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Abstract It is known that solutions of nonlocal dispersal evolution equations do not become
smoother in space as time elapses. This lack of space regularity would cause a lot of diffi-
culties in studying transition fronts in nonlocal equations. In the present paper, we establish
some general criteria concerning space regularity of transition fronts in nonlocal dispersal
evolution equations with a large class of nonlinearities, which allows the applicability of var-
ious techniques for reaction–diffusion equations to nonlocal equations, and hence serves as
an initial and fundamental step for further studying various important qualitative properties
of transition fronts such as stability, uniqueness and asymptotic speeds. We also prove the
existence of continuously differentiable and increasing interface location functions, which
give a better characterization of the propagation of transition fronts and are of great technical
importance.
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1 Introduction

Reaction–diffusion equations of the form

ut = uxx + f (t, x, u), (t, x) ∈ R × R (1.1)

B Zhongwei Shen
zzs0004@auburn.edu; zhongwei@ualberta.ca

Wenxian Shen
wenxish@auburn.edu

1 Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA

2 Present Address: Department of Mathematical and Statistical Sciences, University of Alberta,
Edmonton, AB T6G 2G1, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-016-9528-4&domain=pdf


1072 J Dyn Diff Equat (2017) 29:1071–1102

are widely used to model diffusive systems in applied sciences. The nonlinearity f arising
from many diffusive systems in biology or physics possesses two zeros representing two
states, say 0 and 1, that is, f (t, x, 0) = f (t, x, 1) = 0 for all (t, x) ∈ R × R. Since
the pioneering works of Fish (see [21]) and Kolmogorov et al. (see [28]) on the traveling
waves of (1.1) connecting the two constant states, i.e., u ≡ 0 and u ≡ 1, in the case
f (t, x, u) = u(1−u), a vast amount of literature has been carried out to the understanding of
front-like solutions connecting u ≡ 1 and u ≡ 0 in such an equation and its generalized forms.
We refer to [2,3,23,24,27,59,61] and references therein for works in homogeneous media,
i.e., f (t, x, u) = f (u). Recently, there is a lot of progress concerning (1.1) in heterogeneous
media. We refer to [9,20,33,34,37,39,40,58,60,63] and references therein for works in
space heterogeneous media, i.e., f (t, x, u) = f (x, u), and to [1,38,43,44,46,47,49,54] and
references therein for works in time heterogeneous media, i.e., f (t, x, u) = f (t, x). There
are also some works in space-time heterogeneous media (see e.g. [29–31,35,36,45,48,60]),
but it remains widely open.

When using Eq. (1.1) to model a diffusive system in applied sciences, it is implicitly
assumed that the internal interaction range of organisms in the system is infinitesimal and
that the internal dispersal can be described by random walk. However, in practice, a diffusive
system may exhibit long range internal interaction. Equation (1.1) is then no long suitable to
model such a system. More precisely, the random dispersal operator ∂xx is no long suitable.
As a substitute, the nonlocal dispersal operator is introduced (see e.g. [22,25] for some
background) and we are now concerned with the following integral equation

ut = J ∗ u − u + f (t, x, u), (t, x) ∈ R × R, (1.2)

where J is a convolution kernel and [J ∗u](x) = ∫
R

J (x − y)u(y)dy = ∫
R

J (y)u(x − y)dy.
There is also a great amount of research toward the understanding of front-like solutions of
(1.2) connecting u ≡ 0 and u ≡ 1. See [5,6,8,13,15–18,42] and references therein for the
study in the homogeneous case f (t, x, u) ≡ f (u). See [4,14] for the study in the case that
f (t, x, u) ≡ f (t, u) is periodic or almost periodic in t . In [19,55–57], the authors investigated
(1.2) in space periodic monostable media, i.e., f (t, x, u) = f (x, u) is of monostable type
and periodic in x , and proved the existence of spreading speeds and periodic traveling waves.
In [41], the authors studied the existence of spreading speeds and traveling waves of (1.2) in
space-time periodic monostable media. Very recently, both Berestycki, Coville and Vo (see
[12]), and Lim and Zlatoš (see [32]) investigated (1.2) in space heterogeneous monostable
media. While Berestycki, Coville and Vo studied principal eigenvalue, positive solution and
long-time behavior of solutions, Lim and Zlatoš proved the existence of transition fronts in
the sense of Berestycki-Hamel (see [10,11]). In [50,51], the authors studied (1.2) in the time
heterogeneous media of ignition type, and prove the existence, regularity and stability of
transition fronts.

However, comparing to the classical random dispersal case, i.e., (1.1), results concerning
front propagation for (1.2) are still very limited. One of the difficulties arising in the study
of front propagation dynamics of (1.2) is that solutions of (1.2) do not become smoother as
time t elapses due to the fact that the semigroup generated by the nonlocal dispersal operator
u �→ J ∗ u − u has no regularizing effect. The objective of the present paper is to investigate
the space regularity of transition fronts of (1.2) with various nonlinearities, including the
monostable nonlinearity, the ignition nonlinearity, and the bistable nonlinearity. The results
to be developed in this paper have important applications in the study of stability, uniqueness,
asymptotic, etc. of transition fronts of (1.2).

To state the main results of this paper, we first introduce two standard hypotheses.
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(H1) J : R → R satisfies J �≡ 0, J ∈ C1, J (x) = J (−x) ≥ 0 for x ∈ R,
∫
R

J (x)dx = 1
and ∫

R

J (x)eγ x dx < ∞,

∫

R

|J ′(x)|eγ x dx < ∞, ∀γ ∈ R.

(H2) There exist C2 functions fB : [0, 1] → R and fM : [0, 1] → R such that

fB(u) ≤ f (t, x, u) ≤ fM (u), (t, x, u) ∈ R × R × [0, 1];
moreover, the following conditions hold:

– f : R × R × [0, 1] → R is continuous and continuously differentiable in x and u, and
satisfies

sup
(t,x,u)∈R×R×[0,1]

| fx (t, x, u)| < ∞ and sup
(t,x,u)∈R×R×[0,1]

| fu(t, x, u)| < ∞;

– there exist θ1 ∈ (0, 1) such that fu(t, x, u) ≤ 0 for all (t, x, u) ∈ R × R × [θ1, 1];
– fB is of standard bistable type, that is, fB(0) = fB(θ) = fB(1) = 0 for some θ ∈ (0, 1),

fB(u) < 0 for u ∈ (0, θ), fB(u) > 0 for u ∈ (θ, 1) and
∫ 1
0 fB(u)du > 0; moreover,

ut = J ∗ u − u + fB(u) admits a traveling wave φB(x − cBt) with φB(−∞) = 1,
φB(∞) = 0 and cB �= 0;

– fM is of standard monostable type, that is, fM (0) = fM (1) = 0 and fM (u) > 0 for
u ∈ (0, 1).

We remark that cB must be positive. Observe that nonlinear functions satisfying (H2)
include the monostable nonlinearity, the ignition nonlinearity, and the bistable nonlinearity
satisfying the conditions below.

(i) Monostable or Fisher-KPP nonlinearity.
Standard monostable nonlinearity f (·): f (0) = f (1) = 0, f (u) > 0 for u ∈ (0, 1),
and f (u)

u is decreasing in u.
General monostable nonlinearity f (·, ·, ·): fmin(u) ≤ f (t, x, u) ≤ fmax(u) for
(t, x) ∈ R×R and u ∈ [0, 1], where fmin(·) and fmax(u) are two standard monostable
nonlinearities, and f (t,x,u)

u decreasing in u for any (t, x) ∈ R × R.
(ii) Ignition nonlinearity.

Standard ignition nonlinearity f (·): f (u) = 0 for u ∈ [0, θ ] ∪ {1}, f (u) > 0 for
u ∈ (θ, 1), and fu(1) < 0, where θ ∈ (0, 1) is referred to as the ignition temperature.
General ignition nonlinearity f (·, ·, ·): fmin(u) ≤ f (t, x, u) ≤ fmax(u) for (t, x) ∈
R×R and u ∈ [0, 1], where fmin(·) and fmax(·) are two standard ignition nonlinearities.

(iii) Bistable nonlinearity.
Standard bistable nonlinearity f (·): f (0) = f (θ) = f (1) = 0, f (u) < 0 for u ∈
(0, θ), f (u) > 0 for u ∈ (θ, 1), and fu(0) < 0, fu(1) < 0, fu(θ) > 0, where
θ ∈ (0, 1).
General bistable nonlinearity f (·, ·, ·): fmin(u) ≤ f (t, x, u) ≤ fmax(u) for (t, x) ∈
R×R and u ∈ [0, 1], where fmin(·) and fmax(·) are two standard bistable nonlinearities
with

∫ 1
0 fmin(u)du > 0 and ut = J ∗ u − u + fmin(u) having traveling waves with

nonzero speed.

We remark that (H2) can also be applied to a general bistable nonlinearity f (t, x, u) with∫ 1
0 fmax(u)du < 0 and ut = J ∗u −u + fmax(u) having traveling waves with nonzero speed.
In fact, let v(t, x) = 1 − u(t, x). Then, v(t, x) satisfies

vt = J ∗ v − v + f̃ (t, x, v), (t, x) ∈ R × R,
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where f̃ (t, x, v) = − f (t, x, 1 − v). Hence

f̃min(v) ≤ f̃ (t, x, v) ≤ f̃max(v), (t, x, v) ∈ R × R × [0, 1]
where f̃min(v) = − fmax(1 − v) and f̃max(v) = − fmin(1 − v). Clearly, f̃min(·) and f̃max(·)
are two standard bistable nonlinearities and

∫ 1
0 f̃min(v)dv > 0 and ut = J ∗ u − u + f̃min(u)

admits traveling waves with nonzero speed.
We also remark that, besides monostable, ignition, and bistable nonlinearities, nonlinear

functions satisfying (H2) include those having more than one zeros between 0 and 1.
Next, we recall the definition of transition fronts of (1.2) connecting u ≡ 0 and u ≡ 1.

Definition 1.1 Suppose that f (t, x, 0) = f (t, x, 1) = 0 for all (t, x) ∈ R × R. A global-
in-time solution u(t, x) of (1.2) is called a (right-moving) transition front (connecting 0 and
1) in the sense of Berestycki-Hamel (see [10,11], also see [43,44]) if u(t, x) ∈ (0, 1) for all
(t, x) ∈ R × R and there exists a function X : R → R, called interface location function,
such that

lim
x→−∞ u(t, x + X (t)) = 1 and lim

x→∞ u(t, x + X (t)) = 0 uniformly in t ∈ R.

The notion of a transition front is a proper generalization of a traveling wave in homo-
geneous media and a periodic (or pulsating) traveling wave in periodic media. The interface
location function X (t) tells the position of the transition front u(t, x) as time t elapses, while
the uniform-in-t limits (the essential property in the definition) shows the bounded interface
width, that is,

∀ 0 < ε1 ≤ ε2 < 1, sup
t∈R

diam{x ∈ R|ε1 ≤ u(t, x) ≤ ε2} < ∞.

Notice, if ξ(t) is a bounded function, then X (t)+ξ(t) is also an interface location function.
Thus, interface location function is not unique. But, it is easy to check that if Y (t) is another
interface location function, then X (t)−Y (t) is a bounded function. Hence, interface location
functions are unique up to addition by bounded functions.

We see that neither the definition nor the Eq. (1.2) guarantees any space regularity of
transition fronts. In fact, there is even no guarantee that a transition front u(t, x) of (1.2)
is continuous in x (we refer to [8] for the existence of discontinuous traveling waves in the
bistable case). This lack of space regularity indeed causes a lot of troubles in studying tran-
sition fronts because (i) space regularity of approximating solutions is required to ensure the
convergence to transition fronts; (ii) space regularity of transition fronts lays the foundation
for applying various techniques for reaction–diffusion equations to nonlocal equations, and
hence, for further studying various qualitative properties such as stability and uniqueness.
Hence, it is very important to study the space regularity of special solutions.

In the present paper, we intend to establish some general criteria concerning the space
regularity of transition fronts of (1.2). More precisely, we want to know whether a transition
front u(t, x) of (1.2) is continuously differentiable in x . To state our first result, we further
introduce the following hypothesis.

(H3) There exist θ0 ∈ (0, θ1) and κ0 > 0 such that

fu(t, x, u) ≤ 1 − κ0, (t, x, u) ∈ R × R × [0, θ0].
We prove

Theorem 1.2 Suppose (H1)–(H3). Let u(t, x) be an arbitrary transition front of (1.2). Then,
u(t, x) is regular in space in the following sense: for any t ∈ R, u(t, x) is continuously
differentiable in x and satisfies sup(t,x)∈R×R

|ux (t, x)| < ∞.
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We remark that Theorem 1.2 can be proven essentially due to the assumptions∫ 1
0 fB(u)du > 0 and the existence of traveling waves of

ut = J ∗ u − u + fB(u) (1.3)

with nonzero speed in (H2), which corresponds to the unbalanced case in the bistable case.
If we drop these assumptions, then, in the bistable case, there is no hope that Theorem 1.2
is true without additional assumptions on f (t, x, u), since discontinuous traveling waves of
(1.3) with zero speed were constructed in [8], where necessary conditions for the existence
of discontinuous traveling waves are also given. Thus, our results are kind of sharp and
are compatible with the results for traveling waves in the monostable case, the ignition
case and the unbalanced bistable case. It is worthwhile to point out that in the case (1.3)
admits discontinuous traveling waves, it may also admits non-monotone waves (see [15,
Theorem 5.4]).

Although the assumptions on fB are automatically true in the monostable case and the
ignition case, it does cause some restrictions in the bistable case, and hence, there remains an
interesting problem, that is, whether transition fronts in the bistable case are regular in space
when (1.3) admits only smooth stationary waves, i.e., smooth traveling waves with speed
zero.

The proof of Theorem 1.2 is based on the rightward propagation estimate of transition
fronts and the analysis of the growth and the decay of u(t,x+η)−u(t,x)

η
. The rightward propa-

gation estimate reads as

X (t) − X (t0) ≥ c1(t − t0 − T1), t ≥ t0 (1.4)

for some c1 > 0 and T1 > 0, which is established in Theorem 2.2 (to show (1.4), we need∫ 1
0 fB(u)du > 0 and the existence of traveling waves of (1.3) with nonzero speed). To

control the behavior of u(t,x+η)−u(t,x)
η

when x is close to ∞, we need (H3). A key ingredient

in proving Theorem 1.2, i.e., controlling the term u(t,x+η)−u(t,x)
η

, is the observation that for

fixed x , the term u(t,x+η)−u(t,x)
η

can only grow for a period of time that is independent of x .
Moreover, since we directly study transition fronts, whichmay not come from approximating
solutions, we are lack of a priori information, which immediately causes the possible blow-
up behavior of u(t0,x+η)−u(t0,x)

η
as η → 0 at the initial time t0. To overcome this technical

difficulty, we utilize the fact that transition fronts are global-in-time, which means we can
take t0 to approach −∞ along subsequences.

Clearly, (H3) rules out many monostable nonlinearities, and it does not cover all Fisher-
KPP nonlinearities. Our next result is trying to cover the monostable nonlinearities at the
cost of putting some restrictions on transition fronts. We prove

Theorem 1.3 Suppose (H1) and (H2). Suppose, in addition, that

sup
(t,x,u)∈R×R×[0,1]

| fxu(t, x, u)| < ∞ and sup
(t,x,u)∈R×R×[0,1]

| fuu(t, x, u)| < ∞.

Let u(t, x) be an arbitrary transition front of (1.2) satisfying

u(t, x) ≤ Cer |x−y|u(t, y), (t, x, y) ∈ R × R × R (1.5)

for some C > 0 and r > 0. Then, u(t, x) is regular in space in the following sense: for any
t ∈ R, u(t, x) is continuously differentiable in x and satisfies sup(t,x)∈R×R

|ux (t,x)|
u(t,x)

< ∞.

The key assumption in Theorem 1.3 is the Harnack-type inequality (1.5), which is the
case for some transition fronts in the Fisher-KPP case (see [32,53]). The importance of (1.5)
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lies in the fact that it allows the comparison of J ∗ u and J ′ ∗ u with u. More precisely, by
(1.5), we find 1

C

∫
R

J (x)e−r |x |dx ≤ J∗u
u ≤ C

∫
R

J (x)er |x |dx and similarly for J ′ ∗ u, which

plays crucial roles in controlling u(t,x+η)−u(t,x)
ηu(t,x)

.
The next result gives space regularity of transition fronts under the exact decay assumption.

Theorem 1.4 Suppose (H1) and (H2). Suppose, in addition, that

sup
(t,x,u)∈R×R×[0,1]

| fxu(t, x, u)| < ∞ and sup
(t,x,u)∈R×R×[0,1]

| fuu(t, x, u)| < ∞.

Let u(t, x) be an arbitrary transition front of (1.2) with interface location function X (t).
There exists r0 > 0 such that if

lim
x→∞

u(t, x + X (t))

e−r x
= 1 uniformly in t ∈ R (1.6)

for some r ∈ (0, r0], then, u(t, x) is regular in space in the following sense: for any t ∈ R,
u(t, x) is continuously differentiable in x and satisfies sup(t,x)∈R×R

|ux (t,x)|
u(t,x)

< ∞.

We remark that the exact decay assumption (1.6) is the case for some transition fronts in
the Fisher-KPP case (see [32,53]). The importance of (1.6) lies in the fact that it allows the
comparison of J ∗ u and J ′ ∗ u with u near x = ∞. Note that if the limit in (1.6) is some
other positive number instead of 1, then we only need to shift the exponential function on the
bottom correspondingly. The number r0 corresponds to the possible decay rate of Fisher-KPP
transition fronts, and thus, it would be interesting to determine the optimal r0.

The study of space regularity of transition fronts of (1.2) was initiated in [51], where the
space regularity of well-constructed transition fronts in time heterogeneous media of ignition
type is obtained. Those well-constructed transition fronts are uniformly Lipschitz continuous
in space and their interface location functions can be chosen to be continuously differentiable
with uniformly positive first order derivatives. These properties, which may not be true for
an arbitrary transition front, play important roles in the study of space regularity of well-
constructed transition fronts in [51]. Our results, Theorems 1.2, 1.3 and 1.4, generalize the
work in [51] to arbitrary transition fronts (with some additional assumptions in Theorems 1.3
and 1.4) of (1.2)with a large class of nonlinearities. As already shown in [51], space regularity
of transition fronts is of great significance in the study of stability, which together with
uniqueness and asymptotic speeds, will be studied elsewhere.

Finally, we study the existence of continuously differentiable and increasing interface
location functions. As mentioned before, if X (t) is an interface location function of a transi-
tion front u(t, x) of (1.2), then for any bounded function ξ(t), X (t)+ξ(t) is also an interface
location function of u(t, x). Hence, interface location functions of a transition front are not
unique and may not be continuous. But, near each interface location function, we are able
to find a continuously differentiable and increasing function, as the new interface location
function. This is given by the following

Theorem 1.5 Suppose (H1) and (H2). Let u(t, x) be an arbitrary transition front of (1.2)
with interface location function X (t) satisfying

X (t) − X (t0) ≤ c2(t − t0 + T2), t ≥ t0 (1.7)

for some c2 > 0 and T2 > 0. Then, there are constants 0 < c̃min ≤ c̃max < ∞ and a
continuously differentiable function X̃(t) satisfying

c̃min ≤ ˙̃X (t) ≤ c̃max, t ∈ R
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such that
sup
t∈R

|X̃(t) − X (t)| < ∞.

In particular, X̃(t) is also an interface location function of u(t, x).

We see that (H1) and (H2) do not ensure the space regularity of transition fronts. It will
be clear later that the proof of Theorem 1.5 does not need the space regularity of transition
fronts.

We refer to X̃(t) in Theorem 1.5 as the modified interface location function, which gives
a better characterization of the propagation of transition fronts and has been verified to be
of great technical importance in studying the stability of transition fronts in time hetero-
geneous media (see e.g. [50,51,54]). Moreover, for reaction–diffusion equations in space
heterogeneous media, the rightmost interface location at some constant value continuously
moves to the right (see e.g. [33,34,39,64]). But for nonlocal equations in space heteroge-
neous media, the rightmost interface location at some constant value jumps in general due to
the nonlocality, which makes the modified interface location function more important.

The condition (1.7) is a technical assumption saying a transition front moves to the right
at most at linear speed in the average sense, which together with (1.4) allow us to find the
modified interface location function. Arguing as in the proof of Theorem 2.2, we readily
check that the condition (1.7) is always true in the bistable case. This condition can also be
verified in other cases including the monostable case and the ignition case as in the following
two corollaries.

Corollary 1.6 Suppose (H1) and (H2). Let u(t, x) be an arbitrary transition front of (1.2).
If there exists θ̃ ∈ (0, θ) such that

f (t, x, u) ≤ 0, (t, x, u) ∈ R × R × [0, θ̃ ],
then (1.7) is true. In particular, the conclusions of Theorem 1.5 hold.

Clearly, Corollary 1.6 covers, in particular, all bistable and ignition nonlinearities, but
rules out all monostable nonlinearities, which are covered by the next result.

Corollary 1.7 Suppose (H1) and (H2). Suppose, in addition, that J is compactly supported.
Let u(t, x) be an arbitrary transition front of (1.2) with interface location function X (t). If
there exist r > 0 and h > 0 such that

u(t, x + X (t)) ≤ e−r(x−h), (t, x) ∈ R × R,

then (1.7) is true. In particular, the conclusions of Theorem 1.5 hold.

We remark that in the monostable case, uniform exponential decay as x → ∞ may be
necessary for transition fronts to travel at linear speeds, since slower decay near x = ∞ may
cause super-linear propagation (see [26]). It is worthwhile to point out that in the bistable
case, a discontinuous traveling wave may not converge to zero exponentially as x → ∞
(see [7, Theorem 5.1]). Here, we need J to be compactly supported, since we will use results
obtained in [13,57] in the proof, whichwere provenwhen J is compactly supported. It should
be pointed out that the arguments and results in [57] can be extended to dispersal kernels J
which are not compactly supported, but satisfy (H1) (see [62]).

As a direct application of the results, in particular, Theorem1.2 andCorollary 1.6, obtained
in the present paper, we study in [52] the Eq. (1.2) in time heterogeneous media of general
bistable type, that is, f (t, x, u) = f (t, u) satisfies

fmin(u) ≤ f (t, u) ≤ fmax(u), (t, u) ∈ R × [0, 1],
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where the C2 functions fmin and fmax are standard bistable nonlinearities on [0, 1] with
the unbalanced condition

∫ 1
0 fmin(u)du > 0. Provided that there is a space nonincreasing

transition front, we show by means of Theorem 1.2 and Corollary 1.6 that (i) all transition
fronts are asymptotically stable and enjoy decaying estimates; (ii) transition fronts are unique
up to space shifts; (iii) all transition fronts become periodic traveling waves in the periodic
media and have asymptotic speeds in the uniquely ergodic media. The assumption on the
existence of a space nonincreasing transition front can be verified if, for example, f (t, u) is
of standard bistable type in u for each t and their middle zeros are the same.

The rest of the paper is organized as follows. In Sect. 2, we establish the rightward propa-
gation estimate of transition fronts. We will see, in particular, that any transition fronts moves
front left infinity to right infinity as time goes from −∞ to ∞. In Sect. 3, we prove Theorem
1.2. In Sect. 4, we prove Theorem 1.3. In Sect. 5, we prove Theorem 1.4. In Sect. 6, we prove
Theorem 1.5, Corollary 1.6 and Corollary 1.7.We end up the present paper with an appendix,
“Appendix”, on ignition traveling waves.

2 Rightward Propagation Estimates

In this section, we study the rightward propagation estimates of transition fronts. Throughout
this section, we assume (H1) and (H2).

In what follows in this section, u(t, x) will be an arbitrary transition front of (1.2) with
interface location function X (t). For λ ∈ (0, 1), we define X−

λ (t) and X+
λ (t) by setting

X−
λ (t) = sup{x ∈ R|u(t, y) > λ, ∀y ≤ x},

X+
λ (t) = inf{x ∈ R|u(t, y) < λ, ∀y ≥ x}. (2.1)

Note that if u(t, x) is continuous in x , then X−
λ (t) and X+

λ (t) are nothing but the leftmost
and rightmost interface locations at λ. Trivially, X−

λ (t) ≤ X+
λ (t) and X±

λ (t) are decreasing
in λ. Due to the possible discontinuity of u(t, x) in x , it may happen that u(t, X−

λ (t)) < λ or
u(t, X+

λ (t)) > λ.
From the definition of transition fronts, we have the following simple lemma.

Lemma 2.1 The following statements hold:

(i) for any 0 < λ1 ≤ λ2 < 1, there holds supt∈R[X+
λ1

(t) − X−
λ2

(t)] < ∞;

(ii) for any λ ∈ (0, 1), there hold supt∈R |X (t) − X±
λ (t)| < ∞.

Proof (i) By the uniform-in-t limits limx→−∞ u(t, x + X (t)) = 1 and limx→∞ u(t, x +
X (t)) = 0, there exist x1 and x2 such that u(t, x + X (t)) > λ2 for all x ≤ x2 and t ∈ R,
and u(t, x + X (t)) < λ1 for all x ≥ x1 and t ∈ R. It then follows from the definition of
X−

λ2
(t) and X+

λ1
(t) that x2 + X (t) ≤ X−

λ2
(t) and x1 + X (t) ≥ X+

λ1
(t) for all t ∈ R. The

result then follows.
(ii) Let λ1 = λ = λ2 in the proof of (i), we have x2 + X (t) ≤ X−

λ (t) and x1 + X (t) ≥ X+
λ (t)

for all t ∈ R. In particular,

x2 + X (t) ≤ X−
λ (t) ≤ X+

λ (t) ≤ x1 + X (t), t ∈ R.

This completes the proof.
��

The next result gives the rightward propagation estimate of u(t, x) in terms of X (t).
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Theorem 2.2 There exist c1 > 0 and T1 > 0 such that

X (t) − X (t0) ≥ c1(t − t0 − T1), t ≥ t0.

Proof Fix some λ ∈ (θ, 1). We write X−(t) = X−
λ (t). Since supt∈R |X (t) − X−(t)| < ∞

by Lemma 2.1, it suffices to show

X−(t) − X−(t0) ≥ c(t − t0 − T ), t ≥ t0 (2.2)

for some c > 0 and T > 0.
Recall fB is as in (H2). Let (cB , φB) with cB > 0 be the unique solution of

{
J ∗ φ − φ + cφx + fB(φ) = 0,

φx < 0, φ(0) = θ, φ(−∞) = 1 and φ(∞) = 0

(see [8] for the existence and uniqueness of (cB , φB)). That is, cB is the unique speed and
φB is the normalized profile of traveling waves of

ut = J ∗ u − u + fB(u). (2.3)

Let u0 : R → [0, 1] be a uniformly continuous and nonincreasing function satisfying

u0(x) =
{

λ, x ≤ x0,

0, x ≥ 0,
(2.4)

where x0 < 0 is fixed. By the definition of X−(t), we see that for any t0 ∈ R, there holds
u(t0, x + X−(t0)) ≥ u0(x) for all x ∈ R, and then, by f (t, x, u) ≥ fB(u) and the comparison
principle, we find

u(t, x + X−(t0)) ≥ u B(t − t0, x; u0), x ∈ R, t ≥ t0, (2.5)

where u B(t, x; u0) is the unique solution to (2.3) with u B(0, ·; u0) = u0. By the choice of u0

and the stability of bistable travelingwaves (see e.g. [8]), there are constants xB = xB(λ) ∈ R,
qB = qB(λ) > 0 and ωB > 0 such that

u B(t − t0, x; u0) ≥ φB(x − xB − cB(t − t0)) − qBe−ωB (t−t0), x ∈ R, t ≥ t0.

Hence,

u(t, x + X−(t0)) ≥ φB(x − xB − cB(t − t0)) − qBe−ωB (t−t0), x ∈ R, t ≥ t0.

Let T0 = T0(λ) > 0 be such that qBe−ωB T0 = 1−λ
2 (making qB larger so that qB > 1−λ

2 if
necessary) and denote by ξB( 1+λ

2 ) the unique point such that φB(ξB( 1+λ
2 )) = 1+λ

2 . Setting
x∗ = xB + cB(t − t0) + ξB( 1+λ

2 ), the monotonicity of φB implies that for all t ≥ t0 + T0
and x ≤ x∗ − 1

u(t, x + X−(t0)) ≥ φB(x∗ − 1 − xB − cB(t − t0)) − qBe−ωB T0

> φB(x∗ − xB − cB(t − t0)) − qBe−ωB T0

= φB

(

ξB

(
1 + λ

2

))

− qBe−ωB T0 = λ.

This says that x∗ − 1 + X−(t0) ≤ X−(t) for all t ≥ t0 + T0, that is,

X−(t) − X−(t0) ≥ xB − 1 + cB(t − t0) + ξB

(
1 + λ

2

)

, t ≥ t0 + T0. (2.6)
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We now estimate X−(t) − X−(t0) for t ∈ [t0, t0 + T0]. We claim that there exists z =
z(T0) < 0 such that

X−(t) − X−(t0) ≥ z, t ∈ [t0, t0 + T0]. (2.7)

Let u B(t, x; u0) and u B(t; λ) := u B(t, x; λ) be solutions of (2.3) with u B(0, x; u0) =
u0(x) and u B(0; λ) = u B(0, x; λ) ≡ λ, respectively. By the comparison principle, we have
u B(t, x; u0) < u B(t; λ) for all x ∈ R and t > 0, and u B(t, x; u0) is strictly decreasing in x
for t > 0.

We see that for any t > 0, u B(t,−∞; u0) = u B(t; λ). This is because that
d
dt u B(t,−∞; u0) = fB(u B(t,−∞; u0)) for t > 0 and u B(0,−∞; u0) = λ. Since
λ ∈ (θ, 1), as a solution of the ODE ut = fB(u), u B(t; λ) is strictly increasing in t , which
implies that u B(t,−∞; u0) = u B(t; λ) > λ for t > 0. As a result, for any t > 0 there exists
a unique ξB(t) ∈ R such that u B(t, ξB(t); u0) = λ. Moreover, ξB(t) is continuous in t .

Setting x∗∗ = ξB(t −t0), we find u(t, x +X−(t0)) > λ for all x ≤ x∗∗ by themonotonicity
of u B(t, x; u0) in x , which together with (2.5) implies that

X−(t) ≥ x∗∗ + X−(t0) = ξB(t − t0) + X−(t0), t > t0.

Thus, (2.7) follows if inf t∈(t0,t0+T0] ξB(t − t0) > −∞, that is,

inf
t∈(0,T0]

ξB(t) > −∞. (2.8)

We now show (2.8). Since u0(x) = λ for x ≤ x0, continuity with respect to the initial
data (in sup norm) implies that for any ε > 0 there exists δ > 0 such that

u B(t; λ) − λ ≤ ε and sup
x≤x0

[u B(t; λ) − u B(t, x; u0)] = u B(t; λ) − u B(t, x0; u0) ≤ ε

for all t ∈ [0, δ], where the equality is due to monotonicity. By (H1), J concentrates near 0
and decays very fast as x → ±∞. Thus, we can choose x1 = x1(ε) � x0 such that

∫ x0

−∞
J (x − y)dy ≥ 1 − ε, x ≤ x1.

Now, for any x ≤ x1 and t ∈ (0, δ], we have
d

dt
u B(t, x; u0) =

∫

R

J (x − y)u B(t, y; u0)dy − u B(t, x; u0) + fB(u B(t, x; u0))

≥
∫ x0

−∞
J (x − y)u B(t, y; u0)dy − u B(t, x; u0) + fB(u B(t, x; u0))

≥ (1 − ε) inf
x≤x0

u B(t, x; u0) − u B(t; λ) + fB(u B(t, x; u0))

= −(1 − ε) sup
x≤x0

[u B(t; λ) − u B(t, x; u0)] − εu B(t; λ) + fB(u B(t, x; u0))

≥ −ε(1 − ε) − ε(λ + ε) + fB(u B(t, x; u0)) > 0

if we choose ε > 0 sufficiently small, since then fB(u B(t, x; u0)) is close to fB(λ), which
is positive. This simply means that u B(t, x; u0) > λ for all x ≤ x1 and t ∈ (0, δ], which
implies that ξB(t) > x1 for t ∈ (0, δ]. The continuity of ξB then leads to (2.8). This proves
(2.7). (2.2) then follows from (2.6) and (2.7). This completes the proof. ��

As a simple consequence of Theorem 2.2, we have

Corollary 2.3 There holds X (t) → ±∞ as t → ±∞. In particular, u(t, x) → 1 as t → ∞
and u(t, x) → 0 as t → −∞ locally uniformly in x.
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Proof We have from Lemma 2.2 that

X (t) − X (t0) ≥ c1(t − t0 − T1), t ≥ t0.

Setting t → ∞ in the above estimate, we find X (t) → ∞ as t → ∞. Setting t0 → −∞,
we find X (t0) → −∞ as t0 → −∞. ��

This corollary shows that any transition front travels from the left infinity to the right
infinity. Thus, steady-state-like transition fronts, blocking the propagations of solutions, do
not exist.

3 Proof of Theorem 1.2

We prove Theorem 1.2 in this section. Throughout this section, we assume that (H1)–(H3)
hold and u(t, x) is an arbitrary transition front of (1.2) with interface location function X (t).

To prove Theorem 1.2, we first do some preparations and prove several lemmas. Fix some
0 < δ0 � 1. For (t, x) ∈ R × R and η ∈ R with 0 < |η| ≤ δ0, we set

vη(t, x) = u(t, x + η) − u(t, x)

η
.

It is easy to see that vη(t, x) satisfies

v
η
t (t, x) = bη(t, x) − vη(t, x) + aη(t, x)vη(t, x) + ãη(t, x), (3.1)

where

aη(t, x) = f (t, x, u(t, x + η)) − f (t, x, u(t, x))

u(t, x + η) − u(t, x)
,

ãη(t, x) = f (t, x + η, u(t, x + η)) − f (t, x, u(t, x + η))

η
,

bη(t, x) =
∫

R

J (x − y)vη(t, y)dy =
∫

R

J (x − y + η) − J (x − y)

η
u(t, y)dy.

Hence, for any fixed x , treating (3.1) as anODE in the variable t , we find from the variation
of constants formula that for any t ≥ t0

vη(t, x) = vη(t0, x)e
− ∫ t

t0
(1−aη(s,x))ds +

∫ t

t0
bη(τ, x)e− ∫ t

τ (1−aη(s,x))dsdτ

+
∫ t

t0
ãη(τ, x)e− ∫ t

τ (1−aη(s,x))dsdτ.

(3.2)

Moreover, we set

L0 = 1 + δ0 + sup
t∈R

|X (t) − X+
θ0

(t)| and L1 = 1 + δ0 + sup
t∈R

|X (t) − X−
θ1

(t)|,

where θ1 and θ0 are as in (H2) and (H3), respectively. By Lemma 2.1, L0 < ∞ and L1 < ∞.
We also set

Il(t) = (−∞, X (t) − L1),

Im(t) = [X (t) − L1, X (t) + L0],
Ir (t) = (X (t) + L0,∞)
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for t ∈ R. Clearly, Il(t), Im(t) and Ir (t) are disjoint and Il(t) ∪ Im(t) ∪ Ir (t) = R. Since
X (t) may jump, so do Il(t), Im(t) and Ir (t).

Since X (t) → ±∞ as t → ±∞ by Corollary 2.3, for any fixed x ∈ R, there hold
x ∈ Ir (t) for all t � −1 and x ∈ Il(t) for all t � 1. Thus, for any fixed x ∈ R,

tfirst(x) = sup
{
t̃ ∈ R

∣
∣x ∈ Ir (t) for all t ≤ t̃

}
,

tlast(x) = inf
{
t̃ ∈ R

∣
∣x ∈ Il(t) for all t ≥ t̃

}

are well-defined. We see that if X (t) is continuous, then tfirst(x) and tlast(x) are the first
time and the last time that x is in Im(t). Clearly, −∞ < tfirst(x) ≤ tlast(x) < ∞ (notice,
tfirst(x) = tlast(x) may happen since X (t) may jump). Although the functions x �→ tfirst(x)

and x �→ tlast(x) are unbounded, their difference is a bounded function as given by

Lemma 3.1 There holds

T := sup
x∈R

[tlast(x) − tfirst(x)] < ∞. (3.3)

Proof To see this, we suppose tfirst(x) < tlast(x). Due to possible jumps, we consider two
cases.

If x /∈ Ir (tfirst(x)), then x ∈ Il(tfirst(x))∪ Im(tfirst(x)), that is, x ≤ X (tfirst(x))+ L0. Thus,
for all t ≥ tfirst(x) + T1 + L0+L1+1

c1
, we see from Theorem 2.2 that

x ≤ X (tfirst(x)) + L0 ≤ X (t) − c1(t − tfirst(x) − T1) + L0 ≤ X (t) − L1 − 1.

This, implies that x ∈ Il(t) for all t ≥ tfirst(x) + T1 + L0+L1+1
c1

, and hence, by definition

tlast(x) ≤ tfirst(x) + T1 + L0 + L1 + 1

c1
. (3.4)

If x ∈ Ir (tfirst(x)), then we can find a sequence {tn} satisfying tn > tfirst(x), tn → tfirst(x)

as n → ∞ and x /∈ Ir (tn(x)). Then, similar arguments as in the case x /∈ Ir (tfirst(x)) lead to
tlast(x) ≤ tn + T1 + L0+L1+1

c1
. Passing to the limit n → ∞, we find (3.4) again. Hence, we

have shown (3.3). ��
To control vη(t, x), it is crucial to control 1 − aη(t, x), which is achieved by means of

tfirst(x) and tlast(x) and is given in the following

Lemma 3.2 For any (t, x) ∈ R × R and 0 < |η| ≤ δ0, there holds

aη(t, x) ≤
{
1 − κ0, t < tfirst(x),

0, t > tlast(x).
(3.5)

Proof By the definition of tfirst(x) and tlast(x), we see

x ∈
{

Ir (t), t < tfirst(x),

Il(t), t > tlast(x).
(3.6)

By (H2), (H3) and the choices of L0 and L1, we find that for any (t, x) ∈ R × R and
0 < |η| ≤ δ0

aη(t, x) ≤
{
1 − κ0, x ∈ Ir (t),

0, x ∈ Il(t).

The lemma then follows from (3.6). ��
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The above lemma says that for any fixed x , the solution vη(t, x) of the ODE (3.1) can
only grow for a period of time that is not longer than T .

In the next lemma, we show that u(t, x) is continuous in space.

Lemma 3.3 For any t ∈ R, u(t, x) is continuous in x. Moreover, there holds

sup
t∈R

sup
x �=y

∣
∣
∣
∣
u(t, x) − u(t, y)

x − y

∣
∣
∣
∣ < ∞.

Proof Since 0 < u(t, x) < 1, we trivially have

sup
t∈R

sup
|x−y|≥δ0

∣
∣
∣
∣
u(t, x) − u(t, y)

x − y

∣
∣
∣
∣ < ∞.

Thus, we only need to show

sup
t∈R

sup
0<|x−y|≤δ0

∣
∣
∣
∣
u(t, x) − u(t, y)

x − y

∣
∣
∣
∣ < ∞. (3.7)

To do so, we consider (3.2) for some fixed x ∈ R. We are going to take t0 → −∞
along some subsequence, and so t0 � tfirst(x). For t , there are three cases: t < tfirst(x),
t ∈ [tfirst(x), tlast(x)] and t > tlast(x). Here, we only consider the case t > tlast(x); other two
cases can be treated similarly and are simpler.

We first note

M0 := sup
(t,x)∈R×R

sup
0<|η|≤δ0

[
|bη(t, x)| + |ãη(t, x)|

]
< ∞

and the following uniform-in-η estimates hold:

e− ∫ tfirst (x)
r (1−aη(s,x))ds ≤ e−κ0(tfirst(x)−r), r ≤ tfirst(x),

e− ∫ tlast (x)
r (1−aη(s,x))ds ≤ eCa T , r ∈ [tfirst(x), tlast(x)],
e− ∫ t

r (1−aη(s,x))ds ≤ e−(t−r), r ∈ [tlast(x), t],
(3.8)

where Ca := sup(t,x)∈R×R
sup0<|η|≤δ0

|1 − aη(t, x)| < ∞ by (H2). They are simple conse-
quences of (3.3) and (3.5).

For the second and third terms on the right-hand side of (3.2), we have

1

M0

∣
∣
∣
∣

∫ t

t0

[
bη(τ, x) + ãη(τ, x)

]
e− ∫ t

τ (1−aη(s,x))dsdτ

∣
∣
∣
∣ ≤

∫ t

t0
e− ∫ t

τ (1−aη(s,x))dsdτ

=
∫ tfirst(x)

t0
e− ∫ t

τ (1−aη(s,x))dsdτ +
∫ tlast(x)

tfirst(x)

e− ∫ t
τ (1−aη(s,x))dsdτ +

∫ t

tlast(x)

e− ∫ t
τ (1−aη(s,x))dsdτ.

For the three terms on the right-hand side of the above estimate, we use (3.8) to deduce
∫ tfirst(x)

t0
e− ∫ t

τ (1−aη(s,x))dsdτ

=
∫ tfirst(x)

t0
e− ∫ tfirst (x)

τ (1−aη(s,x))dse
− ∫ tlast (x)

tfirst (x)
(1−aη(s,x))ds

e
− ∫ t

tlast (x)(1−aη(s,x))ds
dτ

≤
∫ tfirst(x)

t0
e−κ0(tfirst(x)−τ)eCa T e−(t−tlast(x))dτ ≤ eCa T

κ0
,
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∫ tlast(x)

tfirst(x)

e− ∫ t
τ (1−aη(s,x))dsdτ =

∫ tlast(x)

tfirst(x)

e− ∫ tlast (x)
τ (1−aη(s,x))dse

− ∫ t
tlast (x)(1−aη(s,x))ds

dτ

≤
∫ tlast(x)

tfirst(x)

eCa T e−(t−tlast(x))dτ ≤ T eCa T

and ∫ t

tlast(x)

e− ∫ t
τ (1−aη(s,x))dsdτ ≤

∫ t

tlast(x)

e−(t−τ)dτ ≤ 1.

Hence, we have shown
∣
∣
∣
∣

∫ t

t0

[
bη(τ, x) + ãη(τ, x)

]
e− ∫ t

τ (1−aη(s,x))dsdτ

∣
∣
∣
∣ ≤ M0

(
eCa T

κ0
+ T eCa T + 1

)

. (3.9)

Notice the above estimate is universal.
For the first term on the right hand side of (3.2), we choose t0 such that tfirst(x)− t0 = 1

|η|
and claim that

vη(t0, x)e
− ∫ t

t0
(1−aη(s,x))ds → 0 as η → 0. (3.10)

In fact, from |vη(t0, x)| ≤ 1
|η| and (3.8), we see

∣
∣
∣
∣v

η(t0, x)e
− ∫ t

t0
(1−aη(s,x))ds

∣
∣
∣
∣ ≤ 1

|η|e
−[∫ tfirst (x)

t0
+ ∫ tlast (x)

tfirst (x)
+ ∫ t

tlast (x)](1−aη(s,x))ds

≤ 1

|η|e−κ0(tfirst(x)−t0)eCa T e−(t−tlast(x))

≤ 1

|η|e− κ0|η| eCa T → 0 as η → 0.

Consequently, choosing t0 such that tfirst(x)− t0 = 1
|η| , we conclude from (3.2), (3.9) and

(3.10) that

sup
(t,x)∈R×R

sup
0<|η|≤δ0

|vη(t, x)| ≤ C̃ + M0

(
eCa T

κ0
+ T eCa T + 1

)

,

where C̃ = C̃(κ0, δ0, T ) > 0. This proves (3.7), and hence, the lemma follows. ��
We see that for any (t, x) ∈ R × R, as η → 0, we have

aη(t, x) → fu(t, x, u(t, x)),

ãη(t, x) → fx (t, x, u(t, x)),

bη(t, x) →
∫

R

J ′(x − y)u(t, y)dy.

(3.11)

Notice the first two convergence in (3.11) need the continuity of u(t, x) in x . By (3.11),
(3.5) holds with aη(t, x) replaced by fu(t, x, u(t, x)), that is,

fu(t, x, u(t, x)) ≤
{
1 − κ0, t < tfirst(x),

0, t > tlast(x).
(3.12)

Now, we prove Theorem 1.2.

Proof of Theorem 1.2 Let us consider (3.2). We are going to prove the existence of the limit
limη→0 vη(t, x). As in the proof of Lemma 3.3, we assume t0 � tfirst(x) and t > tlast(x) in
the rest of the proof. We treat three terms on the right-hand side of (3.2) separately.
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For the second term on the right-hand side of (3.2), we claim

∫ t

t0
bη(τ, x)e− ∫ t

τ (1−aη(s,x))dsdτ →
∫ t

t0

( ∫

R

J ′(x − y)u(τ, y)dy

)

e− ∫ t
τ (1− fu(s,x,u(s,x)))dsdτ

as η → 0 uniformly in t0 � tfirst(x). (3.13)

To see this, we notice

∣
∣
∣
∣

∫ t

t0
bη(τ, x)e− ∫ t

τ (1−aη(s,x))dsdτ −
∫ t

t0

( ∫

R

J ′(x − y)u(τ, y)dy

)

e− ∫ t
τ (1− fu (s,x,u(s,x)))dsdτ

∣
∣
∣
∣

≤
∫ t

−∞

∣
∣
∣
∣b

η(τ, x)e− ∫ t
τ (1−aη(s,x))ds −

( ∫

R

J ′(x − y)u(τ, y)dy

)

e− ∫ t
τ (1− fu (s,x,u(s,x)))ds

∣
∣
∣
∣dτ.

By (3.11), the integrand converges to 0 as η → 0 pointwise. Thus, by dominated conver-
gence theorem, we only need to make sure that the integrand is controlled by some integrable
function that is independent of η. Writing

b0(τ, x) =
∫

R

J ′(x − y)u(τ, y)dy and a0(s, x) = fu(s, x, u(s, x)),

we only need to make sure that the function

τ �→ sup
0≤|η|≤δ0

∣
∣
∣
∣b

η(τ, x)e− ∫ t
τ (1−aη(s,x))ds

∣
∣
∣
∣

is integrable over (−∞, t].
Setting M := sup(t,x)∈R×R

sup0≤|η|≤δ0
|bη(t, x)| < ∞, we have

sup
0≤|η|≤δ0

∣
∣
∣
∣b

η(τ, x)e− ∫ t
τ (1−aη(s,x))ds

∣
∣
∣
∣ ≤ M sup

0≤|η|≤δ0

e− ∫ t
τ (1−aη(s,x))ds .

To bound the last integral uniformly in 0 ≤ |η| ≤ δ0, according to (3.8) and (3.12), we
consider three cases:

Case i. τ < tfirst(x) In this case,

sup
0≤|η|≤δ0

e− ∫ t
τ (1−aη(s,x))ds = sup

0≤|η|≤δ0

e
−[∫ tfirst (x)

τ + ∫ tlast (x)

tfirst (x)
+ ∫ t

tlast (x)](1−aη(s,x))ds

≤ e−κ0(tfirst(x)−τ)eCa T e−(t−tlast(x));
Case ii. τ ∈ [tfirst(x), tlast(x)] In this case,

sup
0≤|η|≤δ0

e− ∫ t
τ (1−aη(s,x))ds = sup

0≤|η|≤δ0

e
−[∫ tlast (x)

τ + ∫ t
tlast (x)](1−aη(s,x))ds ≤ eCa T e−(t−tlast(x));

Case iii. τ ∈ (tlast(x), t] In this case, sup0≤|η|≤δ0
e− ∫ t

τ (1−aη(s,x))ds ≤ e−(t−τ).
Thus, setting

h(τ ) =

⎧
⎪⎨

⎪⎩

e−κ0(tfirst(x)−τ)eCa T e−(t−tlast(x)), τ < tfirst(x)

eCa T e−(t−tlast(x)), τ ∈ [tfirst(x), tlast(x)]
e−(t−τ), τ ∈ (tlast(x), t],
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we find for any τ ∈ (−∞, t]

sup
0<|η|≤δ0

∣
∣
∣
∣b

η(τ, x)e− ∫ t
τ (1−aη(s,x))ds −

( ∫

R

J ′(x − y)u(τ, y)dy

)

e− ∫ t
τ (1− fu (s,x,u(s,x)))ds

∣
∣
∣
∣

≤ 2 sup
0≤|η|≤δ0

∣
∣
∣
∣b

η(τ, x)e− ∫ t
τ (1−aη(s,x))ds

∣
∣
∣
∣ ≤ 2h(τ ).

To show (3.13), it remains to show
∫ t
−∞ h(τ )dτ < ∞. But, we readily compute

∫ t

−∞
h(τ )dτ =

∫ tfirst(x)

−∞
h(τ )dτ +

∫ tlast(x)

tfirst(x)

h(τ )dτ +
∫ t

tlast(x)

h(τ )dτ

≤
∫ tfirst(x)

−∞
e−κ0(tfirst(x)−τ)eCa T e−(t−tlast(x))dτ

+
∫ tlast(x)

tfirst(x)

eCa T e−(t−tlast(x))dτ +
∫ t

tlast(x)

e−(t−τ)dτ

≤ eCa T

κ0
+ T eCa T + 1. (3.14)

Thus, we have shown (3.13). Note that the last bound is uniform in (t, x) ∈ R × R.
For the third term on the right hand side of (3.2), we claim

∫ t

t0
ãη(τ, x)e− ∫ t

τ (1−aη(s,x))dsdτ →
∫ t

t0
fx (t, x, u(t, x))e− ∫ t

τ (1− fu (s,x,u(s,x)))dsdτ

as η → 0 uniformly in t0 � tfirst(x). (3.15)

The proof of (3.15) is similar to that of (3.13). So, we omit it. Notice
∫ t

−∞

∣
∣
∣
∣ fx (t, x, u(t, x))e− ∫ t

τ (1− fu (s,x,u(s,x)))ds
∣
∣
∣
∣dτ

≤
[

sup
(t,x,u)∈R×R×[0,1]

| fx (t, x, u)|
] ∫ t

−∞
h(τ )dτ

≤
[

sup
(t,x,u)∈R×R×[0,1]

| fx (t, x, u)|
](

eCa T

κ0
+ T eCa T + 1

)

. (3.16)

For the first term on the right hand side of (3.2), we have (3.10), that is,

with tfirst(x) − t0 = 1

|η| , vη(t0, x)e
− ∫ t

t0
(1−aη(s,x))ds → 0 as η → 0. (3.17)

Hence, choosing t0 such that tfirst(x) − t0 = 1
|η| and passing to the limit η → 0 in (3.2),

we conclude from (3.13), (3.15) and (3.17) that

ux (t, x) = lim
η→0

vη(t, x)

=
∫ t

−∞

[ ∫

R

J ′(x − y)u(τ, y)dy + fx (τ, x, u(τ, x))

]

e− ∫ t
τ (1− fu(s,x,u(s,x)))dsdτ.

(3.18)

From which, we see that ux (t, x) is continuous in (t, x) ∈ R × R. Moreover, by (3.14),
(3.16) and (3.18), we have sup(t,x)∈R×R

|ux (t, x)| < ∞. This completes the proof. ��
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Remark 3.4 From (3.18), (3.14) and (3.16), we see

sup
(t,x)∈R×R

|ux (t, x)| ≤
[

‖J ′‖L1(R) + sup
(t,x,u)∈R×R×[0,1]

| fx (t, x, u)|
](

eCa T

κ0
+ T eCa T + 1

)

,

where Ca depends only on sup(t,x,u)∈R×R×[0,1] | fu(t, x, u)| and T is controlled by (3.4), and
hence, T depends only on fB and the shape of u(t, x).

4 Proof of Theorem 1.3

This whole section is devoted to the proof of Theorem 1.3. Let u(t, x) be a transition front
as in the statement of Theorem 1.3. Hence, there exist C > 0 and r > 0 such that

u(t, x) ≤ Cer |x−y|u(t, y), (t, x, y) ∈ R × R × R. (4.1)

Let X (t) and X±
λ (t) be interface location functions of u(t, x), where X±

λ (t) are given in
(2.1). As in [32], for (t, x) ∈ R × R and η ∈ R with 0 < |η| ≤ δ0 � 1, we consider

vη(t, x) = u(t, x + η) − u(t, x)

η
and wη(t, x) = vη(t, x)

u(t, x)
.

We readily check wη(t, x) satisfies

w
η
t = aη

1 + aη
2w

η, (4.2)

where aη
1 = J∗vη

u + ãη

u and aη
2 = − J∗u

u + aη − f
u with

ãη = f (t, x + η, u(t, x + η)) − f (t, x, u(t, x + η))

η
(4.3)

and

aη = f (t, x, u(t, x + η)) − f (t, x, u(t, x))

u(t, x + η) − u(t, x)
. (4.4)

To bound the solution of (4.2), we first analyze aη
1 and aη

2 . For aη
1 , we first see

∣
∣
∣
∣

J ∗ vη

u

∣
∣
∣
∣ = 1

u(t, x)

∣
∣
∣
∣

∫

R

J (x − y + η) − J (x − y)

η
u(t, y)dy

∣
∣
∣
∣

≤ C
∫

R

∣
∣
∣
∣

J (x + η) − J (x)

η

∣
∣
∣
∣e

r |x |dx,

where we used (4.1). Next, setting C1 := sup(t,x,u)∈R×R×[0,1] | fxu(t, x, u)|, we have
∣
∣
∣
∣
ãη

u

∣
∣
∣
∣ ≤ | fx (t, x + η∗, u(t, x + η))|

u(t, x)
≤ C1

u(t, x + η)

u(t, x)
≤ C1Cer |η|,

where we used Taylor expansion, the fact fx (t, x, 0) = 0 and (4.1). Hence,

C2 := sup
(t,x)∈R×R

sup
0<|η|≤δ0

|aη
1 | < ∞. (4.5)

For aη
2 , we first see from (4.1) that

1

C

∫

R

J (x)e−r |x |dx ≤ J ∗ u

u
≤ C

∫

R

J (x)er |x |dx,
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and thus, setting C3 := 1
C

∫
R

J (x)e−r |x |dx and C4 := C
∫
R

J (x)er |x |dx , we find

−C4 ≤ − J ∗ u

u
≤ −C3.

To control the term aη − f
u in aη

2 , we set

θ̃0 := min

⎧
⎨

⎩
θ1

2
,

C3

2

[

sup
(t,x,u)∈R×R×[0,1]

| f (t, x, u)|
]−1

⎫
⎬

⎭
,

and define

L0 = 1 + δ0 + sup
t∈R

|X (t) − X+
θ̃0

(t)| and L1 = 1 + δ0 + sup
t∈R

|X (t) − X−
θ1

(t)|.

As in the proof of Theorem 1.2, we set

Il(t) = (−∞, X (t) − L1),

Im(t) = [X (t) − L1, X (t) + L0],
Ir (t) = (X (t) + L0,∞)

for t ∈ R, and for any fixed x ∈ R, define

tfirst(x) = sup{t̃ ∈ R|x ∈ Ir (t) for all t ≤ t̃},
tlast(x) = inf{t̃ ∈ R|x ∈ Il(t) for all t ≥ t̃}.

Then, there hold T := supx∈R[tlast(x) − tfirst(x)] < ∞ and for all x ∈ R

x ∈
{

Ir (t), t < tfirst(x),

Il(t), t > tlast(x).

Now, for 0 < |η| ≤ δ0, we have

• if t < tfirst(x), then x ∈ Ir (t), in particular, x ≥ X+
θ̃0

(t) + δ0, and hence, u(t, x) ≤ θ̃0

and u(t, x + η) ≤ θ̃0; it then follows from Taylor expansion that

∣
∣
∣
∣a

η − f

u

∣
∣
∣
∣ = | fu(t, x, u∗)− fu(t, x, u∗∗)| ≤ |u∗−u∗∗| sup

(t,x,u)∈R×R×[0,1]
| fuu(t, x, u)| ≤ C3

2
,

where u∗ is between u(t, x) and u(t, x +η), and u∗∗ is between 0 and u(t, x), and hence,
both u∗ and u∗∗ are between 0 and θ̃0, so |u∗ − u∗∗| ≤ θ̃0;

• if t > tlast(x), then x ∈ Il(x), in particular, x ≤ X−
θ1

(t) − δ, and hence, u(t, x) ≥ θ1 and

u(t, x + η) ≥ θ1; it then follows from (H2) that aη ≤ 0, which leads to aη − f
u ≤ 0;

• if t ∈ [tfirst(x), tlast(x)], then |aη − f
u | ≤ 2 sup(t,x,u)∈R×R×[0,1] | fu(t, x, u)|.

Therefore, we have the following for aη
2 : for 0 < |η| ≤ δ0 and x ∈ R

aη
2 ≤

⎧
⎨

⎩

−C3
2 , t ≤ tfirst(x),

C5, tfirst(x) ≤ t ≤ tlast(x),

−C3, t ≥ tlast(x),

(4.6)

where C5 := C4 + 2 sup(t,x,u)∈R×R×[0,1] | fu(t, x, u)|.
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With the help of (4.5) and (4.6), we are now able to bound the solution of (4.2). Notice,
the solution of (4.2) can be written as

wη(t, x) = e
∫ t

t0
aη
2 (s,x)ds

wη(t0, x) +
∫ t

t0
e
∫ t
τ aη

2 (s,x)dsaη
1 (τ, x)dτ, x ∈ R, t ≥ t0. (4.7)

Using (4.5), (4.6) and (4.7), we first argue as in the proof of Lemma 3.3 to conclude that

sup
(t,x)∈R×R

sup
0<|η|≤δ0

∣
∣
∣
∣
u(t, x + η) − u(t, x)

ηu(t, x)

∣
∣
∣
∣ = sup

(t,x)∈R×R

sup
0<|η|≤δ0

|wη(t, x)| < ∞,

which in particular implies that u(t, x) is continuous in x , since u(t, x) ∈ (0, 1).
Now, we set a0

1 = J ′∗u
u + fx and a0

2 = − J∗u
u + fu − f

u . Using the continuity of u(t, x)

in x , we have the pointwise limits aη
1 → a0

1 and aη
2 → a0

2 as η → 0. Then, using (4.5) and
(4.6), we can show that as (3.13),

∫ t

t0
e
∫ t
τ aη

2 (s,x)dsaη
1 (τ, x)dτ →

∫ t

t0
e
∫ t
τ a02 (s,x)dsa0

1(τ, x)dτ

uniformly in t0 � tfirst(x) as η → 0, and as (3.10),

with tfirst(x) − t0 = 1

|η| , e
∫ t

t0
aη
2 (s,x)ds

wη(t0, x) → 0 as η → 0.

Hence, setting tfirst(x) − t0 = 1
|η| in (4.7) and passing to the limit η → 0, we find

ux (t, x)

u(t, x)
= lim

η→0
wη(t, x) =

∫ t

−∞
e
∫ t
τ a02 (s,x)dsa0

1(τ, x)dτ, (t, x) ∈ R × R.

This completes the proof. ��

5 Proof of Theorem 1.4

We prove Theorem 1.4 in this section. Throughout this section, we assume (H1) and (H2).
To prove Theorem 1.4, we need the following three lemmas. For r > 0, let

�r (x) = min{1, e−r x } =
{
1, x ≤ 0,

e−r x , x ≥ 0.

Lemma 5.1 There exist two continuous functions M : (0,∞) → (0,∞) and γ : (0,∞) →
(0,∞) with γ (r) → 0 such that

∣
∣
∣
∣
[J ∗ �r ](x)

�r (x)
− 1

∣
∣
∣
∣ ≤ γ (r), x ≥ M(r)

for all r > 0.

Proof Fix r > 0 and write � = �r . We see

[J ∗ �](x)

�(x)
− 1 =

∫ 0

−∞
J (x − y)

�(y)

�(x)
dy +

∫ ∞

0
J (x − y)

�(y)

�(x)
dy − 1

=
∫ 0

−∞
J (x − y)

�(y)

�(x)
dy +

∫ ∞

0
J (x − y)er(x−y)dy − 1

=
∫ 0

−∞
J (x − y)

�(y)

�(x)
dy +

[ ∫

R

J (y)er ydy − 1

]

−
∫ ∞

x
J (y)er ydy.
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Due to the decay of J at±∞, it is not hard to see that limx→∞
∫ 0
−∞ J (x − y)

�(y)
�(x)

dy = 0.
In fact, for all large x ,
∫ 0

−∞
J (x − y)

�(y)

�(x)
dy =

∫ 0

−∞
J (x − y)er x dy ≤

∫ 0

−∞
J (x − y)er(x−y)dy → 0 as x → ∞.

Since
∫
R

J (y)dy = 1, we find limr→0
∫
R

J (y)er ydy = 1 by dominated convergence
theorem. Clearly, limx→∞

∫ ∞
x J (y)er ydy = 0. The lemma then follows. ��

Lemma 5.2 There exists r0 > 0 such that if r ∈ (0, r0] is such that

lim
x→∞

u(t, x + X (t))

e−r x
= 1 uniformly in t ∈ R, (5.1)

then, there exists M(r) > 0 such that

1

2
≤ [J ∗ u(t, · + X (t))](x)

u(t, x + X (t))
≤ 3

2
, x ≥ M(r) and t ∈ R, (5.2)

and |[J ′ ∗ u(t, · + X (t))](x)|
u(t, x + X (t))

≤ 2, x ≥ M(r) and t ∈ R. (5.3)

Proof Let u = u(t, x + X (t)). For r ∈ (0, r0], where r0 is to be chosen, we let � = �r .
Write

J ∗ u

u
− 1 = J ∗ �

�

[
J ∗ (u − �)

J ∗ �
+ 1

]
�

u
− 1

=
[

J ∗ �

�
− 1

][
J ∗ (u − �)

J ∗ �
+ 1

]
�

u
+ J ∗ (u − �)

J ∗ �

�

u
+

[
�

u
− 1

]

.

By Lemma 5.1 and (5.1), we only need to treat the term J∗(u−�)
J∗�

for large x .
By (5.1), for any ε > 0, there exists M(ε, r) > 0 such that

|u(t, x + X (t)) − e−r x | ≤ εe−r x , x ≥ M(ε, r) and t ∈ R.

Then, for ε > 0, we have
∣
∣
∣
∣

J ∗ (u − �)

J ∗ �

∣
∣
∣
∣ = �

J ∗ �

∣
∣
∣
∣

J ∗ (u − �)

�

∣
∣
∣
∣

≤ �

J ∗ �

[ ∫ M(ε,r)

−∞
J (x − y)

|u(t, y + X (t)) − �(y)|
�(x)

dy

+
∫ ∞

M(ε,r)

J (x − y)
|u(t, y + X (t)) − e−r y |

e−r x
dy

]

≤ �

J ∗ �

[ ∫ M(ε,r)

−∞
J (x − y)

|u(t, y + X (t)) − �(y)|
�(x)

dy

+ ε

∫ ∞

M(ε,r)

J (x − y)er(x−y)dy

]

≤ �

J ∗ �

[ ∫ M(ε,r)

−∞
J (x − y)

|u(t, y + X (t)) − �(y)|
�(x)

dy + ε

∫

R

J (y)er ydy

]

Due to the decay of J at ±∞, we have

lim
x→∞

∫ M(ε,r)

−∞
J (x − y)

|u(t, y + X (t)) − �(y)|
�(x)

dy = 0 uniformly in t ∈ R.
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It then follows from Lemma 5.1 that for any ε > 0, there exists M̃(ε, r) > 0 such that
∣
∣
∣
∣

J ∗ (u − �)

J ∗ �

∣
∣
∣
∣ ≤ γ̃ (r)

[
ε

2
+ ε

∫

R

J (y)er ydy

]

, x ≥ M̃(ε, r) and t ∈ R,

where γ̃ (r) → 0 as r → 0. The result (5.2) follows by first fixing ε, say ε = 1
100 , and then

choosing r0 small so that if r ∈ (0, r0], then | J∗u
u − 1| ≤ 1

2 for all large x depending on r .
Note that the term J∗�

�
− 1 and Lemma 5.1 restrict r0. Similar arguments lead to (5.3), since
∣
∣
∣
∣

J ′ ∗ u

u

∣
∣
∣
∣ ≤ |J ′| ∗ �

�

[ |J ′| ∗ (u − �)

|J ′| ∗ �
+ 1

]
�

u
.

This completes the proof. ��
Lemma 5.3 Let u(t, x) be an arbitrary transition front of (1.2) with interface location
function X (t). Then, there holds

∀L > 0, inf
t∈R inf

x≤L+X (t)
u(t, x) > 0.

Proof Fix L > 0 and x∗ > 0. Let λ1 ∈ ( 12 , 1) and λ2 ∈ (0, 1
10 ). We define u B

0 : R → [0, 1]
and uM

0 : R → [0, 1] by setting

u B
0 (x) =

⎧
⎪⎨

⎪⎩

λ1, x ≤ −x∗,
− λ1

x∗ x, x ∈ [−x∗, 0],
0, x ≥ 0

and uM
0 (x) =

⎧
⎪⎨

⎪⎩

1, x ≤ 0,
λ2−1

x∗ x + 1, x ∈ [0, x∗],
λ2, x ≥ x∗.

Clearly, u B
0 (· − X−

λ1
(t)) ≤ u(t, ·) ≤ uM

0 (· − X+
λ2

(t)) for all t ∈ R. Now, denote by

u B(t, x; u B
0 ) and uM (t, x; uM

0 ) the solutions of ut = J ∗ u − u + fB(u) and ut = J ∗ u −
u + fM (u), respectively, with initial data u B(0, ·; u B

0 ) = u B
0 and uM (0, ·; uM

0 ) = uM
0 . It then

follows from comparison principle and homogeneity that

u B(T, x−X−
λ1

(t−T ); u B
0 ) ≤ u(t, x) ≤ uM (T, x−X+

λ2
(t−T ); uM

0 ), (t, x) ∈ R×R (5.4)

for all T ≥ 0. Now, we consider a small T and let λ > 0 be small. Let ξ B
λ (T ) be such

that u B(T, ξ B
λ (T ); u B

0 ) = λ. We then see from the first inequality in (5.4) that if x ≤
ξ B
λ (T ) + X−

λ1
(t − T ) − 1, then the monotonicity of u B(t, x; u B

0 ) in x yields

u(t, x) ≥ u B(T, ξ B
λ (T ) − 1; u B

0 ) > u B(T, ξ B
λ (T ); u B

0 ) = λ,

which then leads to
X−

λ (t) ≥ ξ B
λ (T ) + X−

λ1
(t − T ) − 1, t ∈ R.

Note that if we can find some C > 0 such that

X−
λ1

(t − T ) ≥ X (t) − C, t ∈ R, (5.5)

then we can make λ closer to 0 such that ξ B
λ (T ) is so large that X−

λ (t) ≥ L + X (t) + 1 for
all t ∈ R, which then leads to

inf
t∈R inf

x≤L+X (t)
u(t, x) ≥ inf

t∈R inf
x≤X−

λ (t)−1
u(t, x) > λ > 0.

Hence, to finish the proof, we only need to show (5.5).
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We now show (5.5). Let us look at the interface locations for u(t, x) and uM (t, x; uM
0 ) at

1
2 . From the second inequality in (5.4), we see

X+
1
2
(t) ≤ ξ M

1
2

(T ) + X+
λ2

(t − T ) + 1, t ∈ R, (5.6)

where ξ M
1
2

(T ) is such that u(T, ξ M
1
2

(T ); uM
0 ) = 1

2 . Notice choosing T or λ2 smaller, we can

guarantee that ξ M
1
2

(T ) is well-defined. We then deduce from (5.6) that

X−
λ1

(t − T ) ≥ X+
λ2

(t − T ) − C1

≥ X+
1
2
(t) − ξ M

1
2

(T ) − 1 − C1

≥ X (t) − C2 − ξ M
1
2

(T ) − 1 − C1

for all t ∈ R, whereC1 = supt∈R |X−
λ1

(t)− X+
λ2

(t)| andC2 = supt∈R |X+
1
2
(t)− X (t)|. Setting

C = C2 + ξ M
1
2

(T ) + 1 + C1, we find (5.5), and hence, the lemma follows. ��

We are ready to prove Theorem 1.4.

Proof of Theorem 1.4 Let r0 > 0 be as in Lemma 5.2 and fix r ∈ (0, r0]. Let u(t, x) be an
arbitrary transition front of (1.2) satisfying

lim
x→∞

u(t, x + X (t))

e−r x
= 1 uniformly in t ∈ R. (5.7)

To prove the theorem, we proceed as in the proof of Theorem 1.3. Thus, we only need to
bound aη

1 = J∗vη

u + ãη

u as in (4.5) and estimate aη
2 = − J∗u

u + aη − f
u as in (4.6), where ãη

and aη are given in (4.3) and (4.4), respectively.
For aη

1 , we have

|aη
1 | ≤

∣
∣
∣
∣

J ∗ vη

u

∣
∣
∣
∣+

∣
∣
∣
∣
ãη

u

∣
∣
∣
∣≤

1

u(t, x)

∫

R

|J (x−y + η) − J (x − y)|
η

u(t, y)dy+C1
u(t, x + η)

u(t, x)
,

where C1 = sup(t,x,u)∈R×R×[0,1] | fxu(t, x, u)|. For a sufficiently large M1 > 0, we see from
(5.3) and (5.7) that

sup
t∈R

sup
x≥M1+X (t)

sup
0<|η|≤δ0

|aη
1 | < ∞.

Since inf t∈R infx≤M1+X (t) u(t, x) > 0 by Lemma 5.3, we have

sup
t∈R

sup
x≤M1+X (t)

sup
0<|η|≤δ0

|aη
1 | < ∞.

Hence, we obtain
sup

(t,x)∈R×R

sup
0<|η|≤δ0

|aη
1 | < ∞.

For aη
2 , we first see from (5.2) that we can find a sufficiently large M2 > 0 such that

1

2
≤ J ∗ u

u
≤ 3

2
, x ≥ M2 + X (t) and t ∈ R.

Since inf t∈R inf x≤M2+X (t) u(t, x) > 0 by Lemma 5.3, there exist C1 > 0 and C2 > 0
such that

C1 ≤ J ∗ u

u
≤ C2, x ≤ M2 + X (t) and t ∈ R.
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Then, setting C3 = min{ 12 , C1} and C4 = max{ 32 , C2}, we have

−C4 ≤ − J ∗ u

u
≤ −C3, (t, x) ∈ R × R.

We then follow the arguments as in the proof of Theorem 1.3 to conclude an estimate for
aη
2 as in (4.6).
The rest of the proof can be done along the same line as in the proof of Theorem 1.3 and

then we complete the proof. ��

6 Proof of Theorem 1.5 and Corollaries 1.6–1.7

In this section, we prove Theorem 1.5, Corollaries 1.6 and 1.7. We first prove Theorem 1.5.

Proof of Theorem 1.5 Let u(t, x) be an arbitrary transition front of (1.2) with interface loca-
tion function X (t) as in the statement of Theorem 1.5. Then, by Theorem 2.2 and the
assumption, we have

c1(t − t0 − T1) ≤ X (t) − X (t0) ≤ c2(t − t0 + T2), t ≥ t0. (6.1)

We modify X (t) within two steps by means of (6.1). The first step gives a continuous
modification. The second step gives the continuously differentiable modification as in the
statement of the theorem. We remark that two inequalities in (6.1) play different roles in the
following arguments. While the first inequality in (6.1) pushes X (t) move to the right, the
second inequality in (6.1) controls the possible jumps of X (t).

Step 1. We show there is a continuous function X̃ : R → R such that supt∈R |X̃(t) −
X (t)| < ∞. Fix some T > 0. At t = 0, let

Z+(t; 0) = X (0) + c2(T + T2) + c1
2

t, t ≥ 0

By the second inequality in (6.1), X (t) < Z+(t; 0) for all [0, T ]. By the first inequality
in (6.1), we have X (t) > Z+(t; 0) for all large t . Define T +

1 = inf{t ≥ 0|X (t) ≥ Z+(t; 0)}.
By (6.1), it is easy to see that T +

1 ∈ [T,
c2(T +T2)+c1T1

c1/2
]. At the moment T +

1 , X (t) may jump,
but, due to the second inequality in (6.1), the jump is at most c2T2. Thus, we obtain

X (t) < Z+(t; 0) for t ∈ [0, T +
1 ),

X (T +
1 ) ∈ [Z+(T +

1 ; 0) − c2T2, Z+(T +
1 ; 0) + c2T2).

Next, at t = T +
1 , let

Z+(t; T +
1 ) = X (T +

1 ) + c2(T + T2) + c1
2

(t − T +
1 ), t ≥ T +

1 .

Then, T +
2 = inf{t ≥ T +

1 |X (t) ≥ Z+(t; T +
1 )} is well-defined, and T +

2 − T +
1 ∈

[T,
c2(T +T2)+c1T1

c1/2
]. Moreover, there hold

X (t) < Z+(t; T +
1 ) for t ∈ [T +

1 , T +
2 ),

X (T +
2 ) ∈ [Z+(T +

2 ; T +
1 ) − c2T2, Z+(T +

2 ; T +
1 ) + c2T2).
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Repeating the above arguments, we obtain the following, there is a sequence of times
{T +

n−1}n≥1 satisfying T +
0 = 0, T +

n − T +
n−1 ∈ [T,

c2(T +T2)+c1T1
c1/2

] and

X (t) < Z+(t; T +
n−1) for t ∈ [T +

n−1, T +
n ),

X (T +
n ) ∈ [Z+(T +

n ; T +
n−1), Z+(T +

n ; T +
n−1) + c2T2), (6.2)

for all n ≥ 1, where Z+(t; T +
n−1) = X (T +

n−1) + c2(T + T2) + c1
2 (t − T +

n−1).
We define Z+ : [0,∞) → R by setting

Z+(t) = Z+(t; T +
n−1), t ∈ [T +

n−1, T +
n ), n ≥ 1

Since supn≥1[T +
n−1, T +

n ) = [0,∞), Z+(t) is well-defined. It follows from (6.2) that
X (t) < Z+(t) for all t ≥ 0. Moreover, for t ∈ [T +

n−1, T +
n ),

Z+(t) − X (t) ≤ X (T +
n−1) + c2(T +T2)+ c1

2
(t − T +

n−1) − [X (T +
n−1) + c1(t − T +

n−1 − T1)]
≤ c2(T + T2) − c1

2
(t − T +

n−1) + c1T1 ≤ c2(T + T2) + c1T1.

Hence, 0 < Z+(t) − X (t) ≤ c2(T + T2) + c1T1 for all t ∈ [0,∞). Modifying
Z+(t) near T +

n−1 for n ≥ 1, we find a continuous function Z̃+ : [0,∞) → R such that

supt∈[0,∞) |Z̃+(t) − X (t)| < ∞.

Clearly,we canmimic the above arguments to find a continuous function Z̃− : (−∞, 0] →
R such that supt∈(−∞,0] |Z̃−(t) − X (t)| < ∞. Combining Z̃±(t) and modifying near 0, we

find a continuous function X̃ : R → R such that supt∈R |X̃(t) − X (t)| < ∞.
Step 2. By Step 1, we assume, without loss of generality, that X (t) is continuous. We

proceed as in Step 1.
Fix any t0 ∈ R and consider it as an initial moment. At the initial moment t0, we define

Z(t; t0) = X (t0) + C0 + c1
2 (t − t0) for t ≥ t0, where C0 > 0 is so large that C0 >

c2T2. Clearly, X (t0) < Z(t0; t0). By the first inequality in (6.1) and continuity, X (t) will
hit Z(t; t0) sometime after t0. Let T1(t0) be the first time that X (t) hits Z(t; t0), that is,
T1(t0) = min

{
t ≥ t0

∣
∣X (t) = Z(t; t0)

}
. It follows that X (t) < Z(t; t0) for t ∈ [t0, T1(t0))

and X (T1(t0)) = Z(T1(t0); t0). Moreover, T1(t0) − t0 ∈
[

C0−c2T2
c2−c1/2

, C0+c1T1
c1/2

]
, which is a

simple result of (6.1).
Now, at the moment T1(t0), we define Z(t; T1(t0)) = X (T1(t0)) + C0 + c1

2 (t − T1(t0))
for t ≥ T1(t0). Similarly, X (T1(t0)) < Z(T1(t0); T1(t0)) and X (t) will hit Z(t; T1(t0))
sometime after T1(t0). Denote by T2(t0) the first time that X (t) hits Z(t; T1(t0)). Then,
X (t) < Z(t; T1(t0)) for t ∈ [T1(t0), T2(t0)) and X (T2(t0)) = Z(T2(t0); T1(t0)), and

T2(t0) − T1(t0) ∈
[

C0−c2T2
c2−c1/2

, C0+c1T1
c1/2

]
.

Repeating the above arguments, we obtain the following: there is a sequence of times
{Tn−1(t0)}n∈N satisfying T0(t0) = t0 and

Tn(t0) − Tn−1(t0) ∈
[

C0 − c2T2
c2 − c1/2

,
C0 + c1T1

c1/2

]

, ∀ n ∈ N, (6.3)

and for any n ∈ N

X (t) < Z(t; Tn−1(t0)) for t ∈ [Tn−1(t0), Tn(t0)) and X (Tn(t0)) = Z(Tn(t0); Tn−1(t0)),
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where Z(t; Tn−1(t0)) = X (Tn−1(t0))+C0 + c1
2 (t − Tn−1(t0)). Moreover, for any n ∈ N and

t ∈ [Tn−1(t0), Tn(t0)), we conclude from (6.1) that

Z(t; Tn−1(t0)) − X (t)

≤ X (Tn−1(t0)) + C0 + c1
2

(t − Tn−1(t0))

− [
X (Tn−1(t0)) + c1(t − Tn−1(t0) − T1)

]

= C0 + c1T1 − c1
2

(t − Tn−1(t0)) ≤ C0 + c1T1.

Next, define Z̃(·; t0) : [t0,∞) → R by setting

Z̃(t; t0) = Z(t; Tn−1(t0)) for t ∈ [Tn−1(t0), Tn(t0)), n ∈ N. (6.4)

Since [t0,∞) = ∪n∈N[Tn−1(t0), Tn(t0)) by (6.3), Z̃(t; t0) is well-defined for all t ≥ t0.
Notice Z̃(t; t0) is strictly increasing and is linear on [Tn−1(t0), Tn(t0))with slope

c1
2 for each

n ∈ N, and satisfies
0 ≤ Z̃(t; t0) − X (t) ≤ C0 + c1T1, t ≥ t0.

Due to (6.3), we can modify Z̃(t; t0) near each Tn(t0) for n ∈ N as follows. Fix some

δ∗ ∈
(
0, 1

2
C0−c2T2
c2−c1/2

)
. Wemodify Z̃(t; s) by redefining it on the intervals (Tn(t0)−δ∗, Tn(t0)),

n ∈ N as follows: define

X (t; t0) =
{

Z̃(t; t0), t ∈ [t0,∞)\ ∪n∈N (Tn(t0) − δ∗, Tn(t0)),

X (Tn(t0)) + δ(t − Tn(t0)), t ∈ (Tn(t0) − δ∗, Tn(t0)), n ∈ N,

where δ : [−δ∗, 0] → [− 1
2c1δ∗, C0] is twice continuously differentiable and satisfies

δ(−δ∗) = −c1
2

δ∗, δ(0) = C0,

δ̇(−δ∗) = c1
2

= δ̇(0), δ̇(t) ≥ c1
2

for t ∈ (−δ∗, 0) and

δ̈(−δ∗) = 0 = δ̈(0).

The existence of such a function δ(t) is clear. Moreover, there exist cmax = cmax(δ∗) > 0
and c̃max = c̃max(δ∗) > 0 such that δ̇(t) ≤ cmax and |δ̈(t)| ≤ c̃max for t ∈ (−δ∗, 0). Notice
the above modification is independent of n ∈ N and t0. Hence, X (t; t0) satisfies the following
uniform in t0 properties:

• 0 ≤ X (t; t0) − X (t) ≤ dmax for some dmax > 0,
• c1

2 ≤ Ẋ(t; t0) ≤ cmax,
• |Ẍ(t; t0)| ≤ c̃max.

Since X (t) is continuous, so locally bounded, we may apply Arzelà-Ascoli theorem to
conclude the existence of some continuously differentiable function X̃ : R → R such that

X (t; t0) → X̃(t) and Ẋ(t; t0) → ˙̃X (t) locally uniformly in t as t0 → −∞ along some
subsequence. It’s easy to see that X̃(t) satisfies all the properties as in the statement of the
theorem. ��

Next, we prove Corollary 1.6. Recall that for a given transition front u(t, x) of (1.2),
X±

λ (t) are defined in (2.1).
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Proof of Corollary 1.6 We modify the proof of Theorem 2.2. Let u(t, x) be an arbitrary
transition front of (1.2) with interface location function X (t). Since f (t, x, u) ≤ 0 for
(t, x, u) ∈ R × R × [0, θ̃ ], we can find a function f I (u) such that f (t, x, u) ≤ f I (u) for
(t, x, u) ∈ R×R× [0, 1], where f I : [0, 1] → R is C2 and is of standard ignition type, that
is, there exists θI ∈ (0, 1) such that

f I (u) = 0, u ∈ [0, θI ] ∪ {1}, f I (u) > 0, u ∈ (θI , 1) and f ′
I (1) < 0.

Fix some λ ∈ (θ, 1). We write X+(t) = X+
λ (t). Since supt∈R |X (t) − X+(t)| < ∞ by

Lemma 2.1, it suffices to show

X+(t) − X+(t0) ≤ c(t − t0 + T ), t ≥ t0 (6.5)

for some c > 0 and T > 0.
To do so, we fix some θ̃I ∈ (0, θI ). Let (cI , φI ) with cI > 0 be the unique solution of

{
J ∗ φ − φ + cφx + f I (φ) = 0,

φx < 0, φ(0) = θI , φ(−∞) = 1 and φ(∞) = θ̃I .

Note that φI connects θ̃I and 1 instead of 0 and 1 (see “Appendix” for more properties
about φI ; in “Appendix”, we consider traveling waves connecting 0 and 1, but by simple
shift, all results there apply here).

Let u0 : R → [0, 1] be a uniformly continuous and nonincreasing function satisfying
u0(x) = 1 for x ≤ 0 and u0(x) = θ̃I for x ≥ x0, where x0 > 0 is fixed. Clearly, u(t0, · +
X+

θ̃I
(t0)) ≤ u0. Applying comparison principle and Lemma 7.1, we find

u(t, x+X+
θ̃I

(t0)) ≤ uI (t−t0, x; u0) ≤ φI (x−cI (t−t0)−ξI )+εI e−ωI (t−t0), x ∈ R, t ≥ t0.

Let ξI (
λ
2 ) be the unique point such that φI (ξI (

λ
2 )) = λ

2 and T > 0 be such that εI e−ωI T =
λ
2 (we may make εI > λ

2 if necessary). Setting x∗ = cI (t − t0) + ξI + ξI (
λ
2 ), we conclude

from the monotonicity of φI that for x ≥ x∗ + 1 and t ≥ t0 + T ,

u(t, x + X+
θ̃I

(t0)) ≤ φI (x∗ + 1 − cI (t − t0) − ξI ) + εI e−ωI T

< φI (x∗ − cI (t − t0) − ξI ) + εI e−ωI T = λ.

It then follows from the definition of X+(t) that

X+(t) ≤ x∗ + 1 + X+
θ̃I

(t0) = cI (t − t0) + ξI + ξI (
λ

2
) + 1 + X+

θ̃I
(t0), t ≥ t0 + T .

Setting C∗ := supt0∈R |X+(t0) − X+
θ̃I

(t0)| < ∞ due to Lemma 2.1, we conclude

X+(t) − X+(t0) ≤ cI (t − t0) + ξI + ξI (
λ

2
) + 1 + C∗, t ≥ t0 + T .

It remains to show that

X+(t) − X+(t0) ≤ ξ∗, t ∈ [t0, t0 + T ] (6.6)

for some ξ∗ > 0 independent of t0. To do so, let ũ0 be the u0 in the proof of Theorem 2.2.
Then, we have ũ0(· − X−(t0)) ≤ u(t0, ·) ≤ u0(· − X+

θ̃I
(t0)), where X−(t) = X−

λ (t). Since

fB ≤ f ≤ f I , we apply comparison principle to conclude that

u B(t − t0, x − X−(t0); ũ0) ≤ u(t, x) ≤ uI (t − t0, x − X+
θ̃I

(t0); u0), x ∈ R, t ≥ t0.
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We then conclude (6.6) from the continuity of u B(t − t0, x − X−(t0) and uI (t − t0, x −
X+

θ̃I
(t0); u0), and the fact supt0∈R |X−(t0)− X+

θ̃I
(t0)| < ∞ due to Lemma 2.1. This completes

the proof. ��
Finally, we prove Corollary 1.7.

Proof of Corollary 1.7 Note first we can find a C2 Fisher-KPP nonlinearity fKPP : [0, 1] →
R such that f (t, x, u) ≤ fKPP(u) for all (t, x, u) ∈ R×R×[0, 1]. Let u(t, x) be the transition
front as in the statement of Corollary 1.7, that is, there exist r > 0 and h > 0 such that

u(t0, x + X (t0)) ≤ e−r(x−h), (t0, x) ∈ R × R,

Fixed λ ∈ (0, 1). Setting h0 := h + supt0∈R |X (t0) − X+
λ (t0)| < ∞, we find

u(t0, x + X+
λ (t0) + h0) ≤ e−r x , (t0, x) ∈ R × R.

Then, we can find some uniformly continuous function u0 : R → [0, 1] satisfying

lim
x→−∞ u0(x) = 1 and lim

x→∞
u0(x)

e−r x
= 1

such that
u(t0, x + X+

λ (t0) + h0) ≤ u0(x), (t0, x) ∈ R × R.

Note that we may assume, without loss of generality, that r is so small that it is the decay
rate of some traveling wave of φr (x − cr t) (satisfying φr (−∞) = 1 and φr (∞) = 0) with

speed cr =
∫
R

J (y)erydy−1+ f ′
KPP(0)

r > 0 of

ut = J ∗ u − u + fKPP(u), (6.7)

that is, limx→∞ φr (x)

e−r x = 1 (see [13,57]). In particular, we have

lim
x→∞

u0(x)

φr (x)
= 1. (6.8)

Moreover, there holds

lim
x→∞

φ′
r (x)

φr (x)
= −r. (6.9)

To see this, we notice J∗φr
φr

− 1 + cr
φ′

r
φr

+ fKPP(φr )
φr

= 0. Clearly, limx→∞ fKPP(φr (x))
φr (x)

=
f ′
KPP(0). For

J∗φr
φr

, we have

[J ∗ φr ](x)

φr (x)
= e−r x

φr (x)

∫

R

J (y)er y φr (x − y)

e−r(x−y)
dy → J (y)er ydy as x → ∞

by (6.8) and dominated convergence theorem. From which, we conclude (6.9).
Then, arguing as in the proof of Corollary 1.6, we conclude the result from the stability

of φr (x − cr t), that is,

lim
t→∞

∣
∣
∣
∣
uKPP(t, x; u0)

φr (x − cr t)
− 1

∣
∣
∣
∣ = 0, (6.10)

where uKPP(t, x; u0) is the solution of (6.7) with initial data uKPP(0, ·; u0) = u0. We remark
that (6.10) follows from [57, Theorem 2.6]. Also, by means of (6.8) and (6.9), it can be
proven as that of [53, Theorem 1.3]. ��

123



1098 J Dyn Diff Equat (2017) 29:1071–1102

Acknowledgements The authorswould like to thank the referee for carefully reading themanuscript, pointing
out some problems that we were not aware of, and drawing our attention to Ref. [7].

Appendix: Ignition Traveling Waves

Consider the homogeneous ignition equation

ut = J ∗ u − u + f I (u), (t, x) ∈ R × R, (7.1)

where J is as in (H1), and the C2 function f I : [0, 1] → R is of standard ignition type, that
is, there is θI ∈ (0, 1) such that

f I (u) = 0, u ∈ [0, θI ] ∪ {1}, f I (u) > 0, u ∈ (θI , 1) and f ′
I (1) < 0.

It was proven in [16] that the problem
{

J ∗ φ − φ + cφx + f I (φ) = 0,

φx < 0, φ(0) = θI , φ(−∞) = 1 and φ(∞) = 0.

for (c, φ) has a unique classical solution (cI , φI ) with cI > 0.
We used the following result in the previous sections.

Lemma 7.1 Let u0 : R → [0, 1] be uniformly continuous and satisfy

lim
x→−∞ u0(x) = 1 and u0(x) ≤ e−α0(x−x0), x ∈ R

for some α0 > 0 and x0 ∈ R, then there exist ωI = ωI (α0) > 0 and εI > 0 such that for
any ε ∈ (0, εI ] there exist ξ±

I = ξ±
I (ε, u0) ∈ R such that

φI (x − cI t − ξ−
I ) − εe−ωI t ≤ uI (t, x; u0) ≤ φI (x − cI t − ξ+

I ) + εe−ωI t , x ∈ R

for all t ≥ 0, where uI (t, x; u0) is the solution of (7.1) with initial data uI (0, ·; u0) = u0.

Lemma 7.1 can be proven as [51, Theorem 1.4]; we here simply recall it for completeness.
To do so, we fix L1 > 0 so large that

φI (−L1) ≥ 1 + θ̃I

2
and φI (L1) ≤ θI

2
,

where θ̃I ∈ (θI , 1) is such that

f ′
I (u) ≤ −β̃I , u ∈ [θ̃I , 1] (7.2)

for some β̃I > 0 (such θ̃I and β̃I exist due to f ′
I (1) < 0).

For α > 0, let �α : R → [0, 1] be a smooth nonincreasing function satisfying

�α =
{
1, x ≤ −L1 − 1,

e−α(x−L1), x ≥ L1 + 1.

We have

Lemma 7.2 There exists α∗ > 0 such that such that for any α ∈ (0, α∗] there exists L2 =
L2(α) > L1 + 1 such that

∣
∣[J ∗ �α](x) − e−α(x−L1)

∣
∣ ≤ cI

4
αe−α(x−L1), x ≥ L2.
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Proof See [51,Lemma4.1]. It requires the symmetry of J so that
∫
R

J (x)eαx dx−1 = O(α2).
��

Now, we prove Lemma 7.1.

Proof of Lemma 7.1 Let α = α0
2 and L2 = L2(α) as in Lemma 7.2. For any ε ∈ (0, εI ],

where εI > 0 is to be chosen, we can find ξ± = ξ±
0 (ε, u0) ∈ R such that

φI (x − ξ−) − ε�α(x − ξ−) ≤ u0(x) ≤ φI (x − ξ+) + ε�α(x − ξ+), x ∈ R. (7.3)

Setting ξ±(t) = ξ± ± Aε
ω

(1 − e−ωt ), where A > 0 and ω > 0 is to be chosen, we define

u±(t, x) = φ(x − ct − ξ±(t)) ± εe−ωt�(x − ct − ξ±(t)), t ≥ 0,

where φ = φI , c = cI and � = �α . Clearly, u−(0, ·) ≤ u0 ≤ u+(0, ·). Thus, if we can
show that u−(t, x) and u+(t, x) are sub- and super-solutions, respectively, then the lemma
follows.

We show that u−(t, x) is a sub-solution; u+(t, x) being a super-solution can be proven
along the same line. We compute

u−
t − [J ∗ u− − u−] − f I (u

−)

= Aεe−ωtφ′ + εωe−ωt� − εe−ωt (Aεe−ωt − c)�′

+ εe−ωt [J ∗ � − �] + f I (φ) − f I (u
−),

where φ, φ′, � and �′ are computed at x − ct − ξ−(t) and J ∗ � = ∫
R

J (x − y)�(y − ct −
ξ−(t))dy. We consider three cases.

Case 1. x − ct − ξ−(t) ≤ −L1 − 1 In this case, � = 1, �′ = 0 and hence J ∗ � − � ≤
1−1 = 0.Moreover, φ ≥ 1+θ̃I

2 by the monotonicity of φ and the choice of L1, which implies
that u− ≥ φ − εI ≥ θ̃I if we choose

εI ≤ 1 − θ̃I

2
. (7.4)

It then follows that f I (φ) − f I (u−) ≤ −εβ̃I e−ωt�. Hence, we obtain

u−
t − [J ∗ u− − u−] − f I (u

−) ≤ ωεe−ωt� − εβ̃I e−ωt� ≤ 0

if we choose
ω ≤ β̃I . (7.5)

Case 2. x − ct − ξ−(t) ∈ [−L1 − 1, L2] In this case,
Aεe−ωtφ′ ≤ Aεe−ωt sup

x∈[−L1−1,L2]
φ′(x) < 0,

εωe−ωt� − εe−ωt (Aεe−ωt − c)�′ + εe−ωt [J ∗ � − �] ≤ εe−ωt (ω + 1)

if we choose
εI ≤ c

A
, (7.6)

and f I (φ) − f I (u−) ≤ (supu∈[0,2] | f ′
I (u)|)εe−ωt (note that it’s safe to extend f I to (1, 2] so

that supu∈[0,2] | f ′
I (u)| < ∞). It then follows that

u−
t −[J ∗u− −u−]− f I (u

−) ≤ εe−ωt
[

A sup
x∈[−L1−1,L2]

φ′(x)+ω+1+ sup
u∈[0,2]

| f ′
I (u)|

]

≤ 0

123



1100 J Dyn Diff Equat (2017) 29:1071–1102

if we choose

A ≥ −
[

sup
x∈[−L1−1,L2]

φ′(x)

]−1[

1 + 2 sup
u∈[0,2]

| f ′
I (u)|

]

, (7.7)

since ω ≤ β̃I ≤ supu∈[0,2] | f ′
I (u)| due to (7.5).

Case 3. x −ct −ξ−(t) ≥ L2 In this case, � = e−α(x−ct−ξ−(t)−L1), �′ = −α� and hence,

εωe−ωt� − εe−ωt (Aεe−ωt − c)�′ = εe−ωt [ω + Aαεe−ωt − cα]�.

By Lemma 7.2, we have εe−ωt [J ∗ � − �] ≤ εe−ωt αc
4 �. Since f I (φ) = 0 = f I (u−)

(note it’s safe to do zero extension of f on (−∞, 0)), we obtain

u−
t − [J ∗ u− − u−] − f I (u

−) ≤ εe−ωt
[

ω + Aαεe−ωt − cα + αc

4

]

� ≤ 0

if we choose
ω ≤ αc

4
and εI ≤ c

4A
(7.8)

Consequently, if we choose A as in (7.7), ω as in (7.5) and (7.8), and εI as in (7.4) and
(7.8), then we have u−

t − [J ∗ u− − u−] − f I (u−) ≤ 0 for t ≥ 0. This completes the proof.
��
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