p±
1

∂q±
0

∂x
+ q±

1
∂p±

0

∂x

)

+ (ξ±
2 )′

(
p±
1

∂q±
0

∂y
+ q±

1
∂p±

0

∂y

))
+ 2(((ξ±

1 )′)2ξ±
1 η±

1 (η±
1 )′q±

1
∂q±

0

∂x

+ (ξ±
2 )′(ξ±

1 )′ξ±
2 η±

2 (η±
2 )′ p±

1
∂p±

0

∂x
) + 2((ξ±

1 )′(ξ±
2 )′ξ±

1 η±
1 (η±

1 )′q±
1

∂q±
0

∂y
+

((ξ±
2 )′)2ξ±

2 η±
2 (η±

2 )′ p±
1

∂p±
0

∂y
)

)
+ 1

(
(ξ±

1 )′η±
1 q±

0 − (ξ±
2 )′η±

2 p±
0

)3

((
ξ±
2 (η±

2 )′ p±
0

− ξ±
1 (η±

1 )′q±
0

)(
(ξ±

1 )′η±
1 q±

1 − (ξ±
2 )′η±

2 p±
1

)(
(ξ±

1 )′′η±
1 q±

1 − (ξ±
2 )′′η±

2 p±
1

+ (ξ±
1 )′η±

1 (ξ±
1

∂q±
0

∂x
+ ξ±

2
∂q±

0

∂y
) − (ξ±

2 )′η±
2 (ξ±

1
∂p±

0

∂x
+ ξ±

2
∂p±

0

∂y
)
))

,

(54)
and

∂2F±
0 (θ, r)

∂r2
= 1

(
g±
0

)3

(
(g±

0 )2
∂2

∂r2
f ±
0 − g±

0 f ±
0

∂2

∂r2
g±
0 − 2g±

0
∂

∂r
g±
0

∂

∂r
f ±
0 + 2 f ±

0 (
∂

∂r
g±
0 )2

)

= 1
(
(ξ±

1 )′η±
1 q±

0 − (ξ±
2 )′η±

2 p±
0

)3

(((
(ξ±

1 )′
)2

(ξ±
1 )′′ − 2ξ±

1

(
(ξ±

1 )′′
)2

+ ξ±
1 (ξ±

1 )′(ξ±
1 )′′′

)(
η±
1

)2
(η±

1 )′
(
q±
0

)3 +
(

− (
(ξ±

2 )′
)2

(ξ±
2 )′′ + 2ξ±

2

(
(ξ±

2 )′′
)2

− ξ±
2 (ξ±

2 )′(ξ±
2 )′′′

)(
η±
2

)2
(η±

2 )′
(

p±
0

)3 +
((

ξ±
1 (ξ±

2 )′(ξ±
2 )′′′ − (ξ±

1 )′′((ξ±
2 )′)2

+ 2(ξ±
1 )′(ξ±

2 )′(ξ±
2 )′′ − 2ξ±

1 ((ξ±
2 )′′)2

)
(η±

1 )′(η±
2

)2 +
(
2(ξ±

1 )′′((ξ±
2 )′)2

+ (ξ±
1 )′ξ±

2 (ξ±
2 )′′′ + (ξ±

1 )′′′ξ±
2 (ξ±

2 )′ − 4(ξ±
1 )′′ξ±

2 (ξ±
2 )′′

)
η±
1 η±

2 (η±
2 )′

)
(p±

0

)2
q±
0
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+
(( − (ξ±

1 )′(ξ±
1 )′′′ξ±

2 + ((ξ±
1 )′)2(ξ±

2 )′′ − 2(ξ±
1 )′(ξ±

1 )′′(ξ±
2 )′

+ 2((ξ±
1 )′′)2ξ±

2

)
(η±

1

)2
(η±

2 )′ + ( − 2((ξ±
1 )′)2(ξ±

2 )′′ − ξ±
1 (ξ±

1 )′′′(ξ±
2 )′

− ξ±
1 (ξ±

1 )′(ξ±
2 )′′′ + 4ξ±

1 (ξ±
1 )′′(ξ±

2 )′′
)
η±
1 η±

2 (η±
2 )′

)
(q±

0

)2
p±
0

+
(
2
(
(ξ±

1 )′ξ±
2 η±

1 (η±
2 )′ − ξ±

1 (ξ±
2 )′(η±

1 )′η±
2

)(
(ξ±

1 )′
)2

(ξ±
2 )′η±

1
∂2 p±

0

∂x∂y

(ξ±
1 )′η±

1

(
3ξ±

1 (ξ±
2 )′(η±

1 )′η±
2 − (ξ±

1 )′ξ±
2 η±

1 (η±
2 )′

)
(

(ξ±
1 )′′

∂p±
0

∂x
− (ξ±

2 )′′
∂p±

0

∂y

)

+ (ξ±
1 )′η±

1

(
(ξ±

1 )′ξ±
2 η±

1 (η±
2 )′ − ξ±

1 (ξ±
2 )′(η±

1 )′η±
2

) ((
(ξ±

1 )′
)2 ∂2 p±

0

∂x2

+ (
(ξ±

2 )′
)2 ∂2 p±

0

∂y2

)
− 2ξ±

1

(
(ξ±

1 )′
)2

(ξ±
2 )′′η±

1 (η±
1 )′η±

2
∂p±

0

∂x

+ 2(ξ±
1 )′′(ξ±

2 )′η±
1

(
2ξ±

1 (ξ±
2 )′(η±

1 )′η±
2 − (ξ±

1 )′ξ±
2 η±

1

(
η±
2 )′)

∂p±
0

∂y

)
(q±

0 )2

+
(
2
(
(ξ±

1 )′ξ±
2 η±

1 (η±
2 )′ − ξ±

1 (ξ±
2 )′(η±

1 )′η±
2

)
(ξ±

1 )′
(
(ξ±

2 )′
)2

η±
2

∂2q±
0

∂x∂y
+

(ξ±
2 )′η±

2

(
3(ξ±

1 )′ξ±
2 η±

1 (η±
2 )′ − ξ±

1 (ξ±
2 )′(η±

1 )′η±
2

)
(

(ξ±
1 )′′

∂q±
0

∂x
− (ξ±

2 )′′
∂q±

0

∂y

)

+ 2(ξ±
1 )′

(
(ξ±

2 )′
)2

η±
2

(
η±
1 (η±

2 )′ − (η±
1 )′η±

2

)
(

(ξ±
1 )′

∂q±
0

∂x
+ (ξ±

2 )′
∂q±

0

∂y

)

+ (ξ±
2 )′η±

2

(
(ξ±

1 )′ξ±
2 η±

1 (η±
2 )′ − ξ±

1 (ξ±
2 )′(η±

1 )′η±
2

) ((
(ξ±

1 )′
)2 ∂2q±

0

∂x2

+ (
(ξ±

2 )′
)2 ∂2q±

0

∂y2

)
+ 2(ξ±

1 )′(ξ±
2 )′′η±

2

(
ξ±
1 (ξ±

2 )′(η±
1 )′η±

2

− 2(ξ±
1 )′ξ±

2 η±
1 (η±

2 )′
)∂q±

0

∂x
+ 2(ξ±

1 )′′ξ±
2

(
(ξ±

2 )′
)2

η±
1 η±

2 (η±
2 )′

∂q±
0

∂y

)
(p±

0 )2

+
(

(ξ±
2 )′

(
ξ±
1 (ξ±

2 )′(η±
1 )′(η±

2 )2 − (ξ±
1 )′ξ±

2 η±
1 (η±

2 )′η±
2

)

×
(

(
(ξ±

2 )′
)2 ∂2 p±

0

∂y2
+ (

(ξ±
1 )′

)2 ∂2 p±
0

∂x2

)

+ (ξ±
1 )′

(
ξ±
1 (ξ±

2 )′η±
1 (η±

1 )′η±
2 − (ξ±

1 )′ξ±
2 (η±

1 )2(η±
2 )′

)

×
(

(
(ξ±

1 )′
)2 ∂2q±

0

∂x2
+ (

(ξ±
2 )′

)2 ∂2q±
0

∂y2

)

+ 2
(
ξ±
1 (ξ±

2 )′(η±
1 )′η±

2 − (ξ±
1 )′ξ±

2 η±
1 (η±

2 )′
)(

(ξ±
1 )′

)2
(ξ±

2 )′η±
1

∂2q±
0

∂x∂y

+ 2
(
ξ±
1 (ξ±

2 )′(η±
1 )′η±

2 − (ξ±
1 )′ξ±

2 η±
1 (η±

2 )′
)
(ξ±

1 )′
(
(ξ±

2 )′
)2

η±
2

∂2 p±
0

∂x∂y

+
(
2
(
(ξ±

1 )′
)3

(ξ±
2 )′η±

1 (η±
1 )′η±

2

− 3ξ±
1 (ξ±

1 )′(ξ±
1 )′′(ξ±

2 )′η±
1 (η±

1 )′η±
2 + 2ξ±

1

(
(ξ±

1 )′
)2

(ξ±
2 )′′η±

1 (η±
1 )′η±

2
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+ 2
(
(ξ±

1 )′
)3

(ξ±
2 )′(η±

1 )2(η±
2 )′ + (

(ξ±
1 )′

)2
(ξ±

1 )′′ξ±
2 (η±

1 )2(η±
2 )′

)∂q±
0

∂x

+
(
3ξ±

1 (ξ±
1 )′(ξ±

2 )′(ξ±
2 )′′η±

1 (η±
1 )′η±

2 + 2
(
(ξ±

1 )′
)2(

(ξ±
2 )′

)2
η±
1 (η±

1 )′η±
2

+ 2(ξ±
1 )′(ξ±

1 )′′ξ±
2 (ξ±

2 )′(η±
1 )2(η±

2 )′ − 4ξ±
1 (ξ±

1 )′′
(
(ξ±

2 )′
)2

η±
1 η±

2

− 2
(
(ξ±

1 )′
)2(

(ξ±
2 )′

)2
(η±

1 )2(η±
2 )′ − (

(ξ±
1 )′

)2
ξ±
2 (ξ±

2 )′′(η±
1 )2(η±

2 )′
)∂q±

0

∂y

+
(

− 2ξ±
1 (ξ±

1 )′(ξ±
2 )′(ξ±

2 )′′(η±
1 )′(η±

2 )2 − 3(ξ±
1 )′(ξ±

1 )′′ξ±
2 (ξ±

2 )′η±
1 η±

2 (η±
2 )′

− 2
(
(ξ±

1 )′
)2(

(ξ±
2 )′

)2
η±
1 η±

2 (η±
2 )′ + 4

(
(ξ±

1 )′
)2

ξ±
2 (ξ±

2 )′′η±
1 η±

2 (η±
2 )′

+ ξ±
1 (ξ±

1 )′′
(
(ξ±

2 )′
)2

(η±
1 )′(η±

2 )2 + 2
(
(ξ±

1 )′
)2(

(ξ±
2 )′

)2
(η±

1 )′(η±
2 )2

)∂p±
0

∂x

+
(

− 2(ξ±
1 )′

(
(ξ±

2 )′
)3

η±
1 η±

2 (η±
2 )′ − 2(ξ±

1 )′′ξ±
2

(
(ξ±

2 )′
)2

η±
1 η±

2 (η±
2 )′

− ξ±
1

(
(ξ±

2 )′
)2

(ξ±
2 )′′(η±

1 )′(η±
2 )2 + 3(ξ±

1 )′ξ±
2 (ξ±

2 )′(ξ±
2 )′′η±

1 η±
2 (η±

2 )′

+ 2(ξ±
1 )′

(
(ξ±

2 )′
)3

(η±
1 )′(η±

2 )2
)∂p±

0

∂y

)
p±
0 q±

0

+
((

− 2ξ±
1

(
(ξ±

2 )′
)4

(η±
1 )′(η±

2 )2 + 2(ξ±
1 )′ξ±

2

(
(ξ±

2 )′
)3

η±
1 η±

2 (η±
2 )′

)(
∂p±

0

∂y

)2

+ 2
(
(ξ±

1 )′ξ±
2 (ξ±

2 )′η±
1 η±

2 (η±
2 )′ − 2ξ±

1

(
(ξ±

2 )′
)2

(η±
1 )′(η±

2 )2
)(

(ξ±
1 )′

)2
(

∂p±
0

∂x

)2

+ 4
((

(ξ±
1 )′

)2
ξ±
2

(
(ξ±

2 )′
)2

η±
1 η±

2 (η±
2 )′ − ξ±

1 (ξ±
1 )′

(
(ξ±

2 )′
)3

(η±
1 )′(η±

2 )2
)∂p±

0

∂y

∂p±
0

∂x

+ 2
(
ξ±
1

(
(ξ±

1 )′
)2(

(ξ±
2 )′

)2
η±
1 (η±

1 )′η±
2 − (

(ξ±
1 )′

)3
ξ±
2 (ξ±

2 )′(η±
1 )2(η±

2 )′
)∂q±

0

∂x

∂p±
0

∂y

+ 2
(
ξ±
1

(
(ξ±

1 )′
)2(

(ξ±
2 )′

)2
η±
1 (η±

1 )′η±
2 − (

(ξ±
1 )′

)3
ξ±
2 (ξ±

2 )′(η±
1 )2(η±

2 )′
)∂q±

0

∂y

∂p±
0

∂x

+ 2
(

− (
(ξ±

1 )′
)2

ξ±
2 (η±

1 )2(η±
2 )′ + ξ±

1 (ξ±
1 )′(ξ±

2 )′η±
1 (η±

1 )′η±
2

)(
(ξ±

2 )′
)2 ∂q±

0

∂y

∂p±
0

∂y

+ 2
(

− (
(ξ±

1 )′
)4

ξ±
2 (η±

1 )2(η±
2 )′ + 2ξ±

1

(
(ξ±

1 )′
)3

(ξ±
2 )′η±

1 (η±
1 )′η±

2

)∂q±
0

∂x

∂p±
0

∂x

)
q±
0

+
(
2
(
(ξ±

1 )′ξ±
2 (η±

1 )2(η±
2 )′ − ξ±

1 (ξ±
2 )′η±

1 (η±
1 )′η±

2

)(
(ξ±

1 )′
)3

(
∂q±

0

∂x

)2

+ 2
((

(ξ±
1 )′

)2
ξ±
2 (η±

1 )2(η±
2 )′ − ξ±

1 (ξ±
1 )′(ξ±

2 )′η±
1 (η±

1 )′η±
2

)(
(ξ±

2 )′
)2

(
∂q±

0

∂y

)2

+ 2
(

− (
(ξ±

1 )′
)2

ξ±
2 η±

1 η±
2 (η±

2 )′ + ξ±
1 (ξ±

1 )′(ξ±
2 )′(η±

1 )′(η±
2 )2

)(
(ξ±

2 )′
)2 ∂q±

0

∂x

∂p±
0

∂y

+ 2
(

− (
(ξ±

1 )′
)2

ξ±
2 η±

1 η±
2 (η±

2 )′ + ξ±
1 (ξ±

1 )′(ξ±
2 )′(η±

1 )′(η±
2 )2

)(
(ξ±

2 )′
)2 ∂q±

0

∂y

∂p±
0

∂x

+ 2
(

− (ξ±
1 )′ξ±

2 η±
1 η±

2 (η±
2 )′ + ξ±

1 (η±
1 )′(ξ±

2 )′(η±
2 )2

)(
(ξ±

2 )′
)3 ∂q±

0

∂y

∂p±
0

∂y
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+ 2
(
ξ±
1

(
(ξ±

2 )′
)2

(η±
1 )′(η±

2 )2 − (ξ±
1 )′ξ±

2 (ξ±
2 )′η±

1 η±
2 (η±

2 )′
)(

(ξ±
1 )′

)2 ∂q±
0

∂x

∂p±
0

∂x

+ 4
(
(ξ±

1 )′ξ±
2 (η±

1 )2(η±
2 )′ − ξ±

1 (ξ±
2 )′η±

1 (η±
1 )′η±

2

)
(ξ±

2 )′
(
(ξ±

1 )′
)2 ∂q±

0

∂y

∂q±
0

∂x

)
p±
0 . (55)

Set

v11(θ, z) =
∫ θ

0

(− p̃+
1 q̃+

0 + p̃+
0 q̃+

1 )

∂r+
0 (θ,z)
∂z

(
(ξ+

1 )′(r+
0 )η+

1 q̃+
0 − (ξ+

2 )′(r+
0 )η+

2 p̃+
0

)2

×
(
ξ+
1 (r+

0 )(ξ+
2 )′(r+

0 )(η+
1 )′η+

2 − (ξ+
1 )′(r+

0 )ξ+
2 (r+

0 )η+
1 (η+

2 )′
)

dθ,

v21(θ, z)

=v11(π, z) +
∫ θ

π

(− p̃−
1 q̃−

0 + p̃−
0 q̃−

1 )

∂r−
0 (θ,z)
∂z

(
(ξ−

1 )′(r−
0 )η−

1 q̃−
0 − (ξ−

2 )′(r−
0 )η−

2 p̃−
0

)2

×
(
ξ−
1 (ξ−

2 )′(η−
1 )′(r−

0 )η2(r
−
0 (θ, z)) − (ξ−

1 )′(r−
0 )ξ−

2 (r−
0 )η−

1 (η−
2 )′

)
dθ.

From the expression (6), we have

H2(z) =
π∫

0

1
∂r+

0 (s,z)
∂z

(
F+
2 (s, r+

0 (s, z)) + ∂ F+
1

∂r
(s, r+

0 (s, z))r+
1 (s, z)

+1

2

∂2F+
0

∂r2
(s, x0(s, z))(r+

1 (s, z))2
)

ds

+
2π∫

π

1
∂r−

0 (s,z)
∂z

(
F−
2 (s, r−

0 (s, z)) + ∂ F−
1

∂r
(s, r−

0 (s, z))r−
1 (s, z)

+1

2

∂2F−
0

∂r2
(s, x0(s, z))(r−

1 (s, z))2
)

ds

=
π∫

0

⎛

⎝ F+
2 (s, r+

0 (s, z))
∂r+

0 (s,z)
∂z

+ ∂ F+
1

∂r
(s, r+

0 (s, z))v11(θ, z)

+1

2

∂2F+
0

∂r2
(s, x0(s, z))(v11(θ, z))2

∂r+
0 (s, z)

∂z

)
ds

2π∫

π

⎛

⎝ F−
2 (s, r−

0 (s, z))
∂r−

0 (s,z)
∂z

+ ∂ F−
1

∂r
(s, r−

0 (s, z))v12(θ, z)

+1

2

∂2F−
0

∂r2
(s, x0(s, z))(v21(θ, z))2

∂r−
0 (s, z)

∂z

)
ds

(56)

Substituting (29) and (54)–(55) into (56), we can obtain the second order averaging function
H2(z). As we have seen, the concrete expression of H2(z) will be much involved, and it is
omitted.
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