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Abstract We study the existence and nonexistence of traveling waves of a general diffusive
Kermack–McKendrick SIR model with standard incidence where the total population is not
constant. The three classes, susceptible S, infected I and removed R, are all involved in the
traveling wave solutions. We show that the minimum wave speed of traveling waves for the
three-dimensional non-monotonic system can be derived from its linearizaion at the initial
disease-free equilibrium. The proof in this paper is based on Schauder fixed point theorem
and Laplace transform. Our study provides a promisingmethod to deal with high dimensional
epidemic models.
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1 Kermack–McKendrick SIR Model with Standard Incidence

Compartmental models describing the transmission of infectious diseases have been exten-
sively studied in the literature, see e.g. [1,8]. The simple Kermack–McKendrik model [17]
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is the starting point for many epidemic models. In a closed community consisting of sus-
ceptible individuals (S(t)), infected individuals (I (t)) and removed individuals (R(t)), the
deterministic susceptible-infected-removed (SIR) model is given as follows.

S′ = −β̃SI, (1.1)

I ′ = β̃SI − γ I, (1.2)

R′ = γ I, (1.3)

where β̃ is the transmission coefficient, γ is the recovery rate. Adding the three equations
together implies that the total population N = S + I + R is constant.

It is reasonable to assume that the total population is fixed if the disease spreads quickly
in the community and can be cleared within a short time. However, if the population has a
significant change or the disease causes enough deaths to influence the population size, one
may not have a constant total population (cf. [23]). To account for this, many researchers
have proposed epidemic models with transmission coefficient taking the following form.

β̃(N ) = C(N )

N
, (1.4)

where N = S + I + R is the total population size and C(N ) is the adequate transmission rate.
The mass-action incidence corresponds to the choice C(N ) = βN and standard incidence
corresponds to C(N ) = β, where β is a positive constant. In general, C(N ) is a non-
decreasing function with respect to N . For example, Heesterbeek and Metz chose C(N ) =

aN
1+bN+√

1+2bN
in [10]. Mena-Lorca and Hethcote [23] chose C(N ) = λNα with α = 0.05.

Other types of C(N ) can be found in [1,24] and references therein.
Spatial structures play an important role in describing the spreading of communicable dis-

eases. In designing effective prevention and control strategies, one should take into account
various spatial factors such as immigration, vaccination, individual movements, border con-
trol and quarantine. This has been witnessed in recent global epidemic outbreaks of SARS,
H1N1 and avian influenza [1,2]. Traveling wave solutions of spatial epidemic models repre-
sent the transition process of an outbreak from the initial disease-free equilibrium to another
disease-free state; and describe the propagation of the pathogen as a wave with a fixed shape
and a fixed speed. The study of traveling wave solutions provides important insight into the
spatial patterns of invading diseases.

One of the key quantities in spatial models is the invasion speed of a species or infectious
disease in a population. The spreading speed of a spatialmodel,which can be obtained through
the limiting process of a sequence of solutions of the model; but independent of their initial
conditions, is widely used to describe the invasion speed [19,33]. For cooperative systems,
it is shown that the spreading speed is the same as the minimum wave speed [19,33]. An
analogous result holds for the ray speed defined in terms of the spreading speed and certain
direction [32]. For a large class of non-cooperative systems, one of the authors [28] proved that
the spreading speed is the same as the minimumwave speed. For many other non-cooperative
systems including the diffusive SIR models, it remains a challenging problem to establish
a similar result. Nevertheless, one could investigate traveling wave solutions and calculate
corresponding minimum wave speed. The formula of the minimum wave speed given below
indicates that the infectious disease spreads linearly in time. Moreover, the minimum wave
speed can be predicted quantitatively as a function of measurable parameters estimated from
previous outbreaks of similar infectious diseases.
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Several previous works have studied traveling wave solutions of basic diffusive SIR
models. Källén [16] and Hosono and Ilyas [12] considered the existence of traveling wave
solutions for the following diffusive epidemic model with mass-action incidence.

∂t S = d1∂xx S − βSI ; (1.5)

∂t I = d2∂xx I + βSI − γ I. (1.6)

In particular, with the aid of the shooting technique and invariant manifold theory developed
by Dunbar [6,7], Hosono and Ilyas [13] proved that if the basic reproduction number R0 :=
βS−∞/γ > 1, then for each c ≥ c∗ = 2

√
d2(βS−∞ − γ ), system (1.5–1.6) has a traveling

wave solution (S(x+ct), I (x+ct)) satisfying S(−∞) = S−∞, I (±∞) = 0, S(∞) < S−∞.

On the other hand, there is no traveling solution for (1.5–1.6) if R0 := βS−∞/γ ≤ 1. In
a more recent work [29], Wang et al. proved a similar result for the following diffusive
Kermack–McKendrick SIR model with standard incidence.

∂t S = d1∂xx S − βSI

S + I
; (1.7)

∂t I = d2∂xx I + βSI

S + I
− γ I. (1.8)

The above model reflects that if the infected individuals are removed from the population,
they are no longer involved in the contact and disease transmission ([1]). It is also noted that
the total population S + I is not constant.

In this paper, we shall examine amore general diffusiveKermack–McKendrick SIRmodel
with the assumption that someof the infective individualswill be removed from the population
due to disease-induced death or quarantine, but others will be recovered and return in the
community. The total population becomes N = S + I + R, where R is the number of
recovered individuals. Because of mobility of individuals it is natural to assume that the total
population is not fixed. For simplicity, we will concentrate on standard incidence rate (i.e.
C(N ) = β), and study the following diffusive Kermack–McKendrick SIR model.

∂t S = d1∂xx S − βSI

N
, (1.9)

∂t I = d2∂xx I + βSI

N
− γ I − δ I, (1.10)

∂t R = d3∂xx R + γ I, (1.11)

where N = S+ I +R is the total population. The constants d1, d2 and d3 are the diffusion rates
of the susceptible, infective and recovered individuals, respectively. γ > 0 is the recovery
rate and δ ≥ 0 is the death/quarantine rate of infective individuals.

As the model focuses on the outbreak situation and ignores the natural death process, the
model system (1.9–1.11) has infinitely many disease-free equilibria (S, 0, R) with arbitrary
S ≥ 0, R ≥ 0. If we consider the corresponding spatial-homogenous ordinary differential
system and linearize it around the disease-free and recovered-free equilibrium (S−∞, 0, 0),
we obtain a simple linear equation for the infective individuals:

I ′(t) = β I − (γ + δ)I.

A standard application of next-generation method [5,25] gives an explicit formula for the
basic reproduction number

R0 = β

γ + δ
.
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As we shall see later, the basic reproduction number is an important threshold parameter in
the existence theorem of traveling wave solutions.

2 Traveling Wave Solutions

A traveling wave solution is a special type of solution with the form (S(x + ct), I (x +
ct), R(x+ct)), which represents the transition process of an outbreak from the initial disease-
free equilibrium (S(−∞), 0, R(−∞)) to another disease-free state (S(∞), 0, R(∞)). It
is readily seen that the traveling wave solutions satisfy the following ordinary differential
system.

cS′ = d1S′′ − βSI

S + I + R
; (2.1)

cI ′ = d2 I ′′ + βSI

S + I + R
− (γ + δ)I ; (2.2)

cR′ = d3R′′ + γ I. (2.3)

For cooperative systems, the minimum wave speed can be determined from linearization at
low population densities [18,33,34]. Building on prior work, one of the authors [28] showed
that, for cooperative systems and a large class of non-cooperative systems, the speeds of
travelingwave solutions are simply the eigenvalues of the parameterized Jacobianmatrix of its
linearized system at the initial state and therefore the so-called minimum speed is simply the
minimum of the eigenvalues. Lui [21] developed an analogous formula for recursion systems,
which was later extended by Weinberger et al. [33] to cooperative systems of reaction-
diffusion equations based on the time 1 maps. Here, we follow [28] and consider a system
of reaction-diffusion equations

ut = duxx + f(u) for x ∈ R, t ≥ 0, (2.4)

where u = (u1, . . . , uN ), d = diag(d1, d2, . . . , dN ) with di > 0 for i = 1, . . . , N . The
reaction function is given by

f(u) = ( f1(u), f2(u), . . . , fN (u)).

We are looking for a traveling wave solution of the form u(x + ct) with c being the traveling
speed. Substituting u(x, t) = u(x + ct) into (2.4) and letting ξ = x + ct , we obtain the
following system.

du′′(ξ) − cu′(ξ) + f(u(ξ)) = 0 for ξ ∈ R. (2.5)

Now, we look for a solution of the form (ui ) = (
eλξ ηi

λ

)
, λ > 0, ηλ = (ηi

λ) >> 0 for the
linearization of (2.5) at an initial equilibrium E , and arrive at the following system

diag
(
diλ

2 − cλ
)
ηλ + f ′(E)ηλ = 0,

which can be rewritten as the following eigenvalue problem.

1

λ
Aληλ = cηλ, (2.6)

where
Aλ = (ai, j

λ ) = diag(diλ
2) + f ′(E).
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Let 
(Aλ) be the spectral radius of Aλ for λ ∈ [0,∞), and define

�(λ) := 1

λ

(Aλ) > 0.

Under the assumption that f ′(E) has nonnegative off-diagonal elements and some other
conditions, it was shown in [28] that �(λ) is a convex-like function and tends to ∞ at both
limits of 0 and ∞. Therefore, �(λ) assumes the minimum over the domain (0,∞), which is
the minimum speed of (2.4):

c∗ = inf
λ>0

�(λ) > 0.

For the SIR model (1.9–1.11), f is no longer cooperative and some of the off-diagonal
elements of f ′(E) may be negative. It remains an open question that under what additional
conditions would �(λ) maintain convex-like properties.

Nevertheless, we can calculate the minimum wave speed of (1.9–1.11) from the largest
eigenvalue of its linearized system at the initial equilibrium E = (S−∞, 0, 0). From a bio-
logical perspective, we are interested in a traveling wave solution connecting (S−∞, 0, 0)
to another disease-free state (S∞, 0, R∞). Now, we calculate the Jacobian of (1.9–1.11) at
(S−∞, 0, 0) as follows.

f ′(E) =
⎛

⎝
0 −β 0
0 β − γ − δ 0
0 γ 0

⎞

⎠ .

For λ ≥ 0, three eigenvalues of the matrix

Aλ =
⎛

⎝
d1λ2 −β 0
0 d2λ2 + β − γ − δ 0
0 γ d3λ2

⎞

⎠

are d1λ2, d2λ2 + β − γ − δ, d3λ2. The minimum wave speed can be defined as

c∗ := inf
λ>0

d2λ2 + β − γ − δ

λ
= 2

√
d2(β − γ − δ).

The following theorem confirms that c∗ is the cut-off speed for the existence of traveling
solutions connecting the disease-free equilibrium (S−∞, 0, 0) to another disease-free state
(S∞, 0, R∞). This implies that the minimum wave speed of (1.9–1.11) can be determined
from its linearization at the initial disease-free equilibrium. Our main result is stated as
follows.

Theorem 1 Assume that the constants di > 0 with i = 1, 2, 3, β > 0, γ > 0 and δ ≥ 0. If

d3 < 2d2, (2.7)

then the minimum wave speed of (1.9–1.11) can be determined from its linearizaion at the
initial disease-free equilibrium. Specifically, for any S−∞ > 0, R0 := β/(γ + δ) > 1
and c > c∗ := 2

√
d2(β − γ − δ), there exist S∞ < S−∞ and a traveling wave solution

for (1.9–1.11) such that S(−∞) = S−∞, S(∞) = S∞, I (±∞) = 0, R(−∞) = 0 and
R(∞) = γ (S−∞ − S∞)/(γ + δ). Furthermore, S(x) is decreasing, 0 ≤ I (x) ≤ S−∞ − S∞
for x ∈ R, R(x) is increasing, and

∫ ∞

−∞
(γ + δ)I (x)dx =

∫ ∞

−∞
βS(x)I (x)

S(x) + I (x) + R(x)
dx = c(S−∞ − S∞). (2.8)
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On the other hand, if c < c∗ or R0 ≤ 1, then there does not exist a non-trivial and non-
negative traveling wave solution for (1.9–1.11) such that S(−∞) = S−∞, S(∞) < S−∞,
I (±∞) = 0 and R(−∞) = 0.

The technical condition (2.7) is similar to the first inequality of assumption (2.7) in [18]. It
will be used in the construction of super-solutions and sub-solutions. The result also reveals
that the basic reproduction number R0 plays an essential role as in the corresponding spatial-
homogenous ordinary differential system.

3 Existence of Traveling Wave Solutions

Throughout this section, we assume that R0 := β/(γ +δ) > 1, c > c∗ := 2
√

d2(β − γ − δ)

and the inequality (2.7) is satisfied. It is noted that R0 is the basic reproduction number for
the ordinary differential system without diffusion [5,25]. Moreover, linearizing the equation
for I at the point (S−∞, 0, 0) gives the characteristic function

f (λ) := −d2λ
2 + cλ − (β − γ − δ). (3.1)

We denote by

λ0 := c − √
c2 − 4d2(β − γ − δ)

2d2
> 0 (3.2)

the smaller positive root of the characteristic function f (λ). It is readily seen that the inequality
(2.7) implies

c − d3λ0 > 0. (3.3)

Let α1, α2 and α3 be three sufficiently large constants, we define the second-order differential
operator Di with i = 1, 2, 3 by

Di h := −di h
′′ + ch′ + αi h (3.4)

for any h ∈ C2(R). Let

λ±
i = c ± √

c2 + 4diαi

2di
(note that λ−

i < 0 < −λ−
i < λ+

i ) (3.5)

be the two roots of the function

fi (λ) := −diλ
2 + cλ + αi . (3.6)

Denote

ρi := di (λ
+
i − λ−

i ) =
√

c2 + 4diαi . (3.7)

The inverse operator D−1
i is given by the following integral representation

(D−1
i h)(x) := 1

ρi

∫ x

−∞
eλ−

i (x−y)h(y)dy + 1

ρi

∫ ∞

x
eλ+

i (x−y)h(y)dy (3.8)

for h ∈ Cμ−,μ+(R) with μ− > λ−
i and μ+ < λ+

i , where

Cμ−,μ+(R) :=
{

h ∈ C(R) : sup
x≤0

|h(x)e−μ−x | + sup
x≥0

|h(x)e−μ+x | < ∞
}

. (3.9)
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It is readily seen from its integral representation in (3.8) that D−1
i h is differentiable and

(D−1
i h)′(x) = λ−

i

ρi

∫ x

−∞
eλ−

i (x−y)h(y)dy + λ+
i

ρi

∫ ∞

x
eλ+

i (x−y)h(y)dy; (3.10)

(D−1
i h)′′(x) = (λ−

i )2

ρi

∫ x

−∞
eλ−

i (x−y)h(y)dy + (λ+
i )2

ρi

∫ ∞

x
eλ+

i (x−y)h(y)dy − h(x)

di
.

(3.11)

We choose

α1 > β, α2 > γ + δ and α3 > 0

be sufficiently large such that |λ−
i | = −λ−

i > λ0 > 0 for i = 1, 2, 3. Given μ > λ0 > 0
such that μ < −λ−

i for all i = 1, 2, 3, we have

λ0 < μ < −λ−
i < λ+

i , i = 1, 2, 3

(see the definitions of λ0 and λ−
i in (3.2) and (3.5)) and

λ−
i < −μ < μ < λ+

i , i = 1, 2, 3.

Now we can define the Banach space

Bμ(R,Rn) := C−μ,μ(R) × · · · × C−μ,μ(R)
︸ ︷︷ ︸

n

(3.12)

equipped with the norm

|u|μ := max
1≤i≤n

sup
x∈R

e−μ|x ||ui (x)|, (3.13)

where u = (u1, · · · , un) ∈ Bμ(R,Rn) with n being a positive integer. We then define a map
F = (F1, F2, F3) on the space Bμ(R,R3): given u = (u1, u2, u3) ∈ Bμ(R,R3), let

F1(u1, u2, u3) := D−1
1 [α1u1 − βu1u2/(u1 + u2 + u3)]; (3.14)

F2(u1, u2, u3) := D−1
2 [α2u2 + βu1u2/(u1 + u2 + u3) − (γ + δ)u2]; (3.15)

F3(u1, u2, u3) := D−1
3 [α3u3 + γ u2]. (3.16)

The following lemma shows that the fixed point of the map F is indeed a traveling wave
solution.

Lemma 2 Let (S, I, R) ∈ Bμ(R,R3) be a fixed point of the map F, then (S, I, R) satisfies
the traveling wave equations (2.1–2.3).

Proof Set h1 := α1S − βSI/(S + I + R). It follows from (3.7), (3.8), (3.10), (3.11) and the
fact that λ±

1 are the roots of f1(λ) = −d1λ2 + c + α1 that

−d1
(
D−1
1 h1

)′′ + c
(
D−1
1 h1

)′ + α1
(
D−1
1 h1

) = h1.

Since (S, I, R) is a fixed point of F , it follows that D−1
1 h1 = S. Thus, the above equation

is the same as (2.1). Similarly, we can show that the other two Eqs. (2.2) and (2.3) are also
satisfied. 	
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For x ∈ R, we define super-solutions and sub-solutions as follows:

S+(x) := S−∞; (3.17)

S−(x) := max
{

S−∞(1 − M1eε1x ), 0
}; (3.18)

I+(x) := eλ0x ; (3.19)

I−(x) := max
{
eλ0x (1 − M2eε2x ), 0

}; (3.20)

R+(x) := γ

cλ0 − d3λ20
eλ0x ; (3.21)

R−(x) := max

{
γ

cλ0 − d3λ20
eλ0x (1 − M3eε3x ), 0

}

, (3.22)

where M1, M2, M3, ε1, ε2, ε3 are six positive constants to be determined in the following
lemma. Its proof can be found in Appendix.

Lemma 3 Given sufficiently large M1 > 0, M2 > 0, M3 > 0 and sufficiently small ε1 > 0,
ε2 > 0, ε3 > 0, we have

− β I+ ≥ −d1S′′− + cS′− (3.23)

for x ≤ x1 := −ε−1
1 ln M1, and

βS− I−
S− + I+ + R+

− (γ + δ)I− ≥ −d2 I ′′− + cI ′− (3.24)

for x ≤ x2 := −ε−1
2 ln M2, and

γ I− ≥ −d3R′′− + cR′− (3.25)

for x ≤ x3 := −ε−1
3 ln M3.

With the aid of the super-solutions and sub-solutions, we are now ready to define a convex
set � as

� := {
(S, I, R) ∈ Bμ(R,R3) : S− ≤ S ≤ S+ & I− ≤ I ≤ I+& R− ≤ R ≤ R+

}
. (3.26)

Sinceμ > λ0 > 0, it is easily seen that � is uniformly bounded with respect to the norm | · |μ
defined in (3.13). To prove invariance of the convex set � under the map F , we shall make
use of the following results which were also proved in [29]. For completeness, its proof can
be found in Appendix.

Lemma 4 ([29]) Let i = 1, 2, 3. We have

D−1
i (Di h) = h (3.27)

for any h ∈ C2(R) such that h, h′, h′′ ∈ Cμ−,μ+(R) with μ− > λ−
i and μ+ < λ+

i . Let

g(x) := max{eλx (1 − Meεx ), 0}
for some M > 0, ε > 0 and λ such that λ−

i < λ < λ + ε < λ+
i , we have

D−1
i (Di g) ≥ g. (3.28)

Here Di g is understood as a piecewise defined function:

(Di g)(x) =
{

fi (λ)eλx − M fi (λ + ε)e(λ+ε)x , x < x∗ := −ε−1 ln M;
0, x > x∗ := −ε−1 ln M.
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Nowwe are ready to show that the convex set� defined in (3.26) is invariant under themap
F = (F1, F2, F3) defined in (3.14), (3.15) and (3.16). Its proof can be found in Appendix.

Lemma 5 The operator F = (F1, F2, F3) maps � into �, namely, for any (S, I, R) ∈
Bμ(R,R3) such that S− ≤ S ≤ S+, I− ≤ I ≤ I+ and R− ≤ R ≤ R+, we have

S− ≤ F1(S, I, R) ≤ S+,

and

I− ≤ F2(S, I, R) ≤ I+,

and

R− ≤ F3(S, I, R) ≤ R+.

Before applying Schauder fixed point theorem, we shall verify that F is continuous and
compact on � with respect to the norm | · |μ defined in (3.13). The proof is standard and can
be found in Appendix.

Lemma 6 The map F = (F1, F2, F3) : � → � defined in (3.14), (3.15) and (3.16) is
continuous and compact with respect to the norm | · |μ defined in (3.13).

The following proposition gives the first part of our main theorem.

Proposition 7 The map F has a fixed point (S, I, R) ∈ � which satisfies the equations
(2.1–2.3). As x → −∞, we have

S(x) → S−∞, I (x) ∼ eλ0x , R(x) ∼ γ eλ0x

cλ0 − d3λ20
,

S′(x), I ′(x), R′(x), S′′(x), I ′′(x), R′′(x) → 0. (3.29)

As x → ∞, we have

S(x) → S∞ < S−∞, I (x) → 0, R(x) → γ (S−∞ − S∞)

γ + δ
,

S′(x), I ′(x), R′(x), S′′(x), I ′′(x), R′′(x) → 0. (3.30)

Moreover, S(x) is decreasing, 0 ≤ I (x) ≤ S−∞ − S∞ for x ∈ R, R(x) is increasing, and
∫ ∞

−∞
(γ + δ)I (x)dx =

∫ ∞

−∞
βS(x)I (x)

S(x) + I (x) + R(x)
dx = c(S−∞ − S∞). (3.31)

Proof The existence of fixed point follows from Lemmas 5, 6 and Schauder fixed point
theorem. Namely, there exists (S, I, R) ∈ Bμ(R,R3) such that

S = F1(S, I, R) = D−1
1 [α1S − βSI/(S + I + R)]; (3.32)

I = F2(S, I, R) = D−1
2 [α2 I + βSI/(S + I + R) − (γ + δ)I ]; (3.33)

R = F3(S, I, R) = D−1
3 [α3R + γ I ]. (3.34)

Since S, I, R ∈ C−μ,μ(R) and λ−
i < −μ < μ < λ+

i for any i = 1, 2, 3, it is readily seen
from (3.27) in Lemma 4 that

D1S = α1S − βSI/(S + I + R);
D2 I = α2 I + βSI/(S + I + R) − (γ + δ)I ;
D3R = α3R + γ I.
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Recalling the definition of Di (with i = 1, 2, 3) in (3.4), we conclude that (S, I, R) satisfies
the equations (2.1), (2.2) and (2.3). Since S− ≤ S ≤ S+, I− ≤ I ≤ I+ and R− ≤ R ≤ R+,
we obtain from the definitions of S±, I± and R± in (3.17–3.22) and the squeeze theorem that
S(x) → S−∞, I (x) ∼ eλ0x and R(x) ∼ γ eλ0x/(cλ0 − d3λ20) as x → −∞. Furthermore,
recall the integral representation (3.10) for the first derivative of D−1

i h:

(D−1
i h)′(x) = λ−

i

ρi

∫ x

−∞
eλ−

i (x−y)h(y)dy + λ+
i

ρi

∫ ∞

x
eλ+

i (x−y)h(y)dy

for any h ∈ C−μ,μ(R). We obtain from (3.32), (3.33), (3.34) and L’Hôpital’s rule that
S′(x) → 0, I ′(x) → 0 and R′(x) → 0 as x → −∞. Finally, from (2.1), (2.2) and (2.3), it
follows that the second derivatives S′′, I ′′ and R′′ also vanish at −∞. This gives (3.29).

Now we investigate asymptotic behaviors of S, I and R as x → ∞. An integration of
(2.1) from −∞ to x gives

d1S′(x) = c[S(x) − S−∞] +
∫ x

−∞
βS(y)I (y)

S(y) + I (y) + R(y)
dy.

Since S(x) is uniformly bounded, the integral on the right-hand side should be uniformly
bounded; otherwise S′(x) → ∞ as x → ∞, which implies S(x) → ∞ as x → ∞, a
contradiction. Thus, we obtain integrability of βSI/(S + I + R) on R, which together with
the above equality implies that S′ is uniformly bounded on R. Note from (2.1) that

(e−cx/d1 S′)′ = e−cx/d1(S′′ − cS′/d1) = e−cx/d1βSI/(S + I + R)/d1.

Integrating the above equality from x to infinity gives

e−cx/d1 S′(x) = −
∫ ∞

x
e−cy/d1 βS(y)I (y)

d1[S(y) + I (y) + R(y)]dy.

Hence, S is non-increasing. Furthermore, since S and I are non-trivial; see (3.29), the integral
on the right-hand side of the above equality can not be identically zero, which implies
S′(x) < 0 and S(∞) = S∞ < S−∞. We are now ready to study asymptotic behavior of I (x)

as x → ∞. From (2.2), I (−∞) = 0 and I (x) ≤ I+(x) = eλ0x , we have

I (x)= 1

ρ

∫ x

−∞
eλ−(x−y) βS(y)I (y)

S(y) + I (y) + R(y)
dy + 1

ρ

∫ ∞

x
eλ+(x−y) βS(y)I (y)

S(y) + I (y) + R(y)
dy,

(3.35)
where

λ± := c ± √
c2 + 4d2(γ + δ)

2d2

and

ρ := d2(λ
+ − λ−) =

√
c2 + 4d2(γ + δ).

Remark that λ− < 0 < λ0 < λ+ and λ± are the two roots of following equation

−d2λ
2 + cλ + γ + δ = 0.

Wewould also like tomention that the integral in (3.35) is well defined because of Lebesgue’s
dominated convergence theorem and uniform boundedness of βSI/(S + I + R). Since
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βSI/(S + I + R) is integrable on R, it follows from the integral equation (3.35) and Fubini’s
theorem that I is also integrable on R, and

∫ ∞

−∞
I (x)dx = 1

γ + δ

∫ ∞

−∞
βS(x)I (x)

S(x) + I (x) + R(x)
dx . (3.36)

Furthermore, since

I ′(x) = λ−

ρ

∫ x

−∞
eλ−(x−y) βS(y)I (y)

S(y) + I (y) + R(y)
dy

+ λ+

ρ

∫ ∞

x
eλ+(x−y) βS(y)I (y)

S(y) + I (y) + R(y)
dy,

we have from λ− < 0 < λ+, βSI/(S + I + R) ≤ β I and ρ = d2(λ+ − λ−) that

|I ′(x)| ≤ β

d2

∫ ∞

−∞
I (x)dx .

Since I ′ is uniformly bounded and I ≥ 0 is integrable on R, it is easily seen that I (x) → 0
as x → ∞; otherwise, we can find a number ε > 0, a sequence xn → ∞ and a number
κ > 0 (since I ′ is uniformly bounded) such that I (x) > ε for all |x − xn | < κ , which
contradicts the integrability of I on R. By integrating (2.2) on the real line, it then follows
from (3.29) and (3.36) that I ′(x) → 0 as x → ∞ (noting that this can be also obtained from
the integral representation of I ′ and L’Hôpital’s rule). Again, from (2.2) we obtain I ′′(x) → 0
as x → ∞. Since βSI/(S + I + R) is integrable on the real line, it is readily seen from (2.1)
and (3.29) that S′ is uniformly bounded, which in turn implies S′′ is also uniformly bounded.
Since S′ ≤ 0 is integrable on R, it can be shown that S′(x) → 0 as x → ∞. This, together
with (2.1) gives S′′(x) → 0 as x → ∞. Moreover, an integration of (2.1) on the real line
yields ∫ ∞

−∞
βS(x)I (x)

S(x) + I (x) + R(x)
dx = c(S−∞ − S∞). (3.37)

Solving the linear equation (2.3) gives

R(x) = γ

c

∫ x

0
I (y)dy + γ

c

∫ 0

x
e(c/d3)(x−y) I (y)dy + C0 + C1e(c/d3)x ,

where C0 and C1 are constants of integration. Substituting x by −∞, we obtain from
R(−∞) = 0 that

C0 = γ

c

∫ 0

−∞
I (y)dy.

Furthermore, since R(x) ≤ R+(x) = γ eλ0x/(cλ0 − d3λ20) and λ0 < c/d3, we have
e−(c/d3)x R(x) → 0 as x → ∞. Hence, it is readily seen that

C1 = γ

c

∫ ∞

0
e−(c/d3)y I (y)dy.

Therefore, we obtain

R(x) = γ

c

∫ x

−∞
I (y)dy + γ

c

∫ ∞

x
e(c/d3)(x−y) I (y)dy. (3.38)
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It follows from (3.36), (3.30), (3.37) and L’Hôpital’s rule that

lim
x→∞ R(x) = γ

c

∫ ∞

−∞
I (x)dx = γ

γ + δ
(S−∞ − S∞).

Moreover, differentiating (3.38) once yields

R′(x) = γ

d3

∫ ∞

x
e(c/d3)(x−y) I (y)dy > 0.

Note that I (∞) = 0, we obtain from L’Hôpital’s rule that

lim
x→∞ R′(x) = 0.

Consequently, it follows from (2.3) and I (∞) = 0 that R′′(x) → 0 as x → ∞. This proves
(3.30).

Finally, we intend to prove the inequality I (x) ≤ S−∞ − S∞ for all x ∈ R. Since
I (x) ∼ eλ0x as x → −∞ and I (x) → 0 as x → ∞, we can define

J (x) := I (x) + γ + δ

c

∫ x

−∞
I (y)dy + γ + δ

c

∫ ∞

x
e(c/d2)(x−y) I (y)dy. (3.39)

It follows from (3.29), (3.30), (3.36), (3.37) and L’Hôpital’s rule that

lim
x→−∞ J (x) = 0, lim

x→∞ J (x) = γ + δ

c

∫ ∞

−∞
I (x)dx = S−∞ − S∞.

Similarly, by differentiating (3.39) once, we obtain from the asymptotic formulas (3.29–3.30)
and L’Hôpital’s rule that

J ′(x) = I ′(x) + γ + δ

d2

∫ ∞

x
e(c/d2)(x−y) I (y)dy

and

lim
x→−∞ J ′(x) = 0, lim

x→∞ J ′(x) = 0.

Furthermore, by differentiating (3.39) twice, it is readily seen from the differential equation
for I in (2.2) that

−d2 J ′′ + cJ ′ = −d2 I ′′ + cI ′ + (γ + δ)I = βSI/(S + I + R).

An integration of the above equation from x to ∞ gives

J ′(x) = 1

d2

∫ ∞

x
e(c/d2)(x−y) βS(y)I (y)

S(y) + I (y) + R(y)
dy > 0.

Here we have used the fact that J ′(∞) = 0. Since J (∞) = S−∞ − S∞, we obtain from the
above inequality that J (x) ≤ S−∞ − S∞ for all x ∈ R. Since I (x) ≤ J (x) by definition
(3.39), it follows that I (x) ≤ S−∞ − S∞ for all x ∈ R. This ends the proof. 	
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4 Non-existence of Traveling Wave Solution

It is easily seen that the traveling wave solution (S, I, R) (if exists) of (2.1–2.3) satisfies the
following integral equation (noting that I (±∞) = 0)

I (x) = 1

ρ

∫ x

−∞
eλ−(x−y) βS(y)I (y)

S(y) + I (y) + R(y)
dy+ 1

ρ

∫ ∞

x
eλ+(x−y) βS(y)I (y)

S(y) + I (y) + R(y)
dy,

(4.1)
where

λ± := c ± √
c2 + 4d2(γ + δ)

2d2

and

ρ := d2(λ
+ − λ−) =

√
c2 + 4d2(γ + δ).

Remark that λ− < 0 < λ+ and λ± are the two roots of following equation

−d2λ
2 + cλ + γ + δ = 0.

Note that the integral in (4.1) is well defined because βSI/(S + I + R) vanishes at infinity.
By (4.1), the derivative of I has the following integral representation:

I ′(x) = λ−

ρ

∫ x

−∞
eλ−(x−y) βS(y)I (y)

S(y) + I (y) + R(y)
dy

+ λ+

ρ

∫ ∞

x
eλ+(x−y) βS(y)I (y)

S(y) + I (y) + R(y)
dy.

An application of L’Hôpital’s rule to the above equation yields I ′(±∞) = 0. Applying this
to (2.2) gives I ′′(±∞) = 0. We list the asymptotic behavior of I as below.

I (±∞) = 0, I ′(±∞) = 0, I ′′(±∞) = 0. (4.2)

The following two propositions give the second statement in our main theorem.

Proposition 8 If R0 := β/(γ + δ) > 1 and c < c∗ := 2
√

d2(β − γ − δ), then there does
not exist a non-trivial and non-negative traveling wave solution of (2.1), (2.2) and (2.3) such
that S(−∞) = S−∞, S(∞) < S−∞, I (±∞) = 0 and R(−∞) = 0.

Proof We prove the statement by contradiction. Let (S, I, R) be a solution to (2.1), (2.2)
and (2.3). Based on the argument at the beginning of this section, we have the asymptotic
behavior of I as listed in (4.2). Since βS(x)/[S(x)+ I (x)+ R(x)] → β as x → −∞, there
exists a number x̄ such that

βS(x)/[S(x) + I (x) + R(x)] − γ − δ > σ := (β − γ − δ)/2 > 0

for all x < x̄ . Applying this to (2.2) yields

cI ′(x) − d2 I ′′(x) > σ I (x) ≥ 0 (4.3)

for all x < x̄ . Since cI (x) − d2 I ′(x) is bounded as x → −∞ by (4.2), it follows that
cI ′(x) − d2 I ′′(x) is integrable at −∞. Lebesgue’s dominated convergence theorem and the
above inequality implies that I (x) is also integrable at −∞. Define

K (x) :=
∫ x

−∞
I (y)dy.
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An integration of (4.3) yields

σ K (x) ≤ cI (x) − d2 I ′(x)

for all x < x̄ . A further integration of the above inequality, together with non-negativeness
of I gives

∫ x

−∞
K (y)dy ≤ (c/σ)K (x)

for all x < x̄ . Since K is non-decreasing, we have

ηK (x − η) ≤
∫ x

x−η

K (y)dy ≤ (c/σ)K (x)

for all η > 0 and all x < x̄ . Hence, there exists a large η > 0 such that

K (x − η) < K (x)/2

for all x < x̄ . Denote μ0 := (ln 2)/η > 0 and let

L(x) := e−μ0x K (x).

It follows that

L(x − η) < L(x)

for all x < x̄ , which implies L(x) = e−μ0x K (x) is bounded as x → −∞. On account of
(4.2), it follows from (4.3) that

cI ′(x) > d2 I ′′(x), cI (x) > d2 I ′(x), cK (x) > d2 I (x).

Hence, we conclude that e−μ0x I (x), e−μ0x I ′(x) and e−μ0x I ′′(x) are all bounded as x →
−∞. In view of (4.2), they are actually uniformly bounded on the whole real line. Moreover,
since I (x)/[S(x) + I (x) + R(x)] ≤ 1 and S(x) + I (x) + R(x) → S−∞ as x → −∞,
e−μ0x I (x)/[S(x)+ I (x)+ R(x)] is also uniformly bounded on R. Noting that R(−∞) = 0,
we solve the linear equation (2.3) and obtain

R(x) = γ

c

∫ x

−∞
I (y)dy + γ

c

∫ 0

x
e(c/d3)(x−y) I (y)dy + C1e(c/d3)x ,

whereC1 is a constant of integration.Note that e−μ0x I (x) is uniformly bounded as x → −∞.
By choosing μ1 > 0 such that μ1 < min{μ0, c/d3}, we have for any x < 0,

e−μ1x R(x) = γ

c

∫ x

−∞
e−μ1(x−y)e−μ1 y I (y)dy

+ γ

c

∫ 0

x
e(c/d3−μ1)(x−y)e−μ1 y I (y)dy + C1e(c/d3−μ1)x

≤ γ

c

∫ x

−∞
e−μ1 y I (y)dy + γ

c

∫ 0

x
e−μ1 y I (y)dy + C1

= γ

c

∫ 0

−∞
e−μ1 y I (y)dy + C1.

Since e−μ0x I (x) is uniformly bounded as x → −∞ and μ1 < μ0, it follows from
the above inequality that e−μ1x R(x) is uniformly bounded as x → −∞. Therefore,
e−μ1x R(x)/[S(x) + I (x) + R(x)] is uniformly bounded on R.
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Now, we can introduce two-side Laplace transform on the equation (2.2):

f (μ)

∫ ∞

−∞
e−μx I (x)dx = −

∫ ∞

−∞
e−μx I (x)

β[I (x) + R(x)]
S(x) + I (x) + R(x)

dx,

where f is the characteristic function defined in (3.1). The integrals on both side of the above
equality are well defined for any μ ∈ (0, μ0). Since e−μ1x R(x)/[S(x) + I (x) + R(x)] and
e−μ0x I (x)/[S(x)+ I (x)+ R(x)] are uniformly bounded on the real line and f (μ) is always
negative for all μ ∈ R (noting that c < c∗ = 2

√
d2(β − γ − δ)), the two Laplace integrals

can be analytically continued to the whole right half plane; otherwise the integral on the left
has a singularity at μ = μ∗ ∈ R and it is analytic for all μ < μ∗ (cf. [3,31,35]). However,
since e−μ1x [I (x) + R(x)]/[S(x) + I (x) + R(x)] is uniformly bounded, the integral on the
right is actually analytic for all μ < μ∗ +μ1, a contradiction. Thus, the above equality holds
for all μ > 0 and can be rewritten as

∫ ∞

−∞
e−μx I (x)

{
f (μ) + β[I (x) + R(x)]

S(x) + I (x) + R(x)

}
dx = 0.

This again leads to a contradiction because f (μ)+β[I (x)+ R(x)]/[S(x)+ I (x)+ R(x)] →
−∞ as μ → ∞, but e−μx I (x) is always non-negative for all μ ∈ R; see [3,31] for early
ideas in different settings. Thus, we conclude the proof. 	

Proposition 9 If R0 := β/(γ + δ) ≤ 1, then there does not exist a non-trivial and non-
negative traveling wave solution of (2.1), (2.2) and (2.3) such that S(−∞) = S−∞, S(∞) <

S−∞, I (±∞) = 0 and R(−∞) = 0.

Proof Again, we prove by contradiction. Let (S, I, R) be a solution to (2.1), (2.2) and (2.3).
Based on the argument at the beginning of this section, we have the asymptotic behavior of I
as listed in (4.2). If R0 := β/(γ + δ) ≤ 1, then βS(x)I (x)

S(x)+I (x)+R(x)
≤ (γ + δ)I (x) for all x ∈ R.

From (2.2) we have

d

dx

[
e−(c/d2)x d

dx
I (x)

]
= − 1

d2
e−(c/d2)x

[
βS(x)I (x)

S(x) + I (x) + R(x)
− (γ + δ)I (x)

]
≥ 0,

which implies that the function e−(c/d2)x I ′(x) is non-decreasing. Since I ′(∞) = 0 by (4.2)
and e−(c/d2)x → 0 as x → ∞, it follows that I ′(x) ≤ 0 for all x ∈ R. Again from I (±∞) = 0
in (4.2) we obtain I (x) = 0 for all x ∈ R, a contradiction. 	

One may prove the nonexistence results in a different way by analyzing the Jacobian
matrix of the six-dimensional first-order linearized system of the traveling wave equation
for (S, I, R, S′, I ′, R′) at the equilibrium with S = S−∞ and I = R = S′ = I ′ = R′ = 0.
However, we prefer to use the technique of Laplace transformation which could be extended
to the study of high-dimensional systems with delays.

5 Discussion

Broadly speaking, there are three types of interspecific interactions: predator-prey, com-
petition, and mutualism. In general, mutualism gives rise to cooperative systems whose
dynamics are better understood. In particular, the works by Lui [21] and Weinberger et al.
[18,33,34] assure that the spreading speeds of cooperative systems can be determined by
the corresponding linearized systems. Such a phenomenon is called the linear conjecture.

123



158 J Dyn Diff Equat (2016) 28:143–166

Unlike the cooperative systems, there have been counterexamples in competitive systems
and predator-prey systems when the linear conjecture is not true; see [9,11,14]. It is known
that some competition models can be converted into cooperative systems and therefore are
linearly determinant with some appropriate assumptions [18,20,27]. For predator-prey sys-
tems, however, the problem of linear conjecture is more challenging [4,15]. In this paper,
we show that the minimum traveling speed for the general diffusive model (1.9–1.11) with
non-constant total population can be determined by its linearization at the initial disease-free
equilibrium. This result may shed light on the linear conjecture for predator-prey systems.

Our method is mainly based on the Schauder fixed point theorem for equivalent non-
monotone abstract operators. Similar ideas have been used in [29,31]. Related methods can
also be found in other studies such as [20,22,26,30]. We remark that the general diffusive
Kermack–McKendrick SIR model (1.9–1.11) involves three unknown variables S, I, R, and
several significantly new ingredients have been introduced in our proof. Specifically, one
of the challenging tasks is to construct and verify a suitable invariant convex set of three
dimensions for the non-monotone operators. The approach in this paper provides a promising
method to deal with high dimensional epidemic models. It would be difficult, if possible, to
investigate traveling waves for high dimensional models with phase portrait analysis.

One might attempt to solve for R in terms of an integral of I and then reduce (2.1–2.3) to
a two-dimensional system of S, I . It is unclear whether such approach can be used to prove
the existence of traveling waves. However, it would make the model more complicated and
prevent us from seeing biological meanings of R. The construction of a three-dimensional
invariant set seems to be a better option for this problem as our results also involve nonexis-
tence results of traveling waves, and more importantly, we provide an effective approach to
deal with traveling waves of high dimensional epidemic models.

In our model, we have chosen the incidence function as standard incidence. We note that
the existence of traveling wave solutions of our diffusive epidemic model is still determined
by the basic reproduction number of the corresponding non-diffusive system, a phenomenon
which has also been observed in the mass-action incidence case. In addition, the minimum
wave speed of our diffusive epidemic model can be rewritten as c∗ = 2

√
d2(γ + δ)(R0 − 1),

which is analogous to the formula obtained for themodelwithmass-action incidence function
[13]. It would be interesting to further investigate spatial epidemic models with more general
incidence functions and find the conditions under which similar results on traveling wave
solutions are still valid. We leave this problem for a future work.

Acknowledgments The authors are grateful to the anonymous reviewer for a careful reading of the manu-
script and the valuable comments that improved the manuscript. The first author is partially supported by the
National Science Foundation of China (11571324).

Appendix

Proof of Lemma 3

Proof In view of (3.18) and (3.19), the first inequality (3.23) is the same as

−βeλ0x ≥ S−∞eε1x(d1M1ε
2
1 − cM1ε1

)

for all x ≤ x1 := −ε−1
1 ln M1. The above inequality can be written as

M1ε1(c − d1ε1) ≥ βe(λ0−ε1)x .
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Note that x ≤ x1 := −ε−1
1 ln M1. It suffices to prove

M1ε1(c − d1ε1) ≥ βM−(λ0−ε1)/ε1
1 ,

which is obviously true if we choose ε1 > 0 such that ε1 < min{λ0, c/d1} and then let M1

be sufficiently large.
Now we intend to prove the second inequality (3.24), which, by subtracting both sides by

(β − γ − δ)I−, is the same as

−β I−(I+ + R+)

S− + I+ + R+
≥ −d2 I ′′− + cI ′− − (β − γ − δ)I− = −M2 f (λ0 + ε2)e

(λ0+ε2)x ,

where f is defined in (3.1) with λ0 as its smaller root. Note that f is concave down, we can
choose a sufficiently small ε2 ∈ (0, ε1) such that f (λ0 + ε2) > 0. Then, we assume M2 is
sufficiently large that x2 < x1 holds. It suffices to show

M2 f (λ0 + ε2)e
(λ0+ε2)x ≥ β I+(I+ + R+)

S−
,

which, in view of (3.18), (3.19) and (3.21), is equivalent to

M2 f (λ0 + ε2)S−∞(1 − M1eε1x ) ≥ β
(
γ + cλ0 − d3λ20

)

cλ0 − d3λ20
e(λ0−ε2)x .

Noting that x ≤ x2 := −ε−1
2 ln M2, we only need to prove

M2 f (λ0 + ε2)S−∞(1 − M1M−ε1/ε2
2 ) ≥ β

(
γ + cλ0 − d3λ20

)

cλ0 − d3λ20
M−(λ0−ε2)/ε2

2 ,

which is true for large M2 because as M2 → ∞, the left-hand side tends to infinity and the
right-hand side vanishes (recall that 0 < ε2 < ε1 < λ0).

Finally, we are ready to verify the last inequality (3.25). First, since c −d3λ0 > 0 in (3.3),
we can choose ε3 ∈ (0, ε2) so small that c − d3(λ0 + ε3) > 0. In view of (3.20) and (3.22),
the inequality (3.25) can be written as

γ eλ0x(1 − M2eε2x)

≥ γ

cλ0 − d3λ20

{
eλ0x(cλ0 − d3λ

2
0

) − M3e(λ0+ε3)x
[
c(λ0 + ε3) − d3(λ0 + ε3)

2
]}

,

which is equivalent to

c(λ0 + ε3) − d3(λ0 + ε3)
2

cλ0 − d3λ20
M3 ≥ M2e(ε2−ε3)x .

Note that ε3 < ε2 and x ≤ x3 := −ε−1
3 ln M3, it suffices to prove the above inequality for

x = x3:

c(λ0 + ε3) − d3(λ0 + ε3)
2

cλ0 − d3λ20
M3 ≥ M2M−(ε2−ε3)/ε3

3 .

This is true for large M3 because as M3 → ∞, the left-hand side tends to infinity and the
right-hand side vanishes. This ends the proof of our lemma. 	


123



160 J Dyn Diff Equat (2016) 28:143–166

Proof of Lemma 4

Proof It follows from the definitions of Di and D−1
i in (3.4) and (3.8) that

[D−1
i (Di h)](x) = 1

ρi

∫ x

−∞
eλ−

i (x−y)[−di h
′′(y) + ch′(y) + αi h(y)]dy

+ 1

ρi

∫ ∞

x
eλ+

i (x−y)[−di h
′′(y) + ch′(y) + αi h(y)]dy.

Making use of integration by parts, we obtain
∫ x

−∞
eλ−

i (x−y)h′(y)dy = h(x) + λ−
i

∫ x

−∞
eλ−

i (x−y)h(y)dy,

and
∫ x

−∞
eλ−

i (x−y)h′′(y)dy = h′(x) + λ−
i h(x) + (λ−

i )2
∫ x

−∞
eλ−

i (x−y)h(y)dy.

Therefore, we have
∫ x

−∞
eλ−

i (x−y)[−di h
′′(y) + ch′(y) + αi h(y)]dy = −di h

′(x) + (−diλ
−
i + c)h(x).

Here we have used the fact that λ−
i is a root of the function fi (λ) = −diλ

2 + cλ + αi ; see
(3.5) and (3.6). Similarly, it can be shown that

∫ ∞

x
eλ+

i (x−y)[−di h
′′(y) + ch′(y) + αi h(y)]dy = di h

′(x) + (diλ
+
i − c)h(x).

Applying the above two equalities to the expression of D−1
i (Di h) gives

[
D−1

i (Di h)
]
(x) = di

(
λ+

i − λ−
i

)

ρi
h(x) = h(x),

where in the last equality we have used the definition of ρi in (3.7). This proves (3.27).
Let x∗ := − ln M/ε be the point where g is not differentiable. Recall from (3.5) and (3.6)

that

fi (k) := −di k
2 + ck + αi = di (k − λ−

i )(λ+
i − k). (6.1)

It is easily seen from (3.4) that

(Di g)(x) =
{

fi (λ)eλx − M fi (λ + ε)e(λ+ε)x , x < x∗,
0, x > x∗.

(6.2)

To prove (3.28), we will consider the two cases x ≤ x∗ and x ≥ x∗ respectively. When
x ≤ x∗, we have from (3.8) and (6.2) that

[D−1
i (Di g)](x) = fi (λ)A(λ) − M fi (λ + ε)A(λ + ε), (6.3)

where

A(k) := 1

ρi

∫ x

−∞
eλ−

i (x−y)+kydy + 1

ρi

∫ x∗

x
eλ+

i (x−y)+kydy

= ekx (λ+
i − λ−

i )

ρi (k − λ−
i )(λ+

i − k)
− ekx∗+λ+

i (x−x∗)

ρi (λ
+
i − k)
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for k = λ or λ + ε. In view of (3.7) and (6.1), it follows from the above equality that

fi (k)A(k) = ekx − k − λ−
i

λ+
i − λ−

i

ekx∗+λ+
i (x−x∗).

Applying this to (6.3) and on account of Meεx∗ = 1, we obtain

[
D−1

i (Di g)
]
(x) =

[

eλx − λ − λ−
i

λ+
i − λ−

i

eλx∗+λ+
i (x−x∗)

]

−
[

Me(λ+ε)x − λ + ε − λ−
i

λ+
i − λ−

i

eλx∗+λ+
i (x−x∗)

]

=
[
eλx − Me(λ+ε)x

]
+ ε

λ+
i − λ−

i

eλx∗+λ+
i (x−x∗)

≥ eλx − Me(λ+ε)x .

This proves (3.28) for x ≤ x∗. When x ≥ x∗, we have from (3.8) and (6.2) that
[
D−1

i (Di g)
]
(x) = fi (λ)B(λ) − M fi (λ + ε)B(λ + ε), (6.4)

where

B(k) := 1

ρi

∫ x∗

−∞
eλ−

i (x−y)+kydy = ekx∗+λ−
i (x−x∗)

ρi (k − λ−
i )

for k = λ or λ + ε. In view of (3.7) and (6.1), it follows from the above equality that

fi (k)B(k) = λ+
i − k

λ+
i − λ−

i

ekx∗+λ−
i (x−x∗).

Applying this to (6.4) and on account of Meεx∗ = 1, we obtain

[D−1
i (Di g)](x) = λ+

i − λ

λ+
i − λ−

i

eλx∗+λ−
i (x−x∗) − λ+

i − λ − ε

λ+
i − λ−

i

eλx∗+λ−
i (x−x∗)

= ε

λ+
i − λ−

i

eλx∗+λ−
i (x−x∗)

≥ 0.

This gives (3.28) in the case x ≥ x∗. 	

Proof of Lemma 5

Proof Throughout this proof, we will frequently use the inequalities 0 < S/(S + I + R) < 1
and 0 < I/(S + I + R) < 1. Since α1S − βSI/(S + I + R) ≤ α1S+ = D1S+; see the
definition of D1 in (3.4), we obtain from (3.14) and (3.27) that

F1(S, I, R) ≤ D−1
1 (D1S+) = S+.

By (3.23) in Lemma 3, we have for x ≤ x1,

α1S − βSI/(S + I + R) ≥ α1S− − β I+ ≥ α1S− − d1S′′− + cS′− = D1S−.
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When x ≥ x1, it follows from α1 > β (recalling the choice of α1 in the paragraph after
(3.11)) and S−(x) = 0 that

α1S − βSI/(S + I + R) ≥ (α1 − β)S ≥ 0 = D1S−.

Coupling the above two inequalities and making use of (3.28) yield

F1(S, I, R) ≥ D−1
1 (D1S−) ≥ S−.

Since α2 > γ + δ (by the choice of α2) and λ0 is a root of f defined in (3.1), we have

α2 I + βSI/(S + I + R) − (γ + δ)I ≤ α2 I+ + β I+ − (γ + δ)I+
= α2 I+ − d2 I ′′+ + cI ′+ = D2 I+.

In view of (3.27), we obtain from the above inequality that

F2(S, I, R) ≤ D−1
2 (D2 I+) = I+.

By (3.24) in Lemma 3 and monotonicity of βSI/(S + I + R) in S, we obtain

α2 I + βSI/(S + I + R) − (γ + δ)I ≥ α2 I− + βS− I−/(S− + I+ + R+) − (γ + δ)I−
≥ α2 I− − d2 I ′′− + cI ′−
= D2 I−

for x ≤ x2. When x ≥ x2, it is readily seen from α2 > γ + δ and I−(x) = 0 that

α2 I + βSI/(S + I + R) − (γ + δ)I ≥ α2 I − (γ + δ)I ≥ 0 = D2 I−.

A combination of the above two inequalities and (3.28) yields

F2(S, I, R) ≥ D−1
2 (D2 I−) ≥ I−.

From the definitions of I+ and R+ in (3.19) and (3.21), we have

α3R + γ I ≤ α3R+ + γ I+ = α3R+ + cR′+ − d3R′′+ = D3R+.

Thus, it follows from (3.16) and (3.27) that

F3(S, I, R) ≤ D−1
3 (D3R+) = R+.

When x ≤ x3, we obtain from (3.25) that

α3R + γ I ≥ α3R− + γ I− ≥ α3R− + cR′− − d3R′′− = D3R−.

When x ≥ x3, we have R−(x) = 0 and

α3R + γ I ≥ 0 = D3R−.

Hence, it follows from (3.28) that

F3(S, I, R) ≥ D−1
3 (D3R−) ≥ R−.

This ends our proof of the lemma. 	
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Proof of Lemma 6

Proof Note that the standard incidence function βSI/(S + I + R) has bounded partial
derivatives with respect to S, I and R. For example, the partial derivative of βSI/(S + I + R)

with respect to S is β(I + R)I/(S + I + R)2, which is bounded by β. Similarly, we can
show that the partial derivatives with respect to I and R are also bounded by β. Therefore,
for any (S1, I1, R1) ∈ � and (S2, I2, R2) ∈ �, we have

∣
∣
∣

βS1 I1
S1 + I1 + R1

− βS2 I2
S2 + I2 + R2

∣
∣
∣ ≤ β(|S1 − S2| + |I1 − I2| + |R1 − R2|).

It is readily seen that

∣
∣
∣
∣
(
α1S1 − βS1 I1

S1 + I1 + R1

)
−
(
α1S2 − βS2 I2

S2 + I2 + R2

)∣∣
∣
∣

≤ (α1 + β)(|S1 − S2| + |I1 − I2| + |R1 − R2|).

Consequently, we obtain from the definition (3.14) that

|F1(S1, I1, R1)(x) − F1(S2, I2, R2)(x)|e−μ|x |

≤ α1 + β

ρ1
(|S1 − S2|μ + |I1 − I2|μ + |R1 − R2|μ)C(x),

where

C(x) := e−μ|x |
[∫ x

−∞
eλ−

1 (x−y)+μ|y|dy +
∫ ∞

x
eλ+

1 (x−y)+μ|y|dy

]
.

Here S1 − S2 ∈ C−μ,μ(R) = Bμ(R,R) and |S1 − S2|μ = supx∈R e−μ|x ||S1(x)− S2(x)|; see
(3.12) and (3.13). To prove the continuity of F1, it suffices to show that C(x) is uniformly
bounded for x ∈ R. Since λ−

1 < −μ < μ < λ+
1 , applying L’Hôpital’s rule to the above

formula yields

C(−∞) = 1

μ + λ+
1

− 1

μ + λ−
1

and

C(∞) = 1

λ+
1 − μ

+ 1

μ − λ−
1

.

Hence, we conclude that C(x) is uniformly bounded on R and thus F1 is a continuous map
from � to Bμ(R,R)with respect to the norm | · |μ. Similarly, we can show that F2 and F3 are
also continuous. Consequently, F is a continuous map on � with respect to the norm | · |μ.

To prove the compactness of F , we shall make use of Arzela–Ascoli theorem and a
standard diagonal process. Let Ik := [−k, k] with k ∈ N be a compact interval on R and
temporarily we regard � as a bounded subset of C(Ik,R

3) equipped with the maximum
norm. Since F maps � into �, it is obvious that F is uniformly bounded. We will use the
following two inequalities to show that F is equi-continuous. Namely, from the definition of
Fi in (3.14–3.15) and integral representation for the derivative of D−1

i in (3.10) we have for
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any (S, I, R) ∈ �,

|[F1(S, I, R)]′(x)| ≤ −λ−
1 α1S−∞
ρ1

∫ x

−∞
eλ−

1 (x−y)dy + λ+
1 α1S−∞

ρ1

∫ ∞

x
eλ+

1 (x−y)dy

= 2α1S−∞
ρ1

,

and

|[F2(S, I, R)]′(x)| ≤ −λ−
2 (α2 + β − γ − δ)

ρ2

∫ x

−∞
eλ−

2 (x−y)+λ0 ydy

+ λ+
2 (α2 + β − γ − δ)

ρ2

∫ ∞

x
eλ+

2 (x−y)+λ0 ydy

= (α2 + β − γ − δ)eλ0x

ρ2

(
−λ−

2

λ0 − λ−
2

+ λ+
2

λ+
2 − λ0

)

= cλ0 + 2α2

ρ2
eλ0x ,

and

|[F3(S, I, R)]′(x)| ≤ −λ−
3 γ (α3 + cλ0 − d3λ20)

ρ3(cλ0 − d3λ20)

∫ x

−∞
eλ−

3 (x−y)+λ0 ydy

+ λ+
3 γ (α3 + cλ0 − d3λ20)

ρ3(cλ0 − d3λ20)

∫ ∞

x
eλ+

3 (x−y)+λ0 ydy

= eλ0xγ (α3 + cλ0 − d3λ20)

ρ3(cλ0 − d3λ20)

(
−λ−

3

λ0 − λ−
3

+ λ+
3

λ+
3 − λ0

)

= γ (cλ0 + 2α3)

ρ3(cλ0 − d3λ20)
eλ0x

Here we have made use of the facts that λ0 defined in (3.2) is a root of f in (3.1) and λ±
i

defined in (3.5) are the roots of fi in (3.6). Let {un} be a sequence of �, which can be also
viewed as a bounded subset of C(Ik) with Ik := [−k, k]. Since F is uniformly bounded and
equi-continuous, by the Arzela–Ascoli theorem and the standard diagonal process, we can
extract a subsequence {unk } such that vnk := Funk converges in C(Ik) for any k ∈ N. Let
v be the limit of vnk . It is readily seen that v ∈ C(R,R3). Furthermore, since F(�) ⊂ �

by Lemma 5 and � is closed, it follows that v ∈ �. Now we come back to the norm | · |μ
defined in (3.13). Note that μ > λ0 > 0, it follows from (3.19) and (3.21) that e−μ|x | I+(x)

and e−μ|x | R+(x) are uniformly bounded on R. Thus, � is uniformly bounded with respect
to the norm | · |μ. Consequently, the norm |vnk − v|μ is uniformly bounded for all k ∈ N.
Given any ε > 0, we can find an integer M > 0 independent of vnk such that

e−μ|x ||vnk (x) − v(x)| < ε

for any |x | > M and k ∈ N. Since vnk converges to v on the compact interval [−M, M] with
respect to the maximum norm, there exists K ∈ N such that

e−μ|x ||vnk (x) − v(x)| < ε

for any |x | ≤ M and k > K . The above two inequalities imply that vnk converges to v with
respect to the norm | · |μ. This proves the compactness of the map F . 	
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