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Abstract The dynamics of a diffusive predator–prey systemwith Holling type-III functional
response subject to Neumann boundary conditions is investigated. The parameter region
for the stability and instability of the unique constant steady state solution is derived, and
the existence of time-periodic orbits and non-constant steady state solutions are proved by
bifurcation method and Leray–Schauder degree theory. The effect of various parameters on
the existence and nonexistence of spatiotemporal patterns is analyzed. These results show
that the impact of Holling type-III response essentially increases the system spatiotemporal
complexity.

Keywords Global stability · Hopf bifurcation · Steady state solution · Leray–Schauder
degree

1 Introduction

A fundamental goal of theoretical ecology is to understand how the interactions of indi-
vidual organisms with each other and with the environment determine the distribution of
populations and the structure of communities. In recent decades the role of spatial effects in
maintaining biodiversity has received a great deal of attention in the literature on conserva-
tion, see for example [35,57]. One way to try to understand how spatial effects such as habitat
fragmentation influence populations and communities is by using mathematical models [6].
The dynamical relationship between predators and their prey has been investigated widely
in recent years due to its universal existence and importance in mathematical biology and
ecology. The spatiotemporal dynamics of a predator–prey system in a homogeneous envi-
ronment can be described by a system of nonlinear parabolic partial differential equations or
reaction–diffusion equations, see for examples in [41,44,48]:
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∂H(X, T )

∂T
= D1�H + F(H)H − G(H)P,

∂P(X, T )

∂T
= D2�P + kG(H)P − M(P)P, (1.1)

where H(X, T ) and P(X, T ) are the densities of prey and predator at time T and position
X respectively; here X ∈ �O ⊆ R

n is the spatial habitat of the two species; the Laplacian
operator� describes the spatial dispersal with passive diffusion; D1 and D2 are the diffusion
coefficients of species and k is the food utilization coefficient. The function F(H) describes
the per capita growth rate of the prey, G(H) is the functional response of the predator, which
corresponds to the saturation of their appetites and reproductive capacity, and M(P) stands
for predator mortality.

The functions F(H), G(H) and M(P) can be of different types in various specific sit-
uations. Since the first differential equation model of predator–prey type Lotka–Volterra
equation was formulated [43,61] in 1920s, a logistic type growth F(H) is usually assumed
for the prey species in the models, while a linear mortality rate M(P) is assumed for the
predator. Some conventional functional response functions G(H) include Holling type I,
II, III (see [30,62]), Ivlev type (see [36]), Beddington–DeAngelis type (see [4,15]). the
Crowley–Martin type (see [12]), and the recent well-known ratio dependence type, which
was first proposed by Arditi and Ginzburg (see [2]). Of them, the Holling type I-III was
labeled prey-dependent(see [34]) and the other types that consider the interference among
predators were labeled predator-dependent (see [2]).

When F(H) is of a logistic growth, the dynamics of (1.1) has been considered in many
articles. [18–20,63,67,70] consider the bifurcation solutions and pattern formations of tra-
ditional Holling Type II functional response used to describe the plant consumption by the
herbivore in the interaction of plant and herbivore; Wang et al. [62] investigates the global
dynamics of traditional Holling Type II functional response and strong Allee effect growth.
Strongly coupled parabolic and elliptic predator–prey models have received considerable
attention in [16,17,21,22,39,40,47,49,54].

Since the traditional Holling III predator–prey model received great attention among
theoretical and mathematical biologists, we will focus our attention here on the following
reaction diffusion system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ut − d1�U = AU

(

1 − U

H

)

− BU pV

α p +U p
, x ∈ �, t > 0,

Vt − d2�V = −CV + DU pV

α p +U p
, x ∈ �, t > 0,

∂U

∂n
= ∂V

∂n
= 0, x ∈ ∂�, t > 0,

U (x, 0) = U0(x) � 0, V (x, 0) = V0(x) � 0, x ∈ �,

(1.2)

where � is a bounded domain in R
N (N ≥ 1) with a smooth boundary ∂�; n is the unit

outer normal, and no flux boundary condition is imposed so the system is a closed one;
U = U (x, t) and V = V (x, t) represent the densities of the prey and predator at time t > 0
and a spatial position x ∈ � respectively; d1, d2 > 0 are the diffusion coefficients of the
species; the parameters A, B,C, D, H are positive real numbers,the prey population follows
a logistic growth and A is the intrinsic growth rate; H is the carrying capacity; C is the death
rate of the predator; B and D represent the strength of the relative effect of the interaction on

the two species; the function
U p

α p +U p
denotes the functional response of the predator to the

prey density (see [9]), which refers to the change in the density of prey attached per unit time
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per predator as the prey density changes. The topical Holling Type II functional response
is referred to p = 1, Holling Type III functional response with p = 2, both of which are
monotonic increasing function with respect to the prey U .

By rescaling as follows:

s = At, u = U/H, v= BV/DH, d
′
1 = A−1d1, d

′
2 = A−1d2, a= α

H
, m = D

A
, d = C

A
,

(1.2) with Holling III functional response is equivalently rewritten as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut − d1�u = u(1 − u) − mu2v

a2 + u2
, x ∈ �, t > 0,

vt − d2�v = −dv + mu2v

a2 + u2
, x ∈ �, t > 0,

∂u

∂n
= ∂v

∂n
= 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ �,

(1.3)

where d is the death rate of the predator, m is the strength of the interaction and a, d1, d2 are
positive constants. System (1.3) is an important model on population dynamics (refer to [24,
31,38,53] and references therein).Manyattempts havebeenmade to give sufficient conditions
and necessary conditions to guarantee the existence and the uniqueness of limit cycles of
kinetic system of (1.3). For example, see [10,33,59]. Recently, Eduardo and Alejandro [23]
described the multiple limit cycles in a Gause Type predator–prey model with Holling Type
III functional response and Allee effect on prey. For the diffusive predator prey system (1.3),
Li and Wu [42] established the existence of traveling wave solutions and small amplitude
travelingwave train solutions; Su et al. [58] investigated dynamic complexitieswith impulsive
effects; Das and Kar [13] highlighted a delayed predator-prey model with Holling type III
functional response and harvesting to predator; Song and Wan [56] focused on the Hopf
bifurcation analysis.

In the early 1950s, the British mathematician Turing [60] proposed a model that accounts
for pattern formation in morphogenesis. Turing showed mathematically that a system of
coupled reaction–diffusion equations could give rise to spatial concentration patterns of a
fixed characteristic length from an arbitrary initial congratulation due to so called diffusion-
driven instability, that is, diffusion could destabilize an otherwise stable equilibrium of the
reaction–diffusion system and lead to nonuniform spatial patterns. Turing’s analysis stim-
ulated considerable theoretical research on mathematical models of pattern formation, and
a great deal of research have been devoted to the study of Turing instability in chemical
and biology contexts, see for example, [3,5,8,25,37,50,69] for Brusselator model; [14,51]
for Gray–Scott model; [45,66] for Lengyel–Epstein model, and [26,65] for Schnakenberg
model.

In this paper, our main contribution is a comprehensive mathematical study of (1.3).
In particular we are interested in the spatiotemporal pattern formations and bifurcations
in the model, and the effect of system parameters and diffusion coefficients on the model
dynamics. The organization of the remaining part of the paper is as follows. In Sect. 2, we
obtain the existence and boundedness of solutions to system (1.3). In Sect. 3, we analyze
the stability of the constant steady state, and we obtain the global stability by constructing
Lyapunov functionals.Alsoweuse bifurcation theory to prove the existence of periodic orbits.
In Sect. 4, we prove the existence and non-existence of positive non-constant steady state

123



1386 J Dyn Diff Equat (2017) 29:1383–1409

solutions by using a priori estimates, energy estimates and Leray–Schauder degree theory and
bifurcation theory. Throughout this paper, N is the set of natural numbers and N0 = N ∪ {0}.
The eigenvalues of operator −� with homogeneous Neumann boundary condition in � are
denoted by 0 = μ0 < μ1 ≤ μ2 ≤ · · · ≤ · · · , and the eigenfunction corresponding to μn is
φn(x).

2 Basic Dynamics of the Reaction–Diffusion System

The global existence and boundedness of the non-negative solutions to (1.3) can be obtained
from a general result of Hollis, Martin and Pierre [32] (see Theorems 1 and 2). Here we can
show the precise bounds of the solutions:

Lemma 2.1 Suppose that (u(x, t), v(x, t)) is a nonnegative solution of (1.3). Then
(u(x, t), v(x, t)) must satisfy lim sup

t→+∞
u(x, t) ≤ 1,

∫

�
v(x, t)dx ≤ 1 + |�|/(4d) as t → ∞.

Furthermore, lim sup
t→+∞

v(x, t) ≤ C with C independent of u0, v0, d1, d2 but only on a lower

bound of d2.

Proof Let (u(x, t), v(x, t)) be the unique non-negative solution of (1.3). Then the first equa-
tion of (1.3) shows that:

⎧
⎨

⎩

ut ≤ d1�u + u(1 − u), x ∈ �, t > 0,
∂u

∂n
= 0, x ∈ ∂�.

(2.1)

It is well-known that

⎧
⎨

⎩

ut = d1�u + u(1 − u), x ∈ �, t > 0,
∂u

∂n
= 0, x ∈ ∂�

(2.2)

is a gradient system, and every orbit of (2.2) converges to the unique positive steady state
u = 1 (see [11,27]). Then from the comparison principle of parabolic equation, the solution
u(x, t) to (1.3) satisfies lim sup

t→+∞
u(x, t) ≤ 1.

For the estimate of v(x, t), let
∫

�
u(x, t)dx = U (t),

∫

�
v(x, t)dx = V (t), then

dU

dt
=
∫

�

utdx =
∫

�

d1�udx +
∫

�

[

u(1 − u) − mu2v

a2 + u2

]

dx

=
∫

�

[

u(1 − u) − mu2v

a2 + u2

]

dx, (2.3)

dV

dt
=
∫

�

vt dx =
∫

�

d2�vdx − d
∫

�

vdx +
∫

�

mu2

a2 + u2
vdx

= −dV +
∫

�

mu2

a2 + u2
vdx . (2.4)
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Adding (2.3) and (2.4), we obtain

(U + V )t = −dV +
∫

�

u(1 − u)dx

= −d(U + V ) + dU +
∫

�

u(1 − u)dx

≤ −d(U + V ) + d + |�|(1 + ε)

4
, for t large enough.

Integration of the inequality leads to
∫

�

v(x, t)dx = V (t) < U (t) + V (t) ≤ 1 + |�|(1 + ε)/(4d) for t large enough. (2.5)

From (2.5), we know that any solution v(x, t) satisfies an L1 a priori estimate K1 = 1 +
|�|/(4d), which only depends on d and �. Furthermore we can use the L1 bound to obtain
an L∞ bound C , such that lim sup

t→+∞
v(x, t) ≤ C with C independent of u0, v0, d1, d2 but only

on a lower bound of d2 (see Theorem 3.1 in [1] and Lemma 4.7 in [7]). 
�

3 Stability Analysis and Oscillatory Patterns

In this section, we will analyze the stability of the positive equilibrium and Hopf bifurcations.

3.1 Local and Global Stability

System (1.3) has three nonnegative constant equilibrium solutions: (0, 0), (1, 0) and (λ, vλ),
where (λ, vλ) satisfies

λ2 = a2d

m − d
, vλ = (1 − λ)(a2 + λ2)

mλ
. (3.1)

Clearly, the positive equilibrium solution (λ, vλ) exists if and only if 0 < λ < 1. In the
proceeding discussion, we fix parameters a,m, d1, d2 and choose λ (or equivalently d) as the
bifurcation parameter. Linearizing the system (1.3) about the positive equilibrium (λ, vλ),
we obtain an eigenvalue problem

⎧
⎪⎪⎨

⎪⎪⎩

d1�φ + A(λ)φ + B(λ)ψ = μφ, x ∈ �,

d2�ψ + C(λ)φ = μψ, x ∈ �,
∂φ

∂n
= ∂ψ

∂n
= 0, x ∈ ∂�,

(3.2)

where

A(λ) = −2λ3 + λ2 − a2

a2 + λ2
, B(λ) = −d, C(λ) = 2a2(1 − λ)

a2 + λ2
.

Denote

L(λ) =
(
d1� + A(λ) B(λ)

C(λ) d2�

)

. (3.3)

For each n ∈ N0, we denote a 2 × 2 matrix:

Ln(λ) =
(−d1μn + A(λ) B(λ)

C(λ) −d2μn

)

. (3.4)
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λ

h(λ)

10 λ

h(λ)

λ
∗

λ
1 λ

2 λ∗0 1

Fig. 1 (left) a > a∗, parameter a = 2; (right) 0 < a < a∗, parameter a = 0.15 with λ∗ = 0.1149,
λ1 = 0.191, λ2 = 0.443, λ∗ = 0.6186

Then the following statements hold true by using Fourier decomposition:

(1) If μ is an eigenvalue of (3.2), then there exists n ∈ N0 such that μ is an eigenvalue of
Ln(λ).

(2) The positive equilibrium (λ, vλ) is locally asymptotically stable with respect to (1.3) if
and only if for every n ∈ N0, all eigenvalues of Ln(λ) have negative real part.

(3) The positive equilibrium (λ, vλ) is unstable with respect to (1.3) if there exists an n ∈ N0

such that Ln(λ) has at least one eigenvalue with nonnegative real part.

Now the characteristic equation of (3.4) is given by:

β2 − Tn(λ)β + Dn(λ) = 0, n ∈ N0, (3.5)

where {
Tn(λ) = A(λ) − (d1 + d2)μn,

Dn(λ) = d1d2μ
2
n − A(λ)d2μn − B(λ)C(λ).

(3.6)

Then (λ, vλ) is locally asymptotically stable if Tn(λ) < 0 and Dn(λ) > 0 for all n ∈ N0, and
(λ, vλ) is unstable if there exists n ∈ N0 such that Tn(λ) > 0 or Dn(λ) < 0. To obtain more
precise stability results, we define h(λ) := vλ, then

h(λ) = (1 − λ)(a2 + λ2)

mλ
, h′(λ) = −2λ3 + λ2 − a2

mλ2
.

In particular, the signs of h′(λ) and A(λ) are identical for all λ. By h′(λ) = h′′(λ) = 0, we
get a = a∗ = √

3/9. After straight forward calculations, we have the following properties
of the functions of h(λ) (see Fig. 1):

Lemma 3.1 If a > a∗, then h(λ) is strictly decreasing for all λ > 0; If 0 < a < a∗,
then there exists λ∗, λ1, λ2, λ∗ ∈ (0, 1) with 0 < λ∗ < λ1 < λ2 < λ∗ < 1 such that
h(λ) is strictly decreasing in (0, λ1) ∪ (λ2,∞) and strictly increasing in (λ1, λ2), where
h′(λ1) = h′(λ2) = 0 and h(λ∗) = h(λ2), h(λ∗) = h(λ1). Moreover, there exists a unique
λ3 ∈ (λ1, λ2) such that h′(λ) > 0 in (λ1, λ3) and h′(λ) < 0 in (λ3, λ2).

Proof In fact, h′′(λ) = 2(a2 − λ3)

mλ3
leads to the existence of the unique λ3 ∈ (λ1, λ2). 
�

Nowwecangive a stability result regarding the constant equilibrium (λ, vλ)by the analysis
above and the restriction on a.
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Suppose that a > a∗ holds. Then, for any n ∈ N0 and 0 < λ < 1, we have Tn(λ) < 0

since A(λ) < 0 and Dn(λ) > 0 since −B(λ)C(λ) = 2mλ2(1 − λ)a2

(a2 + λ2)2
> 0 . Therefore, all

eigenvalues of the operator Ln(λ), n ∈ N0 have strictly negative real parts. Hence the positive
equilibrium (λ, vλ) is locally asymptotically stable for the reaction–diffusion system (1.3).
In addition, the theorem below shows that if a > a∗, then the locally asymptotic stability of
(λ, vλ) implies the globally asymptotic stability of (λ, vλ) for the reaction–diffusion system
(1.3):

Theorem 3.2 Suppose that m, d1, d2 > 0, a > a∗ and 0 < λ < 1. Then (λ, vλ) is globally
asymptotically stable in {(u, v) : u ≥ 0, v ≥ 0} for the system (1.3).

Proof We define the following Lyapunov functional E : C(�̄) × C(�̄) → R:

E(u, v) =
∫

�

∫ u

λ

mg(ξ) − d

g(ξ)
dξdx + m

∫

�

∫ v

vλ

η − vλ

η
dηdx,

where g(u) = u2

a2 + u2
. Then

d

dt
E(u(x, t), v(x, t)) =

∫

�

mg(u) − d

g(u)
utdx + m

∫

�

v − vλ

v
vt dx

= m
∫

�

(g(u) − g(λ)) (z(u) − z(λ)) dx − I (t),

where z(u) = (1 − u)(a2 + u2)

u
, and

I (t) := d1

∫

�

g′(u)

g2(u)
∇u2dx + d2vλm

∫

�

1

v2
∇v2dx .

Notice that

g′(u) = 2a2u

(a2 + u2)2
> 0, z′(u) = −2u3 + u2 − a2

u2
< 0

for all u > 0 from Lemma 3.1. Therefore,

[g(u) − g(λ)] [z(u) − z(λ)] ≤ 0,

which implies that E decreases monotonically along the solution orbit. Then, it follows that
for any 0 < λ < 1, the unique positive equilibrium (λ, vλ) of the reaction–diffusion system
(1.3) is globally asymptotically stable in R

2+ by [14,68]. 
�
Suppose that 0 < a < a∗ holds , we have the following stability of (λ, vλ):

Theorem 3.3 (1) If λ ∈ (0, λ∗) ∪ (λ∗, 1), then (λ, vλ) is globally asymptotically stable;
(2) If λ ∈ (λ∗, λ1) ∪ (λ2, λ

∗), then (λ, vλ) is locally asymptotically stable;
(3) If λ ∈ (λ1, λ2), then (λ, vλ) is unstable.

Proof 1. From the discussion above and Theorem 3.2, when 0 < a < a∗ and λ ∈ (0, λ∗)
or λ ∈ (λ∗, 1), A(λ) < 0 and

[g(u) − g(λ)] [z(u) − z(λ)] ≤ 0.

still hold. So the same Lyapunov function can still be used.
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2. If λ ∈ (λ∗, λ1) ∪ (λ2, λ
∗), then A(λ) < 0. Therefore, for any n ∈ N0 and 0 < λ < 1,

we have Tn(λ) < 0 and Dn(λ) > 0.
3. If λ ∈ (λ1, λ2), then A(λ) > 0. For i = 0,

trace(T0) = A(λ) > 0,

which implies that (3.5) has at least one root with positive real part.

�

It is pointed out that the positive equilibrium (λ, vλ) does not exist if λ > 1. In this case, we
can show that the boundary equilibrium (1, 0) is globally stable for all a > 0.

Theorem 3.4 Suppose that a,m, d1, d2 > 0. If λ > 1 (equivalently d > m/(a2 + 1)), then
(1, 0) is globally asymptotically stable to the system (1.3).

Proof When λ > 1, we construct a similar Lyapunov functional as follows:

E(u, v) =
∫

�

∫ u

1

mg(ξ) − mg(1)

g(ξ)
dξdx + m

∫

�

vdx,

where g(u) = u2

a2 + u2
. Then

d

dt
E(u(x, t), v(x, t)) =

∫

�

mg(u) − mg(1)

g(u)
utdx + m

∫

�

vt dx

=
∫

�

u(1 − u)

(

m − d(a2 + u2)

u2

)

dx − I (t),

where

I (t) := md1g(1)
∫

�

g′(u)

g2(u)
∇u2dx .

Recall u(x, t) ≤ 1 as t → +∞ and g′(u) = 2a2u

(a2 + u2)2
> 0 for all u > 0. Therefore,

Et (u, v) ≤ 0 if λ > 1 (equivalently d > m/(a2 + 1)), which again implies that E decreases
monotonically along the solution orbit. It follows that the equilibrium (0, 1) of the reaction–
diffusion system (1.3) is globally asymptotically stable. 
�

Remark 3.5 Compared with the reaction–diffusion system, it is more feasible to observe the
dynamics as the parameter λ changes for the ODE system. Here we collect some known
results on the ODE dynamics of (1.3) (see for example [33,59]) via some phases portraits,
see Figs. 2 and 3.
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Fig. 2 a = 0.3 > a∗. (left) d = 0.6, (λ, vλ) is globally stable inR2+; (middle) d ≈ 0.15, then λ < λ1 ≈ 0.19,

(λ, vλ) is globally stable in R
2+; (right) d ≈ 0.64, then 0.44 ≈ λ2 > λ > λ1 ≈ 0.19, there exists a unique

limit cycle
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Fig. 3 a = 0.15 < a∗. (left) d ≈ 0.95 and λ > λ2, (λ, vλ) is globally stable in R
2+; (right) d ≈ 0.99 and

(1, 0) is globally stable in R
2+

3.2 Bifurcation Analysis and Oscillatory Patterns

In this subsection, we investigate the Hopf bifurcations from the positive equilibrium (λ, vλ)

for (1.3), and we will show the existence of spatially homogeneous and spatially inhomo-
geneous periodic orbits of system (1.3). In this subsection, we assume that all eigenvalues
μi of −� in H1(�) are simple, and denote the corresponding eigenfunction by φi (x) where
i ∈ N0. Note that this assumption always holds when N = 1 for domain (0, lπ), as for
i ∈ N0, μi = i2/ l2 and φi (x) = cos(i x/ l), where l is a positive constant; and it also holds
for generic class of domains in higher dimensions.

From [62,67], it follows that if for certain critical value λH , there exists n ∈ N0, such that

Tn(λ
H ) = 0, Dn(λ

H ) > 0, and Tj (λ
H ) �= 0, Dj (λ

H ) �= 0, for j �= n; (3.7)

and for unique pair of complex eigenvalues near the imaginary axis α(λ) ± iω(λ) ,

α′(λH ) �= 0, (3.8)

then there is a Hopf bifurcation emanating from the unique constant steady state (λ, vλ) near
λ = λH .

Theorem 3.3 implies that the trivial steady state (λ, vλ) is globally asymptotically stable
for all λ if a > a∗ and locally asymptotically stable for λ ∈ (0, λ1) ∪ (λ2, 1) if 0 < a < a∗.
Hence any potential Hopf bifurcation point λH must be in the interval λ ∈ [λ1, λ2] for
0 < a < a∗.

Firstly,λH
1 = λ1,λH

2 = λ2 are alwaysHopf bifurcation points since T0(λH
1,2) = A(λH

1,2) =
0 and Tj (λ

H
1,2) = −(d1 + d2)μ j < 0 for any j ≥ 1; and

Di (λ
H
1,2) = −B(λH

1,2)C(λH
1,2) + d1d2μ

2
j > 0

for any j ∈ N0. This corresponds to the Hopf bifurcation of spatially homogeneous periodic
orbits which have been known from the studies in [33]. Apparently λH

1,2 are also the two
unique value λ for the Hopf bifurcation of spatially homogeneous periodic orbits from the
uniqueness result of limit cycle in [23,33].

Hence in the following we search for spatially non-homogeneous Hopf bifurcations for
i ≥ 1. From Eq.(3.6), it follows that Tn(λ) = 0 is equivalent to

A(λ) = (d1 + d2)μn .
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Fig. 4 The figure of A(λ),
parameter a = 0.15
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−1

−0.5

0

0.5A(λ)

0

0 λ
1

λ
2

λ
1∗

Notice that A(λ1) = A(λ2) = 0 and A(λ) > 0 in (λ1, λ2). Denote A(λ) achieves a local
maximum A(λ1∗) = M∗ in (λ1, λ2), see Fig. 4.

From Lemma 3.1, we define λH
i,± to be the two solution of A(λ) = (d1 + d2)μi satisfying

λ1 < λ < λ2. These points satisfy

λ1 < λH
1,− < λH

2,− < · · · < λH
m,− < λ1∗ < λH

m,+ < · · · < λH
2,+ < λH

1,+ < λ2,

where m is the largest integer so that μm ≤ M∗/(d1 + d2).
Clearly Ti (λH

i,±) = 0 and Tj (λ
H
i,±) �= 0 for any j �= i . We will derive the condition

Di (λ
H
i,±) > 0 hold for all i satisfying 1 ≤ i ≤ m. In fact, if λi,± ∈ (λ1, λ2), then

Di (λ
H
i,±) = −B(λH

i,±)C(λH
i,±) − A(λH

i,±)d2μi + d1d2μ
2
i

= −B(λH
i,±)C(λH

i,±) − (d1 + d2)d2μ
2
i + d1d2μ

2
i

= −B(λH
i,±)C(λH

i,±) − d22μ
2
i

= 2a2m(λH
i,±)2(1 − λH

i,±)

(a2 + λH
i,±)2

− d22 A
2(λH

i,±)

(d1 + d2)2

= 1

(a2 + (λH
i,±)2)2

[

2a2m(λH
i,±)2(1 − λH

i,±)

− d22
(d1 + d2)2

(
−2(λH

i,±)3 + (λH
i,±)2 − a2

)2
]

> 0,

(3.9)

if d1, d2 satisfy

d2
d1 + d2

< inf
λ∈(λ1,λ2)

√

2a2mλ2(1 − λ)

(−2λ3 + λ2 − a2)2
. (3.10)

Finally let the eigenvalues close to the pure imaginary one near at λ = λH
i,±, 0 ≤ i ≤ m be

α(λ) ± iω(λ). Then

α(λ) = A(λ)

2
− (d1 + d2)μi , (3.11)

and

α′(λ) = A′(λ)

2
=
{

> 0, λ1 ≤ λ0 < λ1∗,
< 0, λ1∗ < λ0 ≤ λ2.

(3.12)

Hence the transversality condition is always satisfied as long as λH
i,± �= λ1∗.
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Summarizing our analysis above, by using the Hopf bifurcation theorem in [67], we obtain
our main result in this subsection:

Theorem 3.6 Recall A(λ) reaches its maximum A(λ1∗) = M∗ in (λ1, λ2). Suppose that
m > 0, 0 < a < a∗ and the constants d1, d2 satisfy (3.10). Let � be a bounded smooth
domain so that the spectral set S = {μi }i∈N0 satisfies that:

(S1) All eigenvalues μi are simple for i ∈ N0.

Then there exist 2(m + 1) points λH
j,± satisfying

λ1 = λH
1 < λH

1,− < λH
2,− < · · · < λH

m,− < λ1∗ < λH
m,+ < · · · < λH

2,+ < λH
1,+ < λH

2 = λ2.

such that the system (1.3) undergoes a Hopf bifurcation at λ = λH
j,± or λ = λH

1,2, and the
bifurcating periodic orbits near near (λ, vλ) can be parameterized in the form:

(λ, u, v) = (λH
i + o(s), λH

i + sei cos(ω(λH
i )t)φi (x)

+ o(s), vλH
i

+ s fi cos(ω(λH
i )t)φi (x) + o(s)),

for s ∈ (0, δ), where ω(λH
i ) =

√

Di (λ
H
i ) is the corresponding time frequency, φi (x) is the

corresponding spatial eigenfunction, and (ei , fi ) is a corresponding eigenvector. Moreover,

(1) The periodic solutions bifurcating from λ = λH
1,2 are spatially homogeneous, which

coincides with the periodic solutions of the corresponding ODE system.
(2) The bifurcating periodic solutions from λ = λH

j,± are spatially nonhomogeneous.

The spatially nonhomogeneous periodic orbits bifurcating from λH
j,±, 1 ≤ j ≤ m are all

unstable as L(λH
j,±) possesses at least one pair of eigenvalues with positive real part.

Relying on the abstract results obtained in [67] or [28], we can determine the stability
and bifurcation direction of the homogeneous periodic solutions. To that end, we calculate
Re(c1(λH

1,2)) in the context of [67] when � = (0, lπ).

According to c1(λH
0 ) of the definition in references [67], we need to calculate the symbols

of Re(c1(λH
1,2)). To simplify the notation, we denote λ0 = λ1,2 in the following calculation.

Let

q := (a0, b0)
T =
(

1,
−iω0

d

)�
, and q∗ := (a∗

0 , b
∗
0)

T =
(

1

2lπ
,

−di

2ω0lπ

)�
,

where

ω0 =
√

2a2d(1 − λ)

a2 + λ2
.

Recall that in our context,

f (λ, u, v) = (u + λ)(1 − u − λ) − m(u + λ)2(v + vλ)

α2 + (u + λ)2
,

g(λ, u, v) = −d(v + vλ) + m(u + λ)2(v + vλ)

α2 + (u + λ)2
.
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Then the direct calculation can lead to

f0 = guu | a0 |2 +guv(a0b0 + a0b0) + gvv | b0 |2= 2(1 − λ)a2(a2 − 3λ2)

(a2 + λ2)2λ
,

e0 = −2 − f0,

c0 = fuua
2
0 + 2 fuva0b0 + fvvb

2
0 = −2 − 2(1 − λ)a2(a2 − 3λ2)

(a2 + λ2)2λ
+ 4mλa2

(a2 + λ2)2

ω0

d
i,

d0 = guua
2
0 + 2guva0b0 + gvvb

2
0 = −2 − c0,

g0 = fuuu | a0 |2 a0+ fuuv(2 | a0 |2 b0+a20b0)+ fuvv(2 | b0 |2 a0+b20a0)+ fvvv | b0 |2 b0
= 24a2(a2 − λ2)(1 − λ)

(a2 + λ2)3
+ 2ma2(a2 − 3λ2)

(a2 + λ2)3

ω0

d
i,

h0 = −g0,

and

〈q∗, Qqq〉 = 1

2lπ
c0 + di

2ω0lπ
d0, 〈q∗, Qqq̄〉 = 1

2lπ
e0 + di

2ω0lπ
f0,

〈q̄∗, Qqq〉 = 1

2lπ
c0 − di

2ω0lπ
d0, 〈q̄∗, Qqq̄〉 = 1

2lπ
e0 − di

2ω0lπ
f0,

〈q∗,Cqqq̄〉 = 1

2lπ
g0 + di

2ω0lπ
h0.

Hence it is straightforward to obtain

H20 = (c0, d0)
T − 〈q∗, Qqq〉(a0, b0)T − 〈q̄∗, Qqq〉(a0, b0)T = 0,

H11 = (e0, f0)
T − 〈q∗, Qqq̄〉(a0, b0)T − 〈q̄∗, Qqq̄〉(a0, b0)T = 0,

(3.13)

which implies that ω20 = ω11 = 0. So

〈q∗, Qω11q〉 = 〈q∗, Qω20q̄〉 = 0.

Therefore,

Re(c1(λ
H
1,2)) = Re

{
i

2ω0
〈q∗, Qqq 〉 · 〈q∗, Qqq̄ 〉 + 1

2
〈q∗,Cqqq̄ 〉

}

= Re

{
i

2ω0

(
1

2lπ
c0 + di

2ω0lπ
d0

)(
1

2lπ
e0+ di

2ω0lπ
f0

)

+ 1

2

(
1

2lπ
g0+ di

2ω0lπ
h0

)}

= a2

λH
1,2(a

2 + (λH
1,2)

2)
+ a4(1 − λH

1,2)(a
2 − 3(λH

1,2)
2)

(λH
1,2)

2(a2 + (λH
1,2)

2)3
+ (a2 − 3(λH

1,2)
2)

2λH
1,2(a

2+(λH
1,2)

2)

+ a2(1 − λH
1,2)(a

2 − 3(λH
1,2)

2)2

2(λH
1,2)

2(a2 + (λH
1,2)

2)3
+ 6a2(1 − λH

1,2)(a
2 − 3(λH

1,2)
2)

(a2 + (λH
1,2)

2)3

= 3

2(λH
1,2)

2(a2 + (λH
1,2)

2)3

(
a6 + a4(λH

1,2)
3−9a2(λH

1,2)
4+8a2(λH

1,2)
5−(λH

1,2)
7
)

.

Let M = a6 + a4(λH
1,2)

3 − 9a2(λH
1,2)

4 + 8a2(λH
1,2)

5 − (λH
1,2)

7. Recall λH
1 , λH

2 are the two

positive roots ofA(λ) = −2λ3+λ2−a2 = 0. It is easy to verifyA(a) < 0 andA(1/3) > 0.
Combining 0 < a < a∗ = √

3/9 < 1/3, we can obtain a < λH
1 < λH

2 < 1. Then
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M = a6 + a4(λH
1,2)

3 − 9a2(λH
1,2)

4 + 8a2(λH
1,2)

5 − (λH
1,2)

7

= a6 + (λH
1,2)

3(a4 − (λH
1,2)

4 − 8a2(λH
1,2) + 8a2(λH

1,2)
2 − a2(λH

1,2)
2)

= a6 + (λH
1,2)

3(a4 − (λH
1,2)

4 + 8a2λH
1,2(λ

H
1,2 − 1) − a2(λH

1,2)
2)

< a6 − a2(λH
1,2)

4 = a2(a4 − (λH
1,2)

4) < 0.

Combining the symbols of Re(c1(λH
1,2)) and the transaction condition (3.12), we have the fol-

lowing stability of homogeneous periodic solutions bifurcating from the positive equilibrium
of (1.3):

Theorem 3.7 The Hopf bifurcation at λ = λ1 is forward and the corresponding bifurcat-
ing spatially homogeneous periodic solutions are always locally orbitally stable; the Hopf
bifurcation at λ = λ2 is backward and the corresponding bifurcating spatially homogeneous
periodic solutions are always locally orbitally stable.

Proof It has been observed that T0(λH
1,2) = 0, Tj (λ

H
1,2) = −(d1 + d2)μ j < 0 for any j ≥ 1;

and
Dj (λ

H
1,2) = −B(λH

1,2)C(λH
1,2) + d1d2μ

2
j > 0

for any j ∈ N0. Therefore, at λ0 = λH
1,2, apart from the purely imaginary eigenvalues, all

the other eigenvalues of the linearized operators have strictly negative real parts. Thus the
bifurcating periodic solutions are stable when Re(c1(λH

1,2)) < 0 (also see [28]).

Moreover, α′(λH
1 ) > 0 and α′(λH

2 ) < 0. Then the conclusion can be obtained from
Theorem 2.3 in [67]. 
�

We find that M < 0 always holds for all a ∈ (0, a∗), which also identifies the uniqueness
of limit cycle for the corresponding ODE system (see [10,33,59]). One condition to ensure
the uniqueness of limit cycle in [59] is λ < (2d − m)/(2d). Since the values of λ1, λ2
are only determined by a, Theorem 3.7 implies that the limit cycle bifurcating is unique if
λ2 < 1 − m/(2d) for fixed m > 0, 0 < a < a∗. Specifically, we can give the homogeneous
periodic solutions of the system (1.3) (see Figs. 5, 6) with parameters a = 0.15,m = 1 and
� = (0, 3π).
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Fig. 5 The periodic solutions of the system (1.3), where the initial value (u0(x) = 0.1374, v0(x) = 0.267),
d = 0.6185 and λ1 ≈ 0.191
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Fig. 6 Periodic solutions of the system (1.3), where the initial value (u0(x) = cos(x) + 1.5, v0(x) =
sin(x) + 1.6), d = 0.8971 and λ2 ≈ 0.443

4 Analysis of the Steady State Solutions

In this section we discuss the existence and nonexistence of non-constant positive steady
state solutions of (1.3), which satisfies:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d1�u + u(1 − u) − mu2v

a2 + u2
= 0, x ∈ �,

d2�v − dv + mu2v

a2 + u2
= 0, x ∈ �,

∂u

∂n
= ∂v

∂n
= 0, x ∈ ∂�.

(4.1)

Throughout the remaining part of this paper, the solutions refer to the classical solutions, by
which we mean solutions in C2(�) ∩ C1(�). We will give a priori upper and lower bounds
for the positive solutions of (4.1).

4.1 A Priori Estimates and Nonexistence of Solutions

In this subsection we discuss the nonexistence of non-constant positive solutions to (4.1).
To derive some a priori estimates for nonnegative solutions of (4.1), we recall the following
maximum principle ([52]):

Lemma 4.1 Let� be a bounded Lipschitz domain inR
n, and let g ∈ C(�×R). If z ∈ H1(�)

is a weak solution of the inequalities

�z + g(x, z(x)) ≥ 0 in �,
∂z

∂n
(x) ≤ 0 on ∂�,

and if there is a constant K such that g(x, z) < 0 for z > K, then z ≤ K a.e. in �.

Firstly we have the following a priori estimate for any nonnegative solution to (4.1):

Lemma 4.2 Suppose that (u(x), v(x)) is a nonnegative solution of (4.1). Then either (u, v)

is one of constant solutions: (0, 0), (1, 0), or for x ∈ �, (u(x), v(x)) satisfies

0 < u(x) < 1, and 0 < v(x) < C∗ = 1

4d
+ d1

d2
, (4.2)

where d, d1, d2 > 0.
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Proof Let (u(x), v(x)) be a nonnegative solution to (4.1). If there exists x0 ∈ � such that
v(x0) = 0, then v(x) ≡ 0 from the strong maximum principle and u(x) satisfies

⎧
⎨

⎩

−d1�u = u(1 − u), x ∈ �,
∂u

∂n
= 0, x ∈ ∂�.

(4.3)

From Theorem 10.1.6 of [29], u ≡ 0 or u ≡ 1. Hence if (u, v) is not (0, 0) or (1, 0), then
u(x) > 0 and v(x) > 0 for x ∈ �.

From Lemma 4.1, u(x) ≤ 1 and from the strong maximum principle, u(x) < 1 for all
x ∈ �. By adding the two equations in (4.1), we have

−(d1�u + d2�v) = u(1 − u) − dv

=
(

u(1 − u) + dd1u

d2

)

− d

d2
(d1u + d2v)

≤
(
1

4
+ dd1

d2

)

− d

d2
(d1u + d2v).

Then Lemma 4.1 and the maximum principle implies that

d1u + d2v <
d2
4d

+ d1,

which implies the desired estimate. 
�

Nowwe can obtain the nonexistence of positive steady state solutions for some parameters.

Corollary 4.3 Suppose d1, d2 > 0 and � is a bounded domain with smooth boundary. Let
(u(x), v(x)) be a nonnegative solution to (4.1). If λ ≥ 1, then (u(x), v(x)) is either (0, 0) or
(1, 0).

Proof From Lemma 4.2, u(x) ≤ 1 and −d + m/(a2 + 1) ≤ 0. By integrating the second
equation of (4.1), we obtain

0 ≤ d2

∫

�

|∇v|2dx =
∫

�

v2
(

−d + mu2

a2 + u2

)

dx ≤ 0.

Hence v ≡ 0 on �. 
�

Moreover, we can show that the nonexistence of positive steady state solutions when the
diffusion coefficients d1 and d2 are large.

Theorem 4.4 For any fixed d > 0, there exists d∗ = d∗(d,�) such that ifmin{d1, d2} > d∗,
then the only nonnegative solutions to (4.1) are (0, 0), (1, 0) and (λ, vλ). 
�

Proof Let (u, v) be a nonnegative solution to (4.1), and denote ū = |�|−1
∫

�
udx , v̄ =

|�|−1
∫

�
vdx . Then ∫

�

(u − ū)dx =
∫

�

(v − v̄)dx = 0. (4.4)
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Multiplying the first equation in (4.1) by u − ū and applying Lemma 4.2, we get

d1

∫

�

|∇(u − ū)|2dx

=
∫

�

(u − ū)u(1 − u)dx −
∫

�

(u − ū)
mu2v

a2 + u2
dx

=
∫

�

(u − ū) [u(1 − u) − ū(1 − ū)] dx −
∫

�

(u − ū)

[
mu2v

a2 + u2
− mū2v̄

a2 + ū2

]

dx

=
∫

�

(u − ū)2[1 − (u + ū)2]dx +
∫

�

(u − ū)

[

− mu2v

a2 + u2
+ mū2v̄

a2 + ū2

]

dx

≤
∫

�

(u−ū)2dx+
∫

�

(u−ū)(v̄−v)
mu2

a2 + u2
dx +

∫

�

(u − ū)v̄

[
mū2

a2 + ū2
− mu2

a2 + u2

]

dx

≤
∫

�

(u − ū)2dx + m

2

∫

�

(u − ū)2dx + m

2

∫

�

(v̄ − v)2dx

−
∫

�

(u − ū)2v̄
2ma2ξ

(a2 + ξ2)2
dx, where ξ ∈ (ū, u)

≤
(m

2
+ 1
) ∫

�

(u − ū)2dx + m

2

∫

�

(v − v̄)2dx .

(4.5)
Furthermore, adding the two equations in (4.1) and integrating over �, we get

∫

�

(−d1�u − d2�v)dx =
∫

�

[u(1 − u) − dv] dx, (4.6)

then the Neumann boundary conditions lead to

d
∫

�

vdx =
∫

�

u(1 − u)dx ≤ |�|
4

. (4.7)

Thus

v̄ = 1

|�|
∫

�

vdx ≤ 1

4d
. (4.8)

In a similar manner, we multiply the second equation in (4.1) by v − v̄ to have

d2

∫

�

|∇(v − v̄)|2dx =
∫

�

(v − v̄)

(

−dv + mu2

a2 + u2
v

)

dx

=
∫

�

(v − v̄)

[(

−dv + mu2

a2 + u2
v

)

−
(

−d v̄ + mū2

a2 + ū2
v̄

)]

dx

= −d
∫

�

(v − v̄)2dx +
∫

�

(v − v̄)

[
mu2

a2 + u2
v − mū2

a2 + ū2
v̄

]

dx

≤
∫

�

(v − v̄)

[
mu2

a2 + u2
v − mu2

a2 + u2
v̄ + mu2

a2 + u2
v̄ − mū2

a2 + ū2
v̄

]

dx

=
∫

�

(v − v̄)2
mu2

a2 + u2
dx +

∫

�

(v − v̄)v̄

[
mu2

a2 + u2
− mū2

a2 + ū2

]

dx
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≤ m

a2 + 1

∫

�

(v − v̄)2dx +
∫

�

(v − v̄)v̄(u − ū)
2ma2ξ

(a2 + ξ2)2
dx, where ξ ∈ (ū, u)

≤ m

a2 + 1

∫

�

(v − v̄)2dx + 1

32d2

∫

�

(v − v̄)2dx + ma2

(a2 + 1)2

∫

�

(u − ū)2dx . (4.9)

From (4.5), (4.9) and the Poincaré inequality, we obtain that

d2

∫

�

|∇(v − v̄)2|dx + d1

∫

�

|∇(u − ū)2|dx

≤ 1

μ1

(

A
∫

�

|∇(v − v̄)2|dx + B
∫

�

|∇(u − ū)2|dx
)

,

where

A = m

a2 + 1
+ 1

32d2
+ m

2
, B = ma2

(a2 + 1)2
+ m

2
+ 1.

This shows that if

min{d1, d2} >
1

μ1
max{A, B},

then
∇(u − ū) = ∇(v − v̄) = 0,

and (u, v) must be a constant solution. 
�
4.2 Existence of Non-constant Positive Steady State Solutions

In this subsection we use degree theory to prove the existence of non-constant solutions to
(4.1) for certain parameter range. For that purpose, we cite a Harnack inequality for weak
solutions in [52].

Lemma 4.5 Let � be a bounded Lipschitz domain in R
n, and let c(x) ∈ Lq(�) for some

q > n/2. If z ∈ H1(�) is a nonnegative weak solution of the boundary value problem

�z + c(x)z = 0 in �,
∂z(x)

∂n
≤ 0 on ∂�,

then there is a constant C1, determined only by ‖ c ‖q , q and � such that

sup
�

z ≤ C1 inf
�

z.

Based on the above preparation, we are ready to derive a priori upper and lower bounds for
all positive solutions to (4.1). More precisely, we have

Theorem 4.6 Let � be a bounded smooth domain in R
n. Then, for σ ≤ λ ≤ 1 with some

σ > 0 small enough, there exist two positive constants C and C with C < C depending
possibly on d1, d2, d, σ and �, such that any positive solution (u(x), v(x)) of (4.1) satisfies

C ≤ u(x), v(x) ≤ C for any x ∈ �. (4.10)

Proof From Lemma 4.2, we obtain that for any x ∈ �,

u(x), v(x) ≤ C := max

{

1,
1

4d
+ d1

d2

}

,
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where C depends on d1, d2, d .
Now we give the lower bound. Let

L1(x) := 1

d1

[

1 − u(x) − mu(x)v(x)

a2 + u2(x)

]

, L2(x) := 1

d2

[

−d + mu2(x)

a2 + u2(x)

]

,

then the mean value theorem implies that

mu2

a2 + u2
:= g(u) = g(u) − g(0) = g′(ξ)u, ξ ∈ (0, u).

Then we have

|L1(x)| ≤ 1

d1

(

2 + mC
2a

)

, |L2(x)| ≤ 1

d2

(

d + m

a2 + 1

)

.

Lemma 4.5 implies that there exists a positive constant C2 depending on d1, d2, d and �

such that
sup
�

u(x) ≤ C2 inf
�

u(x), sup
�

v(x) ≤ C2 inf
�

v(x).

Hence it remains to prove that there exists C3 > 0 such that

sup
�

u(x) ≥ C3 and sup
�

v(x) ≥ C3. (4.11)

Suppose this is not true, then there exists a sequence of positive solutions (un(x), vn(x)) such
that

sup
�

un(x) → 0 or sup
�

vn(x) → 0 as n → +∞. (4.12)

From the Sobolev embedding theorem and elliptic estimates, there exists a subsequence of
(un, vn), which we still denote by (un, vn), such that un → u0 and vn → v0 in C2(�) as
n → +∞. Observe that u0 ≤ 1 and from (4.12), either u0 ≡ 0 or v0 ≡ 0 and (u0, v0)
satisfies (4.1). Therefore, we have the following two cases:

(i) u0 ≡ 0, v0 �≡ 0; or u0 ≡ 0, v0 ≡ 0.
(ii) u0 �≡ 0, v0 ≡ 0.

Since (un, vn) is a positive solution of (4.1), we can obtain the following integral equation
by integrating the second equation in (4.1) for vn over �,

∫

�

vn [−d + g(un)] dx = 0.

(i) If u0 ≡ 0, then we have

−d + g(un) → −d + g(u0) = −g(λ) + g(0) ≤ −g(σ ) < 0

for any x ∈ � as n → ∞. Since vn > 0, then for sufficient large n, we obtain
∫

�

vn (−d + g(un)) dx < 0, (4.13)

that is a contradiction.
(ii) If u0 �≡ 0 and v0 ≡ 0, then this implies that u0 satisfies (4.3). So u0 ≡ 1 for large n.

Thus, we have
−d + g (un) → −d + g(1) ≥ 0

for large n since d = g(λ) ≤ g(1).
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Then the contradiction with (4.13) is reached. Therefore (4.11) holds and we complete
the proof. It is remarkable that the lower bound C depends only on d1, d2, d . 
�

Recall the definition of C and C from Theorem 4.6, we set

X = {(u, v) ∈ [C1(�)]2| ∂u

∂n
= ∂v

∂n
= 0 on ∂�}, X+ = {(u, v)|u, v ≥ 0, (u, v) ∈ X},

� = {(u, v) ∈ X | C/2 ≤ u(x), v(x) ≤ 2C for x ∈ �}.
Denote u = (u, v) and e∗ = (λ, vλ), and

G(u) =

⎛

⎜
⎜
⎝

u(1 − u) − mu2v

a2 + u2

v

(

−d + mu2

a2 + u2

)

⎞

⎟
⎟
⎠ , Gu(e

∗) =
(
A(λ) B(λ)

C(λ) 0

)

,

where A(λ), B(λ),C(λ) are defined as in Sect. 2.2. Thus, (4.1) can be written as

− ��(u) = G(u) in �,
∂u
∂n

= 0 on ∂�, (4.14)

with �(u) = (d1u, d2v)T . Since the determinant det�(u) is positive for all non-negative u,
�−1

u exists and for σ ≤ λ < K , u is a positive solution of (4.14) if and only if

F(d1, d2, λ;u) ≡ u − (I − �)−1[�−1
u G(u) + u] = 0, u in X+.

And (I − �)−1 is the inverse of I − � in X with the Neumann boundary condition. As
F(d1, d2, λ; ·) is a compact perturbation of the identity operator, the Leray–Schauder degree
deg(F(d1, d2, λ; ·),�, 0) iswell defined fromTheorem4.6, and by the homotopy invariance,
it is constant for all λ ≥ σ . Direct computation gives

Fu(d1, d2, λ; e∗) = I − (I − �)−1[�−1
u (e∗)Gu(e

∗) + I].
If Fu(d1, d2, λ; e∗) is invertible, i.e. 0 is not an eigenvalue Fu(d1, d2, λ; e∗), then the Leray–
Schauder Theorem (Theorem 2.8.1 in [46]) implies that

index(F(d1, d2, λ; e∗)) = (−1)γ ,

where γ = ∑
Mβ and Mβ is the multiplicity of any negative eigenvalue β of

Fu(d1, d2, λ; e∗). The deg(F(d1, d2, λ; ·),�, 0) is then equal to the summation of the
indexes over all solutions to F = 0 in �.

To calculate γ , we firstly define

H̃(d1, d2, λ;μ) = det[μI − �−1
u (e∗)Gu(e

∗)]
= 1

d1d2
[d1d2μ2

i − A(λ)d2μi − B(λ)C(λ)]. (4.15)

By the same arguments as in [52,64], β is an eigenvalue of Fu(d1, d2, λ; e∗) on X j if and
only if β(1 + μ j ) is an eigenvalue of the matrix

M(μ j ) := μ j I − �−1
u (e∗)Gu(e

∗) =
⎛

⎜
⎝

μ j − A(λ)

d1
− B(λ)

d1

−C(λ)

d2
μ j

⎞

⎟
⎠ .

Thus, Fu(d1, d2, λ; e∗) is invertible if and only if the matrix M(μ j ) is non-singular for all
j ≥ 0. We also have that if H̃(d1, d2, λ;μ j ) �= 0, then H̃(d1, d2, λ;μ j ) < 0 if and only
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if the number of negative eigenvalues of Fu(d1, d2, λ; e∗) in X j is odd. Then the following
lemma (Theorem 6.1.1 in [64]) gives the explicit formula of calculating the index:

Lemma 4.7 If H̃(d1, d2, λ;μi ) �= 0 for all i ≥ 0, then

index(F(d1, d2, λ; e∗)) = (−1)γ , γ =
∑

i≥0, H̃(d1,d2,λ;μi )<0

m(μi ),

where m(μi ) is the algebraic multiplicity of μi .

From Lemma 4.7 we see that to calculate the index of F(d1, d2, λ; e∗), the key step is to
determine the range of μ for which H̃(d1, d2, λ;μ) < 0.

If i = 0, then H̃(d1, d2, λ; 0) = −B(λ)C(λ)

d1d2
= λ(1 − λ)g′(λ)

d1d2
> 0 for all σ ≤ λ < 1,

which has no contribution to the sum γ in Lemma 4.7.We assume that i ≥ 1 in the following.
Indeed nonnegative roots to (4.15) exist if and only if −4d1B(λ)C(λ) − d2A2(λ) < 0.

Define μ+(λ, d1, d2) and μ−(λ, d1, d2) be the two roots of

H̃(d1, d2, λ;μ) = 0.

Now by using the same method as in [52,64] , we have the following existence result for the
non-constant steady state solutions:

Theorem 4.8 Let S =⋃∞
i=1{μi } be the set of all eigenvalues of−� in H1(�), and let A(λ),

B(λ) and C(λ) be defined as in Sect. 2. Assume that

d2
d1

>
−4B(λ)C(λ)

A2(λ)
(4.16)

and there exists i, j ∈ N0, such that

(1) 0 ≤ μ j < μ−(λ, d1, d2) < μ j+1 ≤ μi < μ+(λ, d1, d2) < μi+1;
(2)
∑i

k= j+1 m(μk) is odd.

Then (4.1) has at least one non-constant positive solution (u(x), v(x)) when σ ≤ λ < 1.

Proof Consider a mapping Ĥ : � × [0, 1] → C(�) × C(�) by

Ĥ(u, t) = (−� + I )−1

⎛

⎜
⎜
⎝

u +
(
1 − t

d∗ + t

d1

)

u(1 − u) − g(u)v

v +
(
1 − t

d∗ + t

d2

)

v (−d + g(u))

⎞

⎟
⎟
⎠ ,

where d∗ is defined as in Theorem 4.4. It is easy to see that solving (4.1) is equivalent to find
a fixed point of Ĥ(·, 1) in �. According to the choice of d∗ in Theorem 4.4, we have that
e∗ = (λ, vλ) is the only fixed point of Ĥ(·, 0).

Furthermore, we have

deg(I − Ĥ(·, 0),�, e∗) = index(I − Ĥ(·, 0), e∗) = 1.

Since I − Ĥ(·, 1) = F , and if (4.1) has no other positive solutions except the constant one
e∗, we have

deg(I − Ĥ(·, 1),�, (0, 0)) = index(F, e∗) = (−1)
∑i

k= j+1 m(μk ) = −1.

On the other hand, from the homotopy invariance of the Leray–Schauder degree, we have

1 = deg(I − Ĥ(·, 0),�, (0, 0)) = deg(I − Ĥ(·, 1),�, (0, 0)) = −1.
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which is a contradiction. Therefore, there exists at least one non-constant positive solution
(u(x), v(x)) to (4.1). 
�

The conditions (1) and (2) in Theorem 4.8 defines a region in the parameter space
{(λ; d1; d2)} for which a non-constant solution to (4.1) exists. This parameter region is usu-
ally a union of smaller connected components. When fixing all other parameters but freeing
one, the parameter set is usually a union of non-overlapping intervals. This can be seen in
the following corollary.

Corollary 4.9 Let d(orλ), d1 be fixed so that (4.16) holds. Define

dn2 = B(λ)C(λ)

d1μ2
n − A(λ)μn

for some n ∈ {n ∈ N : d1μn − A(λ) < 0}. Assume that each of μ j has odd multiplicity for
j ∈ M and the set {dn2 : n ∈ N, d1μn − A(λ) < 0} can be relabeled to {d̂n2 : n ∈ N} such
that

d∗
2 ≤ d̂12 < d̂22 < · · · < d̂ i2 <

̂di+1
2 < · · · ,

where
B(λ)C(λ)

d1μ − A(λ)μ
achieves its minimum d∗

2 for d1μ − A(λ) < 0. Then (4.1) has at least

one non-constant solution for d2 ∈⋃i∈N(d̂2i2 ,
̂d2i+1
2 ).

Proof It is easy to see that γ is odd when d2 ∈⋃i∈N(d̂2i2 ,
̂d2i+1
2 ). 
�

4.3 Steady State Bifurcation and Stationary Patterns

In this section we will identify bifurcation points λS along the branch of the constant steady
states {(λ, λ, vλ) : λ1 < λ < λ2} where non-constant steady state solutions bifurcate from.
In this subsection, we assume that all eigenvaluesμi of−� in H1(�) are simple, and denote
corresponding eigenfunction by φi (x). Note that this assumption always holds when n = 1
for domain � = (0, �π) that for i ∈ N0. From [67], we know that a bifurcation point λS

satisfies the following condition:

(H2): there exists i ∈ N0 such that

Di (λ
S) = 0, Ti (λ

S) �= 0, and Dj (λ
S) �= 0, Tj (λ

S) �= 0 for j �= i;
and

d

dλ
Di (λ

S) �= 0.

It is well known that the first eigenvalue of −� under the Neumann boundary is μ0 = 0.
Then D0(λ) = λ(1− λ)g′(λ) �= 0 for any 0 < λ < 1. Moreover, Dn(λ) > 0 for λ ∈ (0, λ1]
or λ ∈ [λ2, 1), hence we only consider n ∈ N and determine the set

�2 := {λ ∈ (λ1, λ2) : for some n ∈ N, (H2) is satisfied}, (4.17)

when a set of parameters (d, d1, d2) are given.
Now for the steady state bifurcation curve Dn(λ) = 0, we notice that it is equivalent to

D̃(λ) = (a2 + λ2)Dn(λ) = 0 for λ ≥ 0. For fixed μn , D̃ is a degree 3 polynomial of λ, and
for fixed λ, it is a quadratic in p. Suppose S(λ) = d22 A

2(λ) + 4d1d2B(λ)C(λ) > 0, which
is equivalent to

d1
d2

<
(−2λ3 + λ2 − a2)2

8ma2(1 − λ)λ2
. (4.18)
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From Lemma 4.10, there exists at least two roots of S(λ) = 0, the minimal and maximal one
are denoted by λ1 < λ− < λ+ < λ2. Thus we can solve μn from Dn(λ) = 0. Let

μ = μ±(λ) : =
d2A(λ) ±

√

d22 A
2(λ) + 4d1d2B(λ)C(λ)

2d1d2

=
d2A(λ) ±

√

C(λ)(d22α(λ) − 4d1d2d)

2d1d2
,

(4.19)

where α(λ) = A(λ)2

C(λ)
= (−2λ3 + λ2 − a2)2

2a2(1 − λ)(a2 + λ2)
. It is mentioned that μ±(λ) exists only for

λ ∈ �S = {λ|λ− < λ < λ+ : (4.18) holds}.
One can also see that the function Dn(λ) has no critical points in the first quadrant, hence
the set {(λ, μn) ∈ R

2+ : Dn(λ) = 0} must a bounded connected smooth curve. We have the
following basic property of the function α(λ).

Lemma 4.10 For all λ ∈ (λ1, λ2), α(λ) > 0; α(λ1) = α(λ2) = 0. α′(λ1 + 0) > 0,
α′(λ2 − 0) < 0 and there exists a unique λ† ∈ (λ1, λ2) such that α′(λ†) = 0 and α(λ†) =
maxλ1<λ<λ2 α(λ).

Proof From the expression of α(λ) and A(λ1) = A(λ2) = 0, it is clearly that α(λ1) =
α(λ2) = 0. By direct calculation, it follows that

α′(λ) = A(λ)[2A′(λ)C(λ) − A(λ)C ′(λ)]
C(λ)2

.

Denote α̃(λ) = 2A′(λ)C(λ) − A(λ)C ′(λ). Since α̃(λ1) = 2A′(λ1)C(λ1) > 0 and α̃(λ2) =
2A′(λ2)C(λ2) < 0, there exists at least one root of α̃(λ) = 0 in (λ1, λ2). Moreover, it can
denote such λ as λ† such that α(λ†) = maxλ1<λ<λ2 α(λ). 
�

We can summarize the properties of μ±(λ) as follows:

Lemma 4.11 Suppose that a > 0,m > 0 and the constants d1, d2 satisfy (4.18). Let μ±(λ)

be the functions defined in (4.19). Then there exists λ1 < λ− < λ+ < λ2 such that μ±(λ)

exists for λ ∈ �S. Moreover μ+(λ) ≥ μ−(λ) and

lim
λ→λ+

μ±(λ) = A(λ+)

2d1
, lim

λ→λ−
μ±(λ) = A(λ−)

2d1
.

Hence the steady state bifurcation curve {Dn(λ, μ) = 0 : μ ≥ 0, λ ≥ 0} is a smooth

curve connecting (λ, μ) =
(
λ−,

A(λ−)
2d1

)
, (λ, μ) =

(
λ+,

A(λ+)
2d1

)
. Moreover, μ+(λ) attains

its maximum value M∗∗ at λ∗∗ ∈ [λ−, λ+] and μ−(λ) attains its minimum value M∗∗ at
λ∗∗ ∈ [λ−, λ+], thus the steady state bifurcation curve exists only for μ ∈ [M∗∗, M∗∗].
From Lemma 4.11, if M∗∗ > μi = μ > M∗∗, then there no λ ∈ (λ−, λ+] such that
Di (λ) = 0. But for any M∗∗ ≤ μi ≤ M∗∗, there exists λS

i such that Di (λ
S
i ) = 0 and these

λS
i are potential steady state bifurcation points. Note that from Lemma 4.11 in Sect. 4.1, for

each given i ∈ N, there are at least two λ such that D(λ, μi ) = 0.
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On the other hand, it is possible that for some λ ∈ (λ−, λ+) and some i �= j , we have

μ j = μ−(λ), and μi = μ+(λ). (4.20)

Then for this λ, 0 is not a simple eigenvalue of L(λ) and we shall not consider bifurcations at
such points. However from an argument in [67], for n = 1 and � = (0, �π), there are only
countably many �, such that (4.20) occurs for some i �= j . For general bounded domains in
R
n , one can also show that (4.20) does not occur for generic domains.

Next we verify
dDi

dλ
(λS

i ) �= 0 if λS
i ∈ �S and S(λS

i ) �= 0. Indeed one has D′
i (λ) =

−B(λ)C ′(λ) − d2μi A′(λ), and from the expression of μ±,

μ′±(λ) = B(λ)C ′(λ) + d2A′(λ)μ±(λ)

d2(2d1μ±(λ) − A(λ))
.

Therefore fromLemma4.11, ifμ′±(λS
i ) �= 0, then

dDi

dλ
(λS

i ) �= 0 forλS
i ∈ �S and S(λS

i ) �= 0.

Summarizing the above discussion and using a general bifurcation theorem ([55]), we
obtain the main result of this section on the global bifurcation of steady state solutions:

Theorem 4.12 Suppose that d, d1, d2 > 0 are fixed. Let � be a bounded smooth domain so
that its spectral set S = {μi } satisfy that
[S1] All eigenvalues μi are simple for i ≥ 0;
[S2] There exists l, k ∈ N such that 0 = μ0 < · · · < μl−1 < M∗∗ < μl < · · · < μk <

M∗∗ < μk+1, where M∗∗, M∗∗ are constants depending on d, d1, d2 which is defined
in Lemma 4.11,

then for each l ≤ i ≤ k, there exist at least two λS
i,− < λS

i,+ ∈ (λ−, λ+) such that

D(λS
i,±, μi ) = 0. If in addition, we assume

λS
i �= λS

j , for any l ≤ i �= j ≤ k, and S(λS
i ) �= 0, p′±(λS

i ) �= 0 for any l ≤ i ≤ k,
(4.21)

then

1. There is a smooth curve �i of positive solutions of (4.1) bifurcating from (λ, u, v) =
(λS

i , λS
i , vλS

i
), with �i contained in a global branch Ci of positive solutions of (4.1);

2. Near (λ, u, v) = (λS
i , λS

i , vλS
i
), �i = {(λi (s), ui (s), vi (s)) : s ∈ (−ε, ε)}, where

ui (s) = λS
i + saiφi (x) + sψ1,i (s), vi (s) = λS

i + sbiφi (x) + sψ2,i (s) for some C∞
smooth functions λi , ψ1,i , ψ2,i such that λi (0) = λS

i and ψ1,i (0) = ψ2,i (0) = 0; Here
(ai , bi ) satisfies

L(λS
i )[(ai , bi )�φi (x)] = (0, 0)�.

3. Either Ci contains another (λS
j , λ

S
j , vλS

j
) for j �= i and 1 ≤ j ≤ k, or the projection of

Ci onto λ−axis contains the interval (0, λS
i ).

Proof The existence and uniqueness of λS
i follows from discussions above. Then the local

bifurcation result follows from Theorem 3.2 in [67], and it is an application of a more general
result Theorem 4.3 in [55].

For the global bifurcation, we apply Theorem 4.3 in [55]. After the change of variables:

w1 = u − λ, w2 = v − vλ,
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we define a nonlinear equation:

F

(

λ,

(
w1

w2

))

=
(
d1�w1 + [(λ + w1)(1 − λ − w1) − g(λ + w1)(vλ + w2)]

d2�w2 + (vλ + w2) [−d + g(λ + w1)]

)

,

with domain

V =
{(

λ,

(
w1

w2

))

: 0 < λ < 1, w1, w2 ∈ X and w1 + λ ≥ 0, w2 + vλ ≥ 0

}

.

Then {(λ, 0, 0) : 0 < λ < 1} is a line of trivial solutions for F = 0 and Theorem 4.3 in
[55] can be applied to each continuum Ci bifurcated from (λS

i , 0, 0). For each continuum Ci ,
either Ci contains another (λS

j , 0, 0) or Ci is not compact. (Here we do not make an extinction
between the solutions of (4.1) and F = 0 as they are essentially same, hence we use Ci for
solution continuum for both equations.)

From Lemma 4.2, every solution (u, v) of (4.1) is bounded in L∞, then it is also bounded
in X from L p estimates and Schauder estimates. Therefore, if Ci is not compact, then Ci
contains a boundary point (̃λ, w̃1, w̃2).

(a) If λ̃ = 0, then the projection of Ci onto λ−axis contains (0, λS
i );

(b) If λ̃ = 1, then Corollary 4.3 implies that (̃λ + w̃1, ṽλ + w̃2) = (0, 0) or (1, 0). But
(u, v) = (0, 0) is not a bifurcation point since the linearization of (1.3) implies that the
constant equilibrium (0, 0) is unstable. Hence (w̃1 + λ̃, w̃2 + ṽλ) must be in a form of
(1, 0);

(c) If 0 < λ̃ < 1, then there exists x0 ∈ �̄ such that (w̃1 + λ̃)(x0) = 0 or (w̃2 + ṽλ)(x0) = 0
since w̃1 and w̃2 are bounded from Theorem 4.6. The strong maximum principle implies
that (w̃1 + λ̃)(x) ≡ 0 or (w̃2 + ṽλ)(x) ≡ 0 for all x ∈ �. If v ≡ 0, then (̃λ, u, v) is a
solution in form (̃λ, 0, 0) or (̃λ, 1, 0). If u ≡ 0, then v ≡ 0 from maximum principle.
Same as in (b), (w̃1 + λ̃, w̃2 + ṽλ) also must be in a form of (1, 0).


�
Remark 4.13 We remark that one can indeed show that λ = λS

n and d2 = dn2 defined in
Corollary 4.9 are bifurcation points where non constant positive solutions stem out from the
branch of constant solutions by using of the global bifurcation theorem in [55]. This would
partially generalize the result in Theorem 4.12 where the eigenvalues μi are assumed to be
simple. However the result in Corollary 4.9 shows the existence of non constant solutions in
some more specific parameter regions, which cannot be achieved in bifurcation results.
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