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Abstract The asymptotic behavior of the principal eigenvalue for general linear cooperative
elliptic systems with small diffusion rates is determined. As an application, we show that if a
cooperative system of ordinary differential equations has a unique positive equilibriumwhich
is globally asymptotically stable, then the corresponding reaction-diffusion systemwith either
the Neumann boundary condition or the Robin boundary condition also has a unique positive
steady state which is globally asymptotically stable, provided that the diffusion coefficients
are sufficiently small. Moreover, as the diffusion coefficients approach zero, the positive
steady state of the reaction-diffusion system converges uniformly to the equilibrium of the
corresponding kinetic system.
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1 Introduction

Let � be a bounded domain in the Euclidean space R
N with smooth boundary, denoted as

∂�. Given any scalar function q ∈ C(�̄), let λ1(d� + q) denote the smallest eigenvalue of
the linear problem
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d�φ + q(x)φ + λφ = 0 in �,

subject to the Dirichlet boundary condition

φ = 0 on ∂�

or the Neumann boundary condition

∂νφ = 0 on ∂�.

Here the diffusion coefficient d is assumed to be a positive constant, � = ∑N
i=1

∂2

∂x2i
is the

Laplace operator in R
N , ν denotes the unit outer normal vector on ∂�, and ∂νφ := ∇φ · ν.

By standard variational argument, it follows readily that ([2])

lim
d→0+ λ1(d� + q) = −max

x∈�̄
q(x). (1.1)

It is natural to ask whether (1.1) can be extended to linear elliptic systems. This ques-
tion arises from the study of some reaction-diffusion systems in population biology [11].
In general, the dynamics of a system of reaction-diffusion equations is more complicated
comparing to its corresponding kinetic system of ordinary differential equations. This was
illustrated in [16], where the following two species Lotka–Volterra competition model was
considered: ⎧

⎨

⎩

ut = d1�u + u(m(x) − u − cv) in � × (0, T ),

vt = d2�v + v(m(x) − bu − v) in � × (0, T ),

∂νu = ∂νv = 0 on ∂� × (0, T ).

(1.2)

Hereu andv denote the densities of two species competing for a common resource represented
by m(x). The positive constants d1 and d2 are their diffusion coefficients, while b and c
account for the interspecific competition. In the weak competition case, i.e. b, c ∈ (0, 1), the
dynamics of the corresponding kinetic system

{
Ut = U (m(x) −U − cV ),

Vt = V (m(x) − bU − V )
(1.3)

is rather simple. Namely, for each x , there exists a unique positive equilibrium (U∗, V ∗) :=(
1−c
1−bcm(x), 1−b

1−bcm(x)
)
which is globally asymptotically stable among solutions of positive

initial data. In contrast to the simple dynamics of system (1.3), it is proved in [16] that for
some ranges of b, c ∈ (0, 1) and d1, d2 > 0, system (1.2) does not possess any positive steady
state. Moreover, it is shown that for any initial data that are non-negative and not identically
zero, one of the species is driven to extinction by its competitor. The assumption thatm being
non-constant plays a crucial role in such “diffusion-driven extinction” phenomenon.We refer
to [1,13,18,19] for related works and [6–8,15] for recent development.

While the dynamics of (1.2) can be different from that of (1.3) for some ranges of diffusion
coefficients, it is demonstrated in [11] (see also [15]) that when d1 and d2 are sufficiently
small, then again (1.2) has a unique positive steady state, denoted by (u∗, v∗), which is
globally asymptotically stable, and as d1, d2 → 0,

(u∗, v∗) → (U∗, V ∗) uniformly in �̄. (1.4)

In general, we have the following question:

Question If anODEsystemhas a unique equilibriumwhich is globally asymptotically stable,
does the corresponding parabolic problem, with small diffusion rates, have a unique steady
state which is globally asymptotically stable?
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An affirmative answer to this question means that sometimes the dynamics of the PDE,
with small diffusion rates, is indeed fully determined by that of the corresponding kinetic
system. This general question was posed by Hutson [10]. In [11] this question was addressed
for (1.2). The approach of [11] is as follows. First, the existence and asymptotic profiles of
positive steady states of (1.2), as d1, d2 → 0, are determined. Then the authors proceed to
show that any positive steady state is linearly stable, and hence locally asymptotically stable
(see, e.g. Theorem 7.6.2 of [23]). Finally, the following result from the monotone dynamical
system theory is invoked to yield the uniqueness and global stability of positive steady state
of (1.2).

Theorem 1.1 ([9,12,23]) Let u and ū be strict sub/super solutions of a monotone dynamical
system preserving the order �, and that u � ū. If every steady state u such that u � u � ū
is locally asymptotically stable, then u is unique and globally asymptotically stable in {v :
u � v � ū}.

The crucial step in the proofs of [11] is to show that every positive steady state is linearly
stable. After suitable transformation, it amounts to show that, for d1, d2 sufficiently small,
the principal eigenvalue of the cooperative elliptic system

⎧
⎨

⎩

d1�φ + a11φ + a12ψ + λφ = 0 in �,

d2�ψ + a21φ + a22ψ + λψ = 0 in �,

∂νφ = ∂νψ = 0 on ∂�

(1.5)

is positive. By the convergence result stated in (1.4), we have
(
a11 a12
a21 a22

)

=
(
m − 2u∗ − cv∗ cu∗

bv∗ m − bu∗ − 2v∗
)

→
(−U∗ cU∗

bV ∗ −V ∗
)

,

as d1, d2 → 0. Since both eigenvalues of the latter matrix are negative at every point x ∈ �̄,
one expects that the principal eigenvalue of (1.5) will be positive when d1, d2 are small.
This is indeed the case, as shown in [11] via a rescaling argument. However, the problem of
determining the precise limit of the principal eigenvalue of (1.5) as d1, d2 → 0 was left open
in [11].

The first goal of this paper is to completely determine the asymptotic limit of the principal
eigenvalue for general linear cooperative elliptic systems, including (1.5), when the diffusion
coefficients approach zero. To this end, we consider the following eigenvalue problem in
vector notation: {

DLφ + Aφ + λφ = 0 in �,

Bφ = 0 on ∂�,
(1.6)

where D = diag(d1, . . . , dn), di > 0 are positive constants; L = diag(L1, . . . , Ln) with
Li being second-order elliptic operators of non-divergence form, i.e. for 1 ≤ i ≤ n and
1 ≤ k, l ≤ N ,

Liu := αi
kl∂

2
xk xl u + β i

k∂xk u + γ i u, (1.7)

where αi
kl , β

i
k, γ

i ∈ Cθ (�̄) for some θ ∈ (0, 1) and η0|ξ |2 < αi
kl(x)ξkξl < η1|ξ |2 for

ξ ∈ R
N , x ∈ �, and for some positive constants η0, η1; φ = (φ1, . . . , φn)

T ∈ [C2(�̄)]n ;
A = (ai j ) ∈ (

C(�̄)
)n×n

satisfies ai j (x) ≥ 0 in � when i 	= j ; B = (B1, . . . , Bn) are
boundary operators satisfying for each i either the Robin boundary condition

Biφi := ∂νφi + pi (x)φi on ∂�, (1.8)
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where pi ≥ 0 and pi ∈ C(�̄), or the Dirichlet boundary condition

Biφi := φi on ∂�. (1.9)

Definition 1.2 An eigenvalue λ1 of (1.6) is called the principal eigenvalue if λ1 ∈ R and for
any eigenvalue λ̃ such that λ̃ 	= λ1, we have Re λ̃ > λ1.

Throughout this paper, λ1 denotes the principal eigenvalue of problem (1.6). The existence of
the principal eigenvalue of (1.6) is obtained by Sweers [24] via the Krein-Rutman Theorem
([14]). Nagel [17] and deFigueiredo-Mitidieri [4] also studied the principal eigenvalue prob-
lem, using semigroup theory and maximum principle, respectively. By the Krein–Rutman
Theorem for positive compact operators, (1.6) has a principal eigenvalue λ1 ∈ R and the
corresponding eigenfunction φ = (φ1, . . . , φn)

T can be chosen to satisfy φi ≥ 0 for all i . If
in addition we assume that ai j > 0 in � for all i 	= j , then λ1 is simple and it is the unique
eigenvalue corresponding to a strictly positive eigenfunction, i.e. φi > 0 in � for all i . For
later purposes, we provide a proof of this fact in Sect. 3 (Proposition 3.1).

We recall the existence of the principal eigenvalue for any non-negative matrix, as guar-
anteed by the Perron–Frobenius Theorem ([5]).

Theorem 1.3 Given a real-valued square matrix A = (ai j ), whose off-diagonal terms are
non-negative, (i.e. ai j ≥ 0 if i 	= j ), there exists a real eigenvalue λ̄(A), corresponding
to a non-negative eigenvector, with the greatest real part (for any eigenvalue λ′ 	= λ̄(A),
λ̄(A) > Re λ′). Moreover, if ai j > 0 for any i 	= j , then λ̄(A) is simple with strictly positive
eigenvector, and it can be characterized as the unique eigenvalue corresponding to a non-
negative vector.

The first main result of this paper is

Theorem 1.4 Let λ1 be the principal eigenvalue of (1.6) with boundary condition (1.8) or
(1.9). Then

lim
max1≤i≤n{di }→0

λ1 = −max
x∈�̄

λ̄(A(x)). (1.10)

Theorem 1.4 extends an earlier result of Dancer [3], where it is proved that if di go to
zero at the same rates, i.e. for each i , di = ε2d̄i for some constant d̄i > 0, then (1.10)
holds as ε → 0. The proof in [3] is based on solving some limiting eigenvalue problem with
constant coefficient in R

N or in a half space, which is derived by exploiting the same scale
of the diffusion rates. Under our assumptions, di can approach zero with different rates and
hence there might be no limiting eigenvalue problem. A critical ingredient in our proof is a
boundary Lipschitz estimate (Theorem 2.2), which seems to be of self interest.

As an application of Theorem 1.4, we consider
⎧
⎨

⎩

∂tw = DLw + F(x, w) in � × (0, T ),

Bw = 0 on ∂� × (0, T ),

w(x, 0) = w0(x) in �,

(1.11)

where D, L are defined as before, w = (w1, . . . , wn)
T and B = (B1, . . . , Bn) where Bi

satisfies theNeumannor theRobin boundary conditions as given in (1.8). For the reaction term
F we assume that F(x, s1, . . . , sn) = (F1, . . . , Fn)(x, s1, . . . , sn) ∈ C1(�̄ × [0,∞)n;Rn)

and satisfies the following assumptions:

(A1) (cooperativity) ∂si Fj (x, s1, . . . , sn) ≥ 0 if i 	= j .
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(A2) (kinetic dynamics) For each x0 ∈ �̄, the ODE system

�′(t) = F(x0,�(t)), �(0) ∈ (0,∞)n (1.12)

has a unique, globally asymptotically stable positive equilibrium, denoted by

α(x0) = (
α1(x0), . . . , αn(x0)

)
.

Moreover, α is continuous in �̄ and as an equilibrium of (1.12), α is linearly stable for
each x0 ∈ �̄, i.e.,

λ̄
(
Ds F (x0, α(x0))

)
< 0.

(A3) (positivity of growth) There exists δ0 > 0 such that for all j = 1, . . . , n,
Fj (x, s1, . . . , sn)/s j > δ0 for all x ∈ �̄, and 0 < si ≤ δ0 for all i = 1, . . . , n.

(A4) (dissipativity) There exist positive constants M, δ′
0 > 0 such that for all j = 1, . . . , n,

Fj (x, s1, . . . , sn)/s j < −δ′
0 if x ∈ �̄ and min1≤i≤n{si } ≥ M .

Assumption (A1) means that the system is cooperative, i.e. the growth of any species will
help the increase of other species. (A2) says that the kinetic system has a unique equilibrium
which attracts all solutions with positive initial data. (A3) ensures that at any location in the
habitat the intrinsic growth rate is positive for each species. (A4) guarantees that the solutions
of (1.11) will remain uniformly bounded for all time.

Our second main result is

Theorem 1.5 Assume that (A1)-(A4) hold. If max1≤i≤n{di } is sufficiently small, (1.11) has
a unique positive steady state, denoted as w̃(x). The positive steady state w̃(x) is globally
asymptotically stable among solutions with non-negative, non-trivial initial data. Moreover,
w̃(x) → α(x) uniformly as max1≤i≤n{di } → 0.

This paper is organized as follows: In Sect. 2 we establish a boundary Lipchitz estimate.
For later purposes, the existence of the principal eigenvalue is proved in Sect. 3, together with
somewell-known eigenvalue comparison theorem for cooperative elliptic systems. Theorems
1.4 and 1.5 are established in Sects. 4 and 5, respectively.

2 A Boundary Lipchitz Estimate

In this section we establish a boundary Lipchitz estimate for solutions of some linear inho-
mogeneous second order elliptic equations. To this end, let f ∈ C(�̄). For each d > 0, let
ud be the solution to the problem

{−dL1u + u = f in �,

u = 0 on ∂�,
(2.1)

where L1 is given in (1.7). It is well-known that ud exists for all d > 0 sufficiently small,
e.g. if d‖γ 1‖L∞(�) < 1. We also state the following fact:

Lemma 2.1 For each compact subset K ⊂ �, ‖ud − f ‖L∞(K ) → 0 as d → 0. If we assume
in addition that f |∂� = 0, then ‖ud − f ‖L∞(�) → 0 as d → 0.

For later purposes, we shall prove a boundary Lipschitz estimate of ud , which implies Lemma
2.1 for f ∈ C1(�̄).

123



34 J Dyn Diff Equat (2016) 28:29–48

Theorem 2.2 If f ∈ C1(�̄) and f |∂� = 0, then

sup
�

|ud − f |
dist(x, ∂�)

→ 0 as d → 0.

The following result is a direct consequence of Theorem 2.2.

Corollary 2.3 If f ∈ C1(�̄) satisfies f > 0 in �, f |∂� = 0 and ∂ν f |∂� < 0, then for any
ε > 0, we have

(1 − ε) f (x) < ud(x) < (1 + ε) f (x) in �,

for all sufficiently small d > 0.

Assume in addition that f > 0 in � and ∂ν f |∂� < 0. Theorem 2.2 follows from the next
two propositions.

Proposition 2.4 Suppose f > 0 in� and ∂ν f |∂� < 0. Then for each ε ∈ (0, 1
3 inf∂� |∂ν f |),

we have
ud < f + 3ε dist(x, ∂�) in �, (2.2)

for all sufficiently small d > 0.

Proposition 2.5 Suppose f > 0 in� and ∂ν f |∂� < 0. Then for each ε ∈ (0, 1
3 inf∂� |∂ν f |),

we have
ud > f − 3ε dist(x, ∂�) in �, (2.3)

for all sufficiently small d > 0.

Assume that Propositions 2.4 and 2.5 hold.

Proof of Theorem 2.2 By Propositions 2.4 and 2.5, Theorem 2.2 is proved with the extra
assumptions f > 0 in � and ∂ν f |∂� < 0. To remove these extra assumptions, choose
ϕ ∈ C1(�̄) such that ϕ|∂� = 0, ϕ > max{0,− f } in � and ∂νϕ < min{0,−∂ν f } on ∂�.
Let vd be the unique solution to

−dLv + v = ϕ > 0 in �, v|∂� = 0.

Then ud + vd is the unique solution to

−dLz + z = f + ϕ > 0 in �, z|∂� = 0.

As previous arguments are applicable, we have

0 ≤ |ud − f |
dist(x, ∂�)

≤ |vd − ϕ|
dist(x, ∂�)

+ |(ud + vd) − ( f + ϕ)|
dist(x, ∂�)

→ 0

uniformly in �, as d → 0. This proves Theorem 2.2. ��
We now proceed to prove Propositions 2.4 and 2.5 via a careful argument via barrier

functions. Given ε > 0, choose R > 0 small such that

(B1) For all x0 ∈ ∂�, there exists BR ⊂ � such that ∂BR ∩ ∂� = {x0}.
(B2) For all x0 ∈ ∂�, there exists B̃R ⊂ R

N \ �̄ such that ∂ B̃R ∩ �̄ = {x0}.
(B3) |∇ f (x1) − ∇ f (x2)| < ε/2 for all x1, x2 ∈ �̄ such that |x1 − x2| ≤ 2R.

By (B1), for all t ∈ (0, R], �t : ∂� → {x ∈ � : dist(x, ∂�) = R} defined by
�t (x0) := x0 − tνx0 ,
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where νx0 is the unit outer normal of ∂� at x0, is a diffeomorphism. By (B3),

0 < f (x) <
[
−∂ν f (x0) + ε

2

]
dist(x, ∂�) in {x ∈ � : dist(x, ∂�) ≤ R}, (2.4)

where x0 ∈ ∂� is the unique point on ∂� closest to x .
Define the barrier function ρ ∈ C2(B3R/2 \ {0}) by

ρ(x) := Rσ+1

σ

(|x |−σ − R−σ
)
,

where the parameter σ > 1 is specified in the following result:

Lemma 2.6 If

σ = Nη1

η0
+ 3R|β1

k |L∞(�)

2η0
+ 9R2|γ 1|L∞(�)

4η0
,

then L1ρ ≥ 0 in B3R/2 \ {0}, where η0, η1, β
1
k , γ

1 are given after (1.7).

Proof Let |x | = r .

σ

Rσ+1 L1ρ = r−σ−2 [
σ(σ + 2)α1

kl xk xl/r
2 − α1

kkσ − σβ1
k xk + γ 1r2

]

≥ r−σ−2 [
σ(σ + 2)η0 − Nη1σ − σ |β1

k |L∞(�)(3R/2) − |γ 1|L∞(�)(3R/2)2
]

≥ 0.

This completes the proof. ��
We start with a crude estimate on ud . Define

δ1 := min

{

R

[(
c1 + 2ε

c1 + ε

) 1
σ+1 − 1

]

,
2ε

(σ + 1)(c1 + 2ε)
,
R

2

}

, (2.5)

where c1 = max
∂�

|∂ν f |.

Lemma 2.7 There exists d̄1 > 0 such that for all d ∈ (0, d̄1],
ud(x) ≤ (−∂ν f (yx ) + ε/2)δ1 in {x ∈ � : dist(x, ∂�) ≤ δ1},

where yx is the unique point on ∂� closest to x.

Proof By (2.4), there exists f̄ ∈ C2(�̄) such that f̄ > f in �̄, and

f̄ (x) ≤ (−∂ν f (yx ) + ε/2)δ1 in {x ∈ � : dist(x, ∂�) ≤ δ1}.
Then for d > 0 sufficiently small,

−dL f̄ + f̄ > f in �, f̄ |∂� > 0.

By the maximum principle [20], ud ≤ f̄ . This proves the lemma. ��
To prove Proposition 2.4, by Lemma 2.1 it suffices to establish (2.2) in a neighborhood

of ∂�. In fact, it suffices to show that there exists d1 > 0 such that for all d ∈ (0, d1) and
each x0 ∈ ∂�, (2.2) holds for x = x0 − tνx0 for all t ∈ (0, δ1], where νx0 is the unit outward
normal vector at x0 ∈ ∂� and δ1 is defined in (2.5). Without loss of generality, assume
x0 = (0, . . . , 0, R), νx0 = (0, . . . , 0,−1) and the exterior sphere at x0 guaranteed by (B2)
is BR(0). We establish the following result:
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Lemma 2.8 Define z ∈ C2(BR+δ1(0) \ BR(0)) by

z(x) := (−∂ν f (x0) + 2ε)(−ρ(x)).

Then

(i) z(x) > f (x) in � ∩ BR+δ1(0);
(ii) z(0, . . . , 0, R + t) ≤ f (0, . . . , 0, R + t) + 3εt for all t ∈ [0, δ1].

Proof To show (i), we note that for all t ∈ (0, δ1),

∂xN z(0, . . . , 0, t + R) = (∂xN f (x0) + 2ε)

(
R

t + R

)σ+1

≥ ∂xN f (x0) + ε,

by our choice of δ1 in (2.5). Since

z(0, . . . , 0, R) = f (0, . . . , 0, R) = 0, (2.6)

we have
z(0, . . . , 0, t + R) > t (∂xN f (x0) + ε) for t ∈ (0, δ1]. (2.7)

For x ∈ � ∩ BR+δ1(0), if we write x = y − tνy (where y is the unique point of ∂� closest
to x), then necessarily 0 < t ≤ |x | − R ≤ δ1, since BR(0) ∩ � = ∅. Now f |∂� = 0, and
by (B3), |∇ f (x)| < ∂xN f (x0) + ε/2 in B2R(x0) ∩ �. If we integrate it from ∂� along the
normal direction, then f (x) ≤ t (∂xN f (x0) + ε). Together with (2.7), we obtain

f (x) ≤ t (∂xN f (x0) + ε) < z(0, . . . , t + R) ≤ z(0, . . . , 0, |x |) = z(x).

This proves (i). Part (ii) follows from (2.6), (B3) and

∂xN z(0, . . . , t + R) = (∂xN f (x0) + 2ε)

(
R

t + R

)σ+1

≤ ∂xN f (x0) + 2ε

< ∂xN f (0, . . . , t + R) + 3ε

for t ∈ [0, δ1]. ��

Proof of Proposition 2.4 It suffices to show that

ud ≤ z in �′ := BR+δ1(0) ∩ � for all d ∈ (0, d̄1). (2.8)

We will proceed by comparison. Firstly, by Lemma 2.8(i),

− dL1z + z ≥ z ≥ f in �′. (2.9)

Secondly,
ud = 0 ≤ z on ∂�′ ∩ ∂�. (2.10)

Thirdly, for each x ∈ ∂�′ ∩ �, and all d ∈ (0, d1),

ud(x) ≤
(
−∂ν f (yx ) + ε

2

)
δ1 ≤ (−∂ν f (x0) + ε) δ1, (2.11)

where the first and second inequalities follow from Lemma 2.7 and (B3), respectively.

123



J Dyn Diff Equat (2016) 28:29–48 37

Next, we claim that

(−∂ν f (x0) + ε) δ1 ≤ z(x) on ∂�′ ∩ �. (2.12)

To show (2.12), we note that by (2.5),

1 − σ
δ1

R
+ σ(σ + 1)

2

(
δ1

R

)2

≤ 1 − σ

( −∂ν f (x0) + ε

−∂ν f (x0) + 2ε

)
δ1

R
.

In view of the inequality (1 + s)−σ ≤ 1 − σ s + σ(σ+1)
2 s2 for s ≥ 0, we have

(
1

1 + δ1
R

)σ

≤ 1 − σ

( −∂ν f (x0) + ε

−∂ν f (x0) + 2ε

)
δ1

R
,

which is equivalent to (2.12). Combining (2.10), (2.11) and (2.12), we have

ud ≤ z on ∂�′ for all d ∈ (0, d̄1). (2.13)

By (2.9) and (2.13), we can conclude (2.8) by the comparison principle. ��

We now proceed to establish Proposition 2.5. To this end, define

δ2 := min

{

R

[

1 −
(
c2 − 2ε

c2 − ε

) 1
σ+1

]

, δ1,
R

2

}

, with c2 = inf
∂�

|∂ν f |. (2.14)

As before, by Lemma 2.1 it suffices to show that there exists d2 > 0 such that for all
d ∈ (0, d2) and for each x0 ∈ ∂�, (2.3) holds for x = x0 − tνx0 for all t ∈ (0, δ2]. Without
loss of generality, assume x0 = (0, . . . , 0,−R), νx0 = (0, . . . , 0,−1) and the interior sphere
at x0 is BR(0).

Lemma 2.9 Define w ∈ C2(BR(0) \ BR−δ2(0)) by

w(x) := (−∂ν f (x0) − 2ε)ρ(x).

Then

(i) w(x) < f (x) in BR(0) \ BR−δ2(0);
(ii) w(0, . . . , 0,−R + t) ≥ f (0, . . . , 0,−R + t) − 3εt for all t ∈ [0, δ2].

Proof Part (ii) follows from w(0, . . . , 0,−R) = f (0, . . . , 0,−R) = 0, and

∂xN w(0, . . . , 0,−R + t) ≥ ∂xN w(0, . . . , 0,−R)

= ∂xN f (0, . . . , 0,−R) − 2ε

> ∂xN f (0, . . . , 0,−R + t) − 3ε,

where the last inequality follows from (B3).
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Part (i) follows from w = 0 ≤ f on ∂BR(0), and

∂xN w(x) = (∂xN f (x0) − 2ε)

(
R

|x |
)σ+1 −xN

|x |

≤ (∂xN f (x0) − 2ε)

(
R

R − δ2

)σ+1

≤ ∂xN f (x0) − ε

< ∂xN f (x) − ε

2

in BR(0) \ BR−δ2(0). The second last inequality follows from (2.14) and the last inequality
is a consequence of (B3). ��

Proof of Proposition 2.5 By the proof of Lemma 2.9(i), we have actually shown

f (x) − w(x) ≥ δ2ε

2
in {x ∈ BR(0) : dist(x, ∂�) = δ2} . (2.15)

Let �′′ = {x ∈ BR(0) : dist(x, ∂�) < δ2}. By Lemma 2.9(ii), it suffices to show that for
some d̄2 = d̄2(δ2, ε,�, f ),

ud ≥ w in �′′ for all d ∈ (0, d̄2). (2.16)

We proceed by comparison method. Firstly, by Lemma 2.9(i) and L1w ≥ 0,

− dL1w + w ≤ w < f in �′′. (2.17)

Secondly,
w = 0 ≤ ud on ∂�′′ ∩ ∂BR(0). (2.18)

Thirdly, by Lemma 2.1, there exists d2 = d2(δ2, ε,�, f ) such that for all d ∈ (0, d2),

w ≤ f − δ2ε

2
< ud in {x ∈ � : dist(x, ∂�) = δ2}. (2.19)

In particular,w < ud on ∂�′′ ∩ BR(0) for all d ∈ (0, d̄2). Hence by (2.17), (2.18) and (2.19),
we deduce (2.16) by the comparison principle. Hence (2.3) holds for x = x0 − tνx0 and all
t ∈ (0, δ2]. This completes the proof of Proposition 2.5. ��

3 Existence and Comparison Theorems for Principle Eigenvalues

In this section, following the approach in [24], we demonstrate the existence of the principal
eigenvalue for (1.6) via theKrein–RutmanTheorem and establish some comparison theorems
for the principle eigenvalues.

Proposition 3.1 There exists a principal eigenvalue λ1 ∈ R for (1.6), with either boundary
condition (1.8) or (1.9).

By replacing λ by λ −C for some large constant C , we may assume that ai j ≥ 0 in � for
all i, j . Choose any β > 0 large such that (−di Li + β)−1 exists for the respective boundary
conditions and is positive. Let λ ∈ [−β,∞). Define Kλ,β : [C(�̄)]n → [C(�̄)]n by
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Kλ,βu = (−DL + β I )−1 [Au + (λ + β)u]. (3.1)

As Kλ,β is a positive compact operator, by the Krein–Rutman theorem, Kλ,β has a principal
eigenvalue r(Kλ,β) > 0 given by

r(Kλ,β) = lim
m→∞

m
√

‖(Kλ,β)m‖.

The following result is a consequence of the monotonicity of r(Kλ,β) in λ ∈ [−β,∞),
for each β > 0. Clearly, Proposition 3.1 follows from Lemma 3.2.

Lemma 3.2 The principal eigenvalue λ1 of (1.6) exists. Furthermore, let β > 0 and λ ∈
[−β,∞) be given.

(i) If r(Kλ,β) = 1, then λ = λ1;
(ii) If r(Kλ,β) < 1, then λ < λ1;
(iii) If r(Kλ,β) > 1, then λ > λ1.

Proof Without loss of generality, assume D = I , i.e. di ≡ 1 for all i . Firstly, part (i) can be
verified in a straightforward manner. Secondly, suppose that r(Kλ0,β) < 1 for some β > 0
and λ0 ∈ [−β,∞). Define Z : [C(�̄)]n → [C(�̄)]n by

(Zu)i := (−Li + β)−1ui .

Since for any λ ≥ λ0,

(Kλ,βu)i ≥ λ[(−Li + β)−1ui ] = (Zu)i

holds, where (−Li + β)−1 is the inverse of (−Li + β) (with boundary conditions), we have
r(Kλ,β) ≥ λr(Z) for all λ ≥ λ0. Since r(Z) > 0 by the positivity of Z, by the continuity
of r(Kλ,β) in λ, r(K

λ̂,β
) = 1 for some λ̂ > λ0. Therefore by part (i), λ0 < λ̂ = λ1, where

λ1 is the principal eigenvalue of (1.6). Finally, suppose that r(Kλ0,β) > 1 for some β > 0
and λ0 ∈ [−β,∞). Then for λ > λ0, (Kλ,βu)i > (Kλ0,βu)i for all i and ui ≥ 0. So
r(Kλ,β) ≥ r(Kλ0,β) > 1 for all λ ≥ λ0. If the principal eigenvalue λ1 of (1.6) exists, then
we must have λ1 < λ0. Thus it remains to show the existence of λ1. For that purpose, we
observe that r(K−β ′,β ′) < 1 for some β ′ > 0, as ‖(−Li + β ′)−1‖ → 0 when β ′ → ∞, via
the maximum principle. By the previous part of the proof, there exists λ′ ∈ (−β ′,∞) such
that r(Kλ′,β ′) = 1, i.e., λ1 exists and equals λ′. ��

Next, we present a well-known comparison theorem for principle eigenvalues of cooper-
ative systems.

Definition 3.3 (i) Let λ∗
1 be the principal eigenvalue of

{
DLφ∗ + A∗φ∗ + λ∗φ∗ = 0 in �,

B∗φ∗ = 0 on ∂�,
(3.2)

where A∗(x) =
(
a∗
i j (x)

)
∈ (

C(�̄)
)n×n

satisfies a∗
i j ≥ 0 in � when i 	= j ; B∗ =

(B∗
1 , . . . , B∗

n ) with B∗
i = ∂ν + p∗

i , where p∗
i ≥ 0, p∗

i ∈ C(�̄).
(ii) Let λD

1 be the principal eigenvalue of (1.6) with Dirichlet boundary condition (1.9).
(iii) For each smooth subdomain �0 ⊂ �, let λD

1 (�0) be the principal eigenvalue of (1.6)
with � replaced by �0, and Dirichlet boundary condition on ∂�0.

123



40 J Dyn Diff Equat (2016) 28:29–48

Proposition 3.4 Suppose that a∗
i j ≥ ai j in �̄ for 1 ≤ i, j ≤ n, and p∗

i ≤ pi in �̄ for
1 ≤ i ≤ n if Bi satisfies (1.8). Let λ1 be the principal eigenvalue of (1.6) with boundary
condition (1.8). Then λ∗

1 ≤ λ1 ≤ λD
1 ≤ λD

1 (�0).

Proof Define (−DL+β I )−1, (−DL+β I )−1
D and [(−DL + β I )∗]−1 as the inverse operator

of (−DL + β I ) on � with boundary conditions B[·] = 0, D[·] = 0 and B∗[·] = 0,
respectively. (HereDφ = φ|∂�.) Let (−DL + β I )−1

0,D denote the inverse operator of (−DL+
β I ) on �0 with Dirichlet boundary condition on ∂�0. As before, by replacing λ with λ −C
for some large constantC > 0, and take a large positive β, wemay assume that a∗

i j ≥ ai j ≥ 0

in� for all i, j , and that for any β > 0, (−DL+β I )−1, (−DL+β I )−1
D , [(−DL + β I )∗]−1

and (−DL + β I )−1
0,D exist and are positive.

First we show λ∗
1 ≤ λ1. Let K ∗ : [C(�̄)]n → [C(�̄)]n be defined by

K ∗u := [(−DL + |λ∗
1| + 1)∗]−1(A∗u + (λ∗

1 + |λ∗
1| + 1)u).

Then r(K ∗) = 1 by Lemma 3.2. It follows from themaximumprinciple that for all f ∈ C(�̄)

and f ≥ 0,

[(−DL + (|λ∗
1| + 1)I )∗]−1 f ≥ (−DL + (|λ∗

1| + 1)I )−1 f.

So Kλ∗
1,|λ∗

1|+1 f ≤ K ∗ f holds for all f = ( f1, . . . , fn)T ∈ [C(�̄)]n such that fi ≥ 0 in �.
Therefore,

r(Kλ∗
1,|λ∗

1|+1) ≤ r(K ∗) = 1.

Hence, by Lemma 3.2, λ1 ≥ λ∗
1. The proof for λ1 ≤ λD

1 is similar and is omitted.
Next, we show λD

1 ≤ λD
1 (�0). Define K D : [C(�̄)]n → [C(�̄)]n and K D

0 : [C(�̄)]n →
[C(�̄0)]n by

K D f :=
(
−DL +

(
|λD

1 (�0)| + 1
)
I
)−1

D

(
A f +

(
λD
1 (�0) + |λD

1 (�0)| + 1
)
f
)

,

K D
0 f :=

(
−DL +

(
|λD

1 (�0)| + 1
)
I
)−1

0,D

[(
A f +

(
λD
1 (�0) + |λD

1 (�0)| + 1
)
f
)

|�0

]
.

Applying the maximum principle to �0, one can show that for any f ≥ 0, f ∈ C(�̄),

(
−DL +

(
|λD

1 (�0)| + 1
)
I
)−1

D
[ f ] ≥

(
−DL +

(
|λD

1 (�0)| + 1
)
I
)−1

0,D

[
f |�0

]

holds in �0. Hence, for all f = ( f1, . . . , fn) ∈ [C(�̄)]n such that fi ≥ 0 in �0 and fi = 0
in � \ �0, we have K D f |�0 ≥ K D

0 f in �0. So r(K D) ≥ r(K D
0 ) = 1. By Lemma 3.2, we

obtain λD
1 ≤ λD

1 (�0). ��

4 Proof of Theorem 1.4

In this section we establish Theorem 1.4. For the sake of clarity we divide the proofs into
several lemmas. It is clear that Theorem 1.4 follows immediately from Lemmas 4.1 and 4.3.
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First we consider the lower bound of the principle eigenvalue of (1.6).

Lemma 4.1 The following estimate holds:

lim inf
max1≤i≤n{di }→0

λ1 ≥ −max
x∈�̄

λ̄ (A(x)) . (4.1)

Proof We only need to treat the Neumann boundary condition (i.e. (1.8) with pi ≡ 0), since
by Proposition 3.4, replacing the Neumann boundary condition by the Dirichlet boundary
condition or the Robin boundary condition only increases λ1. By Lemma 3.2, it suffices to
show that given ε > 0, if λ < −max

x∈�̄
λ̄ (A(x)) − ε, then r(Kλ,|λ|+1) < 1 for max1≤i≤n{di }

sufficiently small.
Replacing λ by λ−C for some large constant C > 0, we may assume ai j ≥ 0 for all i, j .

For the meanwhile, we make the additional assumption that

ai j (x) > 0 in �̄ for all i, j. (4.2)

For each x ∈ �̄, A(x) is a cooperative matrix. By the Perron–Frobenius Theorem, for
each x ∈ �̄ there exists a unique eigenvalue λ̄ (A(x)) ∈ R with a corresponding non-
negative eigenvector�(x) = (�1(x), . . . , �n(x)),�i (x) ≥ 0 for all i . That is, A(x)�(x) =
λ̄(A(x))�(x) for all x ∈ �̄, where we normalize �(x) by

∑
i �

2
i (x) = 1. Moreover, by

(4.2), λ̄(A(x)) is simple and �i > 0 in �̄ for all i . ��
Claim 4.2 � ∈ [C(�̄)]n.
To establish our assertion, given any x0 ∈ �̄, let xk be a sequence in �̄ such that xk → x0,
and A(xk)�(xk) = λ̄(A(xk))�(xk). By passing to a subsequence, we may assume that for
some �′ ∈ R

n , λ′ ∈ R, �(xk) → �′ and λ̄(A(xk)) → λ′ as k → ∞, with �′
i ≥ 0 for all i ,∑

i (�
′
i )
2 = 1, and A(x0)�′ = λ′�′. Since �′ is a non-negative eigenvector of A(x0), by the

simplicity of the principle eigenvalue we must have �′ = �(x0) and λ′ = λ̄(A(x0)). Since
the limits λ′, �′ are independent of subsequences, the full sequence converges and the claim
is proved.

Next, we claim that for each i , if f ∈ C(�̄), then as di → 0,

(−di Li + |λ| + 1)−1 f → f

|λ| + 1
in L∞(�). (4.3)

To show (4.3), we observe that for any ε > 0, there exists f̃ ∈ C2(�̄) such that

f − ε

2
≤ f̃ ≤ f + ε

2
in �̄ and ∂ν f̃ = 0 on ∂�.

Then for di small,

(−di Li + |λ| + 1)

(
f̃

|λ| + 1
+ ε

)

= −di Li

(
f̃

|λ| + 1
+ ε

)

+ f̃ + ε(|λ| + 1) ≥ f

in �. As (−di Li + |λ| + 1)−1 (with the Neumann boundary condition) is a positive operator
for di small, we can conclude by the comparison principle that for di small,

(−di Li + |λ| + 1)−1 f ≤ f̃

|λ| + 1
+ ε ≤ f

|λ| + 1
+

(
1

|λ| + 1
+ 1

)

ε.
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Similarly, for di small we have

(−di Li + |λ| + 1)−1 f ≥ f̃

|λ| + 1
− ε ≥ f

|λ| + 1
−

(
1

|λ| + 1
+ 1

)

ε.

Hence (4.3) is proved.
Next, we observe that

A(x)�(x) + (λ + |λ| + 1)�(x) = [λ̄(A(x)) + λ + |λ| + 1]�(x).

Hence, as max1≤i≤n{di } → 0,

Kλ,|λ|+1�(x) → λ̄(A(x)) + λ + |λ| + 1

|λ| + 1
�(x)

in L∞(�). Since we chose λ < −max
�̄

λ̄(A(x)) − ε, so for di small,

Kλ,|λ|+1� <
|λ| + 1 − ε/2

|λ| + 1
�.

Hence, r
(
Kλ,|λ|+1

)
< 1. This proves (4.1) under assumption (4.2).

We now remove the extra assumption (4.2). Let δ > 0 be any small constant. Consider
(1.6) with the Neumann boundary condition, with A(x) = (

ai j (x)
)
replaced by Ã(x) =

(
ãi j (x)

) := (
ai j (x) + δ

)
. Denote the corresponding principle eigenvalue by λ̃1. Previous

arguments apply and we have

lim inf
max1≤i≤n{di }→0

λ̃1 ≥ −max
x∈�̄

λ̄
(
Ã(x)

)
.

By Proposition 3.4, λ1 ≥ λ̃1. Hence, lim inf
maxi {di }→0

λ1 ≥ −max
�̄

λ̄
(
Ã(x)

)
. On the other hand,

λ̄
(
Ã(x)

)
→ λ̄ (A(x)) uniformly in �̄ as δ → 0. This proves (4.1).

Next, we consider the upper bound of the principle eigenvalue of (1.6).

Lemma 4.3 The following estimate holds:

lim sup
max1≤i≤n{di }→0

λ1 ≤ −max
x∈�̄

λ̄(A(x)). (4.4)

Here the boundary condition of (1.6) can be either (1.8) or (1.9).

Proof Given any δ′ > 0, choose B = Br (x0) with r > 0 and x0 ∈ � so that B ⊂ �

and λ̄(A′) > max�̄ λ̄(A(x)) − δ′, where A′ = (a′
i j ) is a constant n × n matrix given by

a′
i j = min

x∈B̄
ai j (x). Let λ′

1 be the principal eigenvalue of the problem

{
DLφ + A′φ + λφ = 0 in B,

φ = 0 on ∂B.

By Proposition 3.4, λ′
1 ≥ λ1. ��

Claim 4.4 lim sup
max1≤i≤n{di }→0

λ′
1 ≤ −λ̄(A′).

To establish this assertion, choose ϕ ∈ C1(B̄) so that ϕ > 0 in B, ϕ|∂B = 0, and
∂νϕ|∂B < 0. Similar as before, given η > 0, set λ = −λ̄(A′) + η and
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A′
λu := (−DL + |λ| + 1)−1[A′u + (λ + |λ| + 1)u].

Set ui := aiϕ, where ai ≥ 0 are constants, not all equal to zero, which satisfy A′
i j a j =

λ̄(A′)ai . Choose ε > 0 such that

η + |λ| + 1

|λ| + 1
(1 − ε) > 1.

Then for max1≤i≤n{di } small, Corollary 2.3 implies

(A′
λu)i = [λ̄(A′) + λ + |λ| + 1](−di Li + |λ| + 1)−1aiϕ

≥ (η + |λ| + 1)(1 − ε)
aiϕ

|λ| + 1
.

Hence, there exists some constant c > 1 such that

(A′
λu)i ≥ cui if ai > 0;

(A′
λu)i = 0 = cui if ai = 0.

Therefore, r(A′
λ,|λ|+1) > 1 for max1≤i≤n{di } small. By Lemma 3.2, given any η > 0, for

max1≤i≤n{di } small, we have λ′
1 < λ = −λ̄(A′) + η. Hence,

lim sup
max1≤i≤n{di }→0

λ′
1 ≤ −λ̄(A′) + η.

Our claim follows by letting η → 0.
To finish the proof of (4.4), we notice that λ1 ≤ λ′

1, so

lim sup
maxi {di }→0

λ1 ≤ −λ̄(A′) < −max
�̄

λ̄(A(x)) + δ′.

Finally, (4.4) follows by letting δ′ → 0.

5 Global Stability in Nonlinear Cooperative Systems

Theorem 1.5 will be proved in this section, with (A1)–(A4) being assumed throughout the
whole section. We shall combine the arguments in [22] together with our linear theory devel-
oped in earlier sections. The main steps are outlined as follows. First, it is shown that (1.11)
has at least one positive steady state (Lemma 5.1). Next, it is proved in Proposition 5.2 that any
positive steady state of system (1.11) converges uniformly to the unique positive equilibrium
of the corresponding kinetic system as max1≤i≤n{di } → 0. Finally, we prove (Proposition
5.9) that every positive state is linearly stable and thus asymptotically stable; this step makes
use of the linear theory introduced earlier in the paper. Theorem 1.5 follows immediately
from the monotonicity of system (1.11).

Lemma 5.1 System (1.11) has at least one positive steady state. Furthermore, if max1≤i≤n

{di } is sufficiently small, then any positive steady state u = (u1, . . . , un) must satisfy δ0 <

u j < M in �, where δ0 and M are given in (A3) and (A4), respectively.

Proof Define w̄0 = (w̄0
1, . . . , w̄

0
n) and w0 = (w0

1, . . . , w
0
n) by w̄0

j (x) ≡ M and w0
j (x) ≡ δ0

in �̄, j = 1, . . . , n. Since for max1≤i≤n{di } sufficiently small, w̄0 and w0 are upper and
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lower solutions of (1.11), respectively, and w̄0
j ≥ w0

j in �̄ for all j , (1.11) has at least one

positive steady state w = (w1, . . . , wn) such that w0
j ≤ w j ≤ w̄0

j .
On the other hand, by (A1) and (A4), there exists δ > 0 such that

di Li M
′ + F(x, M ′, . . . , M ′) < 0 for all i, if max

1≤i≤n
{di } ≤ δ and M ′ ≥ M. (5.1)

Assume that max1≤i≤n{di } ≤ δ and w = (w1, . . . , wn) is a positive steady state of (1.11)
such that ‖w j‖L∞(�) = max

1≤i≤n
‖wi‖L∞(�) = M ′ ≥ M for some j , then by (5.1) and (A1),

d j L j M
′ + Fj (x, w1, . . . , w j−1, M

′, w j+1, . . . , wn) < 0.

So w j 	≡ M ′, and z := ‖w j‖L∞(�) − w j is a non-negative function in �̄ that satisfies
z(x0) = 0 for some x0 ∈ �̄, and

d j L j z + pz < 0 in �, Bj z ≥ 0 on ∂�,

where p(x) = ∫ 1
0 ∂s j Fj (x, w1, . . . , w j−1, w j + t (‖w j‖L∞(�) − w j ), w j+1, . . . , wn) dt .

This contradicts the strong maximum principle if x0 ∈ �, and the Hopf Boundary Lemma
if x0 ∈ ∂�. Hence, wi (x) < M in �̄ for all i . Similarly one can show that wi > δ0 in �̄ for
all i . ��

Proposition 5.2 For any positive steady state w of (1.11), w → α uniformly in � as
maxi {di } → 0. Here α is given in (A2).

We adopt a monotone iteration procedure as in [22]. Let w̄0 and w0 be as defined in the
proof of Lemma 5.1. Let K > 0 be chosen so large that for all i , K +∂si Fi (x, s1, . . . , sn) > 0
for all x ∈ �̄ and 0 ≤ s1, . . . , sn ≤ M . For any (u1, . . . , un) ∈ [

C(�̄)
]n
, define v =

(v1, . . . , vn) = T u as the unique solution to
{−DLv + Kv = Ku + F(x, u) in �,

Bv = 0 on ∂�.

Now for k ∈ N, define w̄k = (w̄k
i )

n
i=1 := T w̄k−1 and wk = (wk

i )
n
i=1 := T wk−1.

Lemma 5.3 For every k ∈ N, wk < wk−1 < w̄k−1 < w̄k holds in �̄.

Proof We proceed by induction. For k = 1 and i = 1, . . . , n,

{−DL(w̄1 − w̄0) + K (w̄1 − w̄0) = DLw̄0 + F(x, w̄0) < 0 in �,

B(w̄1 − w̄0) = 0 on ∂�.

By the strong maximum principle (applied to each component), w̄1 < w̄0 in �̄. Assume
for induction that for some k ≥ 1, w̄k < w̄k−1 in �̄. Then, as Ksi + Fi (x, s1, . . . , sn) is
increasing in s1, . . . , sn and strictly increasing in si , we have

⎧
⎨

⎩

−DL(w̄k+1 − w̄k) + K (w̄k+1 − w̄k)

= K (w̄k − w̄k−1) + F(x, w̄k) − F(x, w̄k−1) < 0 in �,

B(w̄k+1 − w̄k)|∂� = 0.
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By the maximum principle we obtain w̄k+1 < w̄k in �̄. By induction, w̄0 > w̄1 > w̄2 > . . .

Similarly, we have w0 < w1 < w2 < . . . It remains to show that for any k ∈ N ∪ {0},
wk < w̄k . (5.2)

The statement obviously holds for k = 0. Assume (5.2) holds for some k ≥ 0, then
⎧
⎨

⎩

−DL(w̄k+1 − wk+1) + K (w̄k+1 − wk+1)

= K (w̄k − wk) + F(x, w̄k) − F(x, wk) > 0 in �,

B(w̄k+1 − wk+1)
∣
∣
∂�

= 0.

Hence, w̄k+1 > wk+1 in �̄. By induction on k, (5.2) holds for all k ∈ N ∪ {0}. ��

Lemma 5.4 If w = (w1, . . . , wn) is a positive steady state of (1.11), then for all k,

wk ≤ w ≤ w̄k in �̄. (5.3)

Proof By Lemma 5.1, (5.3) holds for k = 0. Suppose that (5.3) holds for some k ≥ 0. Then

−DL(w̄k+1 − w) + K (w̄k+1 − w) = K (w̄k − w) + F(x, w̄k) − F(x, w) ≥ 0

holds in�, andB(w̄k+1−w) = 0 on ∂�. By the comparison principlewe have w̄k+1−w ≥ 0.
Similarly, wk+1 − w ≤ 0. This completes the proof. ��

Next, for each fixed k we investigate the convergence of w̄k, wk as max1≤i≤n{di } → 0.
Define W̄ 0(x) ≡ (M, . . . , M) and W 0(x) ≡ (δ0, . . . , δ0). For k ∈ N and x ∈ �̄, define
successively

W̄ k
i (x) := W̄ k−1

i (x) + 1

K
Fi (x, W̄

k−1
i (x)),

Wk
i (x) := Wk−1

i (x) + 1

K
Fi (x,W

k−1
i (x)).

Lemma 5.5 For each k ∈ N ∪ {0}, i = 1, . . . , n, as max1≤i≤n{di } → 0, w̄k
i → W̄ k

i and
wk
i → Wk

i uniformly in �̄.

Proof We only show w̄k
i → W̄ k

i , as wk
i → Wk

i follows in a similar fashion. Given ε > 0,
it suffices to find, for each k, i , some positive constant δ such that |w̄k

i − W̄ k
i |L∞(�) < ε if

max1≤i≤n{di } < δ. We proceed by induction on k. For k = 0 and any i = 1, . . . , n, the claim
is trivially true as w̄0

i = W̄ 0
i . Suppose that w̄k

i → W̄ k
i for some k ≥ 0 and all i = 1, . . . , n.

Choose smooth functions ρi , i = 1, . . . , n, satisfying ρi < W̄ k
i in �̄. By the monotonicity

of Fi ,

ρi + 1

K
Fi (x, ρ) < W̄ k

i + 1

K
Fi (x, W̄

k
i ) = W̄ k+1

i .

Therefore, for each ε > 0 sufficiently small, there exist smooth functions ρ̃ = (ρ̃1, . . . , ρ̃n)

such that for each i ,

ρ̃i − ε

2
≤ ρi + 1

K
Fi (x, ρ) ≤ ρ̃i ≤ W̄ k+1

i in �, Bi ρ̃i ≤ 0 on ∂�. (5.4)

123



46 J Dyn Diff Equat (2016) 28:29–48

Then Pi = w̄k+1 − ρ̃i + ε satisfies

− di Li Pi + K Pi

= K w̄k
i + Fi (x, w̄

k) − K ρ̃i + di Li (ρ̃i − ε) + K ε

= K w̄k
i + Fi (x, w̄

k) − Kρi − Fi (x, ρ) − K ε/2 + di Li (ρ̃i − ε) + K ε

≥ K (w̄k
i − W̄ k

i ) + Fi (x, w̄
k) − Fi (x, W̄

k) + di Li (ρ̃i − ε) + K ε/2

≥ K ε/2 − diC1 − C2‖w̄k
i − W̄ k

i ‖L∞(�)

≥ 0,

provided that max1≤i≤n{di } is sufficiently small. Therefore, for any ε > 0 and ρi < W̄ k
i , we

have w̄k+1
i ≥ ρ̃i − ε for sufficiently small di . Hence,

lim inf
max1≤i≤n{di }→0

w̄k+1
i ≥ ρ̃i

uniformly in �̄. By choosing ρi → W̄ k
i for all i , we see by (5.4) that ρ̃i → W̄ k+1

i for all i .
Hence,

lim inf
max1≤i≤n{di }→0

w̄k+1
i ≥ W̄ k+1

i

uniformly in �̄. Similarly, we can show that for all i ,

lim sup
max1≤i≤n{di }→0

w̄k+1
i ≤ W̄ k+1

i

uniformly in �̄. Therefore for all i , w̄k+1
i → W̄ k+1

i uniformly in �̄ as max1≤i≤n{di } → 0.
This completes the proof. ��
Lemma 5.6 For all x ∈ �̄, i = 1, . . . , n, and k ∈ N ∪ {0},

Wk
i (x) ≤ Wk+1

i (x) ≤ W̄ k+1
i (x) ≤ W̄ k

i (x) in �̄. (5.5)

Proof We proceed by induction. Consider k = 0. For all x ∈ �̄ and all i ,

W̄ 1
i (x) = W̄ 0

i (x) + 1

K
Fi (x, M, . . . , M) < W̄ 0

i (x),

W 1
i (x) = W 0

i (x) + 1

K
Fi (x, δ0, . . . , δ0) > W 0

i (x),

W̄ 1
i (x) − W 1

i (x) = M + 1

K
Fi (x, M, . . . , M) −

[

δ0 + 1

K
Fi (x, δ0, . . . , δ0)

]

> 0.

The last line holds as for all i , Ksi + Fi (x, s1, . . . , sn) is increasing in s1, . . . , sn and strictly
increasing in si . Now assume (5.5) is true for some k ≥ 0, then

W̄ k+2
i (x) − W̄ k+1

i (x) = W̄ k+1
i (x) − W̄ k

i (x) + 1

K

[
Fi

(
x, W̄ k+1

)
− Fi

(
x, W̄ k

)]
< 0,

Wk+2
i (x) − Wk+1

i (x) = Wk+1
i (x) − Wk

i (x) + 1

K

[
Fi

(
x,Wk+1

)
− Fi

(
x,Wk

)]
> 0,

W̄ k+2
i (x) − Wk+2

i (x) = W̄ k+1
i (x) − Wk+1

i (x) + 1

K

[
Fi

(
x, W̄ k+1

)
− Fi

(
x,Wk+1

)]
> 0.

Thus (5.5) is true for k + 1. The proof is complete. ��
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Lemma 5.7 W̄ k → α and Wk → α uniformly in �̄ as k → ∞.

Proof Notice that for each x0 ∈ �̄ and each i = 1, . . . , n, W̄ k
i (x0) is decreasing in k and

W̄ k
i (x0) ≥ W 0

i (x0) > 0 is bounded from below. Hence, W̄∞
i (x0) := lim

k→∞ W̄ k
i (x0) > 0

exists for all i = 1, . . . , n. In addition,

W̄∞
i (x0) = W̄∞

i (x0) + 1

K
Fi (x, W̄

∞(x0)),

and thus Fi (x, W̄∞(x0)) = 0 for all i . By (A2), W̄∞
i (x0) = αi (x0) for all i .

Now for each i, {W̄ k
i }k≥0 is a sequence of continuous function decreasing in k and con-

verges pointwise to αi ∈ C(�̄). By the following well-known calculus lemma (see, e.g.
Theorem 7.13 in [21]), we see that as k → ∞, W̄ k converges to α uniformly in �̄.

Theorem 5.8 Suppose that K is a compact set in RN and

(a) { fk}∞k=0 is a sequence of continuous functions on K,
(b) { fk} converges pointwise to a continuous function f on K,
(c) fk(x) ≥ fk+1 for all x ∈ K, k = 0, 1, 2, . . .

Then fk → f uniformly in K.

Similarly, Wk → α uniformly in �̄ as k → ∞. The proof of Lemma 5.7 is complete. ��
Proposition 5.2 follows from Lemmas 5.4, 5.5 and 5.7.

Proposition 5.9 There exists some positive constant δ such that every positive steady state
of (1.11) is linearly stable (hence locally asymptotically stable) if maxi {di } ≤ δ.

Proof To consider the linear stability of a positive steady statew = (w1, . . . , wn), it suffices
to show that the principal eigenvalue λ1 of the following problem is positive:

{
DLφ + ∂s F(x, w)φ + λφ = 0 in �,

Bφ = 0 on ∂�.

By (A2), we have λ̄(Ds F (x, α(x))) < 0 for all x ∈ �̄. Therefore, for any η > 0 small,
F̂i j (x) := ∂s j Fi (x, α(x)) + η satisfies

λ̄(F̂i j (x)) < 0 for all x ∈ �̄. (5.6)

Let λ̂1 be the principal eigenvalue of
{
DLφ + F̂φ + λφ = 0 in �,

Bφ = 0 on ∂�.

By Proposition 5.2, there exists δ > 0 such that for any positive steady state w of (1.11),

∂s j Fi (x, w(x)) ≤ ∂s j Fi (x, α(x)) + η = F̂i j (x) in �̄,

whenever max1≤i≤n{di } ≤ δ. Therefore, λ1 ≥ λ̂1 by Proposition 3.4. While by Theorem 1.4
and (5.6), we have

lim inf
max1≤i≤n{di }→0

λ1 ≥ lim
max1≤i≤n{di }→0

λ̂1 = −max
x∈�̄

λ̄
(
F̂i j (x)

)
> 0.

Hence, there exists δ > 0 such that whenever max1≤i≤n{di } ≤ δ, λ1 > 0 for any positive
steady state w of (1.11). ��
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Proof of Theorem 1.5 By Lemma 5.1, (1.11) has at least one positive steady state. By
Proposition 5.9, any positive steady state of (1.11) is linearly stable. Since (1.11) is an
order-preserving system, it follows that (by Theorem 1.1) (1.11) has a unique positive steady
state w̃, and w̃ is globally asymptotically stable. Moreover, by Proposition 5.2, this unique
positive steady state w̃ converges to α uniformly in � as max1≤i≤n{di } → 0. ��
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