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Abstract We study the time asymptotic propagation of solutions to the reaction–diffusion
cooperative systems with fractional diffusion. We prove that the propagation speed is expo-
nential in time, and we find the precise exponent of propagation. This exponent depends on
the smallest index of the fractional laplacians and on the principal eigenvalue of the matrix
DF(0) where F is the reaction term. We also note that this speed does not depend on the
space direction.
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1 Introduction

The reaction diffusion equation with Fisher-KPP nonlinearity

∂t u + (−�)αu = f (u) (1.1)

with α = 1, has been the subject of intense research since the seminal work byKolmogorov et
al. [13]. Of particular interest are the results of Aronson and Weinberger [2] which describe
the evolution of solution starting with compactly supported data. They showed that there
exists a critical threshold c∗ = 2

√
f ′(0) such that, for any compactly supported initial value
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u0 in [0, 1], if c > c∗ then u(t, x) → 0 uniformly in {|x | ≥ ct} as t → +∞ and if c < c∗ then
u(t, x) → 1 uniformly in {|x | ≤ ct} as t → +∞. This corresponds to a linear propagation
of the fronts. In addition, (1.1) admits planar traveling wave solutions connecting 0 and 1.

Reaction–diffusion equations with fractional Laplacian, that is when α ∈ (0, 1) in (1.1),
appear in physical models when the diffusive phenomena are better described by Lévy
processes allowing long jumps, than by Brownian processes—obtained when α = 1. The
Lévy processes occur widely in physics, chemistry and biology. Recently these models have
attracted much interest. In connection with the discussion given above, in the recent paper
[6], Cabré and Roquejoffre showed that for any compactly supported initial condition, or
more generally for initial values decaying faster than |x |−d−2α , where d is the dimension of
the spatial variable, the speed of propagation becomes exponential in time. They also showed
that no traveling wave exist. Their result was sharpened and extended in [7], who proposed a
new (and more flexible) argument to treat models of the form (1.1). They indeed notice that
diffusion only plays a role for small times, the large time dynamics being given by a simple
transport equation. All these results are in great contrast with the case α = 1.

By other hand, in the one-dimensional case, if the initial condition is assumed to be
globally front-like and to decay at infinity towards the unstable steady state more slowly than
any exponentially decaying function when α = 1 and decays at infinity more slowly than a
power x−b with b < 2α when α ∈ (0, 1), [11] and [10] respectively, state that the level sets
of the solutions move exponentially fast as time goes to infinity. Moreover, a quantitative
estimate of motion of the level sets is obtained in terms of the decay of the initial condition.

The work on the single Eq. (1.1) can be extended to reaction–diffusion systems. The first
definitions of spreading speeds for cooperative systems in population ecology and epidemic
theory are due to Lui in [15]. In a series of papers, Lewis et al. [14,17,18] studied spreading
speeds and travelling waves for a particular class of cooperative reaction–diffusion systems,
with standard diffusion. Results on single equations in the singular perturbation framework
proved by Evans and Souganidis in [9] have also been extended by Barles et al. in [3]. The
viscosity solutions framework is studied in [5], with a precise study of theHarnack inequality.
In these papers, the system under study is of the following form

∂t ui − ρiΔui = fi (u),

where, for m ∈ N
∗, u = (ui )mi=1 is the unknown function. For all i ∈ �1,m� := {1, . . . ,m},

the constants ρi are assumed to be positive as well as the bounded, smooth and Lipschitz
initial conditions, defined from R

d to R+. As the essential assumptions that concern the
reaction term F = ( fi )mi=1, it is assumed to be smooth, to have only two zeroes, 0 and
a = (ai )mi=1 ∈ R

m in [0, a1] × · · · × [0, am], and for all i ∈ �1,m�, each fi is nondecreasing
in all its components, with the possible exception of the ith one. The last assumption means
that the system is cooperative. Under additional hypotheses, which imply that the point 0 is
unstable, the limiting behavior of the solution u = (ui )mi=1 is understood.

Here, we focus on similar systems, but considering that at least one diffusive term is given
by a fractional Laplacian. More precisely, we focus on the large time behavior of the solution
u = (ui )mi=1, for m ∈ N

∗, to the fractional reaction–diffusion system:
{

∂t ui + (−�)αi ui = fi (u), t > 0, x ∈ R
d ,

ui (0, x) = u0i (x), x ∈ R
d ,

(1.2)

where

αi ∈ (0, 1] and α := min
�1,m�

αi < 1.
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Note that when αi = 1, (−�)αi is the standard Laplacian. As general assumptions, we
impose, for all i ∈ �1,m�, the initial condition u0i to be nonnegative, non identically equal
to 0, continuous and to satisfy

u0i (x) = O
(
|x |−(d+2αi )

)
as |x | → +∞. (1.3)

We also assume that for all i ∈ �1,m�, the function fi satisfies fi (0) = 0 and that system
(1.2) is cooperative, which means :

fi ∈ C1(Rm) and ∂ j fi > 0, on R
m, for all j ∈ �1,m�, j 
= i. (1.4)

The aim of this paper is to understand the time asymptotic location of the level sets of
solutions to (1.2). Hence, inspired by the formal analysis done in [7], taking λ1 the principal
positive eigenvalue of DF(0)where F = ( fi )mi=1 with associated eigenvectorφ1,we consider
the family of functions of the form

v(t, x) = a
(
1 + b(t)|x |δ(d+2α)

)− 1
δ
φ1, (1.5)

where b(t) is a continuous function asymptotically proportional to e−δλ1t with a and δ a
positive constants, in addition, we note that the level sets of functions given by (1.5) spread
exponentially fast in time with an exponent λ1/(d+2α). Similarly to [7], we will prove that v
serves as super and subsolutions of (1.2). The scheme of their proof will be reproduced here,
but some steps - and this is why it makes system (1.2) worth studying - becomemore difficult.
The small time study will require the manipulation of some Polya integrals, and the transport
equation will also become more complex. Furthermore, since the particularity of the index
α is that the fundamental solution has the slowest decay compared to the other fractional or
standard laplacians,we show that the speedof propagation of solutions to (1.2) are exponential
in time, with a precise exponent depending on the smallest index α := min

i∈�1,m�
αi and on the

principal eigenvalue of the matrix DF(0). Also we note that this speed does not depend on
the space direction.

For what follows and without loss of generality, we suppose that αi+1 ≤ αi for all
i ∈ �1,m − 1� so that α = αm < 1. Before stating the main results, we need some additional
hypotheses on the nonlinearities fi , for all i ∈ �1,m�.

(H1) The principal eigenvalue λ1 of the matrix DF(0) is positive,
(H2) F is globally Lipschitz on R

m ,
(H3) There exists Λ > 1 such that, for all s = (si )mi=1 ∈ R

m+ satisfying |s| ≥ Λ, we have
fi (s) ≤ 0,

(H4) For all s = (si )mi=1 ∈ R
m+ satisfying |s| ≤ Λ, Dfi (0)s − fi (s) ≥ cδ1si

1+δ1 ,
(H5) For all s = (si )mi=1 ∈ R

m+ satisfying |s| ≤ Λ, Dfi (0)s − fi (s) ≤ cδ2 |s|1+δ2 ,

where the constants cδ1 and cδ2 are positive and independent of i ∈ �1,m�, and for all
j ∈ {1, 2}

δ j ≥ 2

d + 2α
(1.6)

Hence, in order to study the spread speed of solutions to (1.2), assumption (H1) guarantees
that 0 is an unstable state, (H2) and (H3) are needed to state algebraically upper and lower
bounds of the solution to (1.2), finally, (H4) and (H5) are technical assumptions that are not
general but enable us to understand the long time behavior of a class of monotone systems,
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moreover, (1.6) guarantees enough regularity on the super and subsolutions we construct in
our proofs.

Before going further on, let us state at least one example of nonlinearity F satisfying all the
assumptions (1.4) and (H1)–(H5). Let A = (ai j )mi, j=1 be a matrix, with positive non diagonal
entries and with positive principal eigenvalue. For a constant Λ > 1, for all i ∈ �1,m� and
all s ∈ R

m , we define

fi (s) = (As)i − φi (s),

where

φi (s) =

⎧
⎪⎨

⎪⎩

si |si |δ χ1(s), if |s| ≤ Λ − 1,

χ2(s), if Λ − 1 ≤ |s| ≤ Λ,

Ci |s| , if |s| ≥ Λ,

with δ ≥ 2
d+2α ,Ci is a positive constant large enough,χ1 andχ2 two smooth functions defined

in R
m , chosen so that φi ∈ C1(Rm) and for i 
= j , ∂ jφi (0) = 0, which implies fi ∈ C1(Rm).

These choices easily ensure (1.4), (H1) and (H2) since DF(0) = A. Moreover, for all s ∈ R
m+

such that |s| ≥ Λ, we have, for Ci large enough

fi (s) =
m∑

j=1

ai j s j − Ci |s| ≤ 0,

which proves that (H3) is satisfied. The assumptions (H4) and (H5) are easily fulfilled taking
δ1 = δ2 = δ,

cδ1 = min

(
min

Λ−1≤|̃s|≤Λ

χ2 (̃s)

Λ1+δ
,min

Rm
χ1

)

and

cδ2 = max

(

max
Λ−1
2 ≤|̃s|≤Λ

χ2 (̃s)

(Λ − 1)1+δ
,max

Rm
χ1

)

.

We are now in a position to state our main theorem, which show that the solution to (1.2)
move exponentially fast in time.

Theorem 1 Let d ≥ 1andassume that F satisfies (1.4)and (H1) to (H5). Let u be the solution
to (1.2) with a non negative, non identically equal to 0 and continuous initial condition u0
satisfying (1.3). Then there exists τ > 0 large enough such that for all i ∈ �1,m�, the
following two facts are satisfied:

(a) For every μi > 0, there exists a constant c > 0 such that,

ui (t, x) < μi , f or all t ≥ τ and |x | > ce
λ1

d+2α t .

(b) There exist constants εi > 0 and C > 0 such that,

ui (t, x) > εi , f or all t ≥ τ and |x | < Ce
λ1

d+2α t .

The plan to set Theorem 1 is organized as follows. First, in the short Sect. 2, we state a
local existence and uniqueness result of solutions for cooperative systems involving fractional
diffusion and we state a comparison principle for this type of solutions which, although
standard, is crucial for the sequel. In Sect. 3 we deal with finite time and large x decay
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estimates, which imply the global existence in time of solutions and will be the first step to
construct super and subsolutions of the form (1.5), which are needed to prove Theorem 1.
The end of this paper, Sect. 4 is devoted to the proof of Theorem 1, in which we state that
the front position moves exponentially in time.

2 Local Existence and Comparison Principle

Recall that the operator A = −diag((−Δ)α1 , . . . , (−Δ)αm ) is sectorial (see [12]) in
(L2(Rd))m , with domain D(A) = H2α1(Rd) × · · · × H2αm (Rd). If now u0 satisfies the
assumptions of Theorem 1, it is in (L2(Rd))m , so that the Cauchy Problem (1.2) has a
unique maximal solution, defined on an interval of the form [0, tmax ); moreover the L2-norm
of u blows up as t → tmax if tmax < +∞. Finally, we have u ∈ C((0, tmax ), D(A)) ∩
C([0, tmax ), (L2(Rd))m) and du

dt ∈ C((0, tmax ), (L2(Rd))m). A standard iteration argument
and Sobolev embeddings then yield

u ∈ C p((0, tmax ), (H
q(Rd))m)

for every integer p and q .
Before to continue, we state the following notation, if x = (xi )mi=1 and y = (yi )mi=1 belong

toRm , we denote [x, y] as the rectangle inRm given by [x1, y1]×· · ·×[xm, ym], also, we say
that x ≤ y if xi ≤ yi for all i ∈ �1,m�. Now, we are in conditions to state the Comparison
Principle to our system.

Theorem 2 Consider T > 0, and let u = (ui )mi=1 and v = (vi )
m
i=1 such that: u ∈

C((0, T ], D(A)) ∩ C([0, T ], (L2(Rd))m) ∩ C1((0, T ), (L2(Rd))m); and v ∈ C([0, T ] ×
R
d) ∩ C1((0, T ) × R

d). Assume that, for all i ∈ �1,m�, we have

∂t ui + (−�)αi ui ≤ fi (u), ∂tvi + (−�)αi vi ≥ fi (v),

where fi satisfies (1.4). If for all i ∈ �1,m� and x ∈ R
d , ui (0, x) ≤ vi (0, x) we have

u(t, x) ≤ v(t, x) for all (t, x) ∈ [0, T ] × R
d .

Proof of Theorem 2 Let us define for all i ∈ �1,m�, wi = ui − vi . Then wi satisfies
wi (0, x) ≤ 0 and

∂twi + (−�)αi wi ≤ fi (u) − fi (v) =
∫ 1

0
∇ fi (σu + (1 − σ)v) · (u − v)dσ

=
∫ 1

0
∇ fi (ζσ ) · w dσ, (2.1)

where ζσ = σu + (1− σ)v. Notice now that the positive part of the function wi denoted by
w+
i belongs to C((0, T ), H2αi (Rd)) ∪ W 1,∞((0, T ), L2(Rd)). So, taking the scalar product

of (2.1) with the vector function (w+
i )mi=1 and integrating over Rd , we have

∫

Rd
w+
i ∂twi dx +

∫

Rd
w+
i (−�)αi wi dx ≤

∫

Rd
w+
i

∫ 1

0
∇ fi (ζσ ) · w dσdx (2.2)
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Recall that
∫

Rd
w+
i (−�)αi wi dx ≥ 0. So we have, since ∂ j fi (ζσ ) ≥ 0:

1

2

d

dt

[∫

Rd
(w+

i )2dx

]
≤
∫

Rd

∫ 1

0
∂i fi (ζσ )dσ(w+

i )2dx

+
m∑

j=1, j 
=i

∫

Rd

∫ 1

0
∂ j fi (ζσ )dσw+

i w+
j dx

≤ C
m∑

j=1

∫

Rd
(w+

j )2dx,

where C is a constant that depends on m. Doing this procedure for each i ∈ �1,m� and
adding, we get for t ∈ [0, T ]

d

dt

[
m∑

i=1

∫

Rd
(w+

i )2dx

]

≤ C
m∑

i=1

∫

Rd
(w+

i )2dx .

So, by Gronwall’s inequality, we have wi ≤ 0 in [0, T ] × R
d . ��

3 Finite Time Bounds and Global Existence

From hypothesis (H3), we deduce that the positive vector M = Λ1, where 1 is the vector
of size m with all entries equal to 1, is a supersolution to (1.2), if the initial condition
u0 = (u0i )mi=1 is smaller than M . So, from Theorem 2, we have 0 ≤ u(t, x) ≤ M . In the
next subsections, we obtain pointwise estimates which are needed to construct super and
subsolution in order to prove Theorem 1 in Sect. 4, explicitly, the upper and lower estimates
given in Lemmas 3 and 5 respectively, will be use at the moment to locate the front position
in Lemmas 7 and 8. Also, these estimates imply locally finite L2 bounds and so, global
existence of solutions.

Now, we are in position to establish an algebraic upper bound for the solutions of (1.2).
From (H2), we know that, for i ∈ �1,m� and j ∈ �1,m�

∣
∣∂ j fi (s)

∣
∣ ≤ l, for all s ∈ R

m,

where l = Lip( f ) is the Lipschitz constant of f . Thus, we have for all s = (si )mi=1 ≥ 0

fi (s) =
∫ 1

0
∇ fi (σ s) · s dσ ≤

∣
∣
∣
∣
∣
∣

m∑

j=1

s j

∫ 1

0

∂ fi
∂s j

(σ s)dσ

∣
∣
∣
∣
∣
∣
≤ l

m∑

j=1

s j . (3.1)

Let us consider v = (vi )
m
i=1 the solution of the following system
{

∂tv + Lv = Bv, t > 0, x ∈ R
m

v(0, ·) = u0, R
m,

(3.2)

where L = diag((−�)α1 , . . . , (−�)αm ), B = (bi j )mi, j=1 is a matrix with bi j = l for all

i, j ∈ �1,m�. By (3.1) and Theorem 2, we conclude that u ≤ v in [0,+∞) × R
d . A finite

time upper bound for u is given by the following lemma.

Lemma 3 Let d ≥ 1 and let u = (ui )mi=1 be the solution of system (1.2), with a non negative,
non identically equal to 0 and continuous initial condition u0 satisfying (1.3), and reaction
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term F = ( fi )mi=1 satisfying (1.4) and (H1) to (H3). Then, for all i ∈ �1,m�, there exists a
locally bounded function C1 : (0,+∞) → R+ such that for all t > 0 and |x | large enough,
we have

ui (t, x) ≤ C1(t)

|x |d+2α .

Taking Fourier transforms in each term of system (3.2), we have
{

∂tF(v) = (A(|ξ |) + B)F(v), ξ ∈ R
d , t > 0

F(v)(0, ·) = F(u0), on R
d ,

where A(|ξ |) = diag(−|ξ |2α1 , . . . ,−|ξ |2αm ). Thus, we have that

F(v)(t, ξ) = e(A(|·|)+B)t F(u0)(ξ)

and then, for all x ∈ R
d and t ≥ 0 :

u(t, x) ≤ v(t, x) = F−1(e(A(|·|)+B)t ) ∗ u0(x). (3.3)

The following lemma is a crucial tool in the proof of Lemma 3, in which is stated that we
can rotate the integration line of a small angle ε > 0 in the expression of F−1(e(A(|·|)+B)t ).
For the next results, we consider the matrix norm

‖A‖ = sup

{ |Av|
|v| : v ∈ C

m wi th v 
= 0

}

with | · | the Euclidean norm in C
m .

Lemma 4 For all z ∈ {z ∈ C | 0 ≤ arg(z) < π
4α1

}
and t ≥ 0, we have

∥
∥
∥e(A(z)+B)t

∥
∥
∥ ≤ me(‖B‖−|z|2α1 cos(2α1 arg(z)))t + e(‖B‖−|z|2α cos(2α1 arg(z)))t , (3.4)

and if

It (z) :=
∫ t

0
e(t−s)(A(z)+B)[esB , A(z)]esA(z)ds, (3.5)

where [esB , A(z)] = esB A(z) − A(z)esB , then there exists C2 : (0,∞) → R+ a locally
bounded function such that

‖It (z)‖ ≤ C2(t)
(
|z|2α e−|z|2α cos(2α1 arg(z))t + |z|2α1 e−|z|2α1 cos(2α1 arg(z))t

)
. (3.6)

Proof of Lemma 4 Let z be in {z ∈ C | 0 ≤ arg(z) < π
4α1

}. For any j ∈ �1,m�, we consider
the system {

∂tw = (A(z) + B)w, z ∈ C, t > 0,
w(0, z) = e j z ∈ C,

(3.7)

where e j is the j th vector of the canonical basis of Rm . Thus, we have

w(t, z) = e(A(z)+B)t e j

Multiply (3.7) by the conjugate transpose w and take the real part to get

1

2
∂t |w|2 +

m∑

k=1

cos(2αk arg(z)) |z|2αk |wk |2 = Re(Bw · w) ≤ ‖B‖ |w|2.
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The choice of arg(z) and Gronwall’s Lemma end the proof.
To prove (3.6), it is sufficient to notice that, for s ∈ [0, t], we have

∥
∥
∥esA(|z|ei arg(z))

∥
∥
∥ ≤ me−|z|2α cos(2α1 arg(z))s + e−|z|2α1 cos(2α1 arg(z))s,

∥
∥
∥[esB , A(|z| ei arg(z))]

∥
∥
∥ ≤ C(t)(|z|2α + |z|2α1),

where C : (0,+∞) → R+ is a locally bounded function, and due to (3.4), we also have
∥
∥
∥e(A(|z|ei arg(z))+B)(t−s)

∥
∥
∥ ≤ me(‖B‖−|z|2α1 cos(2α1 arg(z)))(t−s)

+ e(‖B‖−|z|2α cos(2α1 arg(z)))(t−s).

��
In what follows, we prove that for each time t > 0, the solution of (1.2) decays as

|x |−d−2α for large values of |x |. Due to the decay of u0 at infinity, we only need to prove
that the entries of F−1(e(A(|·|)+B)t ) have the desired decay. Indeed, defining by η(t, ·) any
component of F−1(e(A(|ξ |)+B)t ), if we assume that

|η(t, x)| ≤ C(t)

1 + |x |d+2α , ∀ t > 0, |x | > R

for some R > 0 and C(·) a locally positive bounded function in (0,+∞), taking R > 0
large if necessary, there exists a constant c > 0 such that

∫

Rd

1

1 + |y|d+2α

1

1 + |x − y|d+2α ≤ c

|x |d+2α , if |x | ≥ 2R (3.8)

Hence, for all t > 0, |x | ≥ 2R and i ∈ �1,m�, by (1.3), there is a constant ci > 0 such that

|η(t, ·) ∗ u0i (x)| ≤
∫

|y|<R

ci |η(t, y)|
1 + |x − y|d+2α dy

+
∫

|y|≥R

C(t)

1 + |y|d+2α

ci
1 + |x − y|d+2α dy

Now, if |y| < R, we have that |x |/2 ≥ R > |y| and then |x− y| ≥ |x |−|y| ≥ |x |/2, thus, by
Lemma 4, the first integral of the right side has the desired decay. The bound for the second
integral follows directly from (3.8).

To continue, we split the proof of Lemma 3 into two cases. First, for the sake of simplicity,
we consider the one space dimension case to underline the idea of the proof. The higher space
dimension case is treated after and requires the use of Whittaker functions.

Proof of Lemma 3 Case d = 1. In this proof, we denote by C : (0,+∞) → R+ a locally
bounded function. From (3.3), we only have to find an upper bound to F−1(e(A(|·|)+B)t ). First,
we consider for t ≥ 0 and z ∈ C, w(t, z) := et Bet A(z). Thus, w satisfies the Cauchy problem

{
∂tw = (A(z) + B)w + [et B , A(z)]et A(z), t > 0, z ∈ C

w(0, z) = I d, z ∈ C,

By Duhamel’s formula, we get for all z ∈ C and t ≥ 0 :

et (A(z)+B) = et Bet A(z) −
∫ t

0
e(t−s)(A(z)+B)[esB , A(z)]esA(z)ds. (3.9)
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Thus, for all t > 0 and all x ∈ R, we have

F−1(e(A(|·|)+B)t )(x) =
∫

R

eixξ e(A(|ξ |)+B)t dξ (3.10)

=
∫

R

eixξ et Bet A(|ξ |)dξ −
∫

R

eixξ It (|ξ |)dξ

= et B diag(pα1(t, x), . . . , pαm (t, x)) −
∫

R

eixξ It (|ξ |)dξ,

where for i ∈ �1,m�, pαi is the heat kernel of the operator (−Δ)αi in R, that satisfies for
x ∈ R and t > 0

⎧
⎪⎪⎨

⎪⎪⎩

pαi (t, x) = e− |x |2
4t√

4π t
, if αi = 1;

B−1t

t
1

2αi
+1+|x |1+2αi

≤ pαi (t, x) ≤ Bt

t
1

2αi
+1+|x |1+2αi

, if αi ∈ (0, 1).

Since α = min
i∈�1,m�

αi ∈ (0, 1), for large values of |x |, we clearly have

∥
∥
∥et B diag(pα1(t, x), . . . , pαm (t, x))

∥
∥
∥ ≤ C(t)

|x |1+2α . (3.11)

It remains to bound from above the following quantity :
∫

R

eixξ It (|ξ |)dξ = 2
∫ ∞

0
cos(xr)It (r)dr = 2�e

(∫ ∞

0
eixr It (r)dr

)
.

We use the following two facts. First, for all t ≥ 0, the function z �→ eixz It (z) is
holomorphic on C \ {0}. Second, for δ > 0 (respectively R > 0), on the arc {±δeiθ , θ ∈
[0, ε]} (respectively {±Reiθ , θ ∈ [0, ε]}), the outcomes of It tends to 0 as δ tends to 0
(respectively R tends to +∞, due to Lemma 4). Consequently, we can rotate the integration

line of a small angle ε ∈
(
0, π

4α1

)
and the quantity we have to bound from above becomes

∫∞
0 eixre

iε
It (reiε)dr , with

It (re
iε) =

∫ t

0
e(t−s)(A(reiε)+B)[esB , A(reiε))]esA(reiε))ds.

From Lemma 4, taking

ηt =
∥
∥
∥
∥

∫ ∞

0
eixre

iε
It (re

iε)dr

∥
∥
∥
∥

we get, for large values of |x |

ηt ≤ C(t)
∫ ∞

0
e−xr sin(ε)

(
r2αe−r2α cos(2α1ε)t + r2α1e−r2α1 cos(2α1ε)t

)
dr

≤ C(t)

|x |1+2α

∫ ∞

0
e−r̃ sin(ε)

(
r̃2αe

− r̃2α

|x |2α cos(2α1ε)t + r̃2α1e
− r̃2α

|x |2α cos(2α1ε)t
)
dr̃

≤ C(t)

|x |1+2α . (3.12)
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With (3.10), (3.11) and (3.12), we conclude that for large values of |x | and for all t ≥ 0
∥
∥
∥F−1(e(A(|·|)+B)t )(x)

∥
∥
∥ ≤ C1(t)

|x |1+2α ,

which concludes the proof. ��
Now, we state the proof of Lemma 3 in the higher space dimension case, i.e. when d > 1.

Proof of Lemma 3 Case d > 1. As previously, from (3.3), we only need to bound from above
the function F−1(e(A(|·|)+B)t ). Let t > 0 and x ∈ R

d , the matrix e(A(|·|)+B)t is split into two
pieces as done in (3.9), thus, similarly to (3.10), we have

F−1
(
e(A(|·|)+B)t

)
(x) = et B diag(pα1(t, x), . . . , pαm (t, x)) −

∫

Rd
ei xξ It (|ξ |)dξ,

where It has been defined in (3.5). Since for x ∈ R
d and t > 0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pαi (t, x) = e− |x |2
4t

(4π t)
d
2
, if αi = 1;

B−1t

t
d
2αi

+1+|x |d+2αi

≤ pαi (t, x) ≤ Bt

t
d
2αi

+1+|x |d+2αi

, if αi ∈ (0, 1).

the first term of the right hand side has the correct algebraic decay, it remains to bound the
second term. Therefore, taking t > 0 and |x | > 1, using the spherical coordinates system in
dimension d > 1 and Whittaker function W0, d2 −1 (defined in [8] for example), we have

∫

Rd
ei xξ It (|ξ |)dξ = Cd

∫ ∞

0

∫ 1

−1
It (r) cos(|x |rs)rd−1(1 − s2

) d−3
2 dsdr

= Cd

|x | d−1
2

√
2π

�e

(∫ ∞

0
It (r)e

d−1
4 iπW0, d2 −1(2i |x | r)r

d−1
2 dr

)

= Cd

|x |d√2π
�e

(∫ ∞

0
It (r̃ |x |−1)e

d−1
4 iπW0, d2 −1(2i r̃)r̃

d−1
2 dr̃

)

where Cd is a positive constant depending on d .
As done in the one dimension case, since theWhittaker function is bounded, we can rotate

the integration line of a small angle ε ∈
(
0, π

4α1

)
. Thus, using (3.6), we have the result if we

prove that the following integral
∫ ∞

0

∣
∣
∣W0, d2 −1(2i r̃e

iε)

∣
∣
∣ r̃

d−1
2 (r̃2α + r̃2α1)dr̃

is convergent. From [1], W0, d2 −1 has the following asymptotic expressions, thus W0, d2 −1(z)

∼|z|→+∞ e− z
2 and

W0, d2 −1(z) ∼|z|→0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Γ ( d−1
2 )−1

(

ln(z) + Γ ′( d−1
2 )

Γ
(
d−1
2

)

)

z
d−1
2 , if d = 2

Γ (d−2)

Γ
(
d−1
2

) z
3−d
2 , if d ≥ 3.

��
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3.1 Lower Bound

The following result is important and needed to proveTheorem1. It sets an algebraically lower
bound for the solutions of the cooperative system (1.2). This result is valid for any dimension
d ∈ N

∗. Moreover, since for all i ∈ �1,m�, fi (0) = 0, we have for all s = (si )mi=1 ∈ R
m

with 0 ≤ s ≤ M

fi (s) =
∫ 1

0
∇ fi (σ s) · s dσ =

m∑

j=1

s j

∫ 1

0

∂ fi
∂s j

(ζσ )dσ

where ζσ = σ s ∈ [0, M] and ∂ fi
∂s j

: [0, M] → R is continuous for all i, j ∈ �1,m�, since

the system is cooperative, there exist constants γi j > 0 such that for all i ∈ �1,m� and
j ∈ �1,m�:

|∂i fi (ζσ )| ≤ γi i and γi j ≤ ∂ j fi (ζσ ). (3.13)

Lemma 5 Let u = (ui )mi=1 be the solution of the system (1.2), with non negative, non
identically equal to 0 and continuous initial condition u0 satisfying (1.3) and with reaction
term F = ( fi )mi=1 satisfying (1.4), (H1), (H2) and (H3). Then, for all i ∈ �1,m� and x ∈ R

d ,
there exists τ1 > 0 such that

ui (t, x) ≥ c t e−γ t

t
d
2α +1 + |x |d+2α

, (3.14)

for all t ≥ τ1, where c and γ are positive constants.

Proof of Lemma 5 We split the proof into three steps: first, we prove the result for i = m,
which serves as an initiation of the process. In an intermediate step, for all i ∈ �1,m − 1�,

t ≥ 1 and s ∈ [0, t − 1], we find a lower bound of pαi (·, t − s) ∗ (s
d
2α +1 + |·|d+2α)−1, that

decays like |x |−(d+2α) for large values of |x |. In a third step, for all i ∈ �1,m − 1�, t ≥ 1
and s ∈ [0, t − 1], we prove that ui (t, ·) can be bounded from below by an expression that

only depends on the integral
∫ t

0
pαi (·, t − s) ∗ (s

d
2α +1 + |·|d+2α)−1ds.

Step 1 We take γ ≥ max j∈�1,m�(γ j j + 1) with γ j j defined in (3.13). Thus, we have for all
x ∈ R

d and t > 0 :

∂t um + (−�)αm um = fm(u) ≥
∫ 1

0
∂m fm(ζσ )dσum ≥ −γ um,

By the maximum principle of reaction diffusion equations, we have for all t ≥ 0

um(t, x) ≥ e−γ t (pαm (t, ·) ∗ u0m)(x),

Since u0m(·) 
≡ 0 is continuous and nonnegative, we can find ξ ∈ R
d fixed, such that

u0m(y) ≥ C for all y ∈ BR(ξ) for some R > 0 and C > 0. If |x | > R, t ≥ 1 and using that
α := αm < 1, we get

(pαm (t, ·) ∗ u0m)(x) ≥ C
∫

BR(ξ)

B−1t

t
d
2α +1 + |x − y|d+2α

dy

= C
∫

BR(0)

B−1t

t
d
2α +1 + |x − ξ − z|d+2α

dz.
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We also have |x − ξ − z| ≤
(
2 + |ξ |

R

)
|x |. Thus

t
d
2α +1 + |x − ξ − z|d+2α ≤

(
2 + |ξ |

R

)d+2α

t
d
2α +1 +

(
2 + |ξ |

R

)d+2α

|x |d+2α.

Then

(pαm (t, ·) ∗ u0m)(x) ≥ CB−1

(
2 + |ξ |

R

)d+2α

∫

BR(0)

t

t
d
2α +1 + |x |d+2α

dz

= C̃t

t
d
2α +1 + |x |d+2α

,

where C̃ is a positive constant. If |x | ≤ R and t ≥ 1,

(pαm (t, ·) ∗ u0m)(x) ≥
∫

BR(ξ)

B−1t

t
d
2α +1 + |x − y|d+2α

u0m(y)dy

≥ B−1t

t
d
2α +1 + (2R + |ξ |)d+2α

∫

BR(ξ)

u0m(y)dy

≥ Ct

t
d
2α +1

≥ Ct

t
d
2α +1 + |x |d+2α

,

for some small constant C > 0. Then, there exist Cm > 0 such that for all x ∈ R
d and t ≥ 1

um(t, x) ≥ Cmte−γ t

t
d
2α +1 + |x |d+2α

. (3.15)

Step 2 By similar computations as done in Step 1, it is possible to find a constant C > 0
such that for all x ∈ R

d , t > 1 and s ∈ [0, t − 1] :
– if αi = 1 then

pαi (t − s, ·) ∗
(
s

d
2α +1 + |·|d+2α

)−1
(x)

≥ 1

(4π(t − s))
d
2

∫

Rd

e− |y|2
4(t−s)

s
d
2α +1 + |x − y|d+2α

dy

≥ 1

(4π(t − s))
d
2

(
s

d
2α +1 + |x |d+2α

) ,

– if αi ∈ (0, 1) then

pαi (t − s, ·) ∗
(
s

d
2α +1 + |·|d+2α

)−1
(x)

≥
∫

Rd

1
(

(t − s)
d
2αi

+1 + |y|d+2αi

)(
s

d
2α +1 + |x − y|d+2α

)dy

≥ (t − s)
− d

2αi

s
d
2α +1 + |x |d+2α

.
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Step 3 For i ∈ �1,m − 1�, we have for all x ∈ R
d and t ≥ 0

∂t ui + (−�)αi ui ≥
∫ 1

0
∂m fi (ζσ )dσum +

∫ 1

0
∂i fi (ζσ )dσui ≥ γimum − γ ui ,

where ζσ = σu. Then, by the maximum principle of reaction diffusion equations and
Duhamel’s formula, we have for all (t, x) ∈ R+ × R

d

ui (t, x) ≥ e−γ t (pαi (t, ·) ∗ u0i )(x)

+ γime
−γ t
∫ t

0

∫

Rd
pαi (t − s, y)um(s, x − y)eγ sdyds.

So, taking t ≥ τ1 with at least τ1 ≥ 3, and using (3.15), we get

ui (t, x) ≥ Cmγime
−γ t
∫ t−1

1

∫

Rd
pαi (t − s, y)

se(γ−γmm )s

s
d
2α +1 + |x − y|d+2α

dyds

Using Step 2, we get the following lower bound, for all x ∈ R
d and t ≥ τ1 with t1 large if

necessary:

ui (t, x) ≥ Cie
−γ t
∫ t−1

1

se(γ−γmm )s

(t − s)
d
2α

(
s

d
2α +1 + |x |d+2α

)ds

≥ Ci
e−γ t

t
d
2α

∫ t−1

1

es

s
d
2α +1 + |x |d+2α

ds

≥ Ci
e−γ t (et−1 − e)

t
d
2α

(
t

d
2α +1 + |x |d+2α

)

≥ Ci te−γ t

t
d
2α +1 + |x |d+2α

.

��

4 Proof of Theorem 1

Inspired by the formal analysis done in [7], we construct an explicit supersolution (respec-
tively subsolution) of the form

v(t, x) = a
(
1 + b(t)|x |δ(d+2α)

)− 1
δ
φ1, (4.1)

where b(t) is a time continuous function asymptotically proportional to e−δλ1t , φ1 =
(φ1,i )

m
i=1 ∈ R

m is the normalized (positive) principal eigenvector of DF(0) associated to the
principal eigenvalue λ1, and δ is equal to δ1 (respectively δ2) defined in (H4) (respectively
(H5)).

The following result allow us to understand the behavior of the fractional laplacian (−�)αi

on the function vi defined by (4.1) for all i ∈ �1,m�. The estimate obtained in Lemma 6
is crucial at the moment to prove that the function v given by (4.1) serves as super and
subsolution in Lemmas 7 and 8, respectively.
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Lemma 6 Let v be defined as in (4.1). Then, there exist a constant D > 0 such that for all
i ∈ �1,m�, t > 0 and x ∈ R

d

| (−�)αi vi (t, x) |≤ Db(t)
2αi

δ(d+2α) vi (t, x),

where αi ∈ (0, 1].

Proof of Lemma 6 The case αi = 1 is trivial. For αi ∈ (0, 1) and δ ≥ 2

d + 2α
, since (−Δ)αi

is 2αi -homogeneous, we only need to prove

| (−�)αi w(x) |≤ Dw(x)

where w(x) = (1 + |x |δ(d+2α))− 1
δ .

We consider the following decomposition, which is the central part of the proof :

(−�)αi w(x) =
∫

|y|>3|x |/2
w(x) − w(y)

|x − y|d+2αi
dy +

∫

B|x |/2(x)

w(x) − w(y)

|x − y|d+2αi
dy

+
∫

{|x |≤2|y|≤3|x |}\B|x |/2(x)

w(x) − w(y)

|x − y|d+2αi
dy

+
∫

|y|≤|x |/2
w(x) − w(y)

|x − y|d+2αi
dy.

Each piece is easily bounded, as in [4] for instance. ��
In what follows, we will use the results of previous sections to obtain appropriate sub and

super solutions to (1.2) of the form (4.1). We divide the proof of Theorem 1 in two lemmas.

Lemma 7 Assume that F satisfies (1.4), (H1), (H2), (H3) and (H4). Let u be the solution
to (1.2) with u0 satisfying the assumptions of Theorem 1. Then, for every μ = (μi )

m
i=1 > 0,

there exists c > 0 such that, for all t > τ , with τ > 0 large enough
{
x ∈ R

d | |x | > ce
λ1

d+2α t
}

⊂
{
x ∈ R

d | u(t, x) < μ
}

.

Proof of Lemma 7 We consider the function u given by (4.1) with δ = δ1 as in (H4). The
idea is to adjust a > 0 and b(t) so that the function u serves as supersolution of (1.2).

In the sequel, a is any positive constant satisfying

a ≥
(
D + λ1

cδ1

) 1
δ1

max
i∈�1,m�

(
1

φ1,i

)
,

where cδ1 is defined in (H4). For any constant B ∈ (0, (1 + Dλ−1
1 )−

δ1(d+2α)

2α ), where D > 0
is given in Lemma 6, we consider the following ordinary differential equation

b′(t) + δ1Db(t)
2α

δ1(d+2α)
+1 + δ1λ1b(t) = 0 (4.2)

with the initial condition b(0) = (−Dλ−1
1 + B

− 2α
δ1(d+2α) )−

δ1(d+2α)

2α , whose solution is given
by

b(t) =
(

−Dλ−1
1 + B

− 2α
δ1(d+2α) e

2αλ1
d+2α t

)− δ1(d+2α)

2α
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For all t ≥ 0, we have b(t) ≥ 0 and more precisely

Be−λ1δ1t ≤ b(t) ≤ b(0) ≤ 1

Defining

L(ui ) = ∂t ui + (−�)αi ui − fi (u)

and using Lemma 6, we have for all i ∈ �1,m�

L(ui ) = ∂t ui + (−�)αi ui − Dfi (0)u + [Dfi (0)u − fi (u)]

≥ aφ1,i

δ1
(
1+b(t)|x |δ1(d+2α)

) 1
δ1

+1

{
−b′(t)−δ1Db(t)

2α
δ1(d+2α)

+1 − δ1λ1b(t)

}
|x |δ1(d+2α)

+ aφ1,i
(
1+b(t)|x |δ1(d+2α)

) 1
δ1

+1

{
−Db(t)

2α
δ1(d+2α) −λ1 + chφ

δ1
1,i a

δ1

}
≥ 0.

Due to Lemma 3, for a fixed t0 > 0, there exists t1 ≥ 0 such that for all x ∈ R
d and all

i ∈ �1,m�, we have ui (t1, x) ≥ ui (t0, x). Thus, for any (μi )
m
i=1 > 0, we define for i ∈ �1,

m� the constants

cd+2α
i := aφ1,i e

λ1(t1−t0)[μi B
1
δ1 ]−1.

and we set c = max
i∈�1,m�

ci .

Finally, by Theorem 2 we have, for all t ≥ t0, all x ∈ R
d and all i ∈ �1,m�: ui (t + t1 −

t0, x) ≥ ui (t, x). Moreover, if |x | > ce
λ1

d+2α t , then, for all t > τ := t0 and all i ∈ �1,m�

ui (t, x) ≤ ui (t + t1 − t0, x) = aφ1,i
(
1 + b(t + t1 − t0)|x |δ1(d+2α)

) 1
δ1

< μi .

��
Lemma 8 Let d ≥ 1 and assume that F satisfies (1.4), (H1), (H2), (H3) and (H5). Let u be
the solution to (1.2) with a non negative, non identically equal to 0 and continuous initial
condition u0 satisfying (1.3). Then, for all i ∈ �1,m�, there exist constants εi > 0 and C > 0
such that,

ui (t, x) > εi , for all t ≥ t1 and |x | < Ce
λ1

d+2α t ,

with t1 > 0 large enough.

Proof of Lemma 8 As in the previous proof, we consider the function u given by (4.1) with
δ = δ2 defined in (H5). Since, ui (0, ·) ≤ u0i may not hold for all i ∈ �1,m�, we look for
a time t1 > 0 such that ui (0, ·) ≤ ui (t1, ·) for all i ∈ �1,m�. Indeed, let L be a constant
greater than max{D, λ1}, where D is given by Lemma 6. We choose t1 ≥ max(τ1, 2Dλ−1

1 )

large enough, where τ1 > 0 was obtained in Lemma 5, so that if we set

a =
min

i∈�1,m�
Ci e

−γ t1

2 max
i∈�1,m�

φ1,i t
d
2α
1

and B =
(
2

t1

) (d+2α)
2α δ2

, (4.3)

then
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a ≤
⎛

⎝
min

i∈�1,m�
φ1,i λ1

2cδ2

⎞

⎠

1
δ2

and B ≤ (Dλ−1
1 )−

(d+2α)
2α δ2 ,

where cδ2 is defined in (H5). Then we set

b(t) =
(
Dλ−1

1 + B
− 2α

δ2(d+2α) e
2αλ1
d+2α t

)− (d+2α)
2α δ2

.

Using Lemma 6 and (H5), similarly to the previous proof, we can state that, for all i ∈ �1,m�,

∂t ui + (−�)αi ui − fi (u) ≤ 0, in (0,+∞) × R
d .

From Lemma 5, we know that for all i ∈ �1,m� and all x ∈ R
d

ui (t1, x) ≥ c
t1e−γ t1

t
d
2α +1
1 + |x |d+2α

.

By (4.3), we deduce

ct1e
−γ t1

(
1 + b(0)|x |δ2(d+2α)

) 1
δ2 ≥ c

2
t1e

−γ t1

(
1 + b(0)

1
δ2 |x |d+2α

)

≥ aφi

(
t

d
2α +1
1 + |x |d+2α

)
.

Therefore, we get, for all i ∈ �1,m�, ui (t1, ·) ≥ ui (0, ·) in R
d , and by Theorem 2, we have

for all t ≥ t1

ui (t, ·) ≥ ui (t − t1, ·), in R
d

Finally we choose

εi = aφ1,i

2
1
δ2

and Cd+2α = e−λ1t1B
− 1

δ2 .

If t ≥ τ := t1 and |x | ≤ Ce
λ1

d+2α t , we have

ui (t, x) ≥ ui (t − t1, x) = aφ1,i
(
1 + b(t − t1)|x |δ2(d+2α)

) 1
δ2

≥ aφ1,i

2
1
δ2

= εi .

��
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