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Abstract We continue our study of the inviscid shallow water equations (SWE) in a rectan-
gle. In an earlier work (Huang and Temam in Arch Ration Mech Anal 211(3):1027–1063,
2014) we studied the well-posedness for all time of the linearized inviscid SWE in a non-
smooth domain. We defined and classified the different sets of boundary conditions which
make these equations well-posed for all time and showed the existence and uniqueness of
solutions. As we show below totally different boundary conditions are needed in the full
nonlinear cases. The case of supercritical flows was investigated in Huang et al. (Asymptot
Anal 93:187–218, 2015), and the case of subcritical flows in a channel was studied in Huang
and Temam (Commun Pure Appl Anal 13(5):2005–2038, 2014). We continue here and study
subcritical flows in a rectangle which raises the additional issue of the compatibility of the
boundary and initial conditions at t = 0 and of the boundary conditions between them at the
corners of the rectangle.

Keywords Shallow water equations · Hyperbolic equations · Initial and boundary value
problem · Non-smooth domain

1 Introduction

Motivated by the study of the well-posedness of the inviscid primitive equations (PEs), we
were led in earlier works, to study the well-posedness of the inviscid shallowwater equations.
Indeed, as shown in [9], the inviscid shallow water equations can be seen as a single mode of
the PEs. Hence studying the SWE, besides being useful by itself, can be seen also as a step
toward the study of the well-posedness of the PEs.
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The inviscid shallowwater equations are hyperbolic equations and there is a vast literature
available concerning the initial and boundary value hyperbolic problems in a smooth domain
in relation with the Kreiss–Lopatinskii conditions (see [11,14]); many results in this direction
can be found in [3]. However the usual framework for the Primitive Equations is to work
in a rectangle in dimension two and in a cube in dimension three. Hence we encounter
the difficulty of the well-posedness of hyperbolic initial and boundary value problems for
non-smooth domains and the literature is rather scarce in this case; see the discussion in [9].

In [9], we presented the different set of boundary conditions that make the inviscid lin-
earized SWE well-posed in a rectangle and classified these boundary conditions. For that
reason, we made the equations as a linear evolution equation and used the semigroup theory.
The classification of the flows correspond to different properties of the underlying linear (sta-
tionary) operator. In a same way as a stationary compressible flow can be subsonic (elliptic),
transonic (parabolic), or supersonic (hyperbolic), we were led in [9] to classify the linearized
shallow water flows in the fully hyperbolic case and the elliptic-hyperbolic case, where the
fully hyperbolic case contains four sub-cases, the supercritical case, two mixed hyperbolic
case, and the fully hyperbolic subcritical case.

Going from the linearized inviscid SWE to the full nonlinear inviscid SWE is not straight-
forward, and truly new boundary conditions have to be derived. Besides, global existence of
smooth solutions is not generally expected andwe limit ourselves to the existence and unique-
ness of smooth solutions for a limited time. However, we retain from [9] the classification
of the (nonlinear) flows according to their initial values. When the flow is fully supercritical,
the problem was studied in [8], we then considered in [10] the case where the flow was fully
hyperbolic but took place in a channel (0, 1)x × Ty where Ty is one dimensional torus. We
now consider in this article the case of a fully hyperbolic (subcritical) flow taking place in a
rectangle. We then encounter the difficulty of the compatibility of the initial and boundary
values. When the datas are compatible, we are able to embed the flow in a channel flow
(distinct from the case in [10]) and we are able to establish the existence and uniqueness of
solutions.

The inviscid fully nonlinear shallow water equations (SWE) read
⎧
⎪⎨

⎪⎩

ut + uux + vuy + gφx − f v = 0,

vt + uvx + vvy + gφy + f u = 0,

φt + uφx + vφy + φ(ux + vy) = 0,

(1.1)

where u and v are the two horizontal components of the velocity and φ is the height of
the water; f and g are universal constants, standing for the Coriolis parameter and the
gravitational acceleration, respectively. Setting U = (u, v, φ)t , we write (1.1) in compact
form

Ut + E1(U )Ux + E2(U )Uy + �(U ) = 0. (1.2)

where �(U ) = (− f v, f u, 0)t , and

E1(U ) =
⎛

⎝
u 0 g
0 u 0
φ 0 u

⎞

⎠ , E2(U ) =
⎛

⎝
v 0 0
0 v g
0 φ v

⎞

⎠ .

The Assumptions
Our objective in this article is to study the initial and boundary value problem (IBVP) for

the 2d nonlinear inviscid SWE (1.1) in the fully hyperbolic case in a rectangular domain. In
[8,10], we studied two types of problems for the 2d nonlinear inviscid SWE: the supercritical
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case in a rectangle and the subcritical case in a 2d channelwith periodicity. For a classification
of the 2d inviscid SWE, see [9, Sect. 5]. The fully hyperbolic case studied here corresponds
to

u2 + v2 > gφ, (1.3)

and the rectangular domain has to be properly chosen according to the characteristics of the
2d inviscid SWE, as explained in Sect. 4.2 below.

In order to show the idea for studying the IBVP of 2d nonlinear inviscid SWE, we assume
that the domain � is

� = (0, 1)x × (0, 1)y,

and the 2d nonlinear SWE is supercritical in the direction (0, 1) (see Definition 4.1 below),
that is

v2 > gφ. (1.4)

Note that condition (1.4) is stronger than (1.3), while after a suitable coordinate transforma-
tion, the condition (1.3) would become (1.4) (see Sect. 4.2 below). We can also assume that
u, v ≥ 0 and the cases where u and, or v are negative can be treated in a similar manner.

Now, we have two sub-cases to consider according to the sign of u2 − gφ. The case when
u2 > gφ, that is the 2d nonlinear SWE is also supercritical in the direction (1, 0), is already
studied in [8]. The remaining case when u2 < gφ, that is the 2d nonlinear SWE is subcritical
in the direction (1, 0), is the main goal of this article and we already termed it the mixed
hyperbolic case in [9]. We now assume the enhanced mixed hyperbolic condition:

{
c0 ≤ u, v, φ ≤ c1,

u2 + v2 > gφ, u2 − gφ ≤ −c22, v2 − gφ ≥ c22,
(1.5)

for some given positive constants c0, c1, c2 > 0.
This article is dedicated to the memory of Klaus Kirchgässner, a good friend and a gentle

colleague, who has made deep and lasting contributions to the theory of bifurcation and
partial differential equations, and has invested much time for services to the national and
international mathematical communities.

2 The Boundary Conditions

2.1 Failure of the (Linearized) Boundary Conditions

In [9, Sect. 5], the suitable boundary conditions for the linearized SWE in a rectangle have
been proposed for the well-posedness and it is natural to consider these (modified) boundary
conditions for the nonlinear SWE (1.1) in a rectangle. However, as we will see below, those
boundary conditions are not suitable for the nonlinear problem (1.1) in the mixed hyperbolic
case since we can not derive the suitable nonlinear boundary conditions from them. The
arguments are as follows. Recall from [9, Sect. 5] that the boundary conditions for the
linearized SWE around the state (u0, v0, φ0) in the mixed hyperbolic case (1.5) are

⎧
⎪⎨

⎪⎩

v0u − u0v + κ0φ = u0u + v0v + gφ = 0, on {x = 0},
v0u − u0v − κ0φ = 0, on {x = 1},
u = v = φ = 0, on {y = 0},

(2.1)
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where κ0 =
√

g(u20 + v20 − gφ0)/φ0. If we could derive a set of nonlinear boundary condi-
tions from (2.1), then considering the boundary conditions at x = 1, there must exist two
non-zero functions �(u, v, φ) and �(u, v, φ) such that

(�u(u, v, φ), �v(u, v, φ), �φ(u, v, φ)) = (v, −u, −κ)�(u, v, φ), (2.2)

where κ = √
g(u2 + v2 − gφ)/φ. We now infer from (2.2) the following identities

⎧
⎪⎨

⎪⎩

� + v�v = �uv = −� − u�u,

v�φ = �uφ = −κu� − κ�u,

−u�φ = �vφ = −κv� − κ�v.

(2.3)

Multiplying (2.3)2 by u and (2.3)3 by v, and adding the resulting identities together, we find

0 = (uκu + vκv)� + κ(u�u + v�v),

which, together with (2.3)1, shows that

(uκu + vκv)� − 2κ� = 0. (2.4)

Now, we directly calculate

κu = gu

φκ
, κv = gv

φκ
,

and then deduce from (2.4) that
(
gu2/φ + gv2/φ − 2κ2)� = 0,

that is equivalent to
(
u2 + v2 − 2gφ

)
� = 0,

which is impossible for non-zero �. Therefore, we conclude that the (linearized) boundary
conditions proposed in [9] are not suitable for the nonlinear SWE (1.1). This fact is rather
general of course.

2.2 The Nonlinear Boundary Conditions

Under the mixed hyperbolic condition (1.5), all the eigenvalues of the matrix E2 are positive
and hence the y-direction could be viewed as a time-like direction, and we only need to
impose the boundary conditions at y = 0, that is

(u, v, φ) = (g1, g2, g3), on y = 0. (2.5)

For the boundary conditions in the x-direction, as in [10] where we studied the channel
domain (0, 1)x × T with periodicity in the y-direction, we can take the following nonlinear
boundary conditions:

(u + 2
√
gφ, v) = (π1, π2), on x = 0, u − 2

√
gφ = π3, on x = 1. (2.6)

Here, (g1, g2, g3) and (π1, π2, π3) are given boundary data.
We remark that although the linearized form of the boundary conditions (2.5)–(2.6) may

not lead to the L2-well-posedness of the linearized SWE in the rectangle �, these boundary
conditions (2.5)–(2.6)will yield localwell-posedness of the nonlinear SWE sincewe consider
smooth solutions for the nonlinear problem (see Theorem 3.1).
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3 The Fully Nonlinear Shallow Water System

In this section, we aim to investigate the well-posedness for Eq. (1.1) in the rectangular
domain � = (0, 1)x × (0, 1)y associated with initial and boundary conditions. The fully
nonlinear shallow water system reads in compact form

Ut + E1(U )Ux + E2(U )Uy + �(U ) = 0. (3.1)

3.1 Stationary Solutions

We want to study system (3.1) near a stationary solution, and we start by constructing such a
stationary solutionU = Us , that is (u, v, φ) = (us, vs, φs). These functions are independent
of time and satisfy

E1(U )Ux + E2(U )Uy + �(U ) = 0. (3.2)

In the following, we construct a y-independent stationary solution Us of (3.2) satisfying
the subcritical conditions (1.5). Thus Us satisfies (see Subsec. 2.1 in [7] for a stationary
solution in the supercritical case):

⎧
⎪⎨

⎪⎩

uux + gφx − f v = 0,

uvx + f u = 0,

(uφ)x = 0.

(3.3)

We infer from (3.3) that
⎧
⎪⎨

⎪⎩

uφ = κ1,

v = − f x + κ2,

u2 + 2gφ = − f 2x2 + 2 f κ2x + κ3,

where κ1, κ2, κ3 are constants. We first choose κ1 = 1, κ2 = 2g + f , and then we have
φ = u−1, v = 2g + f − f x , and

u2 + 2g

u
= − f 2x2 + 2 f (2g + f )x + κ3, x ∈ (0, 1). (3.4)

We then set �(u) = u2 + 2g
u and ψ(x) = − f 2x2 + 2 f (2g + f )x + κ3 and we can easily

deduce that

κ3 ≤ ψ(x) ≤ κ3 + 4g f + f 2, ∀ x ∈ (0, 1).

Note that the Coriolis parameter f � 1 and the gravitational constant g ≈ 9.8. Hence,
�( 1

2g ) − �( 1g ) > g2 and we can choose κ3 such that

�
( 1

2g

)
> κ3 + 4g f + f 2 ≥ ψ(x) ≥ κ3 > �

( 1

g

)
.

Then for any x ∈ (0, 1) one solution (in u) of (3.4) is between 1/2g and 1/g. We
choose such a solution u, and therefore φ = u−1 satisfies g ≤ φ ≤ 2g, and furthermore
u2 − gφ ≤ 1/g2 − g2 < 0 and by the implicit function theorem, such a solution u is unique
and smooth. Since x ∈ (0, 1), we have v ≥ 2g and hence v2 > gφ. All these calculations
mean that we can choose the stationary solution us, vs, φs satisfying the mixed hyperbolic
conditions

u, v, φ > 0, u2 − gφ < 0, v2 − gφ > 0. (3.5)
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Therefore, we choose κ0,1, κ0,2, κ0,3 > 0 and δ > 0 such that
{
c0 ≤ κ0,1 ± c3δ < c1, c0 ≤ κ0,2 ± c3δ < c1, c0 ≤ κ0,3 ± c3δ < c1
(κ0,1 + c3δ)2 − g(κ0,3 − c3δ) ≤ −c22, (κ0,2 + c3δ)2 − g(κ0,3 − c3δ) ≥ c22,

(3.6)

where c0, c1, c2 > 0 are given positive constants and c0 < c1, and c3 is given by Lemma 3.2
below.

Note that the stationary solution we constructed for (3.2) is independent of y as described
above, or saying in other way, exists for all y ∈ Ry . More generally, we assume that a
stationary solution Us(x, y) exists for all (x, y) ∈ (0, 1)x × Ry and satisfies

E1(Us)Us,x + E2(Us)Us,y + �(Us) = 0, ∀ (x, y) ∈ (0, 1)x × Ry . (3.7)

The reason why we assume Us exists for all y ∈ Ry instead of y ∈ (0, 1)y is that we are
going to use the extension method below by extending the problem into the channel domain
(0, 1)x ×Ry and the assumption thatUs exists for all y ∈ Ry will simplify our presentation.

In what follows, we think of the stationary solution Us in a more general form (i.e. Us

depends on both x and y), and we choose Us = (us, vs, φs) such that

|us − κ0,1| ≤ δ/4, |vs − κ0,2| ≤ δ/4, |φs − κ0,3| ≤ δ/4, (3.8)

and by (3.6), Us satisfies the mixed hyperbolic condition (1.5). For convenience, we write

|Us − κ0| ≤ δ/4, ∀ (x, y) ∈ (0, 1)x × Ry . (3.9)

to stand for (3.8), where κ0 = (κ0,1, κ0,2, κ0,3), and the κ0,i (i = 1, 2, 3) are positive
constants satisfying (3.6).

We setU = Us + Ũ and substitute these values into (3.1); we obtain a new system for Ũ ,
and dropping the tildes, our new system reads:

LUs+U U = −LUs+U Us, (3.10)

where the operator L is defined by

LW U = Ut + E1(W )Ux + E2(W )Uy + �(U ).

We supplement (3.10) with the following initial and boundary conditions (see (2.5)–(2.6)):

U = U0(x, y), on t = 0, U = G(x, t), on y = 0, b(Us +U ) = �(y, t), (3.11)

where

b(Us +U )=

⎧
⎪⎨

⎪⎩

u + us + 2
√
g(φ + φs)=π1(y, t), on x = 0,

v + vs = π2(y, t), on x = 0,

u + us − 2
√
g(φ + φs)=π3(y, t), on x = 1,

� =
⎛

⎝
π1

π2

π3

⎞

⎠, G=
⎛

⎝
g1
g2
g3

⎞

⎠,

We regard the initial condition U0 = Us + Ũ0 as a small perturbation of the stationary
solution, and after dropping the tilde, we choose the small perturbation U0 satisfying

|U0| ≤ εδ, (3.12)

for some 0 < ε < 1 small enough.
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3.2 Compatibility Conditions on the Data

In order to be able to solve the system (3.10) we need to introduce some technical conditions
(see [3, Sect. 11.1.2]). First we require that U = 0 is a solution of the special IBVP (3.10)
with zero initial data and boundary data �(y, t = 0) and G(x, t = 0), which amounts to
asking that the following compatibility conditions are satisfied by Us :

b(Us) =

⎧
⎪⎨

⎪⎩

us + 2
√
gφs = π1(y, 0), on x = 0,

vs = π2(y, 0), on x = 0,

us − 2
√
gφs = π3(y, 0), on x = 1,

Us = G(x, 0), on y = 0. (3.13)

The second condition is that the initial and boundary data should satisfy some additional
compatibility conditions and these conditions are very natural for smooth solutions, which
we are looking for. Let us first rewrite (3.10) as

Ut = H(U +Us) − E1(U +Us)Ux − E2(U +Us)Uy − �(U ), (3.14)

where we denote by H(U +Us) the right-hand side of (3.10), that is −LUs+UUs . Now, ifU
is continuous, then necessarily at t = 0, there should holds

b(Us +U0) = �(y, 0), G(x, 0) = U0|y=0; (3.15)

and if U is C1 up to the boundary, then at t = 0,

∂t�(y, 0) = db(Us +U0) · ∂tU (x, 0)

= db(Us +U0) · (
H(U0 +Us)− E1(U0 +Us)U0,x − E2(U0 +Us)U0,y−�(U0)

)
,

∂tG(x, 0) = ∂tU (x, 0) = H(U0 +Us) − E1(U0 +Us)U0,x − E2(U0 +Us)U0,y − �(U0),

where db(Us +U ) is a matrix-valued function, the gradient of the function b(Us +U ) with
respect to the variable U . More generally, if U is Cm−1 up to the boundary, then at t = 0,

∂
p
t �(y, 0) = Cp,U0(V0, . . . , Vp), ∀p ∈ {1, . . . ,m − 1} ,

∂
p
t G(x, 0) = Vp

∣
∣
y=0, ∀p ∈ {1, . . . ,m − 1} ,

(3.16)

where the complicated nonlinear function Cp,U0 is given by

Cp,U0(V0, . . . , Vp) =
p∑

k=1

∑

j1+···+ jk=p

c j1,..., jkd
kb(Us +U0) · (Vj1 , . . . , Vjk ),

and the functions Vi (i = 0, . . . ,m) are defined by induction by (with U being replaced by
U0)

V0 = U,

V1 = ∂tU = H(U +Us) − E1(U +Us)Ux − E2(U +Us)Uy − �(U ),
(3.17)
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and for all i = 1, . . . ,m − 1,

Vi+1 = ∂ i+1
t U =

i∑

k=1

∑

j1+···+ jk=i

c j1,..., jk (d
k H(U +Us)) · (Vj1 , . . . , Vjk )

−
i∑

l=1

(
i

l

) l∑

k=1

∑

j1+···+ jk=l

c j1,..., jk (d
kE1(U +Us)) · (Vj1 , . . . , Vjk )Vi−l,x

−
i∑

l=1

(
i

l

) l∑

k=1

∑

j1+···+ jk=l

c j1,..., jk (d
kE2(U +Us)) · (Vj1 , . . . , Vjk )Vi−l,y

− E1(U +Us)Vi,x − E2(U +Us)Vi,y − �(Vi ).

(3.18)

Here the coefficients c j1,..., jk are derived from the Faà di Bruno’s formula, see [4,5]. The
conditions (3.15)–(3.16) express the classical compatibility conditions which are necessary
for the solution U of (3.10) to be Cm−1 near t = 0; see e.g. [15,17,19].

We also need to express the compatibility conditions at y = 0. For this reason, we rewrite
(3.10) as

Uy = E2(U +Us)
−1(H(U +Us) − E1(U +Us)Ux −Ut − �(U )

)

= H̃(U +Us) − Ẽ1(U +Us)Ux − E2(U +Us)
−1(Ut − �(U )),

(3.19)

where

H̃(U +Us) = E2(U +Us)
−1H(U +Us), Ẽ1(U +Us) = E2(U +Us)

−1E1(U +Us).

Similar to the definition of the Vi ’s, we now define the functions Wi (i = 0, . . . ,m) by
induction by setting (with U being replaced by G)

W0 = U,

W1 = ∂yU = H̃(U +Us) − Ẽ1(U +Us)Ux − E2(U +Us)
−1Ut − E2(U +Us)

−1�(U ),
(3.20)

and for all i = 1, . . . ,m − 1,

Wi+1 = ∂ i+1
y U =

i∑

k=1

∑

j1+···+ jk=i

c j1,..., jk (d
k H̃(U +Us)) · (Wj1 , . . . ,Wjk )

−
i∑

l=1

(
i

l

) l∑

k=1

∑

j1+···+ jk=l

c j1,..., jk (d
k Ẽ1(U +Us)) · (Wj1 , . . . ,Wjk )Wi−l,x

−
i∑

l=1

(
i

l

) l∑

k=1

∑

j1+···+ jk=l

c j1,..., jk (d
kE2(U +Us)

−1) · (Wj1 , . . . ,Wjk )(Wi−l,t − �(Wi−l ))

− Ẽ1(U +Us)Wi,x − E2(U +Us)
−1(Wi,t − �(Wi )).

(3.21)

Now, if U is continuous, then necessarily at y = 0, there should holds

b(Us + G) = �(0, t), U0|y=0 = G(x, 0). (3.22)

More generally, if U is Cm−1 up to the boundary, then at y = 0,

∂
p
y �(0, t) = Cp,G(W0 +Us, . . . ,Wp + ∂

p
y Us), ∀p ∈ {1, . . . ,m − 1} ,

∂
p
y U0|y=0 = Wp|t=0,

(3.23)
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whereCp,G is defined in the same fashion asCp,U0 , and the reasonwhywe have the additional
term ∂

p
y Us in Cp,G is because Us is independent of t but generally depends on y. The

conditions (3.22)–(3.23) express the classical compatibility conditions which are necessary
for the solution U of (3.10) to be Cm−1 near y = 0.

We remark that the compatibility conditions between the boundary data G at y = 0 and
the initial data U0 which are expressed either near t = 0 or near y = 0 are equivalent.

3.3 Approximate Solutions

The disadvantage of this new formulation (3.10)–(3.11) is that the boundary conditions in
both the x-and y-directions and the initial conditionU0 are generally non-zero. To overcome
these difficulties, we will use two approximate solutions lifting the boundary dataG at y = 0
and the initial data U0 at x = 0. The approximate lifting solutions Ug of the boundary data
G is given by the following lemma.

Lemma 3.1 We are given m ≥ 3, the stationary solution Us ∈ Hm+1(�), the initial data
U0 = (u0, v0, φ0) belonging to Hm+1/2(�), the boundary data G = (g1, g2, g3) belonging
to Hm+1/2((0, 1)x × (0, T )) and � = (π1, π2, π3) belonging to Hm+1/2((0, 1)y × (0, T )).
Then there exists a function Ug ∈ Hm+1(� × (0, T )) such that Ug|y=0 = G, and

‖Ug‖Hm+1(�×(0,T )) ≤ C‖G‖Hm+1/2((0,1)x×(0,T ))‖Us‖Hm+1(�×(0,T )), (3.24)

for some constant C > 0 depending on m and �, independent of G and Us.
If we let U 0

0 = U0 −Ug|t=0, �0 = −b(Ug +Us) + �, and

F̃0 = −∂yUg + E2(Ug +Us)
−1(H(Ug +Us) − E1(Ug +Us)Ug,x −Ug,t − �(Ug)

)
,

then U 0
0 ∈ Hm+1/2(�), F̃0 ∈ Hm(� × (0, T )), �0 ∈ Hm+1/2((0, 1)y × (0, T )), and

∂
j
y F̃

0 = 0, ∂
j
yU

0
0 = 0, ∂

j
y�

0 = 0, on y = 0, ∀ j ∈ {0, . . . ,m − 1} . (3.25)

Proof Similar to [3, Lemma 11.1], we can construct {Wi = Wi |y=0}i=0,...,m−1 with U |y=0

= G satisfying (3.20)–(3.21) and

Wi ∈ Hm+1/2−i ((0, 1)x × (0, T )), ∀ i ∈ {0, . . . ,m − 1} .

Then, by the lifting result in Proposition 5.3, we find Ug ∈ Hm+1(� × (0, T )) such that

(∂ iyUg)|y=0 = Wi , ∀ j ∈ {0, . . . ,m − 1} ,

and by the classical inequalities for the Sobolev spaces (see for example [18, Chapter 13],
[3, Appendix C], or [10, Lemma B.1]):

‖Ug‖Hm+1(�×(0,T )) �
m∑

i=0

‖Wi‖Hm+1/2−i ((0,1)x×(0,T ))

� ‖G‖Hm+1/2((0,1)x×(0,T ))‖Us‖Hm+1(�×(0,T )),

(3.26)

where � means ≤ up to a multiplicative absolute constant C .
That F̃0 is in Hm follows in a classical way from the inequalities in [10, Lemma B.1]

(see also [18, Chapter 13] and [3, Appendix C]) and that U 0
0 and �0 are in Hm+1/2 follows

from the trace theorem (see Proposition 5.3). The vanishing of ∂
j
y F̃0 at y = 0 follows from

the construction of Ug and the vanishing of ∂
j
y�

0 and U 0
0 at y = 0 are consequences of the

compatibility conditions in (3.22)–(3.23). 
�
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If we let F0 = E2(Ug + Us)F̃0, then F0 = −LUg+Us (Ug + Us) and F0 has the same
properties as F̃0, that is

F0 ∈ Hm(� × (0, T )), ∂
j
y F

0 = 0, on y = 0, ∀ j ∈ {0, . . . ,m − 1} . (3.27)

We recall that we have set U = Us + Ũ and that we have dropped the tilde in the above.
Now let us reintroduce the tilde and set Ũ = Ug + U , so that U = Us + Ug + U . We then
substitute this expression into the system (3.10) and in (3.12) (where U0 = Ũ0) and drop
the bars. Then the new system for U = U becomes the following initial and boundary value
problem (IBVP):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

LUg+Us+UU = −LUg+Us+U (Ug +Us),

U |t=0 = U0 −Ug,

U |y=0 = 0,

b(Ug +Us +U ) = �.

(3.28)

If U is a solution of the IBVP (3.28), then by use of the induction method we can show that

∂
j
yU |y=0 = 0, ∀ j ∈ {0, . . . ,m − 1}. (3.29)

Indeed, applying ∂
j
y to the equation (3.19) with Us replaced by Us + Ug and H(U + Us)

replaced by −LUg+Us+U (Ug +Us), we find

∂
j+1
y U =

j∑

k=0

∂
j−k
y (E2(U +Us +Ug)

−1[∂ky (−LUg+Us+U (Ug +Us)) − ∂kyUt − ∂ky�(U )
]

+
j∑

k=0

∂
j−k
y (E2(U +Us +Ug)

−1E1(U +Us +Ug))∂
k
yUx .

(3.30)

The result (3.29) then follows from the above identity and U |y=0 = 0. The vanishing
property (3.29) points to the fact that we may extend the system to the smooth domain
(0, 1)x × Ry , which we will now do. We point out that the assumption that the 2d nonlinear
SWE is supercritical in the direction (0, 1) enables us to prescribe all the boundary conditions
at y = 0 in the y-direction and hence by the lifting Lemma 3.1, the boundary conditions at
y = 0 are lifted to 0, which yields the vanishing property (3.29) at y = 0.

3.4 The Extension Problem

We now aim to extend the problem (3.28) to the channel (smooth) domainQ := (0, 1)x ×Ry

and for this reason, we need the following extension result.

Lemma 3.2 (Extension Theorem) There exists a continuous linear operator P = Pm from
Hm(� × [0, T ]) into Hm(Q× [0, T ]) such that for all u ∈ Hm(� × [0, T ]), the restriction
of Pu to � × [0, T ] is u itself, i.e.

Pu|�×[0,T ] = u,

and furthermore Pu has compact support in the y-direction (i.e. inQ× [0, T ]) and satisfies
the estimate

‖Pu‖L∞(Q×[0,T ]) ≤ c3‖u‖L∞(�×[0,T ]), ‖Pu‖Hm (Q×[0,T ]) ≤ c4‖u‖Hm (�×[0,T ]).

where c3 > 1, c4 > 1 only depend on m, and are independent of u.
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Furthermore, we have the following vanishing properties:

(1) if u vanishes on x = 0 (resp. x = 1), then Pu also vanishes on x = 0 (resp. x = 1);
(2) if ∂

p
t u vanishes on t = 0 for all p = 0, . . . ,m − 1, then ∂

p
t Pu also vanishes on t = 0

for all p = 0, . . . ,m − 1.

See [12, Chapter 2] for a detailed proof of Lemma 3.2, and using the Babitch extension
procedure, the L∞-estimate and the vanishing properties come from the reflection formula
(4.8) in [12, Chapter 2]. See also [1,6].

We now describe how to extend the initial dataU0 and the boundary data � to make sure
that the extended data still satisfy the compatibility condition stated in Sect. 3.2. We first
extend the initial data U0 and we find from (3.13) and (3.15) that

b(Us) = �(y, 0) = b(Us +U0), on t = 0;
specifically, we have

⎧
⎪⎨

⎪⎩

us + 2
√
gφs = π1(y, 0) = us + u0 + 2

√
g(φs + φ0), on x = 0,

vs = π2(y, 0) = vs + v0, on x = 0,

us − 2
√
gφs = π3(y, 0) = us + u0 − 2

√
g(φs + φ0), on x = 1,

(3.31)

which is equivalent to
⎧
⎪⎨

⎪⎩

u0 + 2
√
g(φs + φ0) − 2

√
gφs = 0, on x = 0,

v0 = 0, on x = 0,

u0 − 2
√
g(φs + φ0) + 2

√
gφs = 0, on x = 1.

(3.32)

We now set
⎧
⎪⎨

⎪⎩

ξ = u0 + 2
√
g(φs + φ0) − 2

√
gφs,

η = v0,

ζ = u0 − 2
√
g(φs + φ0) + 2

√
gφs,

and we have for all y ∈ (0, 1):

ξ = η = 0, on x = 0, ζ on x = 1.

Using Lemma 3.2, we can extend (ξ, η, ζ ) to (ξ̂ , η̂, ζ̂ ) in the channel domain Q such that
for all y ∈ R:

ξ̂ = η̂ = 0, on x = 0, ζ̂ on x = 1.

Note that the stationary solution Us exists in the channel domain (0, 1)x × Ry , then the
extended initial data Û0 = (û0, v̂0, φ̂0) are now given by the following equations

⎧
⎪⎪⎨

⎪⎪⎩

û0 + 2
√

g(φs + φ̂0) − 2
√
gφs = ξ̂ ,

v̂0 = η̂,

û0 − 2
√

g(φs + φ̂0) + 2
√
gφs = ζ̂ .

We remark that as long as U0 is small enough in the sense of the L∞-norm, then (ξ, η, ζ )

will also be small enough and hence the extended data (ξ̂ , η̂, ζ̂ ) and the extended initial data
Û0.
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We are now going to describe how to extend the boundary data �. We first construct
{V̂i }|i=0,...,m−1 with U = Û0 by (3.17) and (3.18). We now set

�(y, t) = �(y, t) − b(Û0 +Us) −
m−1∑

p=1

t p

p!Cp,Û0
(V̂0, . . . , V̂p), ∀ y ∈ (0, 1),

and we find from the compatibility conditions (3.15) and (3.16) that

∂
p
t �(y, t = 0) = 0, ∀ p = 0, · · · ,m − 1, ∀ y ∈ (0, 1).

Using Lemma 3.2, we can extend � to �̂ in the domain Ry × (0, T ) such that

∂
p
t �̂(y, t = 0) = 0, ∀ p = 0, . . . ,m − 1, ∀ y ∈ Ry .

The extended boundary data �̂ are now given by

�̂(y, t) = �̂(y, t) + b(Û0 +Us) +
m−1∑

p=1

t p

p!Cp,Û0
(V̂0, . . . , V̂p), ∀ y ∈ Ry .

By the construction of Û0 and �̂, we can see that Û0 and �̂ satisfy the compatibility conditions
(3.15) and (3.16) for all y ∈ Ry .

Finally, we also use Lemma 3.2 to extend Ug to Ûg in the domain Q × (0, T ).
Now, to solve the IBVP (3.28), we first consider the following extension problem, that is

we look for a solution Û satisfying
⎧
⎪⎨

⎪⎩

LÛg+Us+Û Û = −LÛg+Us+Û (Ûg +Us), (x, y) ∈ Q = (0, 1)x × Ry,

Û |t=0 = Û0 − Ûg,

b(Ûg +Us + Û ) = �̂.

(3.33)

We are going to apply [3, Theorem 11.1] to the IBVP (3.33) and the use of [3] is legitimate
since the domain (0, 1)x ×Ry is smooth. In order to exactly fit the statements in [3, Theorem
11.1], we search for a solution V := Ûg + Û satisfying

⎧
⎪⎨

⎪⎩

LV+Us V = −LV+UsUs, (x, y) ∈ Q = (0, 1)x × Ry,

V |t=0 = Û0,

b(V +Us) = �̂.

(3.34)

The corresponding functions h, b, and b in [3, Theorem 11.1] are as follows:

h(V ) := −�(V ) − LV+UsUs, b(V ) := b(V +Us), b = �̂, (3.35)

and we choose U to be the open ball in the space Hm(Q × (0, T )) with radius δ/(4νm),
where νm denotes the norm of the Sobolev embedding Hm(Q×(0, T )) ↪→ L∞(Q×(0, T )).
Hence, if V ∈ U , then

‖V ‖L∞(Q×(0,T )) ≤ δ/4,

and then Us + V satisfies the mixed hyperbolic condition (1.5). Therefore, it is not hard
to verify that the conditions (CH), (T), (NCb), (Nb), (UKLb) in [3, pp. 317–319] hold in
this context. The compatibility conditions hold true for the extended data Û0 and �̂ by our
construction. We apply [3, Theorem 11.1] with � = Q, and the condition h(0) = 0 follows
from (3.7) and the condition b(0) ≡ b(·, t = 0) follows from (3.13) and the construction
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of �̂; we arrive at the local well-posedness of the system (3.33) if the initial data Û0 ∈ U
belongs to Hm+1/2(Q).

Once we have a unique solution V for the system (3.34) and hence a unique solution
Û = V − Ûg for the extension IBVP (3.33), we now set U = Û |�×(0,T ). Then U satisfies
the IBVP (3.28) except that we need to verify that U |y=0 = 0. In order to show U |y=0 = 0,
restricting the extension IBVP (3.33) to y = 0 yields

⎧
⎪⎨

⎪⎩

LÛg+Us+Û |y=0
Û |y=0 = −LÛg+Us+Û |y=0

(Ûg +Us), on y = 0,

Û |t=0,y=0 = (Û0 − Ûg)|y=0,

b(Ûg +Us + Û |y=0) = �̂, on y = 0.

(3.36)

We observe from (3.22) and (3.27) that V = Ûg|y=0 = G is a solution of the following
system

⎧
⎪⎨

⎪⎩

LV+Us |y=0V = −LV+Us |y=0Us |y=0, x ∈ (0, 1)x ,

V |t=0 = Û0|y=0 = U0|y=0,

b(V +Us |y=0) = �̂|y=0 = �|y=0,

(3.37)

and the uniqueness result in [3, Theorem 11.1] implies that V = Ûg|y=0 is the unique
solution of (3.37), and hence we can conclude from (3.36) that Û |y=0 = 0. Therefore,
U = Û |�×(0,T ) satisfies the IBVP (3.28) and consequently, the system (3.10)–(3.11) admits
a solution Ug +U .

3.5 The Main Result

We now conclude by stating the main result proved in the previous subsections.

Theorem 3.1 We are given a rectangular domain � = (0, 1)x × (0, 1)y , a real number
T > 0, an integer m ≥ 31, the stationary solution Us ∈ Hm+1(�) satisfying (3.8) (i.e.
the mixed hyperbolic condition (1.5)), the initial data U0 = (u0, v0, φ0) belonging to
Hm+1/2(�), the boundary data G = (g1, g2, g3) belonging to Hm+1/2((0, 1)x × (0, T ))

and � = (π1, π2, π3) belonging to Hm+1/2((0, 1)y × (0, T )). We assume the condition
(3.13) and the compatibility conditions (3.15)–(3.16) and (3.22)–(3.23), which are neces-
sary to obtain a smooth solution in Hm(�× (0, T )). We also assume that the initial data U0

is small enough in the space Hm(�) so that the extended function Û0 in Sect. 3.4 belongs to
the ball U . Then there exists T ∗ > 0 ( T ∗ ≤ T ) such that the system (3.10)–(3.11) admits a
unique solution U ∈ Hm(� × (0, T ∗)).

Proof The existence part is already proved in the previous subsections by considering the
extension problem. We are now going to prove the uniqueness part. Suppose there are two
solutions U1 and U2 belonging to Hm(� × (0, T ∗)) that satisfy the system (3.10)–(3.11),
and set W = U1 −U2. Then W satisfies

1 The assumption m ≥ 3 allows us to control the L∞-norm of ∇U by the Sobolev embedding theorem, see
also [3, Theorem 11.1].
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

LUs+U1W = (LUs+U2 − LUs+U1)(U2 +Us),

W = 0, on t = 0,

W = 0, on y = 0,

db(Us +U1) · W = b(Us +U1) − b(Us +U2) − db(Us +U1) · W, on x = 0, 1.

(3.38)

In order to obtain the L2-estimate for W , as in [10], we set S0 = diag(1, 1, g/(φs + φ1),
which is positive-definite; we denote by 〈·, ·〉 the L2-inner product in L2(�). Multiplying
(3.38)1 with S0 and taking the inner product in L2(�) with W , we obtain that

〈S0Wt ,W 〉 + 〈S0E1(Us +U1)Wx ,W 〉 + 〈S0E2(Us +U1)Wy,W 〉 + 〈S0�(W ),W 〉
= 〈(LUs+U2 − LUs+U1)(U2 +Us),W 〉. (3.39)

We are now going to estimate the terms in (3.39). Direct calculation and integration by
parts give

〈S0�(W ),W 〉 = 0,

〈S0Wt ,W 〉 = 1

2

d

dt
〈S0W,W 〉 − 1

2
〈(S0)tW,W 〉. (3.40)

Note that U1 satisfies the mixed hyperbolic condition (1.5), hence, the matrix S0E2(Us +
U1) is positive definite. Using the boundary conditions at y = 0 and integrating by parts
yield

〈S0E2(Us +U1)Wy,W 〉 = 1

2
〈S0E2(Us +U1)W,W 〉L2((0,1)x )

∣
∣
y=1

−1

2
〈(S0E2(Us +U1))yW,W 〉

≥ −1

2
〈(S0E2(Us +U1))yW,W 〉; (3.41)

integrating by parts also yields

〈S0E1(Us +U1)Wx ,W 〉 = 1

2
〈S0E1(Us +U1)W,W 〉L2((0,1)y)

∣
∣x=1
x=0

−1

2
〈(S0E1(Us +U1))xW,W 〉. (3.42)

We now recall relation (7) in [10, Sect. 2.1], whichwill be useful for handling the boundary
terms at x = 0 and x = 1 in (3.42). The relation (7) in [10, Sect. 2.1] can be restated as the
following: there exists ε0 > 0 and C0 > 0 such that

(
S0E1(Us +U1)W,W

)∣
∣x=1
x=0 ≥ ε0|W |2 − C0|db(Us +U1)W |2, ∀W ∈ R

3, (3.43)

where (·, ·) (resp. |·|) denotes the standard inner product (resp. norm) on R
3. Taking (3.43)

into account, we deduce from (3.42) that

〈S0E1(Us +U1)Wx ,W 〉 ≥ ε0‖W‖2L2((0,1)y)
− C0‖db(Us +U1)W‖2L2((0,1)y)

− 1

2
〈(S0E1(Us +U1))xW,W 〉,

(3.44)

where ε0,C0 > 0 only depend on c0, c1, c2, g.
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Combining these estimates, we first obtain from (3.39) that

1

2

d

dt
〈S0W,W 〉 + ε0‖W‖2L2((0,1)y)

≤ 1

2
〈(S0)tW,W 〉 + 1

2
〈(S0E2(Us +U1))yW,W 〉

+ 1

2
〈(S0E1(Us +U1))xW,W 〉 + 〈(LUs+U2 − LUs+U1)(U2 +Us),W 〉

+ C0‖db(Us +U1)W‖2L2((0,1)y)
.

(3.45)

As a preliminary, since φ1 satisfies the mixed hyperbolic condition (1.5), we first have

〈W,W 〉 = 〈S−1
0 S0W,W 〉 ≤ ‖S−1

0 ‖L∞〈S0W,W 〉 ≤ max(1, g/c0)〈S0W,W 〉.
We now estimate the right-hand side of (3.45) term by term.

〈(S0)tW,W 〉 = 〈(S0)tW,W 〉 ≤ ‖(S0)t‖L∞〈W,W 〉
≤ C(‖(Us +U1)t‖L∞)〈W,W 〉 ≤ C(‖Us‖H3 , ‖U1‖H3)〈S0W,W 〉,(3.46)

where we have used the Sobolev embedding theorem and similarly, we have

〈(S0E2(Us +U1))yW,W 〉 ≤ C(‖Us‖H3 , ‖U1‖H3)〈S0W,W 〉,
〈(S0E1(Us +U1))xW,W 〉 ≤ C(‖Us‖H3 , ‖U1‖H3)〈S0W,W 〉, (3.47)

where C(· · · ) > 0 only depends on the parameters in its parenthesis and may vary from line
to line. By the mean-value theorem, we obtain c′ > 0, depending only on the L∞-norms of
Us +U1 and Us +U2 such that

〈(LUs+U2 − LUs+U1)(U2 +Us),W 〉
= 〈(E1(Us +U2) − E1(Us +U1))(U2 +Us)x ,W 〉

+ 〈(E2(Us +U2) − E2(Us +U1))(U2 +Us)y,W 〉
≤ c′(‖(U2 +Us)x‖L∞ + ‖(U2 +Us)y‖L∞)〈W,W 〉
≤ C(‖Us‖H3 , ‖U1‖H3 , ‖U2‖H3)〈S0W,W 〉.

(3.48)

By the second-order Taylor expansion of b, we obtain that

‖db(Us +U1)W‖2L2((0,1)y)
= ‖b(Us +U1) − b(Us +U2) − db(Us +U1) · W‖2L2((0,1)y)

≤ C(‖Us‖L∞ , ‖U1‖L∞ , ‖U2‖L∞)‖W 2‖2L2((0,1)y)

≤ C(‖Us‖H3 , ‖U1‖H3 , ‖U2‖H3)‖W‖2L∞((0,1)y)‖W‖2L2((0,1)y)
;

(3.49)

Using the Cauchy-Schwarz inequality and noting that W = 0 at t = 0, we find

‖W‖L∞((0,1)y) ≤ ‖W‖2L∞ ≤ T 2‖Wt‖2 ≤ T 2(‖U1‖H1 + ‖U2‖H1)2.

Therefore, upon diminishing T again such that

T 2C(‖Us‖H3 , ‖U1‖H3 , ‖U2‖H3)(‖U1‖H1 + ‖U2‖H1)2 ≤ ε0,

the boundary term in the right-hand side of (3.45) is less than the left-hand side of (3.45),
and hence we can derive from (3.45) the following differential equation

d

dt
〈S0W,W 〉 ≤ C(‖Us‖H3 , ‖U1‖H3 , ‖U2‖H3)〈S0W,W 〉.
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Since the solutions U1,U2 and the stationary solution Us belong to H3, and together with
the initial condition W = 0 at t = 0, the Gronwall lemma implies that 〈S0W,W 〉 ≡ 0 and
hence W ≡ 0. We thus completed the proof of Theorem 3.1. 
�
3.6 An Example of the Compatibility Conditions

Since the compatibility conditions stated in Sect. 3.2 are very dense and technical, we now
aim to present those compatibility conditions explicitly in the (least) case when m = 32.

Recall that H(U +Us), H̃(U +Us), and Ẽ1(U +Us) are already defined in Sect. 3.2. The
compatibility conditions at t = 0 are (3.15) and (3.16), which can be written explicitly as

�(y, 0) = b(Us +U0), G(x, 0) = U0|y=0,

∂t�(y, 0) = db(Us +U0) · V1, ∂tG(x, 0) = V1|y=0,

∂t t�(y, 0) = (d2b(Us +U0) · V1)V1 + db(Us +U0) · V2, ∂t tG(x, 0) = V2|y=0,

(3.50)

where V1 and V2 are defined by

V1 = H(U0 +Us) − E1(U0 +Us)U0,x − E2(U0 +Us)U0,y − �(U0),

V2 = dH(U0 +Us) · V1 − (dE1(U0 +Us) · V1)U0,x − (dE2(U0 +Us) · V1)U0,y

− E1(U0 +Us)V1,x − E2(U0 +Us)V1,y − �(V1).

The compatibility conditions at y = 0 are (3.22) and (3.23) and can also be written explicitly
as

�(0, t) = b(Us + G), U0|y=0 = G|t=0,

∂y�(0, t) = db(Us + G) · (Us,y + W1), ∂yU0|y=0 = W1|t=0,

∂yy�(0, t) = (d2b(Us + G) · (Us,y + W1))(Us,y + W1)

+ db(Us + G) · (Us,yy + W2), ∂yyU0|y=0 = W2|t=0, (3.51)

where W1 and W2 are defined by

W1 = H̃(G +Us) − Ẽ1(G +Us)Gx − E2(G +Us)
−1(Gt + �(G)),

W2 = dH̃(G +Us) · (W1 +Us,y) − (dẼ1(G +Us) · (W1 +Us,y))Gx

− (d(E2(G +Us)
−1) · (W1 +Us,y))(Gt + �(G))

− Ẽ1(G +Us)W1,x − E2(G +Us)
−1(W1,t + �(W1)).

Note that written component by component, the first compatibility condition (3.50)1 is
equivalent to (3.31).

4 An Invariance Property for the Shallow Water Equations and
Application

In this section, the goal is to show that we are able to solve the IBVP for the 2d inviscid SWE
under the fully hyperbolic condition (1.3) for a more general orientation of the rectangular
domain� as long as we choose the rectangular domain properly. In order to achieve this goal,
we first prove an invariance property for the fluid equations (in particular for the 2d inviscid

2 Recall that we require m ≥ 3 in Theorem 3.1.
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SWE) and then show how to choose the domain. The results of Sect. 4.1 are essentially
well-known but necessary to classify the notations.

4.1 An Invariance Property for the Fluid Equations

The partial differential equations arising from geophysical fluid dynamics are generally
derived from physical laws, in particular, the conservation of mass and conservation of
momentum. A basic principle in physics is that the physical laws should be independent of
the reference frame chosen. Hence, we expect that the fluid equations are also independent of
the coordinate system chosen and we call that the invariance property for the fluid equations.
We first prove the invariance property for the 2d inviscid SWE and then extend it to more
general fluid equations. We recall the 2d inviscid SWE (1.1) as

⎧
⎪⎨

⎪⎩

ut + uux + vuy + gφx − f v = 0,

vt + uvx + vvy + gφy + f u = 0.

φt + uφx + vφy + φ(ux + vy) = 0.

For the purpose of unifying notations in this section, we set u = (u, v)t and x = (x1, x2)
= (x, y); then we can rewrite the 2d inviscid SWE as

{
φt + (u · ∇)φ + φ∇ · u = 0,

ut + (u · ∇)u + g∇φ + Fu = 0,
(4.1)

where

F =
(
0 − f
f 0

)

.

We are going to show that the equations in (4.1) are invariant under a coordinate transfor-
mation and a variable change of the velocity (adapted to the coordinate transformation). We
adopt the convention that the vectors in R2 are viewed as column vectors and the dot product
on R

2 are defined as

y · z = yt z, ∀ y, z ∈ R
2.

Let T be a 2 × 2 orthogonal matrix, that is T t T = I2, where I2 is the 2 × 2 identity matrix.
Since T is orthogonal, we have

T y · T z = T t y · T t z = y · z, ∀ y, z ∈ R
2. (4.2)

We now introduce the new coordinate system x′ by setting

x′ = T x, x = T t x′,

and the new variables u′ (adapted to the coordinate transformation) by setting

u′ = T u, u = T tu′. (4.3)

Writing the gradient∇ as a column vector∇ = (∂x1 , ∂x2)
t , direct computations show that

∇′ = T∇, ∇ = T t∇′,
�′ = ∇′ · ∇′ = T∇ · T∇ = ∇ · ∇ = �,

(4.4)

where ∇′ and �′ are the gradient and laplacian in the new coordinate system x′.
The invariance property for the 2d inviscid SWE (4.1) reads

123



780 J Dyn Diff Equat (2015) 27:763–785

Proposition 4.1 In the new coordinate system x′, the variables (u′, φ′) defined by u′
= u′(x ′) = T u(x ′) and φ′ = φ(x ′) satisfy the same set of equations (4.1) as (u, φ),
that is

{
φ′
t + (u′ · ∇′)φ′ + φ′∇′ · u′ = 0,

u′
t + (u′ · ∇′)u′ + g∇′φ′ + Fu′ = 0.

(4.5)

Proof We first show that (u′, φ′) satisfies the first equation (4.5)1. Using (4.2)–(4.4), we
compute

(u′ · ∇′)φ′ = (T u · T∇)φ′ = (u · ∇)φ,

and

∇′ · u′ = T∇ · T u = ∇ · u,

which, together with (4.1)1, implies that in the new coordinate system x′, the new variables
(u′, φ′) satisfy (4.5)1.

For the second equation (4.5)2, in the new variables (u′, φ′), we infer from (4.1)2 that

T t∂tu′ + (T tu′ · ∇)T tu′ + g∇φ′ + FT tu′ = 0,

which, together with (4.4), reads in the new coordinate system x′:

T t∂tu′ + (T tu′ · T t∇′)T tu′ + gT t∇′φ′ + FT tu′ = 0. (4.6)

Observe that any 2 × 2 orthogonal matrix is of the form

T =
(

β −α

α β

)

, for some α, β ∈ R, α2 + β2 = 1,

and direct calculations show the commutation relation FT t = T tF . We then can simplify
(4.6) as

T t∂tu′ + T t (u′ · ∇′)u′ + gT t∇′φ′ + T tFu′ = 0.

which, multiplying by T on both sides, is (4.5)2. We thus completed the proof. 
�
We now extend Proposition 4.1 to more general fluid equations, which read

{
∂tρ + u · ∇ρ + ρ∇ · u = 0,

∂tu − μ�u + (u · ∇)u + �(ρ)∇ p = 0,
(4.7)

where the gradient ∇ and Laplacian � are with respect to x = (x1, · · · , xd)t ∈ R
d , and

ρ ∈ R is the mass-like quantity (e.g. density), u = (u1, · · · , ud) ∈ R
d the velocity, p ∈ R

the pressure, μ the viscosity, and �(ρ) ∈ R a scalar function of ρ. The first equation in (4.7)
generally comes from the conservation of mass and the second equation in (4.7) from the
conservation of momentum. Again, the vectors in R

d are viewed as column vectors and the
dot product on R

d are defined as

y · z = yt z, ∀ y, z ∈ R
d .

Let T be a d × d orthogonal matrix, that is T t T = Id , where Id is the d × d identity
matrix. Since T is orthogonal, we have

T y · T z = T t y · T t z = y · z, ∀ y, z ∈ R
d . (4.8)

123



J Dyn Diff Equat (2015) 27:763–785 781

We now introduce the new coordinate system x′ by setting

x′ = T x, x = T t x′,

and the new variables u′ (adapted to the coordinate transformation) by setting

u′ = T u, u = T tu′. (4.9)

Then the invariance property for the fluid equations (4.7) reads

Proposition 4.2 In the new coordinate system x′, the variables (u′, ρ′) defined by u′
= u′(x ′) = T u(x ′) and ρ′ = ρ(x ′) satisfy the same set of equations (4.7) as (u, ρ), that is

{
∂tρ

′ + u′ · ∇′ρ′ + ρ′∇′ · u′ = 0,

∂tu′ − μ�′u′ + (u′ · ∇′)u′ + �(ρ′)∇′ p = 0.
(4.10)

The proof of Proposition 4.2 is similar to that of Proposition 4.1, we thus omit the details
here.

We now consider some specific fluid equations, where the form of these equations is
slightly different from (4.7).

Example 1—Navier–Stokes equations The famous (incompressible) Navier-Stokes equa-
tions read

{
ut − μ�u + (u · ∇)u + ∇ p = 0,

∇ · u = 0,
(NSE)

where u is the velocity,μ the viscosity, and p is the pressure. We can infer from the proofs of
Propositions 4.1–4.2, that the incompressible Navier-Stokes equations have the invariance
property.

Example 2—Euler equations The motion of a compressible, inviscid fluid in the absence
of heat convection is governed by the Euler equations:

⎧
⎪⎨

⎪⎩

∂tρ + u · ∇ρ + ρ∇ · u = 0,

∂tu + (u · ∇)u + ρ−1∇ p = 0,

∂t e + u · ∇e + ρ−1 p∇ · u = 0.

(EE)

where ρ is the density, u the velocity, e the internal energy, and p the pressure. The equation
of state (pressure law) reads

p = p(ρ, e).

The last equation in (EE) representing energy conservation law is similar to the first
equation in (EE) representing the mass conservation law so that from the proofs of Proposi-
tions 4.1–4.2, we can deduce that the Euler equations have the invariance property.

4.2 The Choice of the Domain

We return to the inviscid SWE and first introduce a notion to express the intrinsic structure of
the 2d inviscid SWE and then show that the proper domain, which will lead to well-posedness
result, is related to the intrinsic structure of the 2d inviscid SWE.

Definition 4.1 The 2d nonlinear inviscid SWE are said to be supercritical (resp. subcritical)
in the direction �l = (α, β) with α2 + β2 = 1 (α, β are constants) if the following holds

(uα + vβ)2 > (resp. <) gφ. (4.11)
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We observe that in the fully hyperbolic case, we are able to construct a supercritical
direction for the 2d nonlinear inviscid SWE. We first rewrite the fully hyperbolic condition
(1.3) as:

(
u · u√

u2 + v2
+ v · v√

u2 + v2

)2
> gφ,

and since in this article we consider local smooth solutions, hence we could choose two
constants ū, v̄ such that in a short time interval the differences |u − ū| and |v − v̄| are
sufficiently enough so that in the fully hyperbolic case, the 2d nonlinear inviscid SWE are
supercritical in the direction (ū,v̄)√

ū2+v̄2
. Therefore, without loss of generality, we can assume

that

The 2d nonlinear inviscid SWE is supercritical in the direction �l, (4.12)

where the direction �l = (α, β) with α2 + β2 = 1. We then choose the domain � to be a
rectangle with one side parallel to the direction �l = (α, β). As we already saw in Sect. 3,
the assumption (4.12) enables us to extend the rectangular domain to a channel (smooth)
domain, which allows us to apply the general results from [3] for the IBVP of the first-order
hyperbolic equations in smooth domains. First, by the invariance property of the nonlinear
SWE, we see that if we introduce the coordinate transformation

(
x ′
y′

)

= T

(
x
y

)

:=
(

β −α

α β

) (
x
y

)

,

and the corresponding variables change
(
u′
v′

)

= T

(
u
v

)

:=
(

β −α

α β

) (
u
v

)

,

then we know that in the new coordinate (x ′, y′) system, the variables (u′, v′, φ′) defined by
u′ = u′(x ′, y′), v′ = v′(x ′, y′), and φ′ = φ(x ′, y′) satisfy the same set of equations (1.1) as
(u, v, φ) and the new domain�′ denoting the image of� under the coordinate transformation
is a rectangular domain with one side parallel to the direction (0, 1). We now observe that
the original assumption (4.12) becomes that the 2d inviscid SWE satisfied by (u′, v′, φ′) are
supercritical in the direction (0, 1) in the new coordinate (x ′, y′) system, that is

v′2 > gφ′.

Clearly, we have

u′2 + v′2 = (u′, v′) · (u′, v′)t = (u, v)T t T (u, v)t = (u, v) · (u, v)t = u2 + v2 > gφ = gφ′.

Therefore, in the new coordinate system (x ′, y′), we are going back to the assumptions
made in (1.3)–(1.4) for the 2d inviscid SWE satisfied by (u′, v′, φ′) and hence the local
well-posedness result could be achieved.

Remark 4.1 In order to solve the IBVP associated to the SWE system (1.1), we need to prop-
erly choose the domain� according to the intrinsic structure of the SWE system. Specifically,
in the fully hyperbolic case, we know that the SWE system (1.1)must be supercritical in some
direction (e.g. the direction �l = (0, 1)) and we choose the domain � to be a rectangle with
one side parallel to the direction �l. We remark that we could also choose a curvilinear polyg-
onal domain as long as such a domain could be extended to a curvilinear channel (smooth)
domain in the direction �l with periodicity. For example, Fig. 1 below provides a curvilinear
polygonal domain that could be extended to a curvilinear channel (smooth) domain in the
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Fig. 1 The curvilinear polygonal
domain

direction �l = (0, 1). For the sake of simplicity, we consider the rectangular domain in this
article in order to simplify the presentation.
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Interpolation and Trace Theorems

In this appendix, we extend the classical interpolation and trace results (see [1,13]) in smooth
domains to Lipschitz domains by using the results in [6].

Let d be a positive integer, we first recall a well known extension result (see e.g. [6,
Theorem 1.4.3.1]).

Proposition 5.1 (Extension theorem) Let U be a bounded open subset ofRd with a Lipschitz
boundary and let s > 0. Then there exists a continuous linear operator Ps from Hs(U) into
Hs(Rn) such that for all u ∈ Hs(U), the restriction of Psu to U is u itself, that is

Psu|U = u.

By Proposition 5.1, each function u ∈ Hs(U) is the restriction of a function Psu ∈
Hs(Rd). Note that the extension operator Ps can be chosen independently of s (see [2,16]).

From [13, Chapter I, Sect. 7.1], we have the following interpolation result:

Hs(Rd) = [Hm(Rd), L2(Rd)]θ , 0 ≤ θ ≤ 1, s = (1 − θ)m, (5.1)

and more generally

Hs(Rd) = [Hs1(Rd), Hs2(Rd)]θ , 0 ≤ θ ≤ 1, s1, s2 ∈ R, s = (1 − θ)s1 + θs2. (5.2)

From [13, Chapter I, Section 9], the interpolation equalities (5.1)–(5.2) have been extended
to the Sobolev spaces with bounded smooth domains. Combining the proof of [13, Chap-
ter I, Theorem 9.1] and Proposition 5.1, we can conclude that the interpolation equalities
(5.1)–(5.2) also hold for the Sobolev spaces for bounded Lipschitz domains.

Proposition 5.2 (Interpolation theorem) Let U be a bounded open subset of Rd with a Lip-
schitz boundary. Then there holds

Hs(U) = [Hm(U), L2(U)]θ , 0 ≤ θ ≤ 1, s = (1 − θ)m, m > 0 integer,

and

Hs(U) = [Hs1(U), Hs2(U)]θ , 0 ≤ θ ≤ 1, s1, s2 > 0, s = (1 − θ)s1 + θs2.
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Proof To prove the first interpolation equality, we temporally denote by H̃ s(U) the right-
hand side of the first interpolation equality. Thanks to the extension result Proposition 5.1,
similar arguments for [13, Chapter I, Theorem 9.1] show that the space H̃ s(U) coincides
with the space of restrictions to U of the elements of Hs(Rd), which is Hs(U). This shows
the first interpolation equality. The second interpolation equality follows from the first one
and the reiteration theorem [13, Chapter I, Theorem 6.1]. 
�

We remark that the reason why we need either m > 0 or s1, s2 > 0 in Proposition 5.2
unlike (5.2) is that we only have the extension result for s > 0 in Proposition 5.1.

The trace theorem [13, Chapter I, Theorem 3.2] with X = Hm(U) and Y = L2(U) reads

Proposition 5.3 (Trace theorem) Let u ∈ Wm(0,∞), where

Wm(0,∞) =
{

u | u ∈ L2(0,∞; Hm(U),
dmu

dtm
∈ L2(0,∞; L2(U))

}

.

Then

d j u

dt j
(0) ∈ [Hm(U), L2(U)]( j+1/2)/m = Hm− j−1/2(U), 0 ≤ j ≤ m − 1,

and the mapping

u �→
{
d j u

dt j
(0) | 0 ≤ j ≤ m − 1

}

of Wm(0,∞) into
m−1∏

j=0

Hm− j−1/2(U)

is onto.
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