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Abstract It has been conjectured that a locally attracting equilibrium of Clark’s equation
xn+1 = αxn +(1−α)h(xn−k) is also globally attracting whenever h is a unimodal or decreas-
ing map with negative Schwarzian derivative. The main aim of this paper is to show that the
conjecture is false when k ≥ 3. This is done by studying the (Neimark–Sacker) bifurcation
at the parameter α where the locally attracting equilibrium of the equation becomes unstable.
Our results, on the other hand, reinforce the validity of the conjecture in the cases k = 1, 2.

Keywords Clark’s equation · Global asymptotical stability · Local asymptotical stability ·
Neimark–Sacker’s bifurcation

1 Introduction

Arguably, negative Schwarzian derivative has been the most fortunate occurrence in the
history of discrete dynamical systems.

Although named after Hermann Schwarz by Arthur Cayley, Schwarzian derivative was
discovered by Lagrange in his treatise “Sur la construction des cartes géographiques” (1781)
and also appeared in a 1836 paper by Kummer (the examiner of Schwarz’s doctoral dis-
sertation and also his father in law!) [31]. Its natural realm is complex geometry, more
precisely one-dimensional complex manifolds. Indeed, Schwarz proved in [34] that the iso-
morphisms (biholomorphic maps) in the Riemann sphere C, that is, Möbius transformations
h(z) = az+b

cz+d , ad − bc �= 0, are characterized by the following property: their Schwarzian
derivative identically vanishes.
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Fig. 1 A map of the class S: the
Shepherd function (1.6) with
p = 9, q = 3 and u = 2
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The Schwarzian derivative of h in z,

Sh(z) = h′′′(z)
h′(z)

− 3

2

(
h′′(z)
h′(z)

)2

,

is well defined for all z ∈ C whenever h is a biholomorphic map, but of course it makes no
sense to speak about the “sign” of Sh(z). If h is aC3 map defined on (a subinterval of)R, then
we can still define Sh(x) (except if x is a critical point, that is, h′(x) = 0), and it turns out
that negative Schwarzian derivative is a very useful tool in real one-dimensional dynamics.
This remarkable (and by no means obvious) discovering is usually attributed to Singer. In
his 1978 paper [38] he proved two fundamental facts: (a) negative Schwarzian derivative is
preserved by composition; and (b) if a diffeomorphism h has negative Schwarzian derivative,
then |h′| satisfies the minimum principle. He used them to prove that maps with negative
Schwarzian derivative share an important property with holomorphic maps in the Riemann
sphere (already proved by Julia in 1918 [19]): some trivial cases excluded, the immediate
basin of attraction of any attracting periodic orbit must contain a critical point. A simple
consequence of this is that if h belongs to the class S below (see Fig. 1) and the fixed point
u is locally attracting (which, for these maps, is equivalent to |h′(u)| ≤ 1, as first noted by
Sivak in [39]), then u is a global attractor of the dynamical system

xn+1 = h(xn), n ≥ 0, x0 ∈ I. (1.1)

Throughout the paper, I will always denote a subinterval of R. Note that I need not be either
bounded or closed; in fact I = (0,∞) is often used in relevant models.

Definition 1 We say that h : I → I belongs to the class S if it has the following properties:

(S1) h is a C3 map and h′ vanishes at most at one point c (which is a relative extremum of
h);

(S2) there is u ∈ I such that h(x) > x (respectively, h(x) < x) for any x < u (respectively,
x > u);

(S3) Sh(x) < 0 for any x ∈ I (except possibly at c).
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Incidentally, Allwright arrived to pretty much the same conclusions as Singer’s in [1];
only, instead of the minimum principle, he used: (c) maps with negative Schwarzian deriv-
ative expand the cross ratio. Curiously enough, Allwright submitted to and published his
paper (in the same journal!) some months earlier than Singer. Probably the reason why All-
wright’s paper tends to be overlooked dates back to a very influential article published by
Guckenheimer the next year [14], where only Singer is given explicit credit in regard to the
above-mentioned results (to further confuse the issue, [1] is included in the list of references
in [14], but it is never referred to).

This small blemish aside, Guckenheimer’s paper is very fine indeed. Just using (a) and
(b) (and a lot of ingenuity) he was able to prove that maps belonging to the class S (one must
additionally assume that I is compact and f ′′(c) < 0) do not possess wandering intervals.
As a consequence, he showed as well that if h has an attracting periodic orbit, then it attracts
the orbits of almost all (in the sense of Lebesgue measure) points of I , thus giving rise to
a brand new branch of one-dimensional dynamics (measure-theoretic dynamics of smooth
interval maps) which has undergone an impressive development in the last thirty years.

With hindsight, all three properties (a), (b) and (c) are pretty natural. As we said before,
Möbius maps (and their iterates, being Möbius maps as well) are characterized by having
zero Schwarzian derivative and, as it turns out, by preserving the cross ratio. Moreover all
holomorphic maps (and then their derivatives) are well known to satisfy the maximum mod-
ulus principle and, when mapping the open unit disk into itself, they contract the hyperbolic
metric, which is directly related to the cross-ratio. These inversions “minimum-maximum”
and “expands-contracts” are far from casual, and a new breakthrough was made by van Strien
[42] by realizing that, under appropriate disjointness assumptions inspired by a relatively old
paper byA. Schwartz [33] (not to confusewithHerman Schwarz!), the behavior of diffeomor-
phic inverse branches of iterates of smoothmaps (not necessarily having negative Schwarzian
derivative) is quite similar to that of univalent holomorphic maps. Now, distortion for these
latter maps is governed by the classical Koebe principle which, after adequately translated
to this setting, was later used to demonstrate the absence of wandering intervals for general
smooth unimodal maps [9]. In a sense, the circle was closed byKozlovski by proving a totally
unexpected fact: first entry maps to sufficiently small neighbourhoods of the critical point of
a smooth unimodal map always have negative Schwarzian derivative [20]. In the meantime
new powerful topological tools, first implemented in [6], allowed to gradually extend these
ideas to the multimodal realm, culminating in the impressive classification theorem of metric
attractors proved in [43].

We have seen:

Theorem 1 (Allwright-Singer) If h belongs to the class S and |h′(u)| ≤ 1, that is, u is a
local attractor of (1.1), then u is a global attractor of (1.1).

Needless to say, the question whether local attraction (or L.A.S., abbreviating from “local
asymptotical stability”, as it is often termed) may imply global attraction (or G.A.S., from
“global asymptotical stability”), has been one of paramount importance both in discrete and
continuous dynamics since Poincaré’s times. An example of some relevance in the ensuing
discussion is the famous Wright’s delay-differential equation

y′(t) = −py(t − 1)(1 + y(t)), p > 0, (1.2)

whose study was initially motivated by the even more famous prime number theorem ([25] is
a nice survey on the subject, see also [30]). It can be shown that L.A.S. for the zero constant
solution amounts here to p < π

2 . In his celebrated paper [46], Wright proved G.A.S. for
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p ≤ 3
2 and conjectured (this is still an open problem; the best available result is [2]) that

G.A.S. holds indeed whenever p < π
2 , that is, L.A.S. implies G.A.S. for Eq. (1.2).

After the change of variable x(t) = − log(1 + y(t)), (1.2) becomes

x ′(t) = p(e−x(t−1) − 1),

which in turn arises as a particular case of the delay-differential equation

x ′(t) = h(x(t − τ)) (1.3)

by writing

h(x) = p(e−x − 1)

and taking τ = 1 as the delay time. Note that the Eq. (1.3) can be seen as the limiting case
of another one prominently featured in the literature,

x ′(t) = −δx(t) + h(x(t − τ)), δ > 0. (1.4)

TheNicholson blowflies equation [15] and theMackey–Glass equation [28] are two examples
of (1.4) of particular note; there, respectively,

h(x) = pxe−qx , p, q > 0 (1.5)

(the so-called Ricker function), and

h(x) = px

1 + xq
p, q > 0 (1.6)

(the so-called Shepherd function) are used. Maybe inspired by Wright’s conjecture, Smith
posed in [40, p. 116] the question whether L.A.S. implies G.A.S. for (1.4) when h is the map
(1.5).

Equation (1.4) can be equivalently written as

x ′(t) = −δx(t) + δh(x(t − τ)), δ > 0, (1.7)

just using h
δ
instead of h (but we rename “ h

δ
” as “h” to keep notation simple). It is convenient

to do this because then constant solutions of (1.7) and the discrete system (1.1) are exactly
the same (note also that if 0 is a fixed point of h, then the constant zero map is a solution
of (1.3)). Moreover, classical stability theory for delay equations (see for instance [41]) can
be used to show that L.A.S. for (1.1) implies L.A.S. both for (1.3) and (1.7). (We are being
a bit lousy here; in particular, h′(0) < 0 is also needed to get L.A.S. for (1.3).) This elicits
the natural, and very interesting question, whether the same can be said, under appropriate
assumptions for h : I → I , concerning global attraction, that is, whether the relative simple
dynamics of the one-dimensional system (1.1) may “globally dominate”, so to say, those of
much more complicated, in principle, infinite-dimensional dynamical systems like (1.3) or
(1.7).

In the present context this was first realized, as far as we know, by Fisher in 1984 [13].
True, Fisher simplifies things a bit by working with a discretized (hence finite-dimensional)
version of (1.7). Observe that after applying Euler’s method for a step size s so that τ

s = k
is a positive integer, and writing α = 1 − δs, (1.7) becomes
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xn+1 = αxn + (1 − α)h(xn−k), n ≥ 0, (x0, x−1, . . . , x−k) ∈ I k+1 (1.8)

(in order to ensure the well-definiteness of (1.8) we will always assume α ∈ (0, 1)). Observe
that fixed points of (1.1) become equilibria of (1.8); Fisher proceeds to show that G.A.S.
for (1.1) implies G.A.S. for (1.8). Only the continuity of the map h is needed to prove this
fact, which is remarkable because when dealing with local stability we usually retort to
linearization techniques, so we implicitly assume at least some smoothness near the fixed
point. Soon thereafter, a similar result was obtained for (1.7) in [37, p. 244] and [29]; see
also [25] for a proof in the context of Eq. (1.3) (in this last case some additional hypotheses
on h are required, but we need not delve into the details).

Apart from being the discretization of (1.7), Eq. (1.8) is of independent interest. It is often
referred to in the literature as Clark’s equation because it was first studied by Clark in a 1976
paper [8]. Yet it had appeared earlier (1963) in a model by Allen of whale populations; subse-
quently, in 1980, Beddington and May suggested to the International Whaling Commission
to use a slight modification of

h(x) = x
(
1 + p

(
1 − ( x

z

)q))
, p, q, z > 0, (1.9)

in the particular case of the baleen whale [5]. A recent and very exhaustive survey on (1.8)
is [23]. Let us add, to complete the picture, that L.A.S. for (1.1) also implies L.A.S. for (1.8)
[21], and that Győri and Trofimchuk restated Smith’s problem in this setting by conjecturing
that L.A.S. implies G.A.S. for (1.8) when h is the Ricker function (1.5) [17].

Let us summarize: we have that L.A.S. (respectively, G.A.S.) for (1.1) implies L.A.S.
(respectively, G.A.S.) for the equations (1.3), (1.7) and (1.8). On the other hand, as we have
explained, L.A.S. implies G.A.S. for (1.1) when h belongs to the class S, and the same thing
probably happens to (1.3), (1.7) and (1.8) for some concrete maps h as those previously
mentioned. Remarkably enough, all of them belong to the class S, see Table 1. Indeed, as
shown in the pioneering papers [16,17,24], negative Schwarzian derivative can be used, with
great effect, to get some partial results on global attraction for these systems also when the
fixed point is unstable for the map h. The following result from [17] (which can be improved
as shown in the same paper and also in [44]) clearly illustrates the idea. First, it is proved
that G.A.S. for xn+1 = H(xn), with H(x) = αk+1u + (1 − αk+1)h(x), implies G.A.S. for
(1.8). But, as it is easy to check, if h belongs to the class S, then H belongs to the class S as
well. Therefore, according to the Allwright-Singer theorem, if

Table 1 Some relevant maps belonging to the class S

Map h(x) = p(e−x − 1) h(x) = x(1 + p(1 − ( x
z )q )) h(x) = pxe−qx h(x) = px

1+xq

I R (0, z( p+1
p )

1
q ) (0, ∞) (0, ∞)

S1 p > 0 p, q, z > 0 p, q > 0 p, q > 0

S2 p > 0 p, q, z > 0 p > 1, q > 0 p > 1, q > 0

u 0 z u = log p
q u = (p − 1)

1
q

S3 p > 0 p, z > 0, q ≥ 1 p, q > 0 p > 0, q > 1

We specify the parameter values for which conditions (S1), (S2) and (S3) in Definition 1 hold. For the map

h(x) = x(1+p(1−( x
z )q )) it is additionally assumed p+1 <

(1+q)
1+ 1

q

q so that h maps I into itself.Note that if

q = 1 and z = p
p+1 , then we get the well-known logistic map h(x) = (1+ p)x(1− x), 0 < p < 3, I = (0, 1)
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|h′(u)| ≤ 1

1 − αk+1 , (1.10)

then we get G.A.S. for (1.8).
As explained at the beginning of this introduction, usefulness of Schwarzian derivative is

so great as to be called unreasonable. Thus, in view of the previous discussion, the conjecture
“L.A.S + negative Schwarzian derivative (modulo some reasonable monotonicity assump-
tions for h) implies G.A.S.” arises most naturally in the above-mentioned settings. It was
first explicitly formulated in a series of papers written (although not published) more or less
simultaneously [12,24–27]. In the case of Clark’s equation, the only one we are interested
in the paper, additional numerical evidence was provided in [23,45]. The main aim of this
paper is to disprove this conjecture for k ≥ 3.

2 Basic Notions and Statements of the Main Results

Let us state precisely some notions used in the previous section. We say that a point u is the
global attractor of the equation

xn+1 = g(xn, . . . , xn−k), n ≥ 0, (x0, . . . , x−k) ∈ I k+1, (2.1)

where g : I k+1 → I is a continuous map, if all orbits (xn)∞n=−k of (2.1) converge to u. It
is simple to verify that if u is a global attractor, then it is an equilibrium of (2.1), that is
u = g(u, . . . , u). We emphasize that in the case of Clark’s Eq. (1.8), u is an equilibrium if
and only if it is a fixed point of h. We say that the equilibrium u is a local attractor of (2.1) if
orbits with initial conditions (x0, . . . , x−k) close enough to u converge to u. We say that u is
stable for (2.1) if for any ε > 0 there is δ > 0 such that |xn −u| < δ for any n ∈ {−k, . . . , 0}
implies |xn −u| < ε for all n. If u is not stable then it is called unstable. Global (respectively,
local) stable attractors are called globally (respectively, locally) asymptotically stable, or,
shortly, G.A.S. (respectively, L.A.S.). It is worth mentioning that global attractors are always
stable in dimension one (k = 0), see for instance [35], but this need not be the case if k ≥ 1
[36].

A weak version of global attraction is permanence. We say that (2.1) is permanent if there
is a compact interval J ⊂ I such that all orbits eventually fall into J , that is, for every orbit
(xn) there is a number n0 (depending on the orbit) such that xn ∈ J for any n ≥ n0. If I �= R,
then Clark’s equation is permanent (see, e.g., [10]).

L.A.S. for Clark’s equation will be analyzed in full detail in the next section; presently
we recall the basics of it. Let u be a fixed point of h and write r = h′(u). After linearizing
at u, and according to the well-known Hartman–Grobman theorem, we get that u is a local
stable (respectively, unstable) attractor of (1.8) if all roots of the characteristic polynomial

λk+1 − αλk − (1 − α)r (2.2)

have modulus less than 1 (respectively, some of its roots have modulus greater than 1).
We concentrate in the case |r | > 1 because, as we said in the previous section, in typical
cases |r | ≤ 1 even implies G.A.S. for (1.8). If r > 1, then it is immediate to check that
(2.2) has a positive root larger than 1, which implies unstability. Thus the interesting case
is r < −1, the only one we will consider in this paper. It turns out that there is a number
ak(r), 0 < ak(r) < 1, such that all roots of (2.2) have modulus less than 1 if and only if
α > ak(r). The curve α = ak(r) is strictly decreasing, with ak(r) → 1 as r → −∞ and
ak(r) → 0 as r → −1. It can be written, in parametric form, as
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r = sin(θ)

sin((k + 1)θ) − sin(kθ)
, α = sin((k + 1)θ)

sin(kθ)
, θ ∈

(
π

2k+1 ,
π

k+1

)
.

If k = 1 this amounts to a1(r) = 1+ 1
r , that is, we have local attraction whenever α > 1+ 1

r .
It is worth comparing this to (1.10), which guarantees global attraction under the stronger
hypothesis α2 > 1 + 1

r (when h belongs to the class S).
We are ready to state precisely the conjecture we are going to investigate in this paper:

Assume that h belongs to the class S and r = h′(u) < −1. Then u is a global (stable)
attractor of (1.8) if and only if α ≥ ak(r). As a consequence, L.A.S. implies G.A.S. for (1.8)
whenever h belongs to the class S.

We can get additional insight on this conjecture by understanding what happens near the
bifurcation parameter ak(r). Ifα = ak(r), then (2.2) has two complex (conjugated) roots with
modulus 1 while all other roots have modulus less than 1. In such a case, under appropriate
smoothness assumptions for h (it suffices to assume, and so we will always do in the sequel,
that h is C4 near u) a so-called Neimark–Sacker bifurcation occurs under generic conditions.
Two alternatives are then possible when α is close enough to ak(r): either there is an invariant
curve whenever α < ak(r) (the supercritical case) or there is an invariant curve whenever
α > ak(r) (the subcritical case). Here, by an invariant curve, we mean a set C ⊂ I k+1

homeomorphic to the circle with the property that if the initial vector (x0, . . . , x−k) of an
orbit (xn) belongs to C , then all vectors (xn, . . . , xn−k) belong to C as well. Subcritical
Neimark–Sacker bifurcations are of special interest: then, for appropiately chosen values of
the parameter α, a locally attracting equilibrium of (1.8) coexists with an invariant curve so
it cannot be globally attracting.

Our first theorem shows that, surprisingly enough, negative Schwarzian derivative at u
is closely related to the nature of the Neimark–Sacker bifurcation at ak(r). In fact, when
Sh(u) < 0, or equivalently,

Σh(u) := h′′′(u)h′(u)

(h′′(u))2
<

3

2

(if h′′(u) = 0, then we mean Σh(u) = ∞ > 3
2 ,Σh(u) = 3

2 or Σh(u) = −∞ < 3
2

according to, respectively, h′′′(u) < 0, h′′′(u) = 0 or h′′′(u) > 0), subcritical bifurcations
are “almost” ruled out:

Theorem 2 Assume that one of the following conditions is satisfied:

(a) k ≤ 2 and Σh(u) ≤ 3
2 .

(b) Σh(u) ≤ 2−r
1−r .

(c) Σh(u) ≤ 1.49.
(d) r ≤ −1.18 and Σh(u) ≤ 3

2 .

Then the equilibrium u of (1.8) exhibits a supercritical Neimark–Sacker bifurcation at α =
ak(r).

Remark 1 Numerical estimations suggest that 1.4928 . . . and−1.17483 . . . are, respectively,
the best bounds in (c) and (d).

Thus, under the hypothesis of negative Schwarzian derivative of h at u, we get in particular
that the bifurcation is always supercritical if k = 1 or k = 2, and the same thing happens,
regardless the value of k, if r is not too close to −1. For instance, as shown in Sect. 6, the
bifurcation is supercritical for all maps from Table 1.

The following theorem is our key result. It shows that, against all odds, negativeSchwarzian
derivative and subcritical bifurcation may coexist:
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Theorem 3 Let hε : I → I, 0 < ε < ε0, be a family of maps with corresponding fixed
points uε, and locally C4 at these points. Assume that the following conditions are satisfied:

(i) The map D(ε) = h′
ε(uε) is differentiable and lim

ε→0
D(ε) = −1, lim

ε→0
D′(ε) < 0;

(ii) The map T (ε) = Σhε(uε) is differentiable and lim
ε→0

T (ε) = 3/2, lim
ε→0

T ′(ε) = 0.

Then, if k ≥ 3, ε > 0 is small enough and we put h = hε, u = uε and r = h′(u), the
equilibrium u of (1.8) exhibits a subcritical Neimark–Sacker bifurcation at α = ak(r). In
particular, if α > ak(r) is close enough to ak(r), then u is a local, but not global, attractor
of (1.8).

A concrete family of rational decreasing bounded maps belonging to the class S and
satisfying the hypotheses of Theorem 3 is given in Sect. 6.

If k is large enough, then hypothesis (i) in Theorem 3 can be slightly weakened:

Theorem 4 Let hε : I → I, 0 < ε < ε0, be a family of maps with corresponding fixed
points uε, and locally C4 at these points. Assume that the following conditions are satisfied:

(i) The map D(ε) = h′
ε(uε) is differentiable, and lim

ε→0
D(ε) = −1 (with D′(ε) < 0 for any

0 < ε < ε0), lim
ε→0

D′(ε) = 0;

(ii) The map T (ε) = Σhε(uε) is differentiable and lim
ε→0

T (ε) = 3/2, lim
ε→0

T ′(ε) = 0;

(iii) lim
ε→0

T ′(ε)/D′(ε) < 1/4.

Then there is k0 such that if k ≥ k0, ε > 0 is small enough and we put h = hε, u = uε and
r = h′(u), the equilibrium u of (1.8) exhibits a subcritical Neimark–Sacker bifurcation at
α = ak(r). In particular, if α > ak(r) is close enough to ak(r), then u is a local, but not
global, attractor of (1.8).

Theorems 3 and 4 follow from a more general result characterizing supercritical and sub-
criticalNeimark–Sacker bifurcations inClark’s equation.We delay its somewhat complicated
statement to the end of Sect. 3 (Theorem 7). In the simplest case k = 1 we have:

Theorem 5 Assume k = 1. If Σh(u) < 1−2r
1−r (respectively, Σh(u) > 1−2r

1−r ), then the
equilibrium u of (1.8) exhibits a supercritical (respectively, subcritical) Neimark–Sacker
bifurcation at α = a1(r) = 1 + 1

r .

Note that, since r < −1, this result substantially refines Theorem 2(b) when k = 1.
While Theorem 2 is just local in nature, one is tempted to formulate, in view of results as

that mentioned in (1.10), the following weaker version of the conjecture:
Assume that h belongs to the class S, r = h′(u) < −1 and the Neimark–Sacker bifurcation
at ak(r) is supercritical. Then u is a global attractor of (1.8) if and only if α ≥ ak(r). In
particular, if k = 1 or k = 2, then u is a global attractor of (1.8) if and only if α ≥ ak(r).

In fact, by combining a Neimark–Sacker bifurcation technique with rigorous numerics, a
recent paper [3] prove it (for k = 1) in the particular case h(x) = −p tanh(x); here I = R and
u = 0. (See also [4] for a similar result concerning the so-called 2-dimensional Ricker map.)
Our numerical explorations also point out in this direction; for instance, counterexample
maps (6.1) from Sect. 6 seems to feature global attraction in the cases k = 1 and 2. The paper
[45] is here worth a mention, because it is devoted to study the Neimark–Sacker bifurcation
for (1.8) in the particular case of the Ricker function (1.5). The main theorem (Theorem 3) is
wrong because their coefficient g21 is not correctly calculated (compare to [22, p. 187]) but a
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numerical example is given showing that, as we prove rigorously in this paper, the bifurcation
is supercritical in this case.

As said before, we expect the conjecture under discussion to be true in the cases k = 1
and k = 2. Yet there seems to exist an interesting difference (first noted by Eduardo Liz)
between these two values of k as far as metric attractors are concerned. These sets were
briefly mentioned at the beginning of Sect. 1: a metric attractor is a compact subset of I k+1

containing the limit sets of the (vector) orbits of a positive Lebesgue measure set of points,
and having no a strict subset with the same properties. It is well known that if a map h
belongs to the class S, then it has at most one metric attractor (see, e.g., [7]). Curiously
enough, numerical experiments suggest that if a decreasing map h belongs to the class S and
k = 1, then (1.8) has exactly one metric attractor, a (vectorial) periodic orbit or an invariant
curve, attracting the orbits of almost all vectors (x0, x−1) of initial conditions. This need not
happen if k = 2: an example of such a map with two metric attractors can be found in [11].

Remark 2 The main results of this paper were announced, without proof, by the first author
in [18]. Unfortunately, one hypothesis is missed in the statements of Theorems 3 and 4
there and, as a consequence, it is wrongly stated that the Neimark–Sacker bifurcation is
subcritical for some parameter values of the Shepherd function. The counterexample (6.1)
and the subsequent discussion in Sect. 6 can also be found in [18]; since the paper may not
be generally available, they are reproduced here with just some cosmetic modifications.

3 The Neimark–Sacker Bifurcation for Clark’s Equation

In this section we analyze the local stability of Clark’s equation (1.8) near a fixed point u
of h (and hence an equilibrium of (1.8)) in terms of the parameter α. Recall that we assume
that h is sufficiently smooth near u (C4 is enough) and h′(u) < −1.

Our starting point is the lemma below.

Lemma 1 Let k be a positive integer,

(βk(θ), αk(θ)) =
(

sin θ
sin(kθ)

,
sin((k+1)θ)

sin(kθ)

)
, θ ∈

(
π

2k+1 ,
π

k+1

)
,

and consider the equation

λk+1 − αλk + β = 0, 0 < α < 1, β > 0. (3.1)

Then all roots of (3.1) have modulus less than 1 (respectively, some root has modulus greater
than 1) if and only if α = αk(θ) and β < βk(θ) (respectively, β > βk(θ)) for some θ .
Moreover, if α = αk(θ) and β = βk(θ) for some θ , then (3.1) has exactly two simple
(conjugate) complex roots of modulus 1, those given by eiθ and e−iθ , while all other roots
have modulus less than 1.

Remark 3 We emphasize that, when θ moves from π
2k+1 to

π
k+1 , βk(θ) strictly increases from

sin( π
2k+1 )

sin( kπ
2k+1 )

to 1 (except for β1(θ) ≡ 1) and αk(θ) strictly decreases from 1 to 0. To check this,

observe first that

β ′
k(θ) = (k + 1) sin((k − 1)θ) − (k − 1) sin((k + 1)θ)

2 sin2(kθ)
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and then note that the numerator has positive derivative, so it is positive as well. The opposite
thing happens to

α′
k(θ) = sin((2k + 1)θ) − (2k + 1) sin θ

2 sin2(kθ)
.

Proof (Lemma 1) The first statement is proved in [21], see [32] for a simpler proof. The
second statement is also implicitly shown in these papers; for the convenience of the reader
we give here the short proof.

To begin with, observe that (3.1) has no multiple roots of modulus 1. The reason is
that, in such a case, the polynomial p(λ) = λk+1 − αλk + β and its derivative p′(λ) =
(k + 1)λk − kαλk−1 would have a common root of modulus 1. This is not possible because
0 < α < 1 and the only roots of p′(λ) are 0 and αk

k+1 . Note also that 1 is not a root of (3.1)
due to 0 < α < 1 and β > 0.

Now fix β = βk(θ) and α = αk(θ) for some θ ∈ ( π
2k+1 ,

π
k+1 ). Then −1 is not a root of

(3.1) either, because this would imply |β| = 1+ α, which is impossible because 0 < β < 1.
On the other hand, it is very easy to check directly that eiθ and e−iθ are roots of (3.1). Thus
it only rests to show that there are no 0 < θ1 < θ2 < π with both eiθ1 and eiθ2 (and their
conjugates) being roots of (3.1). But in such a case we get

β = |eiθ1 − α| = |e−iθ1 − α| = |eiθ2 − α| = |e−iθ2 − α|,
hence circumferences |z| = 1 and |z − α| = β intersect at least at four points. This means
that both circumferences are the same, that is, α = 0, β = 1, a contradiction. ��

Let

rk(θ) = sin θ

sin((k + 1)θ) − sin(kθ)
= cos

(
θ
2

)
cos

(
(2k+1)θ

2

) , θ ∈
(

π
2k+1 ,

π
k+1

)
,

when observe that rk(θ) strictly increases from −∞ to −1 as θ moves from π
2k+1 to π

k+1 .
Thus we can resolve θ in r = rk(θ) as θ = θk(r) and write ak(r) = αk(θk(r)). Note also
that

βk(θ) = −(1 − αk(θ))rk(θ).

Wefix r = h′(u) in what follows. Since rk(θ) is strictly increasing, the line β = −(1−α)r
intersects the curve (βk(θ), αk(θ)) in the plane (β, α) exactly at one point, that given by θ

such that r = rk(θ). (Alternatively, this follows aswell from the fact that the curve, when seen
as the graph of a map α = f (β), is convex. The proof of convexity is rather cumbersome; we
will not use this property in the sequel, sowe omit it.) Since the characteristic equation of (1.8)
at u is precisely (3.1) for β = −(1 − α)r , Lemma 1 implies that u is locally asymptotically
stable if α > ak(r) and unstable if α < ak(r), the bifurcation arising at α = ak(r) being, as
anticipated in the previous section, of the Neimark–Sacker type. More precisely, if eiθ is not
a third or a fourth root of the unity (which is an immediate consequence of Lemma 1), then
what happens to (1.8) in the vicinity of αk(θ) = ak(r) depends on two numbers bk(θ), dk(θ),
to be defined below, and is described by the following theorem:

Theorem 6 Assume that bk(θ) < 0 and ε > 0 is small enough. Then we have:

(i) The supercritical case: dk(θ) < 0. If αk(θ) − ε < α < αk(θ), then there is an invariant
(attracting) curve near u; if αk(θ) ≤ α < αk(θ) + ε, then there is no invariant curve
near u.
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(ii) The subcritical case: dk(θ) > 0. If αk(θ) − ε < α ≤ αk(θ), then there is no invariant
curve near u; if αk(θ) < α < αk(θ)+ε, then there is an (unstable) invariant curve near
u.

“Near u” means of course near to the vector (u, . . . , u) in R
k+1.

It can also be proved, although it will not be of use in this paper, that at the bifurcation point
α = αk(θ), u is stable and locally attracting if we are in the supercritical case, and unstable
if we are in the subcritical case. For a detailed account of the Neimark–Sacker bifurcation,
including a proof of Theorem 6, we refer the reader to [22, pp. 185–187].

We devote the rest of this section to clarify the nature of the Neimark–Sacker bifurcation
at the parameter value αk(θ), where θ is the angle satisfying r = rk(θ). For simplicity of the
notation, we write in what follows α = αk(θ), β = βk(θ) and μ0 = eiθ .

To define the number bk(θ) we proceed as follows. First we consider the equation (again
on the variable λ, and just depending on the parameter c, since the number r has been fixed)

λk+1 − cλk − (1 − c)r = 0. (3.2)

A number ρeiσ (ρ > 0, σ ∈ R) is a root of (3.2) if and only if

F(ρ, σ, c) := ρk+1 cos((k + 1)σ ) − cρk cos(kσ) − (1 − c)r = 0,

G(ρ, σ, c) := ρk+1 sin((k + 1)σ ) − cρk sin(kσ) = 0.

Since β = −(1 − α)r , we have

F(1, θ, α) = 0,

G(1, θ, α) = 0,

by Lemma 1. Moreover, a direct calculation gives

Fρ(1, θ, α) = (k + 1) cos((k + 1)θ) − kα cos(kθ),

Fσ (1, θ, α) = −(k + 1) sin((k + 1)θ) + kα sin(kθ),

Gρ(1, θ, α) = (k + 1) sin((k + 1)θ) − kα sin(kθ),

Gσ (1, θ, α) = (k + 1) cos((k + 1)θ) − kα cos(kθ),

and then ∣∣∣∣ Fρ(1, θ, α) Fσ (1, θ, α)

Gρ(1, θ, α) Gσ (1, θ, α)

∣∣∣∣ = 1 + 2k + k2
(
1 + α2) − 2k(1 + k)α cos θ

> 1 + 2k + k2
(
1 + α2) − 2k(1 + k)α

= (k(1 − α) + 1)2

> 0.

Therefore, for any c close enough to α there is a uniquely defined number

μ(c) = ρ(c)eiσ(c),

with ρ(c) close to 1 and σ(c) close to θ , such that μ(c) is a root of (3.2), with both ρ(c) and
σ(c) being differentiable maps. Now, by definition,

bk(θ) := ρ′(α).

Recall that in Theorem6 the assumption bk(θ) < 0 ismade. This is preciselywhat happens
here:
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Lemma 2 We have bk(θ) < 0.

Proof Observe that

Fc(1, θ, α) = − cos(kθ) + r,

Gc(1, θ, α) = − sin(kθ).

Then∣∣∣∣−Fc(1, θ, α) Fσ (1, θ, α)

−Gc(1, θ, α) Gσ (1, θ, α)

∣∣∣∣ = −kα + (k + 1) cos θ + krα cos(kθ) − (k + 1)r cos((k + 1)θ)

= −kα + (k + 1) cos θ + kα sin θ cos(kθ)

sin((k + 1)θ) − sin(kθ)

− (k + 1) sin θ cos((k + 1)θ)

sin((k + 1)θ) − sin(kθ)

= kα
sin θ cos(kθ) − sin((k + 1)θ) + sin(kθ)

sin((k + 1)θ) − sin(kθ)

+(k + 1)
cos θ sin((k + 1)θ)−cos θ sin(kθ) − sin θ cos((k + 1)θ)

sin((k + 1)θ)−sin(kθ)

= kα
sin θ cos(kθ) − sin(kθ) cos θ − sin θ cos(kθ) + sin(kθ)

sin((k + 1)θ) − sin(kθ)

+(k + 1)
sin(kθ) − cos θ sin(kθ)

sin((k + 1)θ) − sin(kθ)

= kα
sin(kθ)(1 − cos θ)

sin((k + 1)θ) − sin(kθ)
+ (k + 1)

sin(kθ)(1 − cos θ)

sin((k + 1)θ) − sin(kθ)

= (kα + k + 1) sin(kθ)(1 − cos θ)

sin((k + 1)θ) − sin(kθ)

< 0,

because θ ∈ ( π
2k+1 ,

π
k+1 ). Therefore,

ρ′(α) =

∣∣∣∣−Fc(1, θ, α) Fσ (1, θ, α)

−Gc(1, θ, α) Gσ (1, θ, α)

∣∣∣∣∣∣∣∣ Fρ(1, θ, α) Fσ (1, θ, α)

Gρ(1, θ, α) Gσ (1, θ, α)

∣∣∣∣
< 0

as we desired to show. ��
Introducing the number dk(θ), and especially elucidating its sign, is more complicated.

Note that we will use the bold type to denote vectors in C
n+1 but not their components, that

is, p = (p0, . . . , pk), q = (q0, . . . , qk), and so on.
We begin by writing (1.8) in vectorial form as

zn+1 = G(zn), (3.3)

in the sense that (zn)∞n=0 is an orbit of (3.3) if and only if (xn)∞n=−k is an orbit of (1.8), with
zn = (xn, . . . , xn−k), by taking

G(v0, v1, . . . , vk) = (αv0 + (1 − α)h(vk), v0, . . . , vk−1).

Let A be the Jacobianmatrix ofG at the fixed pointu = (u, . . . , u) of (3.3). The characteristic
equations of (1.8) at u and (3.3) at u coincide, hence two of the eigenvalues of A are μ0 and
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its conjugate μ0. Of course they are also eigenvalues of the transposed matrix At of A. Let
p ∈ C

k+1 be an eigenvector of At with eigenvalue μ0, and let q ∈ C
k+1 be an eigenvector

of A with eigenvalue μ0. Since these eigenvalues have multiplicity 1, it is possible to show
(using the Fredholm alternative theorem and the Jordan decomposition of matrixes; we skip
the details) that 〈p, q〉 �= 0, where 〈p, q〉 denote the standard scalar product in C

k+1, that is,

〈p, q〉 = p0q0 + · · · pkqk .

Then we can assume, without loss of generality, that 〈p, q〉 = 1.
Let also B : Ck+1×C

k+1 → C
k+1 andC : Ck+1×C

k+1×C
k+1 → C

k+1 be the vectorial
polynomial maps given by

B(x, y) =
∑

0≤ j,l≤k

∂2G(v)

∂v j∂vl

∣∣∣∣
v=u

x j yl ,

and

C(x, y, z) =
∑

0≤ j,l,m≤k

∂3G(v)

∂v j∂vlvm

∣∣∣∣
v=u

x j yl zm,

and let Ik+1 denote the (k+1)×(k+1) identity matrix (that having ones in the main diagonal
and zeros elsewhere). Finally, let Re(z) denote the real part of a complex number z. Then
dk(θ) is given by

dk(θ) := 1

2
Re{μ0(〈p, C(q, q, q)〉 + 2〈p, B(q, B(q, q)(Ik+1 − At )−1)〉
+〈p, B(q, B(q, q)(μ2

0 Ik+1 − At )−1)〉)},
Note that, due to Lemma 1, neither 1 nor μ2

0 are eigenvalues of A, hence the above inverse
matrices make sense. Strictly speaking dk(θ) is ambiguously defined, as the vectors p and q
can be chosen in a variety of ways, but it can be checked that its sign (the only information
we really need to know about dk(θ)) is always the same.

Let us now calculate dk(θ). We have

A =

⎛
⎜⎜⎜⎜⎝

α 0 · · · 0 −β

1 0 · · · 0 0
0 1 · · · 0 0
0 0 · · · 0 0
0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎠ ,

so eigenvectors v of A with eigenvalue μ0 are given by the equality

(αv0 − βvk, v0, v1, . . . , vk−1) = (μ0v0, μ0v1, . . . , μ0vk).

Since the characteristic polynomial of A is λk+1 − αλk + β, one such vector is

v = (1, μ0, . . . , μ0
k).

Similarly, eigenvectors p for At with eigenvalue μ0 are given by

(αp0 + p1, p2, . . . , pk,−βp0) = (μ0 p0, μ0 p1, . . . , μ0 pk).

Taking again p0 = 1, we get

p = (1,−βμk
0,−βμk−1

0 , . . . ,−βμ0).
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Then we have

〈p, v〉 = p0v0 + p1v1 + · · · + pkvk

= 1 − β μ0
k μ0 − β μ0

k−1 μ0
2 · · · − β μ0 μ0

k

= 1 − kβ μ0
k+1.

We emphasize that, as expected, 1 − kβ μ0
k+1 �= 0, because θ ∈ ( π

2k+1 ,
π

k+1 ) and then

(k + 1)θ ∈ ( π
2 , π), hence μ0

k+1 /∈ R. Therefore

q = 1

1 − kβ μ0
k+1 v =

(
1

1 − kβ μ0
k+1 ,

μ0

1 − kβ μ0
k+1 , . . . ,

μ0
k

1 − kβ μ0
k+1

)

is a well-defined eigenvector of A with eigenvalue μ0 and 〈p, q〉 = 1.
The maps B(x, y) and C(x, y, z) are easy to calculate, their components being

Bi (x, y) =
{

(1 − α)sxk yk if i = 0,

0 if i = 1, 2, . . . , k,

Ci (x, y, z) =
{

(1 − α)t xk yk zk if i = 0,

0 if i = 1, 2, . . . , k,

with s = h′′(u) and t = h′′′(u). Then

C(q, q, q) =
⎛
⎝ (1 − α)t μ0

k

(
1 − kβ μ0

k+1
)2 (

1 − kβμk+1
0

) , 0, . . . , 0

⎞
⎠

and

〈p, C(q, q, q)〉

= (1 − α)t μ0
k

(
1 − kβ μ0

k+1
)2 (

1 − kβμk+1
0

) = (1 − α)t μ0
k

γ
(
1 − kβ μ0

k+1
) = (1 − α)t

γ
(
μk
0 − kβ μ0

) ; (3.4)

here we mean

γ = (1 − kβ μ0
k+1)

(
1 − kβμk+1

0

)
= |1 − kβμk+1

0 |2.
We next calculate 〈p, B(q, B(q, q)(Ik+1 − At )−1)〉. On the one hand,

B(q, q) = ((1 − α)s/γ, 0, . . . , 0).

If, on the other hand, we write x = B(q, q)(Ik+1 − At )−1, or, equivalently, (Ik+1 − A)xt =
B(q, q)t , and recall that

Ik+1 − A =

⎛
⎜⎜⎜⎜⎝

1 − α 0 · · · 0 β

−1 1 · · · 0 0
0 −1 · · · 0 0
0 0 · · · 1 0
0 0 · · · −1 1

⎞
⎟⎟⎟⎟⎠ ,

we see that x can be calculated by solving the system

(1 − α)x0 + βxk = (1 − α)s/γ

−x0 + x1 = 0
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−x1 + x2 = 0
...

−xk−1 + xk = 0

From the last k equations we deduce x0 = x1 = · · · = xk , which together with the first one
implies

x0 = (1 − α)s

γ (1 − α + β)
.

Therefore

B(q, q)
(
Ik+1 − At)−1 =

(
(1 − α)s

γ (1 − α + β)
,

(1 − α)s

γ (1 − α + β)
, . . . ,

(1 − α)s

γ (1 − α + β)

)
,

B
(

q, B(q, q)
(
Ik+1 − At)−1

)
=

(
(1 − α)2s2 μ0

k

γ (1 − α + β)
(
1 − kβ μ0

k+1
) , 0, . . . , 0

)

=
(

(1 − α)2s2

γ (1 − α + β)
(
μk
0 − kβ μ0

) , 0, . . . , 0

)
,

and finally

〈
p, B

(
q, B(q, q)

(
Ik+1 − At)−1

)〉
= (1 − α)2s2

γ (1 − α + β)
(
μk
0 − kβ μ0

) . (3.5)

To complete the calculation of dk(θ) we must take care of the product〈
p, B

(
q, B (q, q)

(
μ2
0 Ik+1 − At)−1

)〉
.

First of all, we have

B(q, q) =
(

(1 − α)s μ0
2k

(
1 − kβ μ0

k+1
)2 , 0, . . . , 0

)

and

μ2
0 Ik+1 − A =

⎛
⎜⎜⎜⎜⎝

μ2
0 − α 0 · · · 0 β

−1 μ2
0 · · · 0 0

0 −1 · · · 0 0
0 0 · · · μ2

0 0
0 0 · · · −1 μ2

0

⎞
⎟⎟⎟⎟⎠ .

If, as we did earlier, we write x = B(q, q)(μ2
0 Ik+1 − At )−1, we can calculate x by solving

(μ2
0 − α)x0 + βxk = (1 − α) sμ0

2k

(
1 − kβ μ0

k+1
)2

−x0 + μ2
0x1 = 0

−x1 + μ2
0x2 = 0

...

−xk−1 + μ2
0xk = 0
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Namely, the last k equations imply

x0 = μ2
0 x1 = μ4

0 x2 = · · · = μ2k
0 xk

and the first one

xk = (1 − α)s μ0
2k

(
1 − kβ μ0

k+1
)2 ((

μ2
0 − α

)
μ2k
0 + β

) .

Thus

B(q, q)
(
μ2
0 Ik+1 − At)−1 =

(
(1 − α)s(

1 − kβ μ0
k+1

)2 ((
μ2
0 − α

)
μ2k
0 + β

) ,

(1 − α)s μ0
2

(
1 − kβ μ0

k+1
)2 ((

μ2
0 − α

)
μ2k
0 + β

) , . . . ,

(1 − α)s μ0
2k

(
1 − kβ μ0

k+1
)2 ((

μ2
0 − α

)
μ2k
0 + β

)
)

and

〈
p, B

(
q, B(q, q)(μ2

0 Ik+1 − At )−1)〉

= (1 − α)2s2 μ0
k

(
1 − kβ μ0

k+1
)2 (

1 − kβμk+1
0

) ((
μ2
0 − α

)
μ2k
0 + β

)

= (1 − α)2s2 μ0
k

γ
(
1 − kβ μ0

k+1
) ((

μ2
0 − α

)
μ2k
0 + β

)

= (1 − α)2s2

γ
(
μk
0 − kβ μ0

) ((
μ2
0 − α

)
μ2k
0 + β

) . (3.6)

Bringing together (3.4), (3.5) and (3.6), we finally obtain

dk(θ) = 1

2
Re

⎛
⎝ (1 − α)t

γ
(
μk+1
0 − kβ

) + 2(1 − α)2s2

γ (1 − α + β)
(
μk+1
0 − kβ

)

+ (1 − α)2s2

γ (μk+1
0 − kβ)

((
μ2
0 − α

)
μ2k
0 + β

)
)

= 1

2
Re

(
(1 − α)tψ

γ |ψ |2 + 2(1 − α)2s2ψ

γ (1 − α + β)|ψ |2 + (1 − α)2s2ψ

γ |ψ |2ω

)

= (1 − α)Re(ψ)

2γ |ψ |2
(

t + 2(1 − α)s2

1 − α + β
+ (1 − α)s2

Re(ψ)
Re

(
ψ

ω

))
,

where ψ = μk+1
0 − kβ and ω = (μ2

0 − α)μ2k
0 + β, when observe that

Re(ψ) = cos((k + 1)θ) − kβ < 0
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because (k + 1)θ ∈ ( π
2 , π). Therefore, 2γ |ψ |2

(1−α)Re(ψ)r > 0 and dk(θ) has the same sign as

t

r
+ 2(1 − α)rs2

(1 − α + β)r2
+ (1 − α)rs2

Re(ψ)r2
Re

(
ψ

ω

)
= t

r
− Mk(θ)

s2

r2
,

with

Mk(θ) = 2β

1 − α + β
+ β

Re(ψ)
Re

(
ψ

ω

)
.

Observe that if we write

σ =
(
1 + μk+1

0

) (
1 + μk

0

)
− 1,

then we have

ω = (
μ2
0 − α

)
μ2k
0 + β − μk

0 + αμk+1
0 − βμ2k+1

0

= −μk
0 + αμk+1

0 + αμ2k+1
0 − βμk+1

0 − βμ2k+1
0 − αμ2k

0 + β

= −μk
0 − μ2k+1

0 + αμk+1
0 + αμ2k+1

0 − βμk+1
0 − βμk

0 − βμ2k+1
0 + β

= −μk+1
0 − μk

0 − μ2k+1
0 + αμk+1

0 + αμk
0 + αμ2k+1

0 − βμk+1
0 − βμk

0 − βμ2k+1
0

= −(1 − α + β)
(
μk+1
0 + μk

0 + μ2k+1
0

)
= −(1 − α + β)σ ;

we have used several times that μ0 (and its conjugate) are roots of λk+1 − αλk + β = 0.
Thus

Mk(θ) = 2β

1 − α + β

(
1 − 1

2Re(ψ)
Re

(
ψ

σ

))
. (3.7)

We have shown that dk(θ) < 0 (respectively, dk(θ) > 0) if and only if Σh(u) < Mk(θ)

(respectively, Σh(u) > Mk(θ)). Later on it will be more convenient to work with the repara-
metrizations Rk(Θ) = rk(θ), Nk(Θ) = Mk(θ),Θ = (k+1)θ , of our maps rk(θ) and Mk(θ).
The theorem below summarizes our results:

Theorem 7 Let Θ ∈ (
(k+1)π
2k+1 , π) be such that Rk(Θ) = r = h′(u). If Σh(u) < Nk(Θ)

(respectively, Σh(u) > Nk(Θ)), then the equilibrium u of (1.8) exhibits a Neimark–Sacker
supercritical (respectively, subcritical) bifurcation at α = αk(

Θ
k+1 ).

4 On the Maps Rk and Nk

Here we recall some properties of the maps

Rk(Θ) =
cos

(
Θ

2(k+1)

)

cos
(

(2k+1)Θ
2(k+1)

)

and Nk(Θ) that will be useful later. In principle these maps just make sense in the interval
(
(k+1)π
2k+1 , π), but they are well defined in π as well. Moreover:
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Lemma 3 We have Rk(π) = −1 and

R′
k(π) = tan( π

2(k+1) ).

In particular, R′
k(π) > 0 for any k ≥ 1.

Proof The first statement Rk(π) = −1 is clear. On the other hand,

R′
k(Θ) =

− 1
2(k+1) sin

(
Θ

2(k+1)

)
cos

(
(2k+1)Θ
2(k+1)

)
+ 2k+1

2(k+1) cos
(

Θ
2(k+1)

)
sin

(
(2k+1)Θ
2(k+1)

)

cos2
(

(2k+1)Θ
2(k+1)

)

=
− 1

2(k+1) sinΘ + cos
(

Θ
2(k+1)

)
sin

(
(2k+1)Θ
2(k+1)

)

cos2
(

(2k+1)Θ
2(k+1)

)

=
k

k+1 sinΘ + sin
(

kΘ
k+1

)

2 cos2
(

(2k+1)Θ
2(k+1)

) ,

hence

R′
k(π) =

sin
(

π
k+1

)

2 cos2
(

π
2(k+1)

) = tan
(

π
2(k+1)

)
.

��
Next we make Nk(Θ) explicit. Writing as in the previous section α = αk(θ), β =

βk(θ), μ0 = eiθ and ψ = μk+1
0 − kβ, we have

2β

1 − α + β
= −2Rk(Θ)

1 − Rk(Θ)

=
−2 cos

(
Θ

2(k+1)

)

cos
(

(2k+1)Θ
2(k+1)

)
− cos

(
Θ

2(k+1)

)

=
cos

(
Θ

2(k+1)

)

sin
(

Θ
2

)
sin

(
kΘ

2(k+1)

)

and

ψ

Re(ψ)
= μk+1

0 − kβ

Re
(
μk+1
0 − kβ

)

=
e−iΘ − k sin

(
Θ

k+1

)

sin
(

kΘ
k+1

)

cosΘ − k sin
(

Θ
k+1

)

sin
(

kΘ
k+1

)

=
sin

(
kΘ
k+1

)
e−iΘ − k sin

(
Θ

k+1

)

sin
(

kΘ
k+1

)
cosΘ − k sin

(
Θ

k+1

) .
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Now, in view of (3.7), we get

Nk(Θ) = Pk(Θ)

Qk(Θ)

(
1 − 1

2Uk(Θ)
Re

(
Vk(Θ)

Wk(Θ)

))
,

with

Pk(Θ) = cos( Θ
2(k+1) ),

Qk(Θ) = sin(Θ
2 ) sin( kΘ

2(k+1) ),

Uk(Θ) = sin( kΘ
k+1 ) cosΘ − k sin( Θ

k+1 ),

Vk(Θ) = sin( kΘ
k+1 )e

−iΘ − k sin( Θ
k+1 ),

Wk(Θ) = (1 + eiΘ)(1 + e
ikΘ
k+1 ) − 1.

Lemma 4 We have Nk(π) = 3
2 and

N ′
k(π) = 1

4

(
2 cos

(
π

k+1

)
− 1

)
tan

(
π

2(k+1)

)
.

In particular, N ′
1(π) = − 1

4 < 0, N ′
2(π) = 0 and N ′

k(π) > 0 for any k ≥ 3.

Proof To simplify the notation we write P = Pk(π), P ′ = P ′
k(π); numbers Q, Q′, U, U ′,

V, V ′, W, W ′ are similarly defined. Clearly, we have

P = Q = cos( π
2(k+1) ), U = V and W = −1. (4.1)

Then we get immediately

Nk(π) = P

Q

(
1 − 1

2U
Re

(
V

W

))
= 3

2
.

On the other hand, we have

P ′ = − 1

2(k + 1)
sin

(
π

2(k+1)

)
, (4.2)

Q′ = k

2(k + 1)
cos

(
kπ

2(k+1)

)

= k

2(k + 1)
sin

(
π

2(k+1)

)
. (4.3)

Also, observe that Uk(Θ) = Re(Vk(Θ)), hence

U ′ = Re(V ′). (4.4)

Finally,

W ′ = −i
(
1 + e

ikπ
k+1

)
,

hence
Re(W ′) = sin

(
kπ

k+1

)
= sin

(
π

k+1

)
. (4.5)

123



358 J Dyn Diff Equat (2016) 28:339–374

Therefore, using (4.1)-(4.5), we get

N ′
k(π) = P ′Q − P Q′

Q2

(
1 − 1

2U
Re

(
V

W

))

+ P

2Q

(
U ′

U 2 Re

(
V

W

)
− 1

U
Re

(
V ′W − V W ′

W 2

))

= 3

2

P ′ − Q′

Q
− U ′

2U
+ 1

2U
Re(V ′ + V W ′)

= 3

2

P ′ − Q′

Q
+ 1

2
Re(W ′)

= −3

4

sin
(

π
2(k+1)

)

cos
(

π
2(k+1)

) + 1

2
sin

(
π

k+1

)

= 1

4

(
−3 + 4 cos2

(
π

2(k+1)

))
tan

(
π

2(k+1)

)

= 1

4

(
2 cos

(
π

k+1

)
− 1

)
tan

(
π

2(k+1)

)

as we desired to show. ��
We already know that the maps Rk(Θ) are strictly increasing; our next aim is to study the

monotonicity properties of the maps Nk(Θ). We need two elementary trigonometric lemmas.

Lemma 5 Let a, b ∈ R and c = (1 + eia)(1 + eib) − 1. Then

Re(c) = −1 + 4cos
( a
2

)
cos

( b
2

)
cos

( a+b
2

)
,

Im(c) = 4cos
( a
2

)
cos

( b
2

)
sin

( a+b
2

)
,

|c|2 = 1 + 8cos
( a
2

)
cos

( b
2

)
cos

( a−b
2

)
.

Proof The first two statements follow after taking real and imaginary parts in

c = 4e
i(a+b)

2 cos
( a
2

)
cos

( b
2

) − 1.

Since c = eia + eib + ei(a+b), we also get

cos a + cos b + cos(a + b) = −1 + 4cos
( a
2

)
cos

( b
2

)
cos

( a+b
2

)
,

which implies

cos a + cos b + cos(a − b) = −1 + 4cos
( a
2

)
cos

( b
2

)
cos

( a−b
2

)
.

as well. Then

|c|2 =
(

eia + eib + ei(a+b)
) (

e−ia + e−ib + e−i(a+b)
)

= 3 + 2(cos a + cos b + cos(a − b))

= 1 + 8cos
( a
2

)
cos

( b
2

)
cos

( a−b
2

)
,

which prove the last statement of the lemma. ��
Lemma 6 We have sin2(yΘ) − y sin2 Θ ≥ 0 for any (Θ, y) ∈ [π

2 , π] × [ 12 , 1].
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Proof Let F(Θ, y) = sin2(yΘ) − y sin2 Θ . The system

0 = FΘ(Θ, y) = y sin(2yΘ) − y sin(2Θ)

0 = Fy(Θ, y) = Θ sin(2yΘ) − sin2 Θ

has no solution in the interior of the rectangle [π
2 , π ] × [ 12 , 1], so all extrema of F are

attained in its boundary. Now we have F(Θ, 1) = 0, F(π, y) = sin2(yπ) ≥ 0, F( π
2 , y) =

sin2( yπ
2 ) − y ≥ 0 for any y ∈ [ 12 , 1] (because the map sin2( yπ

2 ) is concave in this interval)
and

F(Θ, 1
2 ) = sin2

(
Θ
2

) − 1

2
sin2 Θ = sin2

(
Θ
2

) (
1 − 2 cos2

(
Θ
2

)) ≥ 0

for any Θ ∈ [π
2 , π]. The lemma is proved. ��

Now we write

Nk(Θ) = Pk(Θ)

Qk(Θ)

(
1 − 1

2

Re(Vk(Θ)Wk(Θ))

Re(Vk(Θ))|Wk(Θ)|2
)

= Pk(Θ)

Qk(Θ)

(
1 − 1

2

Re(Wk(Θ))

|Wk(Θ)|2 − 1

2

Im(Vk(Θ))

Re(Vk(Θ))

Im(Wk(Θ))

|Wk(Θ)|2
)

= Dk(Θ)Ck(Θ)

with

Ak(Θ) = −Re(Wk(Θ))

|Wk(Θ)|2 =
1 − 4 cos

(
Θ
2

)
cos

(
kΘ

2(k+1)

)
cos

(
(2k+1)Θ
2(k+1)

)

1 + 8 cos
(

Θ
2

)
cos

(
kΘ

2(k+1)

)
cos

(
Θ

2(k+1)

) ,

Bk(Θ) = −Im(Vk(Θ))

Re(Vk(Θ))

Im(Wk(Θ))

|Wk(Θ)|2

=
sinΘ sin

(
kΘ
k+1

)

cosΘ sin
(

kΘ
k+1

)
− k sin

(
Θ

k+1

) 4 cos
(

Θ
2

)
cos

(
kΘ

2(k+1)

)
sin

(
(2k+1)Θ
2(k+1)

)

1 + 8 cos
(

Θ
2

)
cos

(
kΘ

2(k+1)

)
cos

(
Θ

2(k+1)

) ,

Ck(Θ) = 1 + 1

2
Ak(Θ) + 1

2
Bk(Θ),

Dk(Θ) = −2Rk(Θ)

1 − Rk(Θ)
= Pk(Θ)

Qk(Θ)
=

cos
(

Θ
2(k+1)

)

sin
(

Θ
2

)
sin

(
kΘ

2(k+1)

) ;

we have used Lemma 5.
Observe that the maps Nk(Θ) (and all the intermediate maps therein, with the exception

of Rk(Θ)) can be seen as maps defined on the whole interval [π
2 , π], and so we will do in

the sequel.

Lemma 7 Both N1(Θ) and N2(Θ) are strictly decreasing in [π
2 , π].
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Proof The map N1(Θ) admits a very simple expression:

A1(Θ) = 1 − 4 cos
(

Θ
2

)
cos

(
Θ
4

)
cos

( 3Θ
4

)
1 + 8 cos

(
Θ
2

)
cos2

(
Θ
4

)

= 1 − 2 cos
(

Θ
2

) (
cosΘ + cos

(
Θ
2

))
1 + 4 cos

(
Θ
2

) (
1 + cos

(
Θ
2

))
= − cosΘ

1 + 2 cos
(

Θ
2

) ,

B1(Θ) = sinΘ sin
(

Θ
2

)
cosΘ sin

(
Θ
2

) − sin
(

Θ
2

) 4 cos
(

Θ
2

)
cos

(
Θ
4

)
sin

( 3Θ
4

)
1 + 8 cos

(
Θ
2

)
cos2

(
Θ
4

)

= sinΘ

cosΘ − 1

2 cos
(

Θ
2

) (
sinΘ + sin

(
Θ
2

))
(
1 + 2 cos

(
Θ
2

))2

= −cos
(

Θ
2

)
sin

(
Θ
2

) sinΘ

1 + 2 cos
(

Θ
2

)

= −2 cos2
(

Θ
2

)
1 + 2 cos

(
Θ
2

) ,

C1(Θ) = 1 − cosΘ

2
(
1 + 2 cos

(
Θ
2

)) − cos2
(

Θ
2

)
1 + 2 cos

(
Θ
2

)

= 1 − 4 cos2
(

Θ
2

) − 1

2
(
1 + 2 cos

(
Θ
2

))
= 3

2
− cos

(
Θ
2

)
,

D1(Θ) = cos
(

Θ
4

)
sin

(
Θ
2

)
sin

(
Θ
4

) = 1

2 sin2
(

Θ
4

)

and

N1(Θ) = 3 − 2 cos
(

Θ
2

)
4 sin2

(
Θ
4

) = 1 + 1

4 sin2
(

Θ
4

) .

This implies the lemma in the case k = 1.
We have been unable to find a short expression for N2(Θ), but using some well-known

trigonometric identities it is possible to write it in terms only of cos(Θ
3 ). After some rather

cumbersome calculations, which we omit, we get

N2(Θ) = 3

2
+ G

(
cos

(
Θ
3

))
,

where

G(x) = (1 − 2x)2
(−x + 10x2 + 4x3 + 16x4 + 16x5

)
(1 − x)

(
2 − 4x + 16x3 + 128x5 + 128x6

) .
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Now, proving that N2(Θ) decreases in [π
2 , π ] amounts to show that

H(y) = G
(
y + 1

2

) = y2
(
4 + 25y + 60y2 + 76y3 + 56y4 + 16y5

)
(1 − 2y)

(
1 + 9y + 38y2 + 82y3 + 100y4 + 64y5 + 16y6

)

increases in [0,
√
3−1
2 ]. But in fact such is the case in [0, 1

2 ), because

H ′(y) = y
(
8 + 103y+590y2+2116y3 + 5376y4 + 10224y5 + 14656y6 + 14944y7 + 9856y8 + 3584y9 + 512y10

)
(1 − 2y)2

(
1 + 9y + 38y2 + 82y3 + 100y4 + 64y5 + 16y6

)2 .

��

Remark 4 Observe that the map N1(Θ) can be described in ( 2π3 , π] in terms only of R1(Θ):

R1(Θ) = sin
(

Θ
2

)
sinΘ − sin

(
Θ
2

) = 1

2 cos
(

Θ
2

) − 1
,

hence

cos
(

Θ
2

) = 1 + R1(Θ)

2R1(Θ)
.

Therefore,

N1(Θ) = 1 + 1

2
(
1 − cos

(
Θ
2

)
= 1 + 1

2
(
1 − 1+R1(Θ)

2R1(Θ)

)

= 1 − 2R1(Θ)

1 − R1(Θ)
.

In combination with Theorem 7, this implies Theorem 5.

If k ≥ 3, then the maps Nk(Θ) are not decreasing anymore (see Lemma 4); in fact,
numerical estimations suggest that they have exactly one relative (and absolute) minimum,
see Fig. 2. Apparently it is not possible to calculate these minima analytically, but at least we
can “decompose” Nk(Θ) into increasing and decreasing factors as follows:

Lemma 8 The maps Dk(Θ) (respectively, Ck(Θ)) are positive and strictly decreasing
(respectively, strictly increasing) in [π

2 , π ] for any k ≥ 1.

Proof The statement is obvious for Dk(Θ); proving it for Ck(Θ) requires some work.
First we show that both Ak(Θ) and Bk(Θ), and hence Ck(Θ), are strictly increasing. To

do this we will just check the sign of their derivatives in [π
2 , π).

Let

Ak(Θ) = 1 − f (Θ)(
f (Θ)
2 − g(Θ))

1 + 2 f (Θ)g(Θ)
= 1

2
+ 1 − f 2(Θ)

2 + 4 f (Θ)g(Θ)
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2.0 2.5 3.0
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1.505

1.510

1.515

1.520

1.525

Fig. 2 Some maps Nk (Θ) for different values of k; by “N∞(Θ)” we mean the limit map N (Θ, 0) given by
(4.15). Observe that although “in general” N∞(Θ) is smaller than the other maps, this need not happen near π

with f (Θ) = 4 cos( kΘ
2(k+1) ) cos(

Θ
2 ), g(Θ) = cos( Θ

2(k+1) ). Then

A′
k = − f f ′(1 + 2 f g) − (1 − f 2)( f g′ + f ′g)

(1 + 2 f g)2

= − f f ′ − f ′g − f g′ + f 2( f g′ − f ′g)

(1 + 2 f g)2
.

Since f > 0, g > 0, f ′ < 0, g′ < 0 and

f g′ − f ′g = − 2

k + 1
cos

(
kΘ

2(k+1)

)
cos

(
Θ
2

)
sin

(
Θ

2(k+1)

)

+ 2 cos
(

kΘ
2(k+1)

)
sin

(
Θ
2

)
cos

(
Θ

2(k+1)

)
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+ 2k

k + 1
sin

(
kΘ

2(k+1)

)
cos

(
Θ
2

)
cos

(
Θ

2(k+1)

)

= 2 sin
(

(2k+1)Θ
2(k+1)

)
cos

(
Θ

2(k+1)

)
− 1

k + 1
sinΘ

= k

k + 1
sinΘ + sin

(
kΘ
k+1

)
,

we have A′
k > 0 as we desired to show.

Next we prove that −1
Bk (Θ)

has positive derivative in [π
2 , π), which also implies B ′

k(Θ) > 0
for any Θ ∈ [π

2 , π). Observe that

−1

Bk(Θ)
= w(Θ)z(Θ)

(
2 + 1

f (Θ)g(Θ)

)
,

with

w(Θ) =
k sin

(
Θ

k+1

)

sinΘ sin
(

kΘ
k+1

) − cotΘ (4.6)

and

z(Θ) =
cos

(
Θ

2(k+1)

)

sin
(

(2k+1)Θ
2(k+1)

) . (4.7)

Since w ≥ 0, z ≥ 0, f ≥ 0, g ≥ 0 and f ′ ≤ 0, g′ ≤ 0, it suffices to show that (wz)′ > 0.
Now we have

⎛
⎝ k sin

(
Θ

k+1

)

sinΘ sin
(

kΘ
k+1

)
⎞
⎠

′

= k p(Θ)

sin2 Θ sin2
(

kΘ
k+1

)

with

p(Θ) = 1

k + 1
cos

(
Θ

k+1

)
sinΘ sin

(
kΘ
k+1

)
− sin

(
Θ

k+1

)
cosΘ sin

(
kΘ
k+1

)

− k

k + 1
sin

(
Θ

k+1

)
sinΘ cos

(
kΘ
k+1

)

= 1

k + 1
sin2 Θ − sin

(
Θ

k+1

)
sin

(
(2k+1)Θ

k+1

)

= 1

k + 1
sin2 Θ − 1

2
cos

(
2kΘ
k+1

)
+ 1

2

(
cos2 Θ − sin2 Θ

)

= − k

k + 1
sin2 Θ + 1

2

(
1 − cos

(
2kΘ
k+1

))

= sin2
(

kΘ
k+1

)
− k

k + 1
sin2 Θ

≥ 0

by Lemma 6. Hence

w′(Θ) ≥ 1

sin2 Θ
. (4.8)
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Also, we have

z′(Θ) = q(Θ)

sin2
(

(2k+1)Θ
2(k+1)

) (4.9)

with

q(Θ) = − 1

2(k + 1)
sin

(
Θ

2(k+1)

)
sin

(
(2k+1)Θ
2(k+1)

)

− 2k + 1

2(k + 1)
cos

(
Θ

2(k+1)

)
cos

(
(2k+1)Θ
2(k+1)

)

= − 1

4(k + 1)

(
cos

(
kΘ
k+1

)
− cosΘ

)

− 2k + 1

4(k + 1)

(
cos

(
kΘ
k+1

)
+ cosΘ

)

= − k

2(k + 1)
cosΘ − 1

2
cos

(
kΘ
k+1

)
. (4.10)

Combining (4.6)–(4.10) we conclude that, to prove (wz)′ > 0, it suffices to show that

1

sin2 Θ
z(Θ) + w(Θ)z′(Θ) = j (Θ)

2 sinΘ sin
(

kΘ
k+1

)
sin2

(
(2k+1)Θ
2(k+1)

) > 0,

where

j (Θ) = sin

(
kΘ

k + 1

)
+

sin2
(

kΘ
k+1

)
sinΘ

−
(

k

k + 1
cosΘ + cos

(
kΘ

k + 1

))
(

k sin

(
Θ

k + 1

)
− cosΘ sin

(
kΘ

k + 1

))
.

We must show j (Θ) > 0. After removing some nonnegative terms from j (Θ) (recall that
cosΘ ≤ 0 because Θ ∈ [π

2 , π)), we are left to prove

sin
(

kΘ
k+1

)
− cos

(
kΘ
k+1

) (
k sin

(
Θ

k+1

)
− cosΘ sin

(
kΘ
k+1

))
> 0. (4.11)

Furthermore, (4.11) is equivalent to

t (Θ) > s(Θ), (4.12)

with

t (Θ) = 1 + cos
(

kΘ
k+1

)
cos(Θ)

and

s(Θ) =
k sin

(
Θ

k+1

)
cos

(
kΘ
k+1

)

sin
(

kΘ
k+1

) .

On the one hand we have, as an easy calculation shows,

t (Θ) ≥ 1 + cos
(

Θ
2

)
cos(Θ) = 2 cos3

(
Θ
2

) − cos
(

Θ
2

) + 1

≥ 1 − 2

3
√
6

= 0.7278 . . . . (4.13)
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On the other hand,

s′(Θ) = k
cos

(
Θ

k+1

)
sin

(
2kΘ
k+1

)
− 2k sin

(
Θ

k+1

)

2(k + 1) sin2
(

kΘ
k+1

) < 0 (4.14)

because

sin
(
2kΘ
k+1

)
<

2kΘ

k + 1
< 2k tan

(
Θ

k+1

)
.

In view of (4.13) and (4.14), to get (4.12) we are left to show that

n(k) = k sin

(
π

2(k + 1)

)
tan

(
π

2(k + 1)

)

is bounded from above by 1 − 2
3
√
6
. But this follows from n(1) = 1√

2
= 0.7071 . . . and

the fact that n(k), even when seen as a map defined on the whole interval [1,∞), is strictly
decreasing:

n′(k) = sin
(

π
2(k+1)

) ⎛
⎝tan

(
π

2(k+1)

)
− kπ

2(k + 1)2

⎛
⎝1 + 1

cos2
(

π
2(k+1)

)
⎞
⎠

⎞
⎠

and

tan
(

π
2(k+1)

)
π

2(k+1)

<
4

3
<

k

k + 1

⎛
⎝1 + 1

cos2
(

π
2(k+1)

)
⎞
⎠

for any k ≥ 1 (the left inequality holds because tan x
x is increasing in [0, π

2 ); the second one is
equivalent to 3k

k+4 > cos2( π
2(k+1) ), which is easy to prove just comparing the corresponding

derivatives).
We have just shown that Ck(Θ) is strictly increasing; to finish the proof we show that this

map is positive, for which it is enough to check that Ck
(

π
2

)
> 0. First note that

−Re(Wk
(

π
2

)
) = 1 − 4 cos

(
π
4

)
cos

(
kπ

4(k+1)

)
cos

(
(2k+1)π
4(k+1)

)

≥ 1 − 4 cos
(

π
4

)
cos

(
π
8

)
cos

( 3π
8

)
= 0,

hence Ak
(

π
2

) ≥ 0. Moreover, 0 ≤ Im(Wk (Θ))

|Wk (Θ)|2 ≤ 1 and

−Im(Vk
(

π
2

)
)

Re(Vk
(

π
2

)
)

=
− sin

(
kπ

2(k+1)

)

k sin
(

π
2(k+1)

) > −2

because

sin
(

kπ
2(k+1)

)
<

kπ

2(k + 1)
< 2k sin

(
π

2(k+1)

)

for any k ≥ 1. Therefore, Bk
(

π
2

)
> −2 and Ck

(
π
2

) = 1 + 1
2 Ak

(
π
2

) + 1
2 Bk

(
π
2

)
> 0 as we

desired to prove. ��
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The following simple map,

Lk(Θ) = 2 − Rk(Θ)

1 − Rk(Θ)
=

1
2 cos

(
Θ

2(k+1)

)
− cos

(
(2k+1)Θ
2(k+1)

)

sin
(

Θ
2

)
sin

(
kΘ

2(k+1)

)

provides a decent approximation to Nk(Θ) near π , especially for large values of k, because

Lk(π) = 3
2 and L ′

k(π) = 1
4 tan

(
π

2(k+1)

)
(compare to Lemma 4).Moreover, it bounds Nk(Θ)

from below:

Lemma 9 We have Nk(Θ) > Lk(Θ) for any Θ ∈ [π
2 , π) and any k ≥ 1.

Proof Proving Nk(Θ) > Lk(Θ) is equivalent to show that

1 + Ak(Θ) + 2 cos
(

(2k+1)Θ
2(k+1)

)

cos
(

Θ
2(k+1)

)

−Bk(Θ)
> 1,

that is,

w
4 + 6 f g − f 2 + 4c

g − 8 f c

2 f v
> 1;

we are using the notation of Lemma 8, writing also v(Θ) = sin
(

(2k+1)Θ
2(k+1)

)
and c(Θ) =

cos
(

(2k+1)Θ
2(k+1)

)
. Now observe that

4 + 6 f g − f 2 + 4c

g
− 8 f c = 2 f

g
+ 3 f 2 − 2 f g > 3 f 2

because 2(g + c) = f . Since

f w

v
=

k sin
(

Θ
k+1

)
− cosΘ sin

(
kΘ
k+1

)

sin
(

(2k+1)Θ
2(k+1)

)
sin

(
Θ
2

)
sin

(
kΘ

2(k+1)

) ,

we only need to show that

k sin
(

Θ
k+1

)

sin
(

(2k+1)Θ
2(k+1)

)
sin

(
Θ
2

)
sin

(
kΘ

2(k+1)

) >
2

3
,

but this is very easy because the left-hand denominator is smaller than 1, the map m(k) =
k sin

(
Θ

k+1

)
is increasing (as can be immediately checked calculating its derivative), and

m(1) = sin
(

Θ
2

) ≥ sin
(

π
4

) =
√
2

2
>

2

3
.

��
With the obvious exception of Lemma 7, the only relevant property of k that we have

used above is k ≥ 1. In particular, the definition and properties of maps Rk(Θ) and Nk(Θ)

(and intermediate maps Ck(Θ) and Dk(Θ)) remain valid for all real numbers k ∈ [1,∞).
Thus it makes sense to define R(Θ, y) = R1/y−1(Θ), C(Θ, y) = C1/y−1(Θ), D(Θ, y) =
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D1/y−1(Θ) and N (Θ, y) = N1/y−1(Θ) for any 0 < y ≤ 1
2 . Furthermore, these maps can

be continuously extended to y = 0 by writing

R(Θ, 0) = 1

cosΘ
,

C(Θ, 0) = 1 +
1
2 − 2 cos2

(
Θ
2

)
cosΘ

1 + 8 cos2
(

Θ
2

) + sin2 Θ

cosΘ sinΘ − Θ

2 cos2
(

Θ
2

)
sinΘ

1 + 8 cos2
(

Θ
2

) ,

D(Θ, 0) = 1

sin2
(

Θ
2

)
and

N (Θ, 0) = D(Θ, 0)C(Θ, 0)

= 1

sin2
(

Θ
2

)
(
1 +

1
2 − 2 cos2

(
Θ
2

)
cosΘ

1 + 8 cos2
(

Θ
2

)

+ sin2 Θ

cosΘ sinΘ − Θ

2 cos2
(

Θ
2

)
sinΘ

1 + 8 cos2
(

Θ
2

)
)

. (4.15)

Thuswe get well-defined continuousmaps R(Θ, y) and N (Θ, y)whose domains are, respec-
tively, the trapezium {(Θ, y) : 0 ≤ y ≤ 1

2 ,
π

2−y < Θ ≤ π} and the rectangle [π
2 , π]×[0, 1

2 ].
Finally, it is easy to check that the previously defined extensions have the same sign and
monotonicity properties as the contiguous maps. We can resume our results as follows:

Lemma 10 R(Θ, y) is negative and strictly increasing in Θ, C(Θ, y) is positive and strictly
increasing in Θ , and D(Θ, y) is positive and strictly decreasing in Θ .

As it turns out, these monotonicity properties are reverted when the first variable Θ is
fixed:

Lemma 11 Both R(Θ, y) and C(Θ, y) are decreasing in y, and D(Θ, y) is increasing in
y.

Proof We have

Ry(Θ, y) = − Θ sinΘ

2 cos2
(

(2−y)Θ
2

)

and

Dy(Θ, y) = Θ cos
(

Θ
2

)
2 sin

(
Θ
2

)
sin2

(
(1−y)Θ

2

) ,

which settles the matter regarding R(Θ, y) and D(Θ, y).
To prove that C(Θ, y) is y-decreasing we proceed similarly to Lemma 8, showing

now that both A(Θ, y) = A1/y−1(Θ) and B(Θ, y) = B1/y−1(Θ) are y-decreasing. We

keep using the notation there, thus f (Θ) = 4 cos
(

kΘ
2(k+1)

)
cos

(
Θ
2

)
becomes f (Θ, y) =

4 cos
(

(1−y)Θ
2

)
cos

(
Θ
2

)
, g(Θ) = cos

(
Θ

2(k+1)

)
becomes g(Θ, y) = cos

(
yΘ
2

)
and so on.

To check that A(Θ, y) is y-decreasing it suffices to show that

− f fy − fy g − f gy + f 2( f gy − fy g) ≤ 0.
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This follows from f ≥ 0, g ≥ 0, fy ≥ 0, gy ≤ 0 and

( f g)y(Θ, y) = 2Θ cos
(

Θ
2

)
sin

(
(1−2y)Θ

2

)
≥ 0.

The proof that B(Θ, y) is y-decreasing is simple as well: f g is y-increasing (as we have just
shown) and both z and w are y-decreasing. In fact,

zy(Θ, y) = Θ cosΘ

2 sin2
(

(2−s)Θ
2

) ;

w is y-decreasing because so is sin x
x , x ∈ (0, π ]. ��

5 Local and Global Attraction for Clark’s Equation

We devote this section to prove the main results of the paper.

Proof (Theorem 2) If (a) or (b) holds, then the statement follows immediately fromTheorem7
and, respectively, Lemmas 7 and 9.

Assume that (c) is satisfied. Lemmas 10 and 11 imply that if [a, b] ⊂ [π
2 , π] and z ∈ [0, 1

2 ],
then

min
(Θ,y)∈[a,b]×[0,z] N (Θ, y) ≥ D(b, 0)C(a, z)

whenever 0 ≤ y ≤ z. In particular, if for any positive integer j and z ∈ [0, 1
2 ] we define

n( j, z) = min
0≤i< j

D
(

π
2 + (i+1)π

2 j , 0
)

C
(

π
2 + iπ

2 j , z
)
,

then we have N (Θ, y) ≥ n( j, z) for any j , any Θ ∈ [π
2 , π] and 0 ≤ y ≤ z. Likewise,

nk( j) = min
0≤i< j

Dk

(
π
2 + (i+1)π

2 j

)
Ck

(
π
2 + iπ

2 j

)

satisfies Nk(Θ) ≥ nk( j) for any j and any Θ ∈ [π
2 , π ]. Now direct computations show

n(1000, 0.005) = 1.4904 · · ·
and

min
1≤k≤198

nk(200) = 1.4906 · · · ,

hence Nk(Θ) > 1.49 for any k andΘ . The statement of the theorem follows fromTheorem 7.
Assume that (d) holds. For any positive integer j and any z ∈ [0, 1

2 ], let i j,z be the largest
integer 0 ≤ i ′ < j with the property that

min
0≤i≤i ′

D
(

π
2 + (i+1)π

2 j , 0
)

C
(

π
2 + iπ

2 j , z
)

>
3

2

and define

r( j, z) = R
(

π
2 + (i j,z+1)π

2 j , z
)
.
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In principle, it may happen that the point ( π
2 + (i j,z+1)π

2 j , z) does not belong to the domain
of the map R; in such a case, write r( j, z) = −∞. Similarly, let i j,k be the largest integer
0 ≤ i ′ < j with the property that

min
0≤i≤i ′

Dk

(
π
2 + (i+1)π

2 j

)
Ck

(
π
2 + iπ

2 j

)
>

3

2

and define

rk( j) = Rk

(
π
2 + (i j,k+1)π

2 j

)

(or rk( j) = −∞ if π
2 + (i j,k+1)π

2 j ≤ (k+1)π
2k+1 ).

Now we use again Lemmas 10 and 11: since Rk(Θ) is strictly increasing we have, for any
given j , that Nk(Θ) > 3

2 whenever Rk(Θ) ≤ rk( j). Analogously, N (Θ, y) > 3
2 whenever

R(Θ, z) ≤ r( j, z) and 0 ≤ y ≤ z. In particular (because R(Θ, y) is decreasing in y),
N (Θ, y) > 3

2 whenever R(Θ, y) ≤ r( j, z) and 0 ≤ y ≤ z. We have, respectively,

min
1≤k≤998

rk(1200) = −1.1797 · · · ,

and

r(20000, 0.001) = −1.17995 · · · .

The statement then follows from Theorem 7. ��
Proof (Theorem 3) Fix k ≥ 3. If the number ε1 > 0 is small enough, then, by writing
D(0) = −1 and applying (i), D can be seen as a decreasing diffeomorphism defined on
[0, ε1]. Now, applying Lemma 3 and using if necessary a smaller ε1 > 0, we get a decreasing
diffeomorphism Θ , also defined on [0, ε1], such that Θ(0) = π and D(ε) = Rk(Θ(ε)) for
any ε ∈ [0, ε1].

Since k ≥ 3, we have (Nk ◦ Θ)(0) = 3/2 and (Nk ◦ Θ)′(0) = N ′
k(π)Θ ′(0) < 0 by

Lemma 4. Using (ii), we conclude that

Σhε(uε) = T (ε) > Nk(Θ(ε))

if ε > 0 is small enough, with Θ(ε) such that h′
ε(uε) = Rk(Θ(ε)). Thus, by Theorem 7, a

subcritical Neimark–Sacker bifurcation arises at αk

(
Θ(ε)
k+1

)
= ak(h′

ε(uε)), as we desired to
prove. ��
Proof (Theorem 4) From Lemmas 3 and 4 we get

lim
k→∞

N ′
k(π)

R′
k(π)

= 1/4.

Then there is k0 such that N ′
k(π)/R′

k(π) > L = limε→0 T ′(ε)/D′(ε) for any k ≥ k0. We
show that this number k0 is adequate to our purposes.

Fix k ≥ k0 and define ε1 and Θ(ε) in [0, ε1] as in the previous proof (note that now
Θ ′(0) = 0, so Θ is just a decreasing differentiable homeomorphism). We have

lim
ε→0

(Nk ◦ Θ)′(ε)
D′(ε)

= lim
ε→0

N ′
k(Θ(ε))

R′
k(Θ(ε))

= N ′
k(π)

R′
k(π)

> lim
ε→0

T ′(ε)
D′(ε)

.

Then T ′(ε) > (Nk ◦ Θ)′(ε), and hence T (ε) > (Nk ◦ Θ)(ε), if ε is sufficiently small. Thus,
as before, a subcritical Neimark–Sacker bifurcation arises. ��
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6 Some Examples

The supercritical case
We show that Theorem 2 applies to all maps listed in Table 1. For the Wright function

h(x) = p(e−x − 1) this is obvious because Σh(x) ≡ 1 (recall Theorem 2(c)). If

h(x) = x(1 + p(1 − ( x
z

)q
)),

then we have h′(u) = h′(z) = 1 − pq < −1 when pq > 2. Since

Σh(u) = Σh(z) = 1 − q(1 + p) + pq2

pq + pq2 < 1,

the bifurcation is supercritical again by Theorem 2(c). Similarly, for the Ricker function

h(x) = pxe−qx

we have h′(u) = h′
(
log p

q

)
= 1 − log p < −1 whenever p > e2. On the other hand,

Σh(u) = Σh
(
log p

q

)
= 1 − 1

(log p − 2)2
< 1.

The Shepherd function

h(x) = px

1 + xq

demands some care. To get h′(u) = h′((p − 1)
1
q ) = 1 + (1−p)q

p < −1, the inequality
1
p + 2

q < 1 is now required. Also, we have

Σh(u) = Σh
(
(p − 1)

1
q

)
= (p(q − 1) − q)(6q2 − 6pq2 + p2(q2 − 1))

(p − 1)(p(q − 1) − 2q)2q
.

Although h has negative Schwarzian derivative, Σh(u) may be very close to 3
2 when p is

very large and q is very close to 2, as can be seen more clearly when examining the map

F(t, s) = (2 − s − 2t)(4 − s2 − 24t + 24t2)

2(1 − t)(2 − s − 4t)2

which follows after replacing p by 1
t and q by 2

s in Σh(u) (hence t + s < 1 now). Still, we
have the possibility of using Theorem 2(b). And indeed, after getting

G(t, s) = 2 + s − 2t

2(1 − t)

similarly replacing p and q by t and s in 2−h′(u)
1−h′(u)

, we find that

G(t, s) − F(t, s) = 2t ((2 − s − 2t)2 + 2ts)

(1 − t)(2 − s − 4t)2

is positive.
The subcritical case

A simple example fulfilling all hypotheses of Theorem 3 is given by

hε(x) = 1

(1 − 2ε)(ε + (1 − ε)x) + 2ε(ε + (1 − ε)x)2
, 0 < ε < 1/2, I = [0,∞).

(6.1)
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0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Fig. 3 A local, but not global attractor, for Clark’s equation

Clearly, hε is bounded and h′
ε(x) < 0 for any x ∈ [0,∞). Also, we have

Shε(x) = − 24(1 − ε)2ε2

(1 + (4x − 2)ε + 4(1 − x)ε2)2
< 0

for any x ∈ [0,∞). Its only fixed point is uε = u = 1 and h′
ε(u) = −1 − ε + 2ε2 < −1.

Moreover,

T (ε) = 3(1 + 2ε)2
(
1 + 4ε2

)
2

(
1 + 2ε + 4ε2

)2 ,

T ′(ε) = 48ε3 − 12ε(
1 + 2ε + 4ε2

)3 .

Figure 3 illustrates Theorem 3 for the maps (6.1). We take k = 3 and calculate ε (and
hence r ) so that θ3(r) = π

4 −0.001. Namely, we get ε = 0.00167086 and r = −1.00166528.
Also, we have a3(r) = 0.00563994. Finally we fix α = a3(r) + 0.0001.

Now, for k = 3, the map h = hε and these parameters α, we depict pairs (xn+1, xn) for
orbits of (1.8) starting at several initial conditions (x0, x−1, x−2, x−3). The closed curve is the
bidimensional projection of the unstable invariant curve promised by the subcriticalNeimark–
Sacker bifurcation. It has been painted using thick light grey points, which corresponds to
the first 800 iterates of the orbit starting (approximately) at

(1.898919, 1.570831, 0.995705, 0.638023).
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“Inside” this curve, eight pairs of more or less “parallel arcs” can be counted. Those closer
to the invariant curve corresponds to the first 400 iterates of the orbit

(1.8, 1.570831, 0.995705, 0.638023);
the other eight correspond to iterations from 1,00,000 to 1,00,400 of the same orbit; all of
them consist of smaller, dark grey points. We have used even smaller, now black points, to
analogously simulate the orbit starting at the point

(2, 1.570831, 0.995705, 0.638023).

Finally, big black dots at (1.8, 1.570831), (1.898919, 1.570831), (2, 1.570831) and (1, 1)
indicate these different initial conditions and the equilibrium.

The picture also shows some pairs near the axes. They correspond to the orbit starting at

(1.219971, 0.0768226, 0.00488285, 0.0308514)

which, apparently, is contained in another (stable) invariant curve of the equation. The exis-
tence of this second curve is not anticipated by our results but it is not surprising because
Clark’s equation is permanent, as mentioned in Sect. 2. Moreover, this curve and the point
(1, 1, 1, 1) seem to be the only metric attractors of the equation.
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