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Abstract The elliptic isosceles restricted three-body problem (EIR3BP) with collision is
defined as follows: two point masses m1 = m2 move along a degenerate elliptic collision
orbit under their gravitational attraction, then describe the motion of a third massless particle
moving on a plane perpendicular to their line of motion and passing through the center
of mass of the primaries. By symmetry, the component of the angular momentum of the
massless particle along the direction of the line of the primaries is conserved. We fixed it
to a non-zero value in order to avoid total collision, and perform the reduction to one and
a half degrees of freedom. We prove that the flow defined by the EIR3BP is complete and
if a solution escapes to infinity when time t → ±∞, then it is parabolic or hyperbolic. A
description of the parabolic orbits is given and they are asymptotic to a degenerate periodic
orbit at infinity. We verify that the unstable and stable manifolds Pu,s of this periodic orbit
at infinity are differentiable (in fact, C∞) at the origin and analytic outside. For sufficiently
large angular momentum, we prove that Pu and Ps intersect a surface of section� in simple
closed curves γ u,s having two points of intersection and we show that γ u and γ s have a
transversal intersection at these points. We prove that there exists a subset of � where the
Poincaré map is topologically conjugate to a Bernoulli shift, in particular this shows the
existence of a very complicated dynamic (chaotic dynamic) in the EIR3BP.
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1 Introduction

The elliptic isosceles restricted three body problem (EIR3BP) with collision is defined as fol-
lows: Two equal point massesm1 = m2 move under Newton’s law of gravitational attraction
in a collision elliptic orbit parametrized by ρ(t) on the z-axis. A thirdmassless particle moves
on a plane (x, y) passing through the center of mass of the primaries and perpendicular to
their line of motion. Thus the equations of motion for the massless particle are

ẍ = − x(
x2+y2+ ρ2(t)

4

)3/2

ÿ = − y(
x2+y2+ ρ2(t)

4

)3/2 ,
(1)

where ρ(t) = 1 − cos E is the distance between the primaries and E is eccentric anomaly.
The problem consists in describing the dynamics of the massless particle. Of course the
primaries collide successively, but since it is a Keplerian motion its regularized motions are
completely understood. In order to avoid total collision we fix the z-component of its angular
momentum to a fixed constant c �= 0.

Some restricted problems related to our problem have been studied: If cwere taken as zero
and the initial conditions of the third particle be given towards the line of the primaries we get
the isosceles restricted three body problem with collision studied in [1,9]. In [12], periodic
solutions are obtainednumerically.Thepresent problem is also related to theSitnikovproblem
in the following aspect: in the latter the primaries move along elliptic orbits of eccentricity
e; in [11] parabolic orbits are studied when e is close to zero, when the problem becomes
integrable. Our case is far from this in the sense that we are considering e = 1. The fixed
non zero value of c prevents total collision to happen and permits focusing on the existence
of bounded motions without collisions (of the massless particle), the dynamics is not less
complex though.

In a preliminary work [4] the dynamics of this problem in the finite part, was studied;
more precisely, it was shown the existence of symmetric periodic solutions. In this paper
we focus on solutions which perform large excursions far from the line of primaries. More
precisely we study the set of parabolic orbits in which the massless particle escapes to infinity
with asymptotic velocity zero. A complete description of the parabolic orbits is given and we
prove they are asymptotic to a degenerate periodic orbit at infinity. Using [2,3,10] we are able
to verify that the unstable and stable manifolds Pu,s of this periodic orbit at infinity are C∞
at the origin and analytic outside. Next, considering a sufficiently large angular momentum
we prove that Pu and Ps intersect a surface of section � in simple closed curves γ u,s

having two points of intersection and we show numerically that γ u and γ s have transversal
intersection at these points. Our approach is maintained analytically most of the time, and
we just could not give an analytic proof of the transversality of the manifolds Pu and Ps , but
we present numerical work which sustains its transversality. The main technical difficulty
in order to prove analytically the transversal intersection of the invariant manifolds along
two homoclinic orbits is that there is not an adequate “small parameter” which would help
in using perturbation theory, for example, the Melnikov method. On the other hand, in our
approach we cannot prove the boundedness for all time of the coefficient of the series (see
Eq.23) which define Pu and Ps . Finally, we prove that there exists a subset of � where
the Poincaré map is topologically conjugate to a Bernoulli shift, in particular this show the
existence of a very complicated dynamics (chaotic dynamics) in the EIR3BP.

The structure of the paper is as follows. In Sect. 2 we state the non-autonomous equa-
tions of motion in Cartesian and polar coordinates. In Sect. 3 the problem is reduced by the
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z-component of the angular momentum and the monotonicity of the time variation of the
Hamiltonian is proved in successive intervals of time. We prove that the solutions are defined
for all time so the flow is complete. Then individual solutions escaping to infinity are com-
pletely classified. In order to study long time and global behavior of bounded solutions, in
Sect. 4 we study bounded solutions with large excursions to infinity. We study the parabolic
orbits, and its stable and unstable manifolds using McGehee’s and Fontich arguments. In
Sect. 5 we prove that for c large enough, these manifold intersects along two homoclinic
orbits; we prove numerically the transversality along them.

In Sect. 6, the Poincaré map associated with the surface of section is shown to contain a
full shift as a subsystem as a consequence of a theorem of Moser. Section 7 presents some
numerical explorations which support the hypothesis of transversality assumed in Sect. 5 and
6 to build up the main construction for the symbolic dynamics. We also show some orbits
of the EIR3BP. Finally, in “Appendix” we exhibit several important results in order to make
the paper self contained.

There are several results in the literature related with the problem of transversality of the
invariant parabolic manifolds in the restricted three body problem. In [8] the authors study
the restricted circular three body problem. They use the mass ratio of the primaries as the
perturbed parameter. So, using classical perturbation theory they prove the transversality of
the invariant parabolic manifolds. More recently in [7] the transversality of the invariant
manifolds is proved for all values of the mass ratio. They have used the Jacobi constant
as a parameter since their system is conservative. In [6] the tetrahedral four-body problem
is considered. In this work the authors prove the existence of a symbolic dynamics. The
transversal intersection of the invariant manifolds is given numerically, since they do not
have a small parameter which would help in using perturbation theory.

2 Statement of the Problem

Parameterizing the distance between the primaries, and the time as a function of the eccentric
anomaly, we arrive that

ρ = a(1 − cos E), (2)

nt = E − sin E, (3)

where n = 2π/T is the mean motion and T is the period. Both are related through Kepler’s
third law a3n2 = 1. In what follows we will take a = n = 1, which amount to take the
maximum distance among the primaries as 2, and the period equal to T = 2π . Let (x, y)
be the coordinates of the test particle in the plane perpendicular to the line of motion of
the primaries (see Fig. 1). It is evident from the form of Eq. (1), that the z-component of
the angular momentum of the massless particle c = yẋ − x ẏ is a constant of the motion.
Throughout this work we will suppose that c �= 0. Next, using this symmetry, we can reduce
the equations introducing polar coordinate as usual x = r cos θ , y = r sin θ , and then system
(1) becomes

d2r
dt2

= − r(
r2+ ρ2(t)

4

)3/2 + c2

r3
,

dθ
dt = c

r2
.

(4)

Note that since c �= 0 our problem is different from the Sitnikov (elliptic case) problem (see
details in [11]). In fact, here we have the parameter c and we do not have the parameter
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Fig. 1 The elliptic isosceles
restricted three body problem
with collision

associated with the eccentricity, which is very useful when we use perturbation theory. On
the other hand, we have a singularity associated to r = 0.

The second equation in (4) can be solved by means of quadrature, that is,

θ(t) =
∫ t

0

c

r2(s)
ds + θ0, (5)

and so (4) becomes the reduced system. It is a 2π -periodic Hamiltonian system with Hamil-
tonian function

H(r, pr , t) = p2r
2

+ c2

2 r2
− 1√

r2 + ρ2(t)
4

, (6)

where pr = ṙ is the conjugate momentum to r . The corresponding equations of motion are

dr
dt = pr

dpr
dt = − r(

r2 + ρ(t)2
4

)3/2 + c2

r3
. (7)

The previous equations of motion can also be expressed in terms of the eccentric anomaly
as an independent variable as follows

dr
dE = (1 − cos E)pr

dpr
dE = (1 − cos E)

(
− r(

r2+ (1−cos E)2
4

)3/2 + c2

r3

)
.

(8)

Although the system (8) has critical points whenever cos E = 1, the inverse transformation
of the Kepler equation (3), namely t = t (E) constitutes an uniformization parameter and
system (7) the regularized system.Also for numerical computations to be explained in Sect. 7,
Eq. (8) is better suitable for this purpose.

3 Completeness of the Flow

Let us derive some general properties of the flow associated to the system (7). A straightfor-
ward computation gives us.
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Lemma 1 The derivative of the Hamiltonian function H along the solutions of the system
(7) is given by

dH

dt
= ∂H

∂t
= ρ(t)ρ̇(t)

4(r2 + ρ(t)2
4 )3/2

.

In particular, by the previous result

dH

dt
=
{

<0 if ρ̇(t) < 0,
>0 if ρ̇(t) > 0.

The following propositions show that the infinitesimal body never crosses the line of the
primaries if c �= 0. In particular, triple collision does not occur for finite time.

Proposition 1 If c �= 0, and there exists limt→t∗ r(t), then for no sequence {tk} converging
to t∗, with t∗ a constant, results limk→∞ r(tk) = 0.

Proof Firstly we observe that of the expression (6) and of limk→∞ r(tk) = 0 it follows that

lim
k→∞ r(tk)

(
H(tk) − pr (tk)2

2

)
≥ lim

k→∞

(
c2

2r(tk)
− 1

)
= +∞.

So,

lim
k→∞ H(tk) = +∞.

We can assume that the sequence {tk} is monotone and, for definiteness, increasing. Then,
since

dH

dt
= ρρ̇

4
(
r2 + ρ2

4

)3/2 ,

we have the existence of a constant d and ε > 0 depending of t∗ such that dH
dt (t) ≤ d for

t ∈ (t∗ − ε, t∗) in contradiction with the divergence of H(tk) established above. 	

The following result complements the previous proposition and shows that neither asymp-

totically non-triple collision occur.

Proposition 2 If c �= 0, r(t) is defined for all t and there exists limt→±∞ r(t), then
limt→±∞ r(t) �= 0.

Proof Suppose that c �= 0 and limt→±∞ r(t) = 0. From (4) and the obvious inequality

− r(
r2+ ρ(t)2

4

)3/2 + c2

r3
≥ − 1

r2
+ c2

r3

it follows

d2r

dt
≥ 1

r3
(−r + c2).

Therefore, limt→±∞ d2r
dt2

= +∞ and there exists a time t1 such that d2r
dt ≥ k for all t ≥ t1,

for some k ∈ R
+. Integrating both sides we get r(t) ≥ k

2 t
2 + bt + d , where b, d ∈ R are

constant. Thus r(t) → ∞ as t → ±∞, which contradicts limt→±∞ r(t) = 0. 	
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Remark 1 The last two propositions say that if c �= 0 then any solution is free of total
collisions either in finite or infinite time. This result is well known in the general three-body
problem when the total angular momentum is different from zero (see [13]).

The next theorem shows that any solution of the system (7) is defined for all time, i.e., the
flow is complete.

Theorem 1 If c �= 0 then the maximal interval (ω−, ω+) of existence of solutions of (7) is
(−∞,+∞).

Proof Let (ω−, ω+) be the maximal interval of existence of a solution (r(t), pr (t)) of (7).
Suppose on the contrary, that the solutions are not defined for all time. Let ξ ≡ √r2 + p2r .
Then, for t∗ a constant, either (i) limt→t∗ r(t) = 0, or (ii) limt→t∗ ξ(t) = +∞. The case (i)
is ruled out by Proposition 1 and, in this way, there are δ > 0, τ > 0 such that

r(t) ≥ δ, for t ∈ (t∗ − τ, t∗).

Thus, since the righthand side of (7) is Lipshitzian for r ≥ δ, the existence of the limit
limt→t∗(r(t), θ(t)) and the solution of (7) can be continued past t∗ establishing ω+ = +∞.

In the case (ii) we can suppose that limt→t∗ r(t) = +∞, because if limt→t∗ pr (t) = ±∞
then limt→t∗ r(t) = ∞. In fact, if limt→t∗ pr (t) = ±∞ and limt→t∗ r(t) = r∗, for some
r∗ ∈ R, we have from the second equation in (7) that limt→t∗ ṗr (t) is constant so, pr (t)
remains bounded as t → t∗, which is a contradiction. Let us suppose then that limt→t∗ r(t) =
+∞. Again by the second equation in (7) it follows that limt→t∗ r̈(t) = 0. Therefore ṙ(t)
remains bounded as t → t∗ and then r(t) remains bounded as t → t∗. This is a contradiction.
The result for ω− is proved in an analogous way. 	


4 The Flow Near Infinity

Let us now study solutions escaping to infinity, so we need the following definition.

Definition 1 A solution (r(t), ṙ(t)) of the system (7) is called an escaping solution if it is
defined for all t > 0 and limt→∞ r(t) = ∞. An escaping solution is called parabolic, if

lim
t→∞ ṙ(t) = 0.

and it is called hyperbolic if

lim
t→∞ ṙ(t) = p∗,

where p∗ is a finite positive value.

Proposition 3 Any escaping solution of (7) with c �= 0 is parabolic or hyperbolic.

Proof Suppose that r(t) → ∞ as t → ∞; from (4) we have that

r̈(t) = − r(t)[
r2(t) + ρ2(t)

4

]3/2 + c2

r3(t)

= − 1

r2(t)

1

[1 + (ρ(t)/2r(t))2]3/2 + c2

r3(t)
∼ − 1

r2(t)
,
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since ρ(t) remains bounded. Then r̈(t) → 0− as t → ∞, and so ṙ(t) is decreasing as t goes
to infinity. It follows that limt→∞ ṙ(t) = p∗ exists and there are two possibilities: Either
p∗ = −∞ or is a finite number. In the first case, there exists t1 ∈ R such that ṙ(t) < −1
for all t > t1. So, there exists t2 with r(t2) = 0 in contradiction with the Proposition 1.
Therefore, limt→+∞ ṙ(t) = p∗, a real number. If p∗ < 0 then there exists t1 > 0 such that
ṙ(t) < p∗/2 for t > t1. Integrating it yields r(t) < r(t1)+ p∗/2t , in particular r(t) vanishes
for some t > t1, again contradicting Proposition 1. 	


From the previous proposition and Eq. (6) we arrive at the following result.

Corollary 1 Along any escaping solution of (7) with c �= 0, lim
t→+∞ 2H(t) = p∗2.

Next, we are going to study escaping solutions, and in this approach let us use McGehee’s
coordinates [10], that is, we make the change of variables

r = 2

u2
, ṙ = v. (9)

So u → 0 corresponds to r → +∞, and Eq. (7) assumes the form

u̇ = − 1
4u

3v

v̇ = 1
4u

4

(
− 1[

1+ u4ρ2(t)
16

]3/2 + c2
2 u

2

)
,

(10)

together with the differential equation

Ė = 1

1 − cos E
,

which is consequence of (3). The origin (u, v) = (0, 0) is an equilibrium point of the system
(10) contained in the invariant plane u = 0. The set

N∞ = {(u, v, E) / u = 0}
is called the infinity manifold, and clearly it is invariant by the flow of system (10). Moreover,
the flow extends analytically to it.We are interested in studying solutions that escape parabol-
ically to infinity, that is, solutions such that (u, v) → (0, 0) as t → ∞. It is known that the
set of initial conditions of such solutions form a variety which we denote by stable parabolic
manifold, see [10]. Using the McGehee or, more recently, Baldomá et al. [2,3] notations, the
stable parabolic manifold (locally) is defined by the set Ps = A+(P,B), where

A+(P,B) =
{
(u, v) ∈ B / Pk(u, v) ∈ B,∀ k > 0, Pk(u, v) → (0, 0), as k → +∞

}
,

B = B(β, δ) = {(u, v) ∈ R
2 / 0 ≤ u ≤ δ, |v| ≤ β u

}

whereP denotes the Poincarémap or first returnmap associated to the periodic orbit (u, v) =
(0, 0), which will study in the next proposition. The variable u is considered positive in order
to avoid ambiguity in the transformation (9). The existence of this set B is guaranteed in [10].

In the next proposition we determine an approximation of the Poincaré map associated to
system (10). Some preliminary results are described in Sect. 1.

Proposition 4 The Poincaré map P defined in a neighborhood U of the periodic orbit
(u, v) = (0, 0) is given by the diffeomorphism

P(u, v) =
(
u − π

2
u3 [v + r1(u, v)] , v − π

2
u3
[
u − c2

2
u3 − 45

192
u5 + r2(u, v)

])
, (11)
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where r1 and r2 are real analytic functions in the variables u, v and of order two in these
variables.

Proof We are going to apply the analysis given in Sect. 1 in order to calculate the Poincaré
map P around the 2π-periodic orbit (u, v, t) = (0, 0, t) of the differential system

du
dt = 1

4u
3v

dv
dt = −

[
u4
4 − c2

8 u
6 − 3

128u
8ρ2(t) + 15

8192u
12ρ4(t) + O(u16)

]

dt
dt = 1,

(12)

which is obtained using Taylor’s series in (10) around the point u = 0. We denote the flow
of (12) by ϕ(t, u, v) = (ϕ1(t, u, v), ϕ2(t, u, v), ϕ3(t, u, v)), where ϕ3(t, u, v) = t , and so
σ(α) = 2π . Clearly the time of return is σ(α) = 2π . Thus, following the notation of Sect. 1
we have that ∂nP

∂αn = ∂nϕ(σ(α),α)
∂αn and then the Poincaré map is given by

P(u, v) = α0 + ∂ϕ
∂u (α0, σ (α0))u + ∂ϕ

∂v
(α0, σ (α0))v

+ 1
2!
[

∂2ϕ

∂u2
(α0, σ (α0))u2 + 2 ∂2ϕ

∂u∂v(α0,σ (α0))uv
+ ∂2ϕ

∂v2
(α0, σ (α0))v

2
]

+ 1
3!
[

∂3ϕ

∂u3
(α0, σ (α0))u3 + 3 ∂3ϕ

∂u2∂v
(α0, σ (α0))u2v

+ 3 ∂3ϕ

∂u∂v2
(α0, σ (α0))uv2 + ∂3ϕ

∂v3
(α0, σ (α0))v

3
]

+ 1
4!
[

∂4ϕ

∂u4
(α0, σ (α0))u4 + 4 ∂4ϕ

∂u3∂v
(α0, σ (α0))u3v + 6 ∂4ϕ

∂u2∂v2
(α0, σ (α0))u2v2

+ 4 ∂4ϕ

∂u∂v3
(α0, σ (α0))uv3 + ∂4ϕ

∂v4
(α0, σ (α0))v

4
]

+ O((α − α0)
5).

(13)
We take the initial condition α0 = (0, 0) which is a point of the periodic solution (0, 0, t)

and thus it is a fixed point of P . As
∂ϕ

∂α
(t, α0) |t=0= I , we have that

∂ϕ1

∂u
(t, α0) = 1 and

∂ϕ2

∂v
(t, α0) = 1. On the other hand, we know that

∂2ϕ

∂α2 (t, α0) is a solution of

Ẏ = Df (ϕ(t, α0))Y + B(t). (14)

In this case B(t) = D2 f (ϕ(t, α0))
∂ϕ
∂x (t, α0)

2, because D2 f (ϕ(t, α0)) ≡ 0. Note that since

Df (ϕ(t, α0)) ≡ 0, it follows that
∂2ϕ

∂α2 (t, α0) = ∂2ϕ

∂α2 (t, α0) |t=0≡ 0. In particular, we have

that
∂2ϕ

∂α2 (σ (α0), α0) = ∂2ϕ

∂α2 (2π, α0) ≡ 0.

Continuing the process we obtain that
∂3ϕ

∂α3 (t, α0) is a solution of (14) where now B(t) =
D3 f (ϕ(t, α0))

∂ϕ
∂α

(t, α0)
3+D2 f (ϕ(t, α0))(

∂ϕ
∂α

(t, α0),
∂2ϕ

α2 (t, α0)) ≡ 0, because the matrices

D3 f (ϕ(t, α0)), D2 f (ϕ(t, α0)) are identically null. Since Df (ϕ(t, α0)) ≡ 0, we have that
∂3ϕ

∂α3 (t, α0) = ∂3ϕ

∂α3 (t, α0) |t=0 ≡ 0. So,
∂3ϕ

∂α3 (2π, α0) ≡ 0.

In the fourth step, we know that
∂4ϕ

∂α4 (t, α0) is a solution of Eq. (14) where B(t) =
D4 f (ϕ(t, α0))

∂ϕ
∂α

(t, α0)
4, because all the other terms are zero. We know that Df (ϕ(t, α0))

is identically null, so in order to find
∂4ϕ

∂α4 (t, α0) it is sufficient to integrate the equation

d

dt

∂4ϕ

∂α4 (t, α0) = D4 f (ϕ(t, α0))
∂ϕ

∂α
(t, α0)

4,
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where in the matrix D4 f (ϕ(t, α)) we have

∂4 f1
∂u4

= 0, ∂4 f1
∂u3∂v

= − 3
2 ,

∂4 f1
∂u2∂v2

= 0, ∂4 f1
∂u∂v3

= 0, ∂4 f1
∂v4

= 0,
∂4 f1
∂v3∂u

= 0, ∂4 f1
∂v2∂u2

= 0, ∂4 f2
∂u3∂v

= 0, ∂4 f2
∂u2∂v2

= 0, ∂4 f2
∂u∂v3

= 0,
∂4 f2
∂v4

=0, ∂4 f2
∂v3∂u

=0, ∂4 f1
∂v∂u3

=− 3
2 ,

∂4 f2
∂u4

=−6 + 360
8 c2u2 + 5040

128 u
4ρ2(t)+O(u8).

So,
∂4ϕ

∂α4 (σ (α0), α0) reduces to

∂4ϕ

∂α4 (σ (α0), α0) =
(
0,

∂4ϕ2

∂u4
(σ (α0), α0)

)
u4 + 4

(
∂4ϕ1

∂u3∂v
(σ (α0), α0), 0

)
u3v

= (−12πu3v,−12πu4).

In the fifth step, we observe that
∂5ϕ

∂α5
(t, α0) is solution of Eq. (14) with B(t) =

D5 f (ϕ(t, α0))
∂ϕ
∂α

(t, α0)
5 + 10D4 f (ϕ(t, α0))

((
∂ϕ
∂α

(t, α0)
)3

,
∂2ϕ

∂α2 (t, α0)

)
+ other terms.

Observe that the matrix D5 f (ϕ(t, α0)) is given by

∂5 f1
∂u5

= 0, ∂5 f1
∂u4∂v

= 0, ∂5 f1
∂u3∂v2

= 0, ∂5 f1
∂u∂v4

= 0, ∂5 f1
∂v5

= 0,
∂5 f1
∂v4∂u

= 0, ∂5 f1
∂v3∂u2

= 0, ∂5 f1
∂v∂u4

= 0, ∂5 f2
∂u4∂v

= 0, ∂5 f2
∂u3∂v2

= 0,
∂5 f2
∂u∂v4

=0, ∂5 f2
∂v5

=0, ∂5 f2
∂v4∂u

=0, ∂5 f2
∂u5

∣∣
α0

=[ 7208 c2u+ 630
4 u3ρ(t)2+O(u7)

] ∣∣
α0

=0

Since D5 f (ϕ(t, α0)) is a null matrix and D4 f (ϕ(t, α0))

((
∂ϕ
∂α

(t, α0)
)3

,
∂2ϕ

∂α2 (t, α0)

)
is not

null, it follows that
∂5ϕ

∂α5
(t, α0) is given by the integral solution of the equation

d

dt

∂5ϕ

∂α5
(t, α0) = 10D4 f (ϕ(t, α0))

(
∂ϕ

∂α
(t, α0)

3 ,
∂2ϕ

∂α2 (t, α0)

)
.

In the sixth step, we have that
∂6ϕ

∂α6 (t, α) is given by the integral of the equation

d
dt

∂6ϕ

∂α6 (t, α0) = D6 f (ϕ(t, α0))
(

∂ϕ
∂α

(t, α0)
)6

+ 10D4 f (ϕ(t, α0))
∂
∂α

((
∂ϕ
∂α

(t, α0)
)3

∂2ϕ
∂α

(t, α0)

)

+ 6D4 f (ϕ(t, α0))

(
∂ϕ
∂α

(t, α0)
∂
∂α

((
∂ϕ
∂α

(t, α0)
)2

∂2ϕ
∂α

(t, α0)

))

+ 4D4 f (ϕ(t, α0))
(

∂ϕ
∂α

(t, α0)
)3

∂3ϕ

∂α3 (t, α0)

+ D4 f (ϕ(t, α0))
(

∂ϕ
∂α

(t, α0)
)2 (

∂2ϕ

∂α2 (t, α0)
)2

.

Observe that in D6 f (ϕ(t, α)) the unique non identically null term is
∂6 f2
∂u6

= 720

8
c2 +

1890
4 u2ρ(t)2 + O(u6). So D6 f (ϕ(t, α0)) only has the nonzero component

∂6 f2
∂u6

(t, α0) =
720

8
c2.
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At the seventh step, we have that,
∂7ϕ

∂α7 (t, α0) is solution of the equation (14) where in

this case B(t) have nonzero terms that coming from D4 f (ϕ(t, α0)) and D6 f (ϕ(t, α0)).

The matrix D7 f (ϕ(t, α)) has only the nonzero term
∂7 f2
∂u7

= 3780
4 uρ(t)2 + O(u5). So

D7 f (ϕ(t, α0)) ≡ 0.

In the eighth step,
∂8ϕ

∂α8 (t, α0) is solution of Eq. (14) where B(t) has nonzero terms coming

from D4 f (ϕ(t, α0)), D6 f (ϕ(t, α0)) and D8 f (ϕ(t, α0)).Thematrix D8 f (ϕ(t, α)), only has

the non-null term
∂8 f2
∂u8

= 3780
4 ρ(t)2 +O(u4). Thus, D8 f (ϕ(t, α0)) has only the component

∂8 f2
∂u8

(t, α0) = 3780
4 ρ(t)2. In this way, we have

∂8ϕ

∂α8 (σ (α0), α0) = ∂8ϕ

∂α8 (2π, α0) =
(
0,

3780

4

∫ 2π

0
ρ(τ)2dτ

)
u8.

Replacing ρ2(t) = [1−cos E(t)]2 by its Fourier series, which is given by 5

2
+

∞∑
α=1

aα cosαt ,

we have that

∂8ϕ

∂α8 (σ (α0), α0) =
(
0, 3780

4

∫ 2π

0

[
5

2
+

∞∑
α=1

aα cosαt

]
dτ

)
u8

= (0, 4725π)u8.

Thus, using (13) we arrive to

P(u, v) =
(
u − π

2
u3 [v + r1(u, v)], v − π

2
u3
[
u − c2

2
u3 − 45

192
u5 + r2(u, v)

])
,

where r1 and r2 are real analytic functions in the variables u, v and of order two in these
variables. This concludes the proof of the proposition. 	


It is clear that the equilibrium point (0, 0) is degenerate for the system (10) since the
differential of the Poincaré map at (0, 0) is the identity matrix. As ρ(t) = 1 − cos E(t) is
2π periodic in t , this critical point can be seen as a 2π-periodic orbit in the extended phase
space {(u, v, t) ∈ R

3 | u ≥ 0}. The next theorem guarantees that Ps is a one dimensional
manifold which is a real analytic arc.

Theorem 2 There exist a convex open set V = (0, r) such that Ps = A+(P,B(β, r)) is
the graph of an analytic function ϕ : (0, r) → R, that is, Ps ∩ (U ∩ V ) = {(u, v) / v =
ϕ(u), u ∈ (0, r)}. Moreover, the function ϕ is C∞ at 0.

Proof Wewill use the notation considered in Theorems 7 and 8 (see “Differentiability of the
Invariant Manifolds Pu,s at the Origin” in Appendix and Refs. [2,3]). Firstly, since we are
interested in the solution close to u = 0 we write system (10) around the point u = 0 so we
obtain the system

u̇ = − 1
4u

3v

v̇ = − 1
4u

4 + c2
8 u

6 + O(u8).
(15)

In order to prove the first part of the theorem we will prove that the Poincaré map P defined
in (11) satisfies conditions (H1)–(H4) of Theorem 7. In order to apply this theorem, the map
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P is not yet in a suitable form, so we make the change of variables

u = x + y

2
, v = x − y

2
,

thus the system (15) is equivalent to

ẋ = − 1
32 (x + y)3x + c2

512 (x + y)6 + O((x + y)8)

ẏ = 1
32 (x + y)3y − c2

512 (x + y)6 + O((x + y)8).
(16)

Then the map P becomes

F(x, y) = (x + p(x, y) + r1(x, y), y + q(x, y) + r2(x, y)) (17)

where
p(x, y) = − π

16 (x + y)3x,
q(x, y) = π

16 (x + y)3y,
r1(x, y) = o(‖(x, y)‖4),
r2(x, y) = o(‖(x, y)‖4).

(18)

Thus Np = Nq = 4. Since 1 + Dx p(x, 0) = 1 − π
4 x

3 < 1, then (H1) follows. As
Dxq(x, y) = 3π

16 (x + y)2y and Dyq(x, 0) = π
16 x

3 > 0, so we have verified (H2). Now, we
observe that x + p(x, 0) = x − π

16 x
4, then dist (x + p(x, 0), [r,+∞)) ≥ π

16 x
4, therefore

(H3) holds. Now, we observe that |1 + Dx p(x, 0)| + |1 − 1
4Dx p(x, 0)| = 2 − 3π

16 x
3 < 2,

and then H4 is true. So we have proved the first part of the theorem, that is, there exists a
one-dimensional stable invariant manifold of the origin, which, for r > 0 small enough, can
be expressed as the graph of an analytic function y = ϕ̃(x).

In order to prove the second part of the theorem, we will apply Theorem 8 given in
“Differentiability of the Invariant Manifolds Pu,s at the Origin” in Appendix. It is clear
that in our case m = 1, the map F is analytic, in particular is C∞, so k = ∞. Also,

F(0, 0) = (0, 0) and DF(0, 0) = I d . We verify that N = M = 4, ∂F1

∂x4
(0, 0) = − 3π

2 < 0,

and ∂4F2

∂x3∂y
(0, 0) = 3π

8 > 0. Then all the assumptions of Theorem 8 are satisfied, hence there

are a C∞ map K : [0, r) → R
2 and a polynomial R : R → R such that

F ◦ K = K ◦ R. (19)

Let K = (K1, K2). As
∂K1
∂x (0) = 1 �= 0 by the inverse function theorem we have that in a

small neighborhood of x = 0 there is K−1
1 . Thus from (19) we have

F1(K1(x), K2(x)) = K1(R(x)), (20)

F2(K1(x), K2(x)) = K2(R(x)), (21)

then by (20)

K−1
1 (F1(K1(x), K2(x))) = R(x),

and by substituting it in (21), we arrive to

K2 ◦ K−1
1 ◦ F1 = F2. (22)

On the other hand, points in the Graph(ϕ̃), are characterized by

ϕ̃ ◦ F1 = F2.
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In [2] is proved that the function ϕ is locally unique, therefore ϕ̃ = K2 ◦ K−1
1 and so we

conclude that ϕ̃ is C∞ at x = 0.
It remains to transform the invariant manifold to the original variables. The variable u is

a function of x , since u = x+y
2 = x+ϕ̃(x)

2 = h(x). We observe that h is an analytic function

in (0, r) and is C∞ at x = 0. Furthermore, Lip(h) ≤ 1+Lip(ϕ̃)
2 < 1, therefore, there is

an analytic function ϕ such that x = ϕ(u) (see details in [2]), and then the stable invariant
manifold of the point (0, 0) can be represented as the graph of

v = ϕ(u) := 1

2

[
ϕ(u) − ϕ̃(ϕ(u))

]

where u ∈ (0, u0). In conclusion, we have proved that ϕ is analytic in (0, u0) and ϕ is C∞
at u = 0. 	


The existence of an unstable parabolic manifold, denoted by Pu , can be obtained
immediately by considering the inverse of the Poincaré map. More precisely, this mani-
fold corresponds to the orbits that were captured parabolically, that is, solutions such that
(u, v) → (0, 0) as t → −∞. According [10], we must have

Pu = A−(P,B) = {(u, v) ∈ B / P−k (u, v) ∈ B, ∀k > 0, P−k (u, v) → (0, 0), as k → +∞}.

Thus, in order to prove the existence of an unstable manifold of the periodic point
(0, 0) for the system (10), we only need to perform the change given by t → −t
and (u, v, E) → (u,−v,−E), because the system (10) is invariant under the symmetry
(u, v, t) → (u,−v,−t). In these new variables the dominant terms of this system do not
change and therefore we can use the same arguments as for the stable manifold and conclude
that there exists a one-dimensional unstable manifold associated to the periodic point (0, 0)
with the same properties about the differentiability.

Remark 2 In order to clarify some geometrical aspects of the behavior of the invariant man-
ifold, we are going to denote the critical point (0, 0) in the slice time �τ by pτ , according
to Fig. 2. We know that it can be seen as a 2π -periodic orbit, namely, �(t), in the extended
phase space {(u, v, t) ∈ R

3 | u ≥ 0}. It follows that the invariant manifold associated to�(t),
Ps

�(t), is constituted by curves parametrized by t in this phase space. In fact, by Theorem
2, the stable manifold associated to critical point pτ , Ps

pτ
, is the graph of the function ϕ,

that is, Ps
pτ

is given by (u, v) where v = ϕ(u), u ∈ (0, r) with r sufficiently small. So, in

V

u

(a)

V

u

(b)

p =(0,0)

P
s
( )

P
u
( ) P

u
( )

P
s
( )

p =(0,0)

u

v

t

2
2

p

t t

P
s
(t)

P
u
(t)

p

Fig. 2 The Fig.a represents the behaviour of the manifolds near to infinite on a time slice�τ = {(u, v, t)|t =
τ }, for c very small and figure b for c sufficiently large. The figures on the right describe the geometry of the
stable and unstable manifolds associated to the periodic orbit �(t), both in the extended phase space and on
the slice time
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the extended phase space, it follows that Ps
�(t) is given locally by v =

∑
n≥0

bn(t)u
n , where

∑
n≥0

bn(τ )un = ϕ(u) with τ in the interval [0, 2π) .

If we assume that the local stable manifold Ps
�(t) is given by v = −G(u,−t), then since

the system (10) is invariant under the symmetry (u, v, t) → (u,−v,−t), the equation of the
local unstable manifold Pu

�(t) is v = G(u, t), where

v = G(u, t) =
∑
n≥0

bn(t)u
n, (23)

and the terms bn(t) can be computed by comparing coefficients.

Proposition 5 The points (u, v, t) of the local unstable manifold Pu
�(t) are given by the graph

of v = G(u, E), where

G(u, E) = −u + b3(E)u3 + b5(E)u5 + b7(E)u7 + b8(E)u8 + b9(E)u9

+ b11(E)u11 + b12(E)u12 + b13(E)u13 + b14(E)u14 + O(u15), (24)

and the non-zero coefficients up to order 14 are

b3(E) = c2
8 , b5(E) = 1

128

(
c4 + 5

)
, b7(E) =

(
c6+5c2

)

1024

b8(E) = − (15 sin(E)−9 sin(2E)+sin(3E))
512 , b9(E) = −

(
−5c8−30c4+164

)

32,768
b11(E) = − (1404 cos(E)−612 cos(2E)+132 cos(3E)−9 cos(4E)−915)

16,384

b12(E) = −−519 sin(E)+825 cos(E) sin(E)−432 cos2(E) sin(E)+150 cos3(E) sin(E)−24 cos4(E) sin(E)
65,536

b13(E) = − 3355c2−5148c2 cos(E)+2244c2 cos(2E)−484c2 cos(3E)+33c2 cos(4E)
393,216

b14(E) = − (77,616+342c2−21c10−150c6)E+(−126,000−342c2+21c10+150c6) sin(E)+33,120 sin(2E)
262,144

− −7080 sin(3E)+900 sin(4E)
262,144 + 27 sin(5E)

163,840

(25)

and t = E − sin E. Here we call the attention for the dependence of the coefficients
b j on the parameter c. By symmetry the points of the local stable manifold Ps

�(t) satisfy
v = −G(u,−E).

Proof In “Computation of the Coefficients b j in (23)” of the Appendix, we give details about
the process of obtention of the coefficients bn(E) recursively. 	


The following proposition describes the unstable manifold Pu
�(t) as a graph of a function

u = F(v, E) and is obtained by straightforward inversion of the series (24). The stable
manifold Ps

�(t) is obtained as the graph of u = F(−v,−E).

Proposition 6 The points (u, v, t) of the local unstable manifold Pu
�(t) are given by the graph

of u = F(v, E), where

F(v, E) = −v + a3(E)v3 + a5(E)v5 + a7(E)v7 + a8(E)v8 + a9(E)v9 + a10(E)v10

+a11(E)v11 + a12(E)v12 + a13(E)v13 + a14(E)v14 + O(v15) (26)
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and the non-zero coefficients up to order 14 are

a3(E) = − c2
8 , a5(E) =

(
−7c4−5

)

128 , a7(E) =
(
−33c6−45c2

)

1024

a8(E) = −15 sin(E)+9 sin(2E)−sin(3E)
512 , a9(E) = −715c8−1430c4−86

32,768

a10(E) = 11c2(15 sin(E)−9 sin(2E)+sin(3E))
4096

a11(E) = −1048c10−2750c6−633c2−9984 sin6(E/2)+2304 cos(E) sin6(E/2)
65,536

a12(E) = (328+2730c4+(64−780c4) cos(E)−63 cos(2E)+6 cos(3E)) cos(E/2) sin3(E/2)
16,384

a13(E) = (−63(−65+1817c4+4000c8+1233c12)+117,760c2(−13+3 cos(E)) sin6(E/2))
6,291,456

a14(E) = (−3,104,640−13,680c2+6000c6+840c10)E−60 sin(E)(−84,000+2997c2+8175c6+14c10)
10,485,760

+ 900 sin(2E)(−1472+105c2+323c6)+(283,200+8250c2−32,300c6) sin(3E)
10,485,760

+ (−36,000−5625c2) sin(4E)+(1728+450c2) sin(5E)
10,485,760

(27)

where t = E − sin E.

For simplicity, in the following sections, we do not distinguish the stable and unstable
manifolds associated to the periodic orbit �(t) with those associated to the critical point pτ .
In both cases we will use the same symbol. The reader can distinguish the two cases by the
context.

5 Transversality of the Stable and Unstable Manifolds

In this sectionwewill characterize the intersection of the global stable and unstablemanifolds,
Pu,s , obtained from the local ones by saturating the flow. For brevity we still denote them
by the same symbol. Consider the annular section

� = {(r, ṙ , t) | r > 0, ṙ = 0, t ∈ R mod(2π)}. (28)

We will show that Pu (and Ps) meets � forwards (backwards) for the first time, in a simple
closed curve γu (γs). But before that note that

Proposition 7 � is transversal to the flow associated the system (7), excepting for a differ-
entiable closed curve around the origin.

Proof Since � is defined by the equation ṙ = 0, the transversality can fail whenever r̈ = 0.
Let us write this equation as a polynomial with time-dependent coefficients

0 = r8 − c4
(
r2 + ρ2/4

)3 = k4 − c4k3 − 3

4
c4k2ρ2 − 3

16
c4kρ4 − 1

64
c4ρ6 ≡ p(k, t), (29)

where k = r2. For any fixed value of t , p(k, t) is a polynomial in k which by the Descartes
signs rule, has exactly one positive root, which we will denote by k(t). Since the coefficients
of the polynomial are 2π -periodic, 0 = p(k(t + 2π), t + 2π) = p(k(t + 2π), t), and as
p(k(t), t) = 0, then by the uniqueness k(t + 2π) = k(t). Thus, except for the closed curve
r(t) = k(t)1/2, t ∈ R mod(2π), the flow is transversal to �. Furthermore, the curve k(t)
such that p(k, t) = 0 is differentiable. In fact, a direct computation yields the resultant of the
polynomial p(k, t) and its derivative ∂p

∂k (k, t) to be 27c4 + 64ρ2, which does not vanish for

any real ρ, therefore all the roots are simple, that is, ∂p
∂k (k, t) �= 0 for k such that p(k, t) = 0.

By the implicit function theorem the curve k(t) is differentiable. 	
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Observe that p(k, t) < 0, if and only if, r̈ > 0 and p(k, t) > 0, if and only if, r̈ < 0. Thus
� is divided in two components �+ and �− by the curve r(t) = k(t)1/2, t ∈ R(mod2π)

where
�+ = {(r, ṙ , t) | r > 0, ṙ = 0, p(r2, t) < 0, t ∈ R(mod2π)} (30)

and �− is defined similarly but with the inequality p(r2, t) > 0, instead. Then whenever a
solution (r(t), ṙ(t)) crosses �+ (resp. �−), we have r̈(t) > 0 (resp. r̈(t) < 0). From (29)
it follows that p(0, t) < 0 therefore the component �+ contains the origin r = ṙ = 0,
t ∈ R(mod2π) in its closure.

Lemma 2 The system (4) does not admit solutions (r(t), ṙ(t)) such that r(t) is constant.

Proof The proof follows by inspecting Eq. (4). 	


Proposition 8 Let the angular momentum be taken large enough, namely

c >
1

31/4
≈ 0.7598356 . . .

Then if r(t) is a parabolic solution of (4), that is, r(t) → ∞ and ṙ(t) → 0 as t → ∞, then
there exists a largest finite value t−1, such that ṙ(t−1) = 0. Moreover r̈(t−1) > 0.

Proof From (4) it follows that for large r , r̈ < 0. Since r(t) → ∞ as t → ∞ we have
r̈(t) < 0 and ṙ(t) > 0 for large t . We follow such a solution backwards in time. It cannot
happen that r̈(t) < 0 for all t , since in that case r(t) would be concave downwards and it
would imply that r(t) vanishes for some t , contrary to Proposition 1. Therefore there exists
a first t−2 (backwards in time) such that r̈(t−2) = 0, with ṙ(t−2) > 0, so at least in a small
interval (t−2−ε, t−2) (for ε > 0 sufficiently small), ṙ(t) > 0. Suppose that r(t) is increasing
with ṙ(t) > 0 for all t ∈ (−∞, t−2). So, since r(t) ≥ 0, that is, r(t) is bounded from below
and, by Proposition 2, limt→±∞ r(t) �= 0, it follows that limt→−∞ r(t) = r∗ exists and is a
positive quantity. The last condition says that in the x–y Cartesian plane, the solution winds
towards a circle of radius r∗ backwards in time. Let us prove that this assertion leads to a
contradiction. Consider the suspension of (4)

d2r

dt2
= − r

(r2 + ρ2/4)3/2
+ c2

r3

dt

dt
= 1(mod 2π)

and take a small transversal section � = (r∗ − δ, r∗ + δ) to the circle of radius r∗; that is,
an annulus in the extended phase space � × R(mod 2π). Then along the above mentioned
solution, the backwards first return map associated to this section defines a sequence (rn, tn)
such that rn → r∗. Passing to a subsequence if necessary we can suppose that tn → t∗ ∈
R(mod2π). By continuity of the return map, the solution through (r∗, t∗) is a periodic orbit
which projects into the circle of radius r∗. By the previous lemma, the system (4) does not
admit such a solution, and we get a contradiction.

Thus ṙ cannot be positive for all t < t−2 and therefore there exists amaximal t−1, t−1 < t−2

such that ṙ(t−1) = 0. Let us show that r̈(t−1) > 0; if r̈(t−1) < 0 then t−1 would be a local
maximum, but since r(t) → ∞ as t → ∞ by Rolle’s Theorem there would be a t ′−1 > t−1

such that ṙ(t ′−1) = 0 contrary to the definition of t−1. Let us show that r̈(t−1) = 0 also leads
to a contradiction: Multiply (4) by ṙ to get and then integrate from t−1 to a large positive t0,
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d
dt

( 1
2 ṙ

2
) = − c2

2
d
dt

(
1
r2

)
− rṙ(

r2+ ρ2
4

)3/2

1
2 (ṙ

2(t0) − ṙ2(t−1)) = − c2
2

(
1

r(t0)2
− 1

r(t−1)2

)
− ∫ t0t−1

rṙ(
r2+ ρ2

4

)3/2 dt.

Taking the limit as t0 → ∞, we get

0 = c2

2

(
1

r2−1

)
−
∫ ∞

t−1

rṙ(
r2 + ρ2

4

)3/2 dt or
c2

2r2−1

=
∫ ∞

t−1

rṙ(
r2 + ρ2

4

)3/2 dt, (31)

wherewe have used the shorthand r−1 = r(t−1). The last integral can be estimated as follows:
since ṙ(t) > 0 for t ∈ (t−1,∞) and ρ = 1 − cos(E) ≤ 2
∫ ∞

r−1

r(
r2 + 1

)3/2 dr =
∫ ∞

t−1

rṙ(
r2 + 1

)3/2 dt≤
∫ ∞

t−1

rṙ(
r2 + ρ2

4

)3/2 dt≤
∫ ∞

t−1

ṙ

r2
dt=
∫ ∞

r−1

1

r2
dr.

Computing the integrals at the extremes of the above inequalities and using (31) we have

1√
r2−1 + 1

<
c2

2r2−1

<
1

r−1
,

from which it follows that

r−1 ≥ c2

2
, and r4−1 − c4

4

(
r2−1 + 1

) ≤ 0.

The left-hand side of the last inequality is a quadratic polynomial in k = r2−1 with real roots

k = c4

8
± c2

2

√
1 + c4

16
.

Choosing the positive root, it yields the estimate

c2

2
≤ r−1 ≤ c√

2

√√√√c2

4
+
√
1 + c4

16
. (32)

Now the polynomial (29) can be expressed as the equality

k3(k − c4) = c4ρ2
(
3

4
k2 + 3

16
kρ2 + 1

64
ρ4
)

. (33)

The left hand side vanishes for k = 0, c4 and is negative in (0, c4); the right hand side is
nonnegative within this interval, therefore the positive root lies in the interval [c4,∞). But

c4

8
+ c2

2

√
1 + c4

16
< c4

for

c >
1

31/4
≈ 0.7598356 . . .

Thus we conclude that for r−1 within the bound (32), k = r2−1 cannot be a solution of (33)
or a root of (29) so r̈(t−1) �= 0. Therefore r̈(t−1) > 0. 	
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Fig. 3 The parametrization of
the curve γ ′s
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Theorem 3 Let the angular momentum be taken large enough, namely

c >
1

31/4
≈ 0.7598356 . . .

Then the global stable (unstable) manifolds Ps (Pu) intersect the section � backwards
(forwards) for the first time, in a simple closed curve γ s (γ u) contained in the component�+.
Both curves enclose the origin and intersect at least in two points located at t = 0 and t = π .

Proof By Proposition 6 follows that the local stable manifold associated to the periodic orbit
�(t) is a cylinder, given by the equation u = F(−v,−E(t)). Observe that for v sufficiently
small we have that u = F(−v,−E(t)) ≈ v.

Consider the plane v = v0 > 0 with v0 sufficiently small (that is {(u, v0, E)|u > 0, E ∈
[0, 2π)}), it follows that the intersection of the local stablemanifold, u=F(−v,−E(t)) ≈ v,
with v = v0, given by u = F(−v0,−E(t)) ≈ v0, is a circle γ ′s since E ∈ S1,
t ∈ S1. Note that γ ′s can be explicitly parametrized as follows: t → (u(t), v0, t), where
u(t) = F(−v0,−E(t)) ≈ v0 and t ∈ S1, see Fig. 3 (left). On the other hand, by defin-
ition, γ ′s consists of solutions such that r(t) → ∞, ṙ(t) → 0 as t → ∞ (that is γ ′s
consists of points of the solutions that go to infinity with zero radial velocity). So, for each
(u(t), v0, t) ≈ (v0, v0, t) in γ ′s , that is, for each (v0, v0, t0) with t0 ∈ [0, 2π) we following
the corresponding solution backwards in time along the flow yields a cylinder which, by
Proposition 8, intersects the section �+ for the first time t−1, in a simple closed curve γ s ,
since the variable t0 ∈ R(mod 2π) gives an explicit parametrization, see Fig. 3 (right). We
use the following parametrization in order to exhibit that it encircles the origin of the sec-
tion �+: Let t−1 denote, as in the proof of the previous proposition, the first time such that
ṙ(t−1)=0, and let r−1=r(t−1), then the curve γ s can be parameterized as ξ + iη=r−1eit−1 ;
since r(t−1) > 0, it encircles the origin. Observe that t−1 = t−1(t0). By a similar argument,
the unstable manifold Pu intersects for the first forward time the section � in a closed curve
γ u which encircles the origin. Using coordinates ξ + iη=r cos t + ir sin t , for the section�,
the symmetry (r, pr , t) → (r,−pr ,−t) becomes t → −t , that is, a reflection with respect
to the ξ -axis. Since both γ s,u encircle the origin, they intersect at least in two points along
the ξ -axis. Furthermore, since the coefficients in (26) depend on t in that way, it follows that
γ s,u intersect at least in the points located at t=0 and t=π . See Figs. 9 and 10 (left) for the
numerical description of the curve γ s and γ u on the section � for different values of c. 	

We will make explicit the additional transversality hypothesis, obtained numerically.

123



276 J Dyn Diff Equat (2017) 29:259–288

Theorem 4 The parabolic stable and unstable manifolds Ps, Pu intersect transversally
along the homoclinic orbit t−1 = 0, for c large enough. For t−1 = π there is also a
transversal intersection with a small intersection angle (see Figs.9 and 10 (right) for the
numerical description of the transversal intersection of Pu and Ps along the homoclinic
orbit on the section � for different values of c).

Remark 3 This result is consistent with numerical explorations performed for awide range of
values of the parameter c, details of this fact are given in Appendix, “Transversal Intersection
of the Invariant Manifolds Pu,s” section.

In the next section, we are going to explore dynamical consequence of the transversal
intersection of the stable and unstable manifolds. Also, we describe the solutions near the
critical escape velocity and show that there is a set of orbits to which one can associate any
sequence of integers (i.e., the symbolic dynamics).

6 Symbolic Dynamics

Given a point (r0, ṙ0, t0) ∈ �+, where r0 = r(t0) and ṙ0 = ṙ(t0), then ṙ0 = 0 and r̈(t0) > 0.
In according to the ideas given in [11], we define a mapping φ on part of the plane �+ by
following a solution (r(t), ṙ(t)) of (7) with initial condition r(t0) = r0, ṙ(t0) = 0 until its
first intersection with section �+, say t1 > t0, if it exists, and set r1 = r(t1). In this way, the
mapping φ is given by

φ : � ⊂ �+ → �+
(r0, t0) → (r1, t1).

(34)

If there is not t1 with this property we set t1 = ∞. We described the initial values (r0, t0) in
polar coordinates on a plane �+, being t0 representing the angle and r0 the radius.

We now discuss where this map is defined and we characterize its complement. Let D0

denote the set of points in �+ for which a finite t1 > t0 exists and we add to D0 the point
(0, t0). Thus, D0 represents the initial values of the orbits which return to ṙ = 0.

Lemma 3 For (r0, t0) outside D0 the corresponding solutions escape.

Proof Let r(t) be the solution of (7) satisfying

r(t0) = r0, ṙ(t0) = 0, r̈(t0) > 0

and t1 = ∞, so ṙ(t) > 0 for t > t0. Observe that it is not possible that ṙ(t) < 0 for t > t0.
In fact, if this occurs we will have or limt→t∗ r(t) = 0 for t∗ finite or limt→∞ r(t) = 0,
contracting Propositions1 and 2. Thus, r is monotonically increasing for t > t0 and so

r(t) → ∞ as t → ∞.

In fact, since ṙ(t) > 0 for t > t0, it follows that r(t) is an increasing function for all t > t0,
in particular there exists

lim
t→∞ r(t)

and it can be finite or infinite.Wewill assume that lim
t→∞ r(t) = γ ≥ r0 > 0, with γ ∈ R. Then

by Eq. (7) we have that r̈(t) is bounded as t → ∞. Then by Lemma1 ṙ(t) → 0 as t → ∞.
In conclusion, it follows that (r(t), ṙ(t)) is an equilibrium point, which is a contradiction.
Therefore,

1 Lemma: If g(t) → g∗ ∈ R as t → ∞ and |g̈(t)| is bounded as t → ∞, then ġ(t) → 0 as t → ∞.
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lim
t→∞ r(t) = ∞.

Moreover, again by (7), follows that r̈ < 0 for t> tildet for some t̃ > t0. So, the function
ṙ is monotonically decreasing for t > tildet , so ṙ(∞) = limt→∞ ṙ ≥ 0 exists. Recall, see
Proposition 3, that one refers to a hyperbolic orbit if ṙ(∞) > 0 and to a parabolic orbit
if ṙ(∞) = 0. Thus, for (r0, t0) outside D0 the corresponding solutions escape which are
parabolic or hyperbolic. 	


Let D′
0 be the complement of D0. By the previous lemma, we have seen that D′

0 cor-
responds to parabolic and hyperbolic orbits. The hyperbolic orbits form an open set in D′

0
and since D′

0 is closed (since D0 is an open set) it follows that ∂D0 is contained in D′
0 and

consists of parabolic orbits; thus ∂D0 = γ s . In a similar way we define D1 as the set of initial
conditions (r0, ṙ0, t0) with ṙ0 = ṙ(t0) = 0 and r̈(t0) > 0 such that there exists t−1 < t0
such that ṙ(t−1) = 0 and r̈(t−1) > 0. Its complement D′

1 consists of escaping hyperbolic or
parabolic orbits for t → −∞ and ∂D1 = γ u .

The proof of the following theorem follows the same lines as in the Sitnikov problem,
see [11, Theorem 3.6, p. 92], and depends solely on the structure of the parabolic orbits
given by Theorem 4 (that is, there exists a transversal intersection of the stable and unstable
manifolds), so we will not repeat these arguments.

Theorem 5 There exists a set S ⊂ D0 which is invariant under the Poincaré map φ given in
(34) such that its restriction to S is conjugate to the full shift in an infinite number of symbols.

We give a brief description of the symbolic dynamics involved, i.e., we described the
dynamical consequence derived of the Theorem 5: Given (r0, ṙ0, t0) ∈ D0 consider the
sequences of consecutive times tn such that ṙ(tn) = 0, ordered according to tn < tn+1.
Define the sequence of integers

an =
[
tn − tn−1

2π

]

where [ ] denote integer part; thus an ∈ N∪ {∞} measures the number of binary collisions
of the primaries between consecutive closest approaches of the infinitesimal to the line of
primaries: ṙ(tn) = 0 and r̈(tn) > 0.

For each initial condition on the invariant set S we associate the sequence of integers (an)
where we agree that in the case an = ∞ the sequence finishes and we add the symbol ∞. In
this way the kind of sequences is of the following type:

1. (. . . , a−1, a0, a1, . . .), with an ∈ N for all n ∈ Z. This succession corresponds to the
orbits of the infinitesimal which perform an infinite number of closest approaches to the
line of primaries in the past and in the future and the sequence (an) codifies the number
of collisions of the primaries between closest approaches.

2. (∞, ak, ak+1 . . .), with k ≤ 0, and an ∈ N for all n ∈ Z such that n > k − 1. This case
corresponds to the orbits of the infinitesimal ejected from infinity and remains oscillating
performing closest approaches to the line of primaries. This can be labeled as capture
orbits.

3. (. . . , al−2, al−1,∞), with l ≥ 1 and an ∈ N for all n ∈ Z such that n < l. This case
corresponds to escaping orbits of the infinitesimal in the future which perform closest
approaches to the line of primaries in the past.

4. (∞, ak−1, . . . , al−1,∞), with k ≤ 0, l ≥ 1 and an ∈ N for all n ∈ Z such that
k < n < l. This case corresponds to the orbits of the infinitesimal coming from infinity
oscillates a finite number of times and escape to infinity.
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Fig. 4 Poincaré map, described in the pr–r plane, associated with the section E = π(mod 2π) corresponding
to a maximal distance among the primaries. The angular momentum is c = 0.1. A zoom of the last plot is
given below
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Fig. 5 Zooms of Fig. 4

The following theorem is a consequence of Theorem 5 and its proof follows the same argu-
ments as in [11, p. 97].

Theorem 6 There exists an integer b̂ > 0 such that any sequence a = (an) with an ≥ b̂
corresponds to a solution of (7).

Proof According to [11, p. 97], given an initial condition in D0(δ)
2 the return time to ṙ =

0 has a lower bound, b̂, depending on δ. In this way, given an arbitrary sequence s =
(· · · s−1, s0, s1, · · · ) of one of the four kinds described above, follows that it corresponds to

an orbit for which the integral part

[
tn − tn−1

2π

]
of the return time is prescribed as an sequence

an = sn + [c]. In this case, b̂ = [c]. For more details see [11]. 	

Observe that the above theorem allows also to find infinitely many periodic orbits

by choosing periodic sequences. Note that these sequences are as the first kind above
(. . . , a−1, a0, a1, . . .), with an ∈ N for all n ∈ Z an periodic sequence.

7 Numerical Exploration

In this section we present some numerical explorations of the ERI3BP. In Fig. 4 or in Fig. 5
we present a typical phase portrait of the Poincaré map, which is of short period since the

2 For δ > 0, sufficiently small, D0(δ) is the set of points in D0 whose distance from boundary of D0, γs , is
less than δ.
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time is defined by consecutive passages of the primaries through the aphelio, that is, when
the time satisfies cos(E) = −1 which corresponds to the maximal distance between the
primaries. In Fig. 6 the path for the same initial condition used for the Poincaré map in Fig. 4
is shown in the pr–r and in the x–y planes. These orbits appear in the kind of sequences 1
described in Sect. 6. Fig. 7 is shown for c = 0.5. In Fig. 8 the homoclinic orbit corresponding
to the crossing with E = π is shown in the x–y plane.
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Appendix

Transversal Intersection of the Invariant Manifolds Pu,s

We take the initial conditions on the unstable manifold of the parabolic orbits, given by the
series u = F(v, E), described in (26). We have computed numerically the first intersection
of Pu,s with the section �, solving in backward time system (7). We denote by γ u,s this
first intersection. In Figs. 9 and 10 they are represented in the plane ξ + iη = r−1ei E−1 and
are obtained through the Mathematica program (we use the subroutines Runge–Kutta pairs
of orders 2(1) through 9(8) with quadruple precision and starting step size equal to 0.0125)
as follows: using the approximation in order 14 to the unstable manifold Pu given by (26)
we choose 100 equally spaced values for the eccentric anomaly E on the interval [0, 2π).
We take v = −0.1, so the corresponding values of u = F(v, E) are calculated. In this way,
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Fig. 9 Curves γ u,s for c = 1 (left) in ξ η-plane. Details of the transversal crossing (right)
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Fig. 10 Curves γ u,s for c = 0.5 (left). details of the transversal crossing (right)

we have the initial conditions (ui , vi ) = (F(−0.1, Ei ),−0.1), i = 0, . . . , 100. Through
the change of coordinates (9) each initial condition is transformed to initial conditions for
the system (7) ((ri , pri ) = (2/u2i ,−0.1), i = 0, . . . , 100) and then the solution is followed
numerically up to its first intersection with �+ (pr = 0 with ṗr > 0); with the values of r−1

and E−1 at an intersection, the point ξ + iη = r−1ei E−1 is computed and plotted. Figures 9
and 10 describe these points in the ξ − η plane for c = 1 and c = 0.5. The dashed circles in
pink in the Figs. 9 and 10 are the circles whose radii are determined by the lower and upper
bounds in inequality (32).

Differentiability of the Invariant Manifolds Pu,s at the Origin

In order to make the paper self-contained, we include here the main results in [2,3] for
convenience of the reader.

We consider the map F : U ⊂ R
n+m → R

n+m of the form

F(x, y) = (x + p(x, y) + r1(x, y), y + q(x, y) + r2(x, y)), (35)

where p(x, y), q(x, y) are homogeneous polynomials of degree Np and Nq respectively,with
Np, Nq ≥ 2, r1(x, y) of order o(‖(x, y)‖Np ), Dr1(x, y) of order o(‖(x, y)‖Np−1), r2(x, y)
of order o(‖(x, y)‖Nq ), Dr2(x, y) of order o(‖(x, y)‖Nq−1). We introduce the projections
π1(x, y) = x , and π2(x, y) = y. Given a subset V ⊂ R

n we define

Ws
V = {(x, y) ∈ U / π1Fk(x, y) ∈ V, k ≥ 0, Fk(x, y) → (0, 0), as k → +∞}

and its local version

Ws
V,r ={(x, y) ∈ U / π1Fk(x, y)∈V ∩ B(0, r), k ≥ 0, Fk(x, y) → (0, 0), as k → +∞}.

We will assume that there exists a set V ⊂ U and r, ρ > 0 such that
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(H1) The polynomial p satisfies supx∈V 1(ρ)‖I d + Dx p(x, 0)‖ < 1.

(H2) The polynomial q satisfies Dxq(x, 0) = 0 for x ∈ V 1(ρ) and supx∈V 1(ρ)‖I d −
Dyq(x, 0)‖ < 1.

(H3) There exists A > 0 such that for all x ∈ V (r), dist (x + p(x, 0), V (r)c) ≥ A‖x‖Np .
(H4) For all x ∈ V 1(ρ), ‖I d + Dx p(x, 0)‖ + ‖I d − 1

Np
Dx p(x, 0)‖ < 2, where V (r) =

{x ∈ V |‖x‖ < r} and V 1(ρ) = {ρ x/‖x‖|x ∈ V (r)}.
Theorem 4.1 in [2] states the following.

Theorem 7 Let F be an analytic map of the form (35). Assume that there exists a convex
open set V ⊂ R

n, 0 ∈ ∂V and r, ρ > 0 such that hypotheses H1–H4 hold. Then Ws
V,r is the

graph of a real analytic function

ϕ : V (r) → R
m .

In the two-dimensional case, if n = 1 and m = 1, V can be taken as the intervals (0, r) or
(−r, 0).WhenV = (0, r) the corresponding invariant setWs

V,r corresponds to P
s = A(F,U)

given according to the notation in [10] with U = B(β, r) and the set V 1(ρ) above is given
by V 1(ρ) = [0, r ] .

It is important to observe that as was discussed in [2, p. 59], ϕ is differentiable at 0 and
Dϕ(0) = 0. On the other hand, as ϕ is analytic we can prove that Dϕ(x) → 0 as x → 0+,
so ϕ is of class C1 at the origin. In [3] the authors give information about the degree of
differentiability of ϕ at x = 0. Below we state the theorem that guarantees such information.

Theorem 8 Let F = (F1, F2) : U ⊂ R
1+m → R

1+m be a Cr map, r ≥ 2 or r = ∞, such
that F(0, 0) = 0, DF(0, 0) = I d,

D j F1(0, 0) = 0, for 2 ≤ j ≤ N − 1, (36)

D j F2(0, 0) = 0, for 2 ≤ j ≤ M − 1, (37)

and
∂N F1

∂xN
(0, 0) < 0,

∂M F2

∂xM
(0, 0) = 0, (38)

for some 2 ≤ N , M ≤ r . In the case when M ≤ N we also assume that

Spec
∂M F2

∂xM−1∂y
(0, 0) ⊂ {z ∈ C / Rez > 0}. (39)

Let L = min(N , M) and η = 1 + N − L. We assume that r > 2N − 1. Then there exist a
C p map K : [0, t0) ⊂ R → R

1+m, with p = [(r − N + 1)/η] − 1, of class Cr in (0, t0) and
a polynomial R : R → R such that

F ◦ K = K ◦ R. (40)

Moreover, K (t) = (t, 0)+ O(t2) and R(t) = t + dN t N + O(t2N−1) with dN = ∂N F1

∂xN
(0, 0).

Computation of the Coefficients b j in (23)

We use the eccentric anomaly as the independent variable and observe that t = E − sin E ,
so dt

dE = ρ. Differentiating v = G(u, E) =∑∞
n=0 bn(E)un , we get

∂v

∂E
= ∂G

∂u

∂u

∂E
+ ∂G

∂E
.

123



J Dyn Diff Equat (2017) 29:259–288 285

Substituting (15) in the previous equation and using that dt
dE = 1 − cos E = ρ, we get

− ρ
4 u

4∑
n≥0

(−3/2
n

)
ρ2nu4n

16n + ρc2

8 u6 = − ρ
4

(∑
n≥1 nbnu

n+2
) (∑

n≥0 bnu
n
)+∑n≥0 b

′
nu

n

− ρ
4

∑
n≥0

(−3/2
n

)
ρ2nu4(n+1)

16n + ρc2

8 u6 = − ρ
4

∑
n≥3 cnu

n +∑n≥0 b
′
nu

n,

where ′ means derivative with respect to E and the coefficients cn are obtained from the
formula for the Cauchy product:

cn =
∑

k+l=n,k≥3,l≥0

(k − 2)bk−2bl

=
n−3∑
l=0

(n − l − 2)bn−l−2bl

= (n − 2)bn−2b0 + (n − 3)bn−3b1 + · · · + b1bn−3.

In this way the equation can be written as

− ρ

4

∑

n ≥ 4,
n ≡ 0(mod 4)

(−3/2
n−4
4

)
ρ

n−4
2 un

16
n−4
4

+ ρc2

8
u6 = −ρ

4

∑
n≥3

cnu
n +
∑
n≥0

b′
nu

n . (41)

The first equations read b′
0 = 0, b′

1 = 0, b′
2 = 0. Then it follows that b0 = b(0)

0 , b1 =
b(0)
1 , b2 = b(0)

2 are constant. The following equations up to the seventh order are:

b′
3 − ρ

4
c3 = 0, b′

4 − ρ

4
c4 = −ρ

4
, b′

5 − ρ

4
c5 = 0, b′

6 − ρ

4
c6 = ρc2

8
, b′

7 − ρ

4
c7 = 0.

and for n ≥ 8,

b′
n =
⎧
⎨
⎩

ρ
4 cn − 1

4
1

16
n
4 −1

(−3/2
n
4 − 1

)
ρ

n
2 −1, n ≡ 0(mod 4)

ρ
4 cn otherwise.

(42)

or equivalently, b′
n is given by the following relations:

ρ
4

[
(n−2)(bn−2b0 + · · · + b n

2
b n

2 −2)+ n−2
2 b2n−2

2

]
− 1

4
1

16
n
4 −1

(−3/2
n
4 −1

)
ρ

n
2 −1, n ≡ 0(mod 4),

ρ
4

[
(n − 2)(bn−2b0 + · · · + b n

2
b n

2 −2) + n−2
2 b2n−2

2

]
, n �≡ (mod 4) and n is even,

ρ
4

[
(n − 2)(bn−2b0 + · · · + b n−1

2
b n−3

2
)
]
, n �≡ (mod 4) and n is odd.

(43)

The computation of the coefficients bn(E) is done recursively. In fact, suppose that for
n ≥ 0 the coefficients b0(E), b1(E), . . . , bn−3(E) are known. We take the corresponding
nth equation in (43) and impose the condition on the coefficient bn(E) to be periodic. Taking
the average on both sides of (43) we get the equation for the constant term of cn (and thus
for the constant term of bn−2 which will be denoted by b(0)

n−2),

1

π

∫ 2π

0
ρ(E)cn(E) dE = 1

π

1

16
n
4 −1

(−3/2
n
4 − 1

)∫ 2π

0
ρ

n
2 −1(E) dE . (44)
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The integral on the right hand side can be computed in terms of the Gamma function:

1

π

∫ 2π

0
ρn(E) dE = 2n+1�(n + 1

2 )√
π�(n + 1)

.

Using the functional relationship for the � function

�(z)�

(
z + 1

2

)
= 21−2z√π�(2z),

we get

2n+1�
(
n + 1

2

)
√

π�(n + 1)
= 2n+1�(n)�

(
n + 1

2

)
√

π�(n)�(n + 1)

= 2n+121−2n�(2n)

�(n)�(n + 1)

= 22−n(2n − 1)!
(n − 1)!n! .

In summary
1

π

∫
ρ cn dE = 1

16
n
4 −1

(−3/2
n
4 − 1

)
23− n

2 (n − 3)!( n
2 − 2

)! ( n2 − 1
)! (45)

whenever n ≥ 8 and n ≡ 0(mod 4), zero otherwise.
Since the right-hand side of Eq. (43) is known, and the left-hand side contains the constant

term b(0)
n−2 and known quantities that are derived from the integration of known coefficients,

namely,

1

π

∫ 2π

0
(1 − cos E) ((n − 2)bn−2b0 + (n − 3)bn−3b1 + · · · b1bn−3) dE,

then it can be solved for b(0)
n−2. The full form of bn−2(E) can be obtained by integrating the

(n − 2)th equation

b′
n−2 − ρ

4
cn−2 = rhs

where rhs, for n − 2 ≡ 0 (mod 4), is known and depends only on the integration of the
trigonometric polynomial coming from some power of ρ and in turn can be expressed in
terms of Hypergeometric functions. Note that rhs is zero otherwise. 	

Preliminary of Proposition 4

First we will introduce some preliminary results. Let

ẋ = f (t, x) (46)

be a system of ordinary differential equations, where f (t, x) is of class Cr and x ∈ U with
U ⊂ R

n open. Let ϕ(t, x) = ϕt (x) be a solution of (46) with initial condition ϕ(0, x) =
ϕ0(x) = x , and, ϕ̇t (x) = f (t, ϕt (x)). Since f is of class Cr , ϕt (x) is of class Cr and
we can obtain the variational equations by differentiating the relation ϕ̇t (x) = f (t, ϕt (x))
with respect to the variable x and interchanging the order of differentiation. Thus, the first
variational equation is given by

d

dt

∂ϕt (x)

∂x
= Df (ϕt (x))

∂ϕt (x)

∂x
,
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with initial condition
∂ϕt (x)

∂x

∣∣∣
t=0

= I , where Df is the Jacobian matrix of f and I is n × n

identity matrix.
The variational equations of higher order are obtained similarly. We present them here

second and third orders.

d

dt

∂2ϕt (x)

∂x2
= D2 f (ϕt (x))

(
∂ϕt (x)

∂x

)2
+ Df (ϕt (x))

∂2ϕt (x)

∂x2
,

with
∂2ϕt (x)

∂x2

∣∣∣
t=0

= 0 and

d
dt

∂3ϕt (x)
∂x3

= D3 f (ϕt (x))
(

∂ϕt (x)
∂x

)3 + D2 f (ϕt (x))
(

∂2ϕt (x)
∂x2

,
∂ϕt (x)

∂x

)

+ Df (ϕt (x))
∂3ϕt (x)

∂x3
,

with
∂3ϕt (x)

∂x3

∣∣∣
t=0

= 0.

In order to know the derivatives of the flow ϕt (x) with respect to the initial conditions α

of a periodic orbit we use the variational equations. In fact, we are going to study the flow
around a periodic orbit through the Poincaré map defined in a cross section of this orbit.

Let � be a cross section of the periodic orbit defined by initial condition α0 ∈ � and let
σ = σ(α) be the time that the orbit spends to the first return to�. We can assumewithout loss
of generality that σ(α) is defined for all α ∈ �, because we can take � so small as needed,
and by the theorem of continuous dependence on the initial conditions follows the assertion.
If we start with the initial condition α1 ∈ �, we define the Poincaré map P : � → � as

P(α1) = α2 = ϕ(σ(α1), α1),

with α2 ∈ �. So, we write the Poincaré map in the following way

P(α) = ϕ(σ(α), α).

Calculating the first derivative with respect to initial conditions of the Poincaré map we
obtain

∂P
∂α

= ∂ϕ

∂σ

∂σ

∂α
+ ∂ϕ

∂α
,

where ∂ϕ
∂α

is obtained by the first variational equation. For the second derivative, we have the
expression

∂2P
∂α2 = ∂2ϕ

∂α2 + ∂2ϕ

∂σ∂α

∂σ

∂α
+ ∂ϕ

∂σ

∂2σ

∂α2 ,

where ∂2ϕ
∂σ∂α

and ∂2ϕ

∂α2 are given by the first and second variational equations respectively.
Continuing on this way we obtain the Taylor development of P around a fixed point α0 ∈ �

P(α) = α0 +
(

∂P
∂α

∣∣∣
α=α0

)
(α − α0) + 1

2!
(

∂2P
∂α2

∣∣∣
α=α0

)
(α − α0)

2 + O((α − α0)
3).

See more details see [5].
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