
J Dyn Diff Equat (2016) 28:1115–1144
DOI 10.1007/s10884-015-9463-9

Eigenfunctionals of Homogeneous Order-Preserving
Maps with Applications to Sexually Reproducing
Populations

Horst R. Thieme1

Received: 12 November 2014 / Revised: 6 May 2015 / Published online: 11 June 2015
© Springer Science+Business Media New York 2015

Abstract Homogeneous bounded maps B on cones X+ of ordered normed vector spaces
X allow the definition of a cone spectral radius which is analogous to the spectral radius
of a bounded linear operator. If X+ is complete and B is also order-preserving, conditions
are derived for B to have a homogeneous order-preserving eigenfunctional θ : X+ → R+
associated with the cone spectral radius in analogy to one part of the Krein–Rutman theorem.
Since homogeneous B arise as first order approximations at 0 of maps that describe the
year-to-year development of sexually reproducing populations, these eigenfunctionals are an
important ingredient in the persistence theory of structured populations with mating.

Keywords Homogeneous map · Order-preserving map · Concave map · Cone spectral
radius · Eigenfunctional · Krein–Rutman type theorems · Collatz–Wielandt numbers and
bound · Mating functions

1 Introduction

The celebrated Krein–Rutman theorem states that the spectral radius r(B) of a positive
bounded linear map B on an ordered Banach space X ,

r(B) = inf
n∈N ‖Bn‖1/n, (1.1)

which equals
r(B) = lim

n∈N ‖Bn‖1/n (1.2)

(see the proof of Theorem 3 in [46, Sect. VIII.2]), is not only associated with of a positive
eigenvector but also with a positive eigenfunctional provided that the map is compact and the
cone is total [27] (see also [39, App. 2.4,2.6]). Generalizations of the Krein–Rutman theorem
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have weakened the compactness assumptions for the linear map [27,35–37]. The existence
of positive eigenvectors has also been established for maps on the positive cone that are
homogeneous and order-preserving but not additive [1,4,5,27,31–33]. These eigenvectors are
associated with a modification of the spectral radius, the cone spectral radius. In comparison,
the existence of homogeneous eigenfunctionals of homogeneous maps on cones has attracted
less attention [43]. Since such eigenfunctionals play a crucial role in extending the persistence
theory for structured populations [41] to models that take sexual reproduction into account
[19–22], their existence will be addressed in this paper. Since duality does no longer seem
to work in an effective way if the map is not additive, this will be done less in the spirit of
the Krein–Rutman theorem but more in the spirit of an even older result by Krein [26] that
established the existence of a positive linear eigenfunctional if the linear map is just bounded
(rather than compact) but the cone is normal and solid (see also [6,27], [39, App. 2.6]) and
in the spirit of a result by Bonsall [6, Thm. 1] where X is an ordered vector space with an
order unit and the map is linear and positive.

We mention without further elaboration that, because of the crucial threshold character of
the cone spectral radius for population persistence, there is a natural interest in alternative
characterizations of the cone spectral radius by other types of spectral radii and by lower and
upper Collatz–Wielandt bounds [1,11,12,29,32,33,44,45].

This paper is organized as follows. In Sect. 2, we introduce the central concepts: cones
and their properties, homogeneous (order-preserving) maps and their cone operator norm
and cone spectral radius and orbital spectral radius.

In Sect. 3, we give a flavor of the sense in which homogeneous maps can be considered
first order approximations of fully nonlinear maps, how their eigenfunctionals are involved
in persistence theorems and how the cone spectral radius acts as a threshold parameter in
nonlinear dynamics.

Themain part of the paper is devoted to the existence of an eigenfunctional associatedwith
r+(B). This requires a few preparations [43]: a uniform boundedness principle (Sect. 4) and
a left resolvent for homogeneous maps (Sect. 5). In Sect. 6, we prove three existence results
concerning homogeneous eigenfunctionals. One results shows that the existence of a lower
eigenvector implies the existence of an eigenfunctional under some extra conditions (Sect.
6.1). However, if B is homogeneous and superadditive and the cone is normal and complete,
existence of an eigenfunctional follows without assuming the existence of an eigenvector
(Sect. 6.2). The third result is the observation that, if a power of B has an eigenfunctional
associated with its cone spectral radius, the same holds for B itself.

We also derive conditions for the eigenfunctionals to be continuous and strictly positive
(Sect. 6.3). We present an example that the eigenfunctional can be discontinuous even if it
and the map are additive on the cone and the cone is total (but not generating).

Applications to the dynamics of structured two-sex populations are presented in Sect. 7,
one with state space L1+(�), a regular cone, and one with state space BC+(�), a solid normal
cone. In Sect. 8, we back up the relevance of concave homogeneous maps by showing that
the usual mating functions φ : R2+ → R+ [14,15,18] are not only homogeneous but also
superadditive and thus concave.

2 Cones, Homogeneous Maps, and the Cone Spectral Radius

For models in the biological, social, or economic sciences, there is a natural interest in
solutions that are positive in an appropriate sense, i.e., they take their values in the cone of
an ordered normed vector space.
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2.1 Cones and Their Properties

A subset X+ of a real vector space X is called a wedge if

(i) X+ is convex and αX+ ⊆ X+ for all α ∈ R+
(ii) X+ is closed if X is a normed vector space.

A wedge is called a cone if X+ ∩ (−X+) = {0}. Nonzero points in a cone or wedge are
called positive. A wedge is called generating if X = X+ − X+.

If X+ is a cone in X , we introduce a partial order on X by x ≤ y if y − x ∈ X+ for
x, y ∈ X and call X an ordered normed vector space.

Let X be a normed vector space (then any wedge in X+ is closed by (ii)). A wedge X+ in
X is called solid if it contains interior points, and total if X is the closure of X+ − X+.

A cone X+ is called normal, if there exists some c > 0 such that

‖x‖ ≤ c‖x + z‖ whenever x ∈ X+, z ∈ X+. (2.1)

An element u ∈ X+ is called a normal point of X+ if the set {x ∈ X+, x ≤ u} is bounded;
u ∈ X+ is called a regular point of X+ if every monotone sequence (xn) in X+ with xn ≤ u
for all n ∈ N converges.

X+ is called regular if any decreasing sequence in X+ converges, i.e., all elements in X+
are regular points.

Proposition 2.1 Let X be an ordered normed vector space with cone X+. Then every regular
point of X+ is a normal point of X+.

Proof Let u be a regular point of X+ that is not a normal point of X+. Then, for any n ∈ N,
there exists some xn ∈ X+ with xn ≤ u and ‖xn‖ ≥ 4n . Define

ym =
m∑

n=1

2−nxn, m ∈ N.

Then (ym) is an increasing sequence in X+ and ym ≤ u for all n ∈ N. Since u is a regular
point in X+, (ym) converges and is a Cauchy sequence. Hence ym − ym−1 = 2−mxm → 0.
But ‖2−mxm‖ ≥ 2m , a contradiction. 	

Proposition 2.2 Every solid cone is generating. Every complete regular cone is normal.

See [24, Sects. 1.5, 5.2]. In function spaces, like the one formed by the bounded continuous
functions, CB(�), or the various spaces of measurable functions, L p(�), typical cones are
formed by the nonnegative functions or their equivalence classes. The nonnegative functions
in CB(�) and L∞(�) form a complete, normal, solid cone while the nonnegative functions
in L p(�), 1 ≤ p < ∞, form a regular, complete (and thus normal) cone. The function spaces
also carry a lattice structure.

A cone X+ is called an inf-semilattice [1] (or minihedral [23]) if x ∧ y = inf{x, y} exist
for all x, y ∈ X+.

X+ is called a sup-semilattice if x ∨ y = sup{x, y} exist for all x, y ∈ X+.
X+ is called a lattice if x ∧ y and x ∨ y exist for all x, y ∈ X+.
X is called a lattice if x ∨ y exist for all x, y ∈ X .

Since x ∧ y = −((−x) ∨ (−y)), also x ∧ y exist for all x, y in a lattice X .
For more information on cones see [8,23,24,30,39].
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2.2 Positive and Order-Preserving Maps

Throughout this paper, let X be an ordered vector space with cone X+. We use the notation

Ẋ = X \ {0} and Ẋ+ = X+ \ {0}.
Definition 2.3 Let X and Z be ordered vector spaces with cones X+ and Z+ and U ⊆ X .
B : U → Z is called positive if B(U ∩ X+) ⊆ Z+.

B is called order-preserving (or monotone or increasing) if B(x) ≤ B(y) whenever
x, y ∈ U and x ≤ y.

Positive linear maps from X to Z are order-preserving.

2.3 Homogenous Maps

In the following, X ,Y and Z are orderedvector spaceswith cones X+,Y+ and Z+ respectively.

Definition 2.4 B : X+ → Y is called (positively) homogeneous (of degree one), if B(αx) =
αB(x) for all α ∈ R+, x ∈ X+.

Since we do not consider maps that are homogeneous in other ways, we will simply call
them homogeneous maps. It follows from the definition that

B(0) = 0.

2.3.1 Cone Norms for Homogeneous Bounded Maps

Let X , Y , Z be ordered normed vector spaces.
For a homogeneous map B : X+ → Y , we define

‖B‖+ = sup
{‖B(x)‖; x ∈ X+, ‖x‖ ≤ 1

}
(2.2)

and call B bounded if this supremum is a real number. Since B is homogeneous,

‖B(x)‖ ≤ ‖B‖+ ‖x‖, x ∈ X+. (2.3)

Let H(X+, Y ) denote the set of bounded homogeneous maps B : X+ → Y and
H(X+, Y+) denote the set of bounded homogeneous maps B : X+ → Y+ and HM(X+, Y+)

the set of those maps in H(X+, Y+) that are also order-preserving.
H(X+, Y ) is a real vector space and ‖ · ‖+ is a norm on H(X+, Y ), called the cone

operator norm.
H(X+, Y+) and HM(X+, Y+) are cones in H(X+, Y ). We write H(X+) = H(X+, X+)

and HM(X+) =HM(X+, X+).
It follows for B ∈ H(X+, Y+) and C ∈ H(Y+, Z+) that CB ∈ H(X+, Z+) and

‖CB‖+ ≤ ‖C‖+ ‖B‖+. (2.4)

If X+ is complete and Y+ is normal, homogeneous order-preserving maps from X+ to Y+
are automatically bounded. In particular, if X+ is complete, homogeneous order-preserving
functionals from X+ to R+ are bounded.

Proposition 2.5 Let X+ be complete, B : X+ → Y+ be homogeneous and order-preserving,
and B(x) a normal point of Y+ for any x ∈ X+. Then B is bounded.
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Proof Suppose that B is not bounded. Then, for any n ∈ N, there exists some xn ∈ X+ with
‖xn‖ ≤ 1 such that ‖B(xn)‖ ≥ 4n . Since X+ is complete, u = ∑∞

n=1 2
−nxn converges. Since

B is homogeneous and order-preserving, for each n ∈ N, 2−n B(xn) ≤ B(u). Since B(u)

is a normal point of Y+, {‖2−n B(xn)‖, n ∈ N} is a bounded subset in R which contradicts
‖B(xn)‖ ≥ 4n for all n ∈ N. 	


2.3.2 Cone and Orbital Spectral Radius

Let B ∈ H(X+) and define φ : Z+ → R by φ(n) = ln ‖Bn‖+. By (2.4), φ(m + n) ≤
φ(m) + φ(n) for all m, n ∈ Z+, and a well-known result implies the following formula for
the cone spectral radius

r+(B) := inf
n∈N ‖Bn‖1/n+ = lim

n→∞ ‖Bn‖1/n+ , (2.5)

which is analogous to (1.1) and (1.2).
Mallet-Paret and Nussbaum [32,33] suggest an alternative definition of a spectral radius

for homogeneous (not necessarily bounded) maps B : X+ → X+. First, define asymptotic
least upper bounds for the geometric growth factors of B-orbits,

γ (x, B) = γB(x) = γx (B) := lim sup
n→∞

‖Bn(x)‖1/n, x ∈ X+, (2.6)

and then
ro(B) = sup γB(X+). (2.7)

Here γB(x) := ∞ if the sequence (‖Bn(x)‖1/n) is unbounded and ro(B) = ∞ if γB(x) = ∞
for some x ∈ X+ or the set {γB(x); x ∈ X+} is unbounded.

The number r+(B) has been called partial spectral radius by Bonsall [7], X+ spectral
radius by Schaefer [38,39], and cone spectral radius by Nussbaum [35,37]. Mallet-Paret and
Nussbaum [32,33] call r+(B) the Bonsall cone spectral radius and ro(B) the cone spectral
radius. For x ∈ X+, the number γB(x) has been called local spectral radius of B at x by
Förster and Nagy [11].

Wewill followNussbaum’s older terminology which shares the spirit with Schaefer’s [38]
term X+ spectral radius and stick with cone spectral radius for r+(B). One readily checks
that

r+(αB) = αr+(B), α ∈ R+, r+(Bm) = (r+(B))m, m ∈ N. (2.8)

The same properties hold for ro(B) though proving the second property takes some more
effort [32, Prop. 2.1]. Actually, as we show in [44,45],

γ (x, Bm) = (γ (x, B))m, m ∈ N, x ∈ X+, (2.9)

which readily implies
ro(Bm) = (ro(B))m, m ∈ N. (2.10)

The cone spectral radius and the orbital spectral radius aremeaningful if B is just positively
homogeneous and bounded, but as in [32,33] we will be mainly interested in the case that B
is also order-preserving and continuous.

Though the two concepts coincide for many practical purposes, they are both useful.
Gripenberg [13] gives an example for ro(B) < r+(B).

Theorem 2.6 Let X be an ordered normed vector with cone X+ and B : X+ → X+ be
continuous, homogeneous and order-preserving.
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Then r+(B) ≥ ro(B) ≥ γB(x), x ∈ X+.
Further ro(B) = r+(B) if one of the following hold:

(i) X+ is complete and normal.
(ii) B is power compact.
(iii) X+ is normal and a power of B is uniformly order-bounded.
(iv) X+ is complete and B is additive (B(x + y) = B(x) + B(y) for all x ∈ X+).

The inequality is a straightforward consequence of the respective definitions. For the
concepts of (iii) see Sect. 2.5 and for the proof see [44,45]. The other three conditions for
equality have been verified in [32, Sect. 2], (the overall assumption of [32] that X is a Banach
space is not used in the proofs).

2.4 The Space of Certain Order-Bounded Elements and Some Functionals

Let X be an ordered vector space and with cone X+.

Definition 2.7 Let x ∈ X and u ∈ X+. Then x is called u-bounded if there exists some
c > 0 such that −cu ≤ x ≤ cu. If x is u-bounded, we define

‖x‖u = inf{c > 0;−cu ≤ x ≤ cu}. (2.11)

The set of u-bounded elements in X is denoted by Xu . If x, u ∈ X+ and x is not u-bounded,
we define

‖x‖u = ∞.

The element x ∈ X+ is called u-positive if there exists some ε > 0 such that x ≥ εu. So
x ∈ X+ is u-positive if and only if u is x-bounded.

Two elements v and u in X+ are called comparable if v is u-bounded and u is v-bounded,
i.e., if there exist ε, c > 0 such that εu ≤ v ≤ cu. Comparability is an equivalence relation
for elements of X+, and we write u ∼ v if u and v are comparable. Notice that Xu = Xv if
and only if u ∼ v.

If X is a space of real-valued functions on a set �,

‖x‖u = sup

{ |x(ξ)|
u(ξ)

; ξ ∈ �, u(ξ) > 0

}
.

Xu is a linear subspace of X , and ‖ · ‖u is a seminorm on Xu . It is a norm on Xu if and
only if x = 0 is the only x ∈ X such that −cu ≤ x ≤ cu for all c > 0.

Now assume that X is an ordered normed vector space with norm ‖ · ‖. Then the cone X+
is closed by assumption and

− ‖x‖uu ≤ x ≤ ‖x‖uu, x ∈ Xu . (2.12)

Xu is a linear subspace of X , ‖ · ‖u is a norm on Xu , and Xu , under this norm, is an ordered
normed vector space with cone X+ ∩ Xu which is normal, generating, and has nonempty
interior. The following is proved in [44,45].

Lemma 2.8 Let u ∈ Ẋ+. Then u is in the interior of X+ if and only if Xu = X and there
exists some ε > 0 such that ‖x‖ ≥ ε‖x‖u for all x ∈ X.
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If X+ is normal, by (2.12) there exists some M ≥ 0 such that

‖x‖ ≤ M‖x‖u‖u‖, x ∈ Xu . (2.13)

If X+ is a normal and complete cone of X , then X+ ∩ Xu is a complete subset of Xu with
the metric induced by the norm ‖ · ‖u . For more information see [5, I.4], [23, 1.3], [24, 1.4].

We define
[x]u = sup{β ≥ 0;βu ≤ x}, x, u ∈ X+. (2.14)

Since X+ is closed,
x ≥ [x]uu, x, u ∈ X+. (2.15)

Further [x]u is the largest number for which this inequality holds.
If X is a space of real-valued functions on a set �,

[x]u = inf

{ |x(ξ)|
u(ξ)

; ξ ∈ �, u(ξ) > 0

}
.

Lemma 2.9 Let X+ be closed and u ∈ Ẋ+. Then the functional θ = [·]u : X+ → R+ is
homogeneous, order-preserving and concave. It is bounded with respect to the original norm
on X,

[x]u ≤ ‖x‖
d(u,−X+)

, x ∈ X+.

θ is upper semicontinuous with respect to the original norm and continuous on Xu with
respect to the u-norm,

∣∣[y]u − [x]u
∣∣ ≤ ‖y − x‖u, y, x ∈ Xu ∩ X+.

Proof All properties except the last one have been proved in [44,45]. Let x, y ∈ X+ ∩ Xu .
By (2.15),

[x]uu ≤ x ≤ x − y + y ≤ ‖x − y‖uu + y.

We reorganize,

y ≥ ([x]u − ‖x − y‖u)u.

By (2.14),

[y]u ≥ [x]u − ‖x − y‖u .
We reorganize,

[x]u − [y]u ≤ ‖x − y‖u .
By symmetry,

[y]u − [x]u ≤ ‖y − x‖u = ‖x − y‖u .
This implies the assertion. 	


In general, [·]u is not continuous with respect to the original norm (Example 6.17).
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2.5 Order-Bounded Maps

The following terminology has been adapted from various works by Krasnosel’skii and
coworkers [23, Sect. 2.1.1], [24, Sec.9.4] though it has been modified.

Definition 2.10 Let X be an ordered vector space with cone X+ and B : X+ → X+,
u ∈ X+. B is called pointwise u-bounded if, for any x ∈ X+, there exist some n ∈ N such
that Bn(x) ∈ Xu (Definition 2.7). The point u is called a pointwise order bound of B.

B is called pointwise order-bounded if it is pointwise u-bounded for some u ∈ X+.

Now let X be an ordered normed vector space with cone X+.

Definition 2.11 B is called uniformly u-bounded if there exists some c > 0 such that B(x) ≤
c‖x‖u for all x ∈ X+. The element u is called a uniform order bound of B.

B is called uniformly order-bounded if it is uniformly u-bounded for some u ∈ X+.

If B : X+ → X+ is bounded and X+ is solid, then B is uniformly u-bounded for every
interior point u of X+. The following result is proved in [43–45] by aBaire category argument.

Proposition 2.12 Let X+ be a complete cone, u ∈ X+, and B : X+ → X+ be continuous,
order-preserving and homogeneous. Then the following hold.

(a) B is uniformly u-bounded if B(X+) ⊆ Xu.
(b) If B is pointwise u-bounded, then some power of B is uniformly u-bounded.

3 Homogeneous Maps and Nonlinear Dynamics

One of the mathematical motivations to consider homogeneous maps is that they appear as
first order approximations of nonlinear maps. Let X be an ordered vector space with cone
X+ and Y a normed vector space.

Theorem 3.1 Let F : X+ → Y and u ∈ X+. Assume that the directional derivatives of F
at u exist in all directions of the cone. Then the map B : X+ → Y+, B = ∂F(u, ·),

B(x) = ∂F(u, x) = lim
t→0+

F(u + t x) − F(u)

t
, x ∈ X+,

is homogeneous.

Proof Let α ∈ R+. Obviously, if α = 0, B(αx) = 0 = αB(x). So we assume α ∈ (0,∞).
Then

F(u + t[αx]) − F(u)

t
= α

F(u + [tα]x) − F(u)

tα
.

As t → 0, also αt → 0 and so the directional derivative in direction αx exists and

∂F(u, αx) = αF(u, x). 	

Obviously, the map B in Theorem 3.1 is uniquely determined whenever it exists and is

called the cone directional derivative of F at u.
The cone directional derivative of a homogeneous map B at 0 is B itself.
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Proposition 3.2 Let B : X+ → Y be homogeneous. Then the directional derivatives of B
exist at 0 in all directions of the cone and

∂B(0, x) = lim
t→0+

B(t x) − B(0)

t
= B(x), x ∈ X+.

More on homogeneous maps as first order approximations can be found in [19,22]. As
illustration how eigenfunctionals are involved in persistence results, we present the following
theorem in which a homogeneous map B is a lower first order approximation of a map F at
0 in an order sense [19,22].

Theorem 3.3 Let X be an ordered normed vector spacewith cone X+ and F, B : X+ → X+
and B be homogeneous and order preserving. Let θ : X+ → R+ be homogeneous, bounded,
and order-preserving, and let the following properties be satisfied.

(a) If x ∈ Ẋ+, then Fn(x) ∈ Ẋ+ for infinitely many n ∈ N.
(b) For any x ∈ Ẋ+, there exists some n ∈ N such that θ(Bn(x)) > 0.
(c) For all ε ∈ (0, 1) there exists some δ > 0 such that F(x) ≥ (1− ε)B(x) for all x ∈ X+

with ‖x‖ ≤ δ.
(d) There exists some r > 1 such that θ(B(x)) ≥ rθ(x) for all x ∈ X+.

Then the semiflow induced by F is uniformly weakly norm-persistent: There exists some
δ > 0 such that lim supn→∞ ‖Fn(x)‖ ≥ δ for all x ∈ Ẋ+.

Notice that uniform weak norm-persistence implies instability of the origin. In [19,21],
conditions are given also for the stronger notion of uniform norm persistence where the
lim sup is replaced by the lim inf. In view of assumption (d), it is worth mentioning that there
is an elementary way of obtaining a lower eigenfunctional ρ from a lower eigenvector of B.

Remark 3.4 Let v ∈ Ẋ+ and r > 0 such that B(v) ≥ rv. Define

θ(x) = [x]v, x ∈ X+.

Here [·]v is the concave homogenous functional introduced in (2.14).
Then θ(B(x)) ≥ rθ(x) for all x ∈ X+. Moreover, θ satisfies (b) from Theorem 3.3 if for

any x ∈ X+ there exists some n ∈ N such that Bn(x) is v-positive.
In some instances this construction can even lead to an eigenfunctional (Example 6.17).

Proof Let x ∈ X+. By (2.15), x ≥ [x]vv. Since B is order-preserving and homogeneous,
B(x) ≥ [x]vB(v) ≥ [x]vrv. By (2.14),

θ(B(x)) = [B(x)]v ≥ r [x]v = rθ(x).

The second statement is immediate. 	

Persistence results are one motivation for finding homogeneous order-preserving eigen-

functionals θ : X+ → R+, θ ◦ B = rθ with r = r+(B). The cone spectral radius is of
particular interest for the role of an eigenvalue in order to find a sharp threshold between
stability and instability of the origin. For the following result is also valid. Its formulation
is a little different from the one in [19,21], but the proof is essentially the same after a tiny
modification at the beginning.

Theorem 3.5 Let X+ be the normal cone of an ordered normed vector space. Let F, B :
X+ → X+ and let B be homogeneous, bounded and order-preserving, r = r+(B) < 1.
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Assume that for each η > 0 there exists some δ > 0 such that F(x) ≤ (1 + η)B(x) for all
x ∈ X+ with ‖x‖ ≤ δ. Then F is locally asymptotically stable in the following sense:

For each α ∈ (r, 1), there exist some δ0 > 0 and M ≥ 1 such that ‖Fn(x)‖ ≤ Mαn‖x‖
for all n ∈ N and all x ∈ X+ with ‖x‖ ≤ δ0.

4 A Uniform Boundedness Principle

The next theorem, which will help us to show the existence of eigenfunctionals, has been
proved in [7, L.3.2] for maps that are also additive. The Baire category argument still works
if additivity of the map is replaced by normality of the cone [43].

Theorem 4.1 Let X and Z be ordered normed vector spaces with a complete cone X+ and
a normal cone Z+. Let {Bj ; j ∈ J } be an indexed family of continuous, homogeneous, order
preserving maps B j : X+ → Z+. Assume that, for each x ∈ X+, {Bj (x); j ∈ J } is a
bounded subset of Z+. Then {‖Bj‖+; j ∈ J } is a bounded subset of R.

Proof By assumption,

X+ =
⋃

n∈N
Mn Mn =

⋂

j∈J

M̃n, j , M̃n, j = {
x ∈ X+; ‖Bj (x)‖ ≤ n

}
.

Since each Bj is continuous, M̃n, j is a closed subset of X+ for all n, j ∈ N. Then Mn is a
closed subset of X+ as an intersection of closed sets. Since X+ is complete by assumption,
by the Baire category theorem, there exists some n ∈ N such that Mn contains an interior
point z ∈ X+. So there exists some z ∈ X+ and ε > 0 such that

z + εy ∈ Mn whenever y ∈ X, z + εy ∈ X+, ‖y‖ ≤ 1.

Since z + εy ∈ X+ if y ∈ X+,

‖Bj (z + εy)‖ ≤ n, y ∈ X+, ‖y‖ ≤ 1, j ∈ J.

Let y ∈ X+, ‖y‖ ≤ 1, j ∈ J . Since Bj is homogeneous and order preserving,

εBj (y) = Bj (εy) ≤ Bj (z + εy).

Since Z+ is normal, there exists some c ≥ 0 (independent of y and j) such that

‖εBj (y)‖ ≤ c‖Bj (z + εy)‖ ≤ cn.

Thus

‖Bj (y)‖ ≤ cn

ε
, y ∈ X+, ‖y‖ ≤ 1, j ∈ J.

By definition of ‖ · ‖+,

‖Bj‖+ ≤ cn

ε
, j ∈ J.
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5 A Left Resolvent

There is one remnant from the usual relations between the spectral radius and the spectrum of
a bounded linear operator that also holds in the homogeneous case, namely that real numbers
larger than the spectral radius are in the resolvent set. However, in the homogeneous case,
there only exists a left resolvent.

Let X be an ordered normed vector space and the closed cone X+ be complete and
B : X+ → X+ be homogeneous, bounded and order preserving.

For λ > ro(B), we introduce Rλ : X+ → X+,

Rλ(x) =
∞∑

n=0

λ−n−1Bn(x), x ∈ X+. (5.1)

The convergence of the series follows from the completeness of the cone. If λ > r+(B),
by the Weierstraß majorant test, the convergence of the series is uniform for x in bounded
subsets of X+. With this in mind, the following is easily shown.

Lemma 5.1 For λ > ro(B), Rλ is defined, homogeneous, and order preserving. Further Rλ

acts as a left resolvent,

Rλ(B(x)) =
∞∑

n=0

λ−(n+1)Bn+1(x) =
∞∑

n=1

λ−n Bn(x)

= λRλ(x) − x = Rλ(λx) − x, x ∈ X+. (5.2)

If λ > r+(B) and B is continuous, Rλ is a continuous map.

Proposition 5.2 Let B be continuous and {p j ; j ∈ J } be a family of homogeneous, convex,
order-preserving, continuous functionals p j : X+ → R+ such that sup j∈J ‖p j‖+ < ∞.
Then, for each t > ro(B),

sup
j∈J, λ≥t

‖p j ◦ Rλ‖+ < ∞.

Proof Let t > ro(B). Choose some s ∈ (ro(B), t). For each x ∈ X+, there exists some
cx > 0 such that s−n(p j ◦ Bn)(x) ≤ cx . Since s−n(p j ◦ Bn) : X+ → R+ are homogeneous,
order-preserving and continuous, by the uniform boundedness principle in Theorem 4.1,
there exists some c > 0 such that ‖s−n(p j ◦ Bn)‖+ ≤ c. For each x ∈ X+ with ‖x‖ ≤ 1
and each λ ≥ t , since the p j are continuous, homogeneous and subadditive,

(p j ◦ Rλ)(x) ≤
∞∑

n=0

λ−(n+1) p j (B
n(x)) ≤

∞∑

n=0

t−(n+1)csn = c

t

1

1 − (s/t)
.

Thus

‖p j ◦ Rλ‖+ ≤ c

t − s
, λ ≥ t, j ∈ J.

	

This result should be compared with the next one. B is called superadditive if

B(x + y) ≥ B(x) + B(y), x, y ∈ X+. (5.3)

Notice that every superadditive map on X+ is order-preserving. Recall that r+(B) = ro(B)

if X+ is complete and normal.
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Theorem 5.3 Let X+ be a normal complete cone. Let B be homogeneous, bounded and
superadditive. Assume that r = r+(B) > 0. Then {‖Rλ‖+; λ > r+(B)} is unbounded.

Since B is homogeneous, the superadditivity assumption for B is equivalent to B being
concave: B((1 − α)x + αy) ≥ (1 − α)B(x) + αB(y) for α ∈ (0, 1). The proof is adapted
from [7] and allows B to be concave rather than additive [43].

Proof Rλ inherits superadditivity from B,

Rλ(x + y) ≥ Rλ(x) + Rλ(y), x, y ∈ X+. (5.4)

Suppose that the assertion is false. Then there exists some M ≥ 0 such that ‖Rλ‖+ ≤ M for
all λ > r. Let 0 < μ < r < λ and (λ − μ)M < 1. Since X+ is complete.

Eμ(x) =
∞∑

k=1

(λ − μ)k−1Rk
λ(x)

converges for each x ∈ X+. By (5.2),

Eμ(λx) =
∞∑

k=1

(λ − μ)k−1Rk
λ(λx) =

∞∑

k=1

(λ − μ)k−1Rk−1
λ (Rλ(Bx) + x).

Since Rλ is superadditive,

Eμ(λx) ≥
∞∑

k=1

(λ − μ)k−1Rk
λ(Bx) +

∞∑

k=1

(λ − μ)k−1Rk−1
λ (x)

= Eμ(Bx) + x + (λ − μ)Eμ(x).

Since Eμ is homogeneous,

Eμ(x) ≥ 1

μ
x + 1

μ
Eμ(B(x)), x ∈ X+.

By iteration and induction,

Eμ(x) ≥
n∑

k=0

1

μk+1 B
k(x) + 1

μn+1 EμB
n+1(x), x ∈ X+, n ∈ N.

This implies that

Eμ(x) ≥ 1

μk+1 B
k(x), x ∈ X+, k ∈ N.

Since X+ is normal, there exists some M̃ > 0 (which depends on μ) such that

‖Bk(x)‖ ≤ M̃μk‖x‖, k ∈ N, x ∈ X+.

Thus

‖Bk‖+ ≤ M̃μk, k ∈ N.

Since μ < r = r+(B), this is a contradiction. 	

In the next results, X∗+ denotes the wedge of bounded linear positive functionals on X .
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Corollary 5.4 Let X be an ordered normed vector space with complete normal cone X+. Let
B : X+ → X+ be homogeneous, order-preserving, continuous and B(x+ y) ≥ B(x)+B(y)
for all x, y ∈ X+. Assume that r = r+(B) > 0. Then there exist some x ∈ X+ and x∗ ∈ X∗+
such that x∗(Rλ(x)) → ∞ as λ → r+.

In order to reconcile this result with Proposition 5.2, recall that ro(B) = r+(B) if X+ is
normal and complete (Theorem 2.6).

Proof By the uniform boundedness principle in Theorem 4.1, there exists some x ∈ X+
such that {‖Rλ(x)‖; λ > r+(B)} is unbounded. By the usual uniform boundedness principle,
applied to theBanach space X∗, there exists some x∗ ∈ X∗ such that {|x∗Rλ(x)|; λ > r+(B)}
is unbounded. Since X+ is normal, the wedge X∗+ of positive bounded linear functionals is
generating [2, Thm. 2.26], [39, p. 218], and the unboundedness holds for some x∗ ∈ X∗+.
Since x∗Rλ(x) is a decreasing function of λ, x∗Rλ(x) → ∞ as λ → r+(B). 	


We define the lower Collatz–Wielandt bound of B as

cw(B) = sup
{[B(x)]x ; x ∈ Ẋ+

} = sup
{
λ ≥ 0; ∃x ∈ Ẋ+ : B(x) ≥ λx

}
. (5.5)

Notice that cw(B) is defined if X is just an ordered vector space. If it is a normed ordered
vector space, the lower Collatz–Wielandt bound relates to the orbital spectral radius (see
[44,45]) as

cw(B) ≤ ro(B). (5.6)

Proposition 5.5 If cw(B) > 0, then for every μ < cw(B) there exists some x∗
μ ∈ X∗+ with

‖x∗
μ‖ = 1 and

‖x∗
μ ◦ Rλ‖+ ≥ 1

λ − μ
, λ > ro(B).

Proof For any μ < cw(B), there exists some xμ ∈ Ẋ+ such that B(xμ) ≥ μxμ. Let
ψ(x) = d(x,−X+), x ∈ X , be the monotone companion half-norm on X [44,45]. By the
Hahn-Banach theorem, there exists some x∗

μ ∈ X∗ such that x∗
μxμ = ψ(xμ) and−ψ(−x) ≤

x∗
μx ≤ ψ(x) for all x ∈ X+ [46, IV.6]. Since ψ(−X+) = {0}, x∗

μ ∈ X∗+. Let �x� =
max{ψ(x), ψ(−x)} be the monotone companion norm on X [44,45]. Then �x∗

μ� = 1. Since
positive bounded linear functionals have the same operator norm with respect to the original
norm and the monotone companion norm, ‖x∗

μ‖ = 1.
For each λ > ro(B), by Lemma 5.1, since Rλ is homogeneous and order-preserving,

λRλ(xμ) = Rλ(B(xμ)) + x ≥ Rλ(μxμ) + x = μRλ(xμ) + xμ.

So Rλ(xμ) ≥ 1
λ−μ

xμ. We apply the positive linear function x∗
μ,

x∗
μRλ(xμ) ≥ 1

λ − μ
ψ(xμ).

This implies that �x∗
μRλ�+ ≥ 1

λ−μ
. Since �x∗

μRλ�+ = ‖x∗
μRλ‖+ [44,45], this implies the

statement. 	


6 Eigenfunctionals

The celebrated Krein–Rutman theorem does not only state the existence of a positive eigen-
vector but also of a positive eigenfunctional of a positive linear map on an ordered Banach
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space provided that the map is compact and the cone is total or that the cone is normal and
solid [27] (see also [39, App. 2.4,2.6]).

We explore what still can be done if the additivity of the operator is dropped. Some
ideas from the linear case are adopted [6], [9, IV.Prop. 1.10]. Recall the left resolvents Rλ,
λ > r+(B) > 0, in Sect. 5. As before, let X be an ordered normed vector space with cone
X+. Throughout this section, we assume that X+ is complete.

Proposition 6.1 Let B : X+ → X+ be homogeneous, order preserving, and uniformly
order-bounded. Assume that r = ro(B) > 0 and that there exist a sequence (λn) in (r,∞)

with λn → r as n → ∞ and a sequence pn : X+ → R+ of homogenous, convex, order-
preserving functionals with

‖pn‖+ ≤ 1, n ∈ N, ‖pn ◦ Rλn‖+ → ∞, n → ∞.

Then there exists a homogeneous, order-preserving, bounded nonzero eigenfunctional θ :
X+ → R+ such that θ ◦ B = rθ .

If B is subadditive, so is θ . If the pn are additive and B is additive, so is θ . If the pn are
additive and B is superadditive, θ is superadditive.

Our proof will not provide continuity of θ .

Proof Let (λn) and (pn) be as above. Define ψn : X+ → R+ by

ψn(x) = pn(Rλn (x)), n ∈ N, x ∈ X+.

The functionals ψn are homogeneous, order preserving, and bounded, ‖ψn‖+ → ∞ as
n → ∞. By (5.2),

pn(Rλn (λnx)) = pn
(
Rλn (B(x)) + x

)
.

Since the pn are order-preserving, subadditive, and homogeneous,

ψn(B(x))) ≤ ψn(λnx) = λnψn(x) ≤ ψn((B(x)) + pn(x).

We set θn = ψn/‖ψn‖+. The θn are homogeneous and order-preserving, ‖θn‖+ = 1 and

0 ≤ λnθn(x) − θn(B(x)) ≤ pn(x)

‖ψn‖+
→ 0, n → ∞, x ∈ X+. (6.1)

By Tychonoff’s compactness theorem for topological products, there exists some

θ ∈
⋂

m∈N
Bm, Bm = {θn; n ≥ m},

where the closure is taken in the topology of pointwise convergence on {x ∈ X+; ‖x‖ ≤ 1}.
Notice that all θn are order-preserving, bounded and homogeneous. θ inherits these properties.
For instance, let x1, x2 ∈ X+ and x1 ≤ x2. Then there exist a strictly increasing sequence (n j )

of natural numbers such that θn j (xi ) → θ(xi ) as j → ∞, i = 1, 2. Since θn j (x1) ≤ θn j (x2)
for all j ∈ N, also θ(x1) ≤ θ(x2).

Similarly, for x ∈ X+, there exists a strictly increasing sequence (n j ) of natural number
such that θn j (x) → θ(x) and θn j (B(x)) → θ(B(x)) as j → ∞. By (6.1), θ(B(x)) = rθ(x).

The inheritance of various properties by θ from B and the functionals pn follows similarly.
We need to rule out that θ is the zero functional. Since B is uniformly order-bounded,

there is some u ∈ X+, ‖u‖ = 1, such that B is uniformly u-bounded: There exist some c ≥ 0
such that B(x) ≤ c‖x‖u for all x ∈ X+.
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Let x ∈ X+, ‖x‖ ≤ 1. Since each θn is order-preserving, by (6.1),

λnθn(x) ≤ θn(B(x)) + pn(x)

‖ψn‖+
≤ θn(c‖x‖u) + pn(x)

‖ψn‖+
≤ cθn(u) + ‖pn‖+

‖ψn‖+
.

Since this holds for all x ∈ X+, ‖x‖ ≤ 1, and since ‖pn‖+ ≤ 1,

λn = λn‖θn‖+ ≤ cθn(u) + 1

‖ψn‖+
.

Since θn j (u) → θ(u) for some strictly increasing sequence (n j ) in N and ‖ψn j ‖+ → ∞
and λn j → r, we have 0 < r ≤ cθ(u). 	

Definition 6.2 Let u ∈ X+ and B : X+ → X+. Then B is called pointwise u-positive if for
any x ∈ Ẋ+ there exists some n ∈ N such that Bn(x) is u-positive.

Recall Definition 2.7.

Remark 6.3 Let u ∈ Ẋ+ and θ : X+ → R+ be a homogeneous, order-preserving nonzero
eigenfunctional of B, θ ◦ B = rθ with some r > 0.

If B is pointwise u-bounded, then θ(u) > 0. If B is pointwise u-bounded and pointwise
u-positive, θ(x) > 0 for all x ∈ Ẋ+.

Proof Suppose θ(u) = 0. Let x ∈ X+. Then there exists some n ∈ N and c > 0 such that
Bn(x) ≤ cu. Since θ is order-preserving and homogeneous,

0 = cθ(u) = θ(cu) ≥ θ(Bn(x)) = rnθ(x).

So θ is the zero functional.
By contraposition, since θ is a nonzero functional, θ(u) > 0.
Assume that B is pointwise u-positive and x ∈ Ẋ+. Then there exist some n ∈ N and

ε > 0 such that Bn(x) ≥ εu. Since θ is order-preserving and homogeneous,

0 < εθ(u) = θ(εu) ≤ θ(Bnx) = rnθ(x).

Since r > 0, θ(x) > 0. 	

6.1 Eigenfunctionals for Maps with CW and Lower KR Property

A homogeneous order-preserving map B : X+ → X+ on the cone X+ of an ordered normed
vectors space is said to have the CW (Collatz-Wielandt) property if 0 < ro(B) < ∞ implies
cw(B) = ro(B), i.e., by (5.5) and (5.6), if for any μ < ro(B) there exists some x ∈ Ẋ+ with
B(x) ≥ μx .

Theorem 6.4 Let B : X+ → X+ be homogeneous, order preserving, and uniformly order
bounded. Assume that r = ro(B) > 0 and B has the CW property.

Then there exists a homogeneous, order preserving, bounded eigenfunctional θ : X+ → R

such that θ ◦B = rθ and θ(u) > 0 for any uniform order bound of B. θ inherits the following
properties from B: additive, subadditive, and superadditive.

Proof Choose sequences (λn) and (μn) with μn < r < λn and λn, μn → r as n → ∞. By
Proposition 5.5, we have a sequence (x∗

n ) in X∗+ with ‖x∗
n‖ = 1 and ‖x∗

n ◦ Rλn‖+ → ∞ as
n → ∞. Apply Proposition 6.1. 	


If X+ is a sup-semilattice, the following condition implies the CW property.
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Lemma 6.5 Let X+ be a sup-semilattice. Then a homogeneous order-preserving map B :
X+ → X+ has the CW property if for any μ ∈ (0, ro(B)) there exists some n ∈ N and some
v ∈ Ẋ+ such that Bn(v) ≥ μnv.

Proof Let μ ∈ (0, ro(B)), n ∈ N and v ∈ Ẋ+ such that Bn(v) ≥ μnv. Following
[1], we define w = supn−1

j=0 μ− j B jv. For j = 0, . . . , n − 1, B(w) ≥ B(μ− j B j (v)) =
μ− j B j+1(v) = μμ−( j+1)B j+1(v). Since Bn(v) ≥ μnv, B(w) ≥ μ−n+1Bn(v) ≥ μv. Thus
B(w) ≥ μμ− j B j (v) for j = 0, . . . , n−1, and so B(w) ≥ μw. This implies that cw(B) ≥ μ

for any μ ∈ (0, ro(B)). 	

A homogeneous bounded order-preserving map B : X+ → X+ is said to have the KR

property (Krein–Rutman property) if r := r+(B) > 0 implies that there exists some v ∈ Ẋ+
such that Bv = rv. B is said to have the lower KR property if r := r+(B) > 0 implies that
there exists some v ∈ Ẋ+ such that Bv ≥ rv. Obviously, the lower KR property implies the
CW property. An example, where B has the CW property but not the lower KR property, is
given in Example 6.17.

Remark 6.6 (a) B has the KR property if B = K+Awhere K : X+ → X+ is homogeneous,
compact, continuous and order-preserving and A : X → X is linear, positive and bounded
and

(i) ‖A‖ < r+(B) [32], or (ii) r(A) < r+(B) and X+ is normal [33].

(b) B has the lower KR property if

(i) some power of B has the KR property and X+ is a sup-semilattice [1],
or

(ii) X+ is an inf-semilattice, B is continuous, and there is some u ∈ Ẋ+ such that B is
uniformly u-bounded and B(u) is a regular point of X+.

More general classes of maps with lower KR property can be found in [44,45].
The following result is well-known for vectors rather than functionals if B is linear [24,

Thm.9.3], [37, Thm. 2.2].

Lemma 6.7 Let B : X+ → X+. Let r > 0, p ∈ N, and φ : X+ → R with φ ◦ B p = rpφ.
Set

θ =
p−1∑

k=0

r−kφ ◦ Bk .

Then θ ◦ B = rθ and θ(x) ≥ φ(x) for all x ∈ X+.

Corollary 6.8 Let B : X+ → X+ be homogeneous, bounded, pointwise order bounded and
order-preserving. Assume that r = r+(B) > 0 and that some power of B has the lower KR
property. Then there exists a homogeneous, order-preserving, bounded nonzero functional
θ : X+ → R such that θ ◦ B = rθ . θ inherits the following properties from B: additive,
subadditive, and superadditive.

Proof There exists some m, � ∈ N such that Bm has the lower KR property and K � is uni-
formly order-bounded. Recall our overall assumption that X+ is complete and Theorem 2.12.
Set p = m�. Then B pv ≥ rpv for some v ∈ Ẋ+, and B p is uniformly order-bounded. By
Theorem 6.4, there exists some homogeneous, order preserving, bounded nonzero functional
φ : X+ → R such that φ(B p(x)) = rpφ(x) for all x ∈ X+. Apply the previous lemma and
notice that θ inherits the desired properties from φ and B. 	
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If B has the lower KR property, order boundedness can be replaced by a growth condition
for the (left) resolvent [37,40]. The following result extends [37, Thm. 2.1] to nonadditive
maps.

Theorem 6.9 Let B : X+ → X+ be homogeneous, bounded, and order-preserving. Assume
that r = r+(B) > 0 and that B has the lower KR property and satisfies the following
resolvent growth condition:

For any x∗ ∈ X∗+ and x ∈ X+, there exists some ε > 0 such that

{(λ − r)‖x∗Rλ(x)‖; r < λ < r + ε} is bounded .
Then there exists a homogeneous, order-preserving, boundednonzero functional θ : X+ → R

such that θ ◦ B = rθ . θ inherits the following properties from B: additive, subadditive, and
superadditive.

Proof Since B has the lowerKRproperty, there exists some v ∈ Ẋ+ such that B(v) ≥ rv. The
same proof as for Proposition 5.5 provides an x∗ ∈ X∗+ with x∗Rλ(v) ≥ 1

λ−rd(v,−X+) >

0 for λ > r . By the resolvent growth condition and the uniform boundedness principle
(Theorem 4.1), there exists some c > 0 such that ‖x∗ ◦ Rλ‖+ ≤ c

λ−r for λ ∈ (r, r + ε).
Choose a sequence (λn) in (r, r+ ε) such that λn → r. Now, in the proof of Proposition 6.1,
set ψn = x∗ ◦ Rλn and θn = ψn/‖ψn‖+. The arguments now proceed as in this proof, except
for showing toward the end that θ is not the zero functional. From our estimates above,

θn(v) = x∗ ◦ Rλn (v)

‖x∗ ◦ Rλn‖+
≥ d(v,−X+)

c
> 0.

This estimate is inherited by θ . 	

Similarly as in [37], one notices that the resolvent growth condition is satisfied if, for any

x∗ ∈ X∗+ and x ∈ X+, there is some c > 0 such that ‖x∗Bn(x)‖+ ≤ crn‖x‖ for all n ∈ N.

6.2 Eigenfunctionals for Homogeneous Concave Maps

If B is homogeneous and superadditive and thus concave, we do not need to assume that B
or some power of B has the lower Collatz–Wielandt property.

Theorem 6.10 Let X+ be a normal complete cone X+. Let B be homogeneous, super-
additive, continuous, and pointwise order bounded. Assume that r = r+(B) > 0. Then
there exists a homogeneous, superadditive, bounded eigenfunctional θ : X+ → R such that
θ(B(x)) = rθ(x) for all x ∈ X+. If B is additive, θ is additive.

The normality of the cone cannot be dropped in general even if B is a bounded linear
positive map on X and X+ is solid [7, Sect. 2(iv)].

Proof By Theorem 2.12, we can assume that some power of B is uniformly order bounded.
By Lemma 6.7, we can assume that B itself is uniformly order bounded. By Corollary 5.4,
there exists some x∗ ∈ X∗+ and some x ∈ X+ such that x∗(Rλ(x)) → ∞ as λ → r+. Apply
Proposition 6.1. 	


The next result generalizes [6, Thm. 2] for an ordered vector space without an a priori
norm.
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Theorem 6.11 Let X be an ordered vector space with cone X+ and B : X+ → X+ be
homogeneous and superadditive.

Let X have an order unit u ∈ Ẋ+, i.e., X = Xu. Further let B and u satisfy the following
property:

� For each ε > 0 there exists some δ > 0 such B(x + δu) ≤ B(x) + εu for all x ∈ X+
with x ≤ u.

Define ηu = infn∈N ‖Bn‖1/nu where ‖B‖u := ‖B(u)‖u. Then ηu = limn→∞ ‖Bn‖1/nu

and, if ηu > 0, there exists a concave homogeneous θ : X+ → R+ with θ(u) > 0 and
θ ◦ B = ηuθ . If B is additive, θ is additive.

Here ‖ · ‖u is the seminorm introduced in (2.11). Notice that if X = Xu = Xv for
u, v ∈ Ẋ+, then ηu = ηv .

Proof Let

J = {x ∈ X; ∀ξ > 0 : −ξu ≤ x ≤ ξu} = {x ∈ X : ‖x‖u = 0}. (6.2)

We first assume that J = {0}; equivalently, ‖ · ‖u is a norm on X = Xu . One readily sees
that B is uniformly u-bounded and bounded and the cone operator norm of B is given by
‖B(u)‖u =: ‖B‖u . So ηu is the cone spectral radius of B with respect to the norm ‖ · ‖u .

We claim that B is uniformly continuous on every bounded set. Since B is homogeneous,
it is sufficient to show that B is continuous on the set {x ∈ X+; x ≤ u}. Let ε > 0. Choose
δ > 0 according to � and x, y ∈ X+, x, y ≤ u, ‖x − y‖u ≤ δ. Then −δu ≤ x − y ≤ δu and
x ≤ y+δu. Since B is order-preserving, B(x) ≤ B(y+δu) ≤ B(y)+εu. Since y ≤ x+δu,
B(y) ≤ B(x) + εu by the same argument. So ‖B(x) − B(y)‖u ≤ ε.

Now let X̃ be the completion of X under ‖·‖u and X̃+ the closure of X+ in X̃ . We identify
X and X+ with their isometric embeddings in X̃ . By the proof of [6, L.7], X̃+ is a normal
solid cone and u is an order-unit of X̃ . Since B is uniformly continuous on bounded sets, it
preserves Cauchy sequences in X+. So B can be extended to a map on X̃+,

B̃(x̃) = lim
n→∞ B(xn), x̃ ∈ X̃+,

for any sequence (xn) in X+ with xn → x̃ . We write x̃ ≤ ỹ if ỹ − x̃ ∈ X̃+. B̃ inherits � and
is uniformly continuous on bounded subsets of X̃+. B̃ is concave and homogeneous, and ηu
is the cone spectral radius of B̃.

By Theorem 6.10, there exists a concave and homogeneous functional θ̃ : X̃+ → R+
such that θ̃ ◦ B̃ = ηu θ̃ . Restricting θ̃ to X+ provides the desired functional θ .

We now drop the assumption that J = {0}. Recall (6.2). As pointed out in the proof of [6,
Thm. 1], J is an ideal in X , u /∈ J , and the factor space X/J = {x + J ; x ∈ X} is an ordered
vector space with cone X+ + J and unit u+ J . Further ‖x + J‖u+J = ‖x‖u provides a norm
on X/J . Differently from [6], B does not leave J invariant, but we have from � that

x, y ∈ X+, x − y ∈ J �⇒ B(x) − B(y) ∈ J.

The arguments are very similar to those that provided the continuity of B before.
We can now define B0(x + J ) = B(x) + J , x ∈ X+.
By our previous considerations, there exists a concave homogeneous functional θ0 : X++

J → R+ such that θ0 ◦ B0 = ηuθ0 where

ηu = inf
n∈N ‖Bn

0 (u + J )‖1/nu+J = inf
n∈N ‖Bn(u) + J‖1/nu+J = inf

n∈N ‖Bn(u)‖1/nu .
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We define θ(x) = θ0(x + J ) for x ∈ X+. One easily checks that φ is homogeneous and
concave and the same proof as in [6] shows that θ ◦ B = ηuθ . 	


Recall Xu , the set of u-bounded elements in X (Definition 2.7). The point u ∈ Ẋ+ is an
order unit if X = Xu . If u is not an order unit but B(u) is u-bounded, we introduce

XB
u = {

x ∈ X+; ∃n ∈ Z+ : Bn(x) ∈ Xu
}
. (6.3)

We note that XB
u is a cone which is mapped into itself by B and that XB

u = X if and only if
B is pointwise u-bounded (Definition 2.10).

Corollary 6.12 Let X be an ordered vector space with cone X+ and u ∈ Ẋ+. Assume that
B : X+ → X+ is homogeneous and superadditive and satisfies � in Theorem 6.11.

Let ηu = infn∈N ‖Bn‖1/nu where ‖B‖u := ‖B(u)‖u.
The following hold:

(a) ηu = limn→∞ ‖Bn‖1/nu .
(b) If u, v ∈ Ẋ+ and X B

u = XB
v , then ηv > 0 implies ηu > 0 and ηu = ηv .

(c) If ηu > 0, there exists a concave homogeneous θ : XB
u → R+ with θ(u) > 0 and

θ ◦ B = ηuθ on X B
u .

(d) If B is additive, θ is additive.

Proof It follows from � with x = 0 and the homogeneity of B that B(u) is u-bounded and
B maps X+ ∩ Xu into X+ ∩ Xu . By construction, u is an order unit of Xu . Part (a) follows
from Theorem 6.11.

For Part (b), assume XB
u = XB

v for u, v ∈ Ẋ+ and ηv > 0. There exist k,m ∈ Z+ such
that Bk(v) ∈ Xu and Bm(u) ∈ Xv . So Bk(v) ≤ cu for some c > 0. For all n ∈ N, since B is
order-preserving and homogeneous,

Bn+k(v) ≤ cBn(u) ≤ c‖Bn‖uu.

By the same token, for some c̃ > 0,

Bn+k+m(v) ≤ c‖Bn‖u Bm(u) ≤ cc̃‖Bn‖uv, n ∈ N.

Hence ‖Bn+k+m‖v ≤ cc̃‖Bn‖u for all n ∈ N and
(‖Bn+k+m‖1/(n+k+m)

v

)(n+m+k)/n ≤ cc̃‖Bn‖1/nu , n ∈ N.

We take the limit as n → ∞ and obtain ηv ≤ ηu . Equality follows by symmetry.
(c) We apply Theorem 6.12 to Xu and the restriction of B to X+ ∩ Xu . This provides

an concave homogenous θ̃ : X+ ∩ Xu → R+ with θ̃ ◦ B = ηuθ . We extend θ̃ to XB
u as

follows: If Bn(x) ∈ X+ for some n ∈ Z+ we set θ(x) = η−n
u θ̃ (Bn(x)). This definition does

not depend on n ∈ N and has the desired properties. 	

Remark 6.13 If X is an ordered normed vector space, u ∈ Ẋ+, B : X+ → X+ is homoge-
neous, bounded, superadditive, and satisfies �, the question arises how ηu(B) is related to
γu(B) and r+(B). If some power of B is uniformly u-bounded, ηu(B) ≤ γu(B) and, if u is
a normal point of X+ in addition, r+(B) ≤ ηu(B) and all three numbers are equal among
themselves and to ro(B) [44,45]. If u is not a normal point of X+, ηu(B) < γu(B) = r+(B)

may occur even if B is a positive bounded linear map on an ordered Banach space X and X+
is a solid cone [7, Sect. 2(iv)].
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Example 6.14 Let X = R
N with cone RN+ and B the right-shift operator B : (x1, x2, . . .) �→

(0, x1, x2, . . .). Then cw(B) = 0. Forα > 0, let X(α) be the normedvector space of sequences
in R

N that are u-bounded for u = (αn). Then B maps X(α) into itself and ηu = 1/α. By [26]
(or Corollary 6.12), there exists a linear positive eigenfunctional of B on X(α) associated
with 1/α.

If α = 1, u is the constant sequence with all terms being 1 and Xu can be identified with
�∞ with the supremum norm and ηu = 1. There is an explicit superadditive eigenfunctional
of B on �∞, namely, the limit inferior of the sequences. If we restrict B to c, the closed linear
subspace of convergent sequences, the limits of sequences form an explicit linear positive
eigenfunctional. However, no linear positive eigenfunctional that is associated with 1, the
spectral radius of B, exists on c0, the closed linear subspace of sequences that converge to 0.
The same is the case for �p ⊆ c0 with p > 1 with the p-norm which shows that regularity
of the cone is not suffucient for the existence of an additive eigenfunctional. On �1, with
the sum-norm, (xn) �→ ∑∞

n=1 xn is a bounded linear positive eigenfunctional of the right-
shift operator associated with one. Notice that the existence of this eigenfunctional does not
follow from any of our results or the Krein–Rutman theorem and holds without uniform
order-boundedness of the map.

6.3 Continuity of Homogeneous Order-Preserving Eigenfunctionals

Our existence proofs do not provide that the eigenfunctional θ is continuous and Example
6.17 will show that this cannot be expected in general even if B is additive. So some extra
conditions will be needed for continuity.

Proposition 6.15 Let θ : X+ → R+ be homogeneous and order-preserving and u ∈ Ẋ+.
Then θ : X+ ∩ Xu → R+ is continuous with respect to the u-norm at every u-comparable
point v ∈ X+. In fact,

|θ(x) − θ(v)| ≤ ‖x − v‖u‖u‖vθ(v), x ∈ X+ ∩ Xu .

Proof Let x ∈ X+ ∩ Xu . Set ε = ‖x − v‖u . Then
−εu ≤ x − v ≤ εu and v − εu ≤ x ≤ v + εu.

So

(1 − ε‖u‖v)v ≤ x ≤ (1 + ε‖u‖v)v.

Since θ is homogeneous and order-preserving,

θ(x) ≤ (1 + ε‖u‖v)θ(v).

If (1 − ε‖u‖v) ≥ 0, then

θ(x) ≥ (1 − ε‖u‖v)θ(v)

by the same token. If (1 − ε‖u‖v) ≤ 0, the previous inequality is true anyway. So

−ε‖u‖vθ(v) ≤ θ(x) − θ(v) ≤ ε‖u‖vθ(v)

and the assertion follows. 	

Theorem 6.16 Let B : X+ → X+ be homogeneous, continuous and order-preserving and
θ : X+ → R+ be homogeneous, bounded, and order-preserving. Moreover let r ∈ (0,∞)

and θ(B(x)) = rθ(x) for all x ∈ X+.
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Let u ∈ Ẋ+ and B be pointwise u-positive. Further assume that there exists some k ∈ N

such that Bk maps X+ with the original norm continuously into X+ ∩ Xu with the u-norm.
Then θ is continuous on X+ with respect to the original norm.

Proof Since B is continuous, for all p ≥ k, B p maps X+ with the original norm continuously
into X+ ∩ Xu with the u-norm. Let w ∈ Ẋ+. Since B is pointwise u-positive, there exists
m ∈ N and ε > 0 such that Bm(w) ≥ εu. Further there exists some q ∈ N and δ > 0 such
that Bq(u) ≥ δu. Then B jq+m(w) ≥ εδ j u for all j ∈ N.

By choosing n ∈ N large enough, we can assume that Bn(w) is u-comparable and Bn

maps X+ with the original norm continuously into X+∩Xu with the u-norm. Set v = Bn(w).
By Proposition 6.15,

rn |θ(x) − θ(w)| = |θ(Bn(x) − θ(Bn(w)| ≤ ‖Bn(x) − Bn(w)‖u‖u‖vθ(v).

So θ is continuous at w ∈ Ẋ+. Since θ is homogeneous and bounded, θ is continuous at 0. 	

Even if B is additive and X+ is complete and normal, there may exist an additive eigen-

functional associated with the cone spectral radius that is not continuous. The following
example [7] has served for other counterexamples as well [31].

Example 6.17 Let X = C0(0, 1]be theBanach space of continuous functions f : [0, 1] → R

with f (0) = 0 endowedwith the supremum norm. Let X+ be the cone of nonnegative convex
functions in X . X+ is complete and normal but neither solid nor regular. As shown in [7, Sect.
2], X+ is also total, but not generating. Let u ∈ X+ be given by u(t) = t for all t ∈ [0, 1].
For any f ∈ X+, f (t)/t is an increasing function of t , and so f ≤ f (1)u, and u is an order
unit of X+. As in [7, Sect. 4], we consider the continuous linear positive map B on X given
by

B( f )(t) = f (t/2), 0 ≤ t ≤ 1, f ∈ X.

It is shown in [7, Sect. 4], that B is compact on X+ but not on X+ − X+, that r+(B) = 1/2
and B(u) = (1/2)u. Recall that for f ∈ X+, f (t)/t is an increasing function of t ∈ (0, 1].
So each f ∈ X+ is differentiable at 0 and

θ( f ) := [ f ]u = lim
t→0+ f (t)/t = f ′(0) ≤ f (1), f ∈ X+.

The functional θ is homogeneous, bounded, and additive, and an eigenfunctional of the
restriction of B to X+ satisfying θ(Bx) = (1/2)θ(x) for all x ∈ X+. The eigenfunctional θ
is not continuous at u because θ(u) = 1 while θ( fα) = 0 with fα(t) = tα , α > 1.

To see that there is no eigenfunctional θ on X+ that is continuous at u, we consider
gα ∈ X+, α ∈ [0, 1], given by

gα(t) =
{
0, 0 ≤ t ≤ α,

t − α, α < t ≤ 1.

If α ∈ (0, 1], Bn(gα) = 0 for sufficiently large n ∈ N. So any eigenfunctional of B associated
with a positive eigenvalue satisfies θ(gα) = 0 if α > 0. If θ were continuous at u, then also
θ(u) = 0 because ‖gα − u‖∞ → 0 as α → 0. But this would imply that θ = 0 because B
is uniformly u-bounded.

Notice that θ = [·]u is continuous with respect to the u-norm ‖ · ‖u by Lemma 2.9 (an
information not provided by our existence theorems).

We could also have considered the cone of f ∈ X such that f (t)/t is an increasing
function of t ∈ (0, 1]. It is no longer clear whether B is compact on that cone.
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The functional [·]u is also defined for the cone of nonnegative functions in X , C0+(0, 1],
but it is only a lower eigenfunctional associated with 1/2 of the restriction of B to C0+(0, 1]
as one can check directly and as it follows from Remark 3.4 and Bu = (1/2)u. If fα(t) = tα

with 0 < α < 1, then B fα = (1/2)α fα .
This shows that the cone spectral radius of B with respect to C0+(0, 1] is one. It also

shows that B has the CW property. B has not the lower KR property. Indeed, if B( f ) ≥ f ∈
C0+(0, 1], then f (t) ≤ sup f ([0, 2−n]) for all n ∈ N and t ∈ [0, 1]. Since f is continuous
at 0 = f (0), f ≡ 0.

Although B is additive and has the CW property, there is no additive homogeneous eigen-
functional on C0+(0, 1] because this cone is generating and any such eigenfunctional could
be extended to a linear positive eigenfunctional on theBanach space X that would be automat-
ically continuous. Since the continuous functions with compact support in (0, 1] are dense in
X and Bn f = 0 for any such function if n is large enough, the eigenfunctional would be zero.
This shows that, in general, uniform order boundedness cannot be omitted as a condition in
Theorem 6.4 or 6.10.

On C[0, 1], there is a positive linear eigenfunctional of B associated with 1, namely
f �→ f (0).

7 Spatially Distributed Two-Sex Populations

The population we consider has spatially distributed individuals of both sexes which form
pairs in order to reproduce. Most two-sex population models are formulated in continuous
time [14–18] but some discrete time models are also considered [3,19–21,34]. Here we
consider the case that the mating occurs once a year and that the mating season is short which
makes a discrete-time model more appropriate. We also assume that individuals do not live
to see two mating seasons. Between mating seasons, both male and females move in space.

The spatial habitat of the population is represented by a nonempty set �. If f : � → R+,
the value f (ξ), ξ ∈ �, represents the number of newborns at ξ ∈ �.

We will first consider the state space X+ = L1+(�) where � is a Borel subset of Rm .
L1+(�) is a complete regular (and thus normal) cone and a lattice, andwewill apply Corollary
6.8 in conjunction with Remark 6.6.

We will also consider the state spaces X+ = BM+(�) and X+ = BC+(�) of bounded
measurable (continuous) functions on a topological Hausdorff space �. These are normal
solid complete cones and we will apply Theorem 6.10 for the existence of an eigenfunctional
and Theorem 6.16 for its continuity.

In this context, B : X+ → X+ maps the spatial distribution of this year’s offspring to
the spatial distribution of next year’s offspring. B will be the composition of a homogeneous
(sometimes concave) mating and reproduction map and linear migration maps for female and
male individuals. In this model, there is no density-dependence of per capita mortality rates
or per pair reproduction rates. The map B is a lower homogeneous first order approximation
at the origin in the sense of Theorem 3.3 (c) of a map in an analogous fully density-dependent
model [22].

7.1 The Mating and Reproduction Map

The mating and reproduction map, G : R�+ × R
�+ → R

�+, is defined by

G( f, g)(ξ) = φ(ξ, f (ξ), g(ξ)), f, g ∈ R
�+, ξ ∈ �. (7.1)
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Here R�+ is the set of functions on � with values in R+, and φ : � × R
2+ → R+ is the local

mating and reproduction function. If there are x1 females and x2 males at location ξ in �,
φ(ξ, x) with x = (x1, x2) is the amount of offspring produced at ξ . We equip R

2+ with the
standard order and make the following assumptions which hold throughout the rest of this
paper:

Assumption 7.1 The mating and reproduction function φ has the following properties:

(a) φ(ξ, ·) is order preserving on R
2+ for each ξ ∈ �.

(b) φ(ξ, ·) is homogeneous for each ξ ∈ �,

φ(ξ, αx) = αφ(ξ, x), α ≥ 0, ξ ∈ �, x ∈ R
2+.

(c) φ(ξ, ·) is continuous for each ξ ∈ �.
(d) The function ψ : � → R+ defined by ψ(ξ) = φ(ξ, 1, 1) is bounded.

One example is given by the harmonic mean

φ(ξ, x) = β(ξ)
x1x2

x1 + x2
, x = (x1, x2) ∈ R+ \ {(0, 0)}.

Here β : � → R+ is Borel measurable, and β(ξ) is the per pair birth rate at ξ . Another
example is

φ(ξ, x) = min
{
β1(ξ)x1, β2(ξ)x2

}

with two Borel measurable functions β1, β2 : � → R+. More examples can be found in
[14,15,18] and in Sect. 8 where we will show that φ(ξ, ·) is concave on R

2+ for the standard
mating and reproduction functions.

Notice that G : R
�+ × R

�+ → R
�+ is homogeneous and order-preserving. Here R

�+ is
equipped with the pointwise order f ≤ g if f (ξ) ≤ g(ξ) for all ξ ∈ �. G has only weak
positivity and order-preserving properties: If can happen that f, g are not identically zero but
G( f, g) is zero if the supports of f and g have empty intersections. G is the Nemytskii or
substitution operator associated with φ.

For x = (x1, x2) ∈ R
2+,

φ(ξ, x1, x2) ≤ φ(ξ, x1 + x2, x1 + x2) = ψ(ξ)(x1 + x2), ψ(ξ) := φ(ξ, 1, 1). (7.2)

So
G( f, g) ≤ ( f + g)ψ, f, g ∈ R

�+, ψ(ξ) = φ(ξ, 1, 1). (7.3)

7.2 The Migration and Next Year Offspring Maps: State Space L1+(�)

In order to take account of the movements of individuals over the year, we consider integral
operators K j , j = 1, 2,

(K j f )(ξ) =
∫

�

k j (ξ, η) f (η)dη, f ∈ M+(�), ξ ∈ �, j = 1, 2, (7.4)

and assume that � is a Borel measurable subset of Rm . Here k j (ξ, η) ≥ 0 gives the rate at
which individuals that are born at η are female ( j = 1) or male ( j = 2) and will be at ξ

in the year after. M+(�) denotes the set of Borel measurable functions on � with values in
[0,∞].

The maps K j are well defined if k j : �2 → R+ are Borel measurable.
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7.3 The Next Year Offspring Map

Our first state space of choice is X+ = L1+(�), the cone of X = L1(�). Tomake K j bounded
linear maps on X = L1(�) we assume that the k j are Borel measurable from R

2+ to R+. We
also make the following assumptions.

Assumption 7.2 Assume that φ(·, x) is Borel measurable on � for each x ∈ R
2+.

Assume k j : �2 → R+ are Borel measurable and that there exists a function u ∈ L1(�)

such that

k1(ξ, η) + k2(ξ, η) ≤ u(ξ)

for a.a. (ξ, η) ∈ �2 with respect to the 2m-dimensional Lebesgue measure.

The next year offspring map is formally given by

B( f ) = G(K1 f, K2 f ), f ∈ L1+(�). (7.5)

By (7.2),
B( f ) ≤ (K1 f + K2 f )ψ, f ∈ L1+(�). (7.6)

We will establish that the K j map X into X ∩ Xu and B maps X+ into Xu ∩ X+ where Xu

is defined as in Definition 2.7.

Lemma 7.3 The K j map X = L1(�) into Xu and B maps X+ = L1+(�) into Xu ∩ X+.
Further {‖B f ‖u; f ∈ X+, ‖ f ‖1 ≤ 1} is bounded and B is uniformly u-bounded. Finally

B is continuous.

Proof For all g ∈ L∞+ (�), by our assumption and Tonelli’s theorem,
∫

�2
g(ξ)|k j (ξ, η) f (η)|dξdη =

∫

�2
g(ξ)k j (ξ, η)| f (η)|dξdη

≤
∫

�2
g(ξ)u(ξ)| f (η)|dξdη

=
∫

�

g(ξ)u(ξ)dξ ‖ f ‖1.

This shows that K j ( f ) is defined for a.a. ξ ∈ � and that K j ( f ) ≤ ‖ f ‖1u a.e. on �. So K j

maps X into Xu and ‖K j f ‖u ≤ ‖ f ‖1. We also see that if ‖ fn‖1 → 0, K j ( fn)(ξ) → 0 as
n → ∞ for a.a. ξ ∈ �.

Further, for a.a. ξ ∈ �, since φ(ξ, ·) is homogeneous,

φ
(
ξ, K1( f )(ξ), K2( f )(ξ)

) ≤ φ
(
ξ, ‖ f ‖1u(ξ), ‖ f ‖1u(ξ)

) = ψ(ξ)‖ f ‖1u(ξ),

with ψ(ξ) = φ(ξ, 1, 1, ) being a bounded function of ξ by assumption. Hence

B( f ) ≤ supψ(�)‖ f ‖1u.

	

To show that B is continuous let ( fn) be a sequence in L1+(�) and f ∈ L1+(�) such that

‖ fn − f ‖1 → 0. By our previous considerations, ‖K j ( fn) − K j ( f )‖u ≤ ‖ fn − f ‖1 → 0
as n → ∞ and K j ( fn) → K j ( f ) as n → ∞ a.e. on �. Since φ(ξ, ·) is continuous by
assumption,

φ
(
ξ, K1( fn)(ξ), K2( fn)(ξ)

) → φ
(
ξ, K1( f )(ξ), K2( f )(ξ)

)
for a.a. ξ ∈ �.
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Since φ(ξ, ·) is increasing,
φ
(
ξ, K1( fn)(ξ), K2( fn)(ξ)

) ≤ φ
(
ξ, ‖ fn‖1u(ξ), ‖ fn‖1u(ξ)

) ≤ ψ(ξ)‖ fn‖1u(ξ).

By the a.e. version of the dominated convergence theorem, ‖B( fn) − B( f )‖1 → 0.
Since X+ is regular and a lattice, we have the following result from Remark 6.6 (b)(ii)

and Theorem 6.8.

Theorem 7.4 Let the Assumptions 7.1 and 7.2 hold and r+(B) > 0.
Then there exists some f ∈ L1+(�), f �= 0, such that B( f ) ≥ r+(B) f . There also is some

homogeneous, order-preserving θ : L1+(�) → R+ such that θ ◦ B = r+(B)θ . If φ(ξ, ·) is
superadditive on R

2+ for all ξ ∈ �, θ is a superadditive functional.

7.4 The State Space of Bounded Measurable Functions

The continuity of eigenfunctionals can be more easily studied for cones with nonempty
interior. We assume that (�,�) is a measurable space with a set � and a σ -algebra � of
subsets of �. Let M(�) denote the finite (signed) measures on � and M+(�) the finite
(nonnegative) measures on �. Further let X =BM(�) denote the vector space of bounded
measurable functions with supremum norm ‖ f ‖ = supξ∈� | f (ξ)|. X+ =BM+(�), the cone
of nonnegative bounded measurable functions, is a solid normal cone.

The migration maps are based on measure-kernels.

Assumption 7.5 Let � j : � × � → R+, j = 1, 2, be measure kernels, i.e.,

(a) � j (·, S) ∈ BM(�) for all S ∈ � and
(b) � j (ξ, ·) ∈ M+(�) for all ξ ∈ �.

Then we have migration maps K j : BM(�) →BM(�) defined by

(K j f )(ξ) =
∫

�

� j (ξ, dη) f (η), ξ ∈ �, f ∈ BM(�), (7.7)

and the bounded linear maps K j map X+ =BM+(�) into itself.

Assumption 7.6 The mating and reproduction function φ has the following properties:

(a) φ(ξ, ·) is concave on R
2+ for each ξ ∈ �.

(b) {φ(ξ, ·); ξ ∈ �} is equicontinuous on R
2+.

(c) φ(·, x) is measurable on � for each x ∈ R
2+.

The property (b) means that for each x ∈ R
2+ and each ε > 0 there exist some δ > 0 such

that |φ(ξ, x) − φ(ξ, y)| < ε for all ξ ∈ � and all y ∈ R
2+ with ‖y − x‖ < δ.

This property together with the homogeneity of φ implies that φ is bounded on � × S for
any bounded subset S of R2+. It also implies that the substitution map G associated with φ

by (7.1) is continuous on BM(�)2.
We define B : BM+(�) → BM+(�) by

B( f ) = G(K1 f, K2 f ), f ∈ BM+(�). (7.8)

Assumption 7.6 implies that B is a concave, continuous map on BM+(�).
We have the following result from Theorem 6.10.

Theorem 7.7 Let the Assumptions 7.1, 7.5 and 7.6 hold. If r = r+(B) > 0, then there exists
a homogeneous, concave, bounded θ : BM+(�) → R+ such that θ ◦ B = r+θ .
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In order to find conditions for the eigenfunctional θ to be strictly positive, we make the
following assumptions.

Assumption 7.8 � is a connected topological Hausdorff space and themeasure kernels have
the following properties.

(a) For any ξ ∈ � there exists an open subset U with ξ ∈ U ⊆ � such that � j (η, V ) > 0
for all η ∈ U and all nonempty open subsets V of U .

(b) There exist subsets �1, . . . , �k of � such that �1 = �, �k is compact and

inf
x∈� j

� j (x,� j+1) > 0, j = 1, . . . , k − 1.

(c) The measure-kernels �i have the Feller property, i.e., the maps Ki map Y =BC(�) into
itself [42, p. 54].

Assumption (a) makes sure that females and males spread locally and (b) makes sure that
they finally get everywhere. Examples of measure kernels that have the Feller property but
to not satisfy the positivity assumption are certain Dirac kernels, i.e.,

(K j f )(ξ) = g j (ξ) f (ξ), f ∈ BM(�), ξ ∈ �,

with continuous functions g j : � → R+. Criteria for the Feller property can be found in
[28, App. A].

We also make the following positivity and continuity assumptions for the mating function
φ.

Assumption 7.9 The mating and reproduction function φ has the following additional prop-
erties.

(a) φ is continuous on � × R
2+.

(b) φ(ξ, 1, 1) > 0 for all ξ ∈ �.

Proposition 7.10 Let the assumptions of Theorem 7.7 be satisfied and let the Assumptions
7.8 and 7.9 also hold. Then B is pointwise u-positive on BC+(�) with u being the constant
function with value 1.

Proof For f ∈ BC+(�), f �≡ 0, we define

�n( f ) = {
x ∈ �; Bn( f )(x) > 0

}
, n ∈ Z+.

Since Bn( f ) is continuous, the sets �n( f ) form a sequence of open subsets of �. By
Assumption 7.8 (a), this sequence is increasing with respect to the subset relation. Then
�̃ = ⋃

n∈Z+ �n( f ) is an open subset of �. To show that �̃ is closed, let ξ be a limit point of

�̃. ByAssumption 7.8 (a), there exists an open setU with ξ ∈ U ⊆ � such that�i (η, V ) > 0
for all η ∈ U and all nonempty open subsets V ofU . Since x is a limit point of �̃,U ∩�̃ �= ∅
and U ∩ �n( f ) �= ∅ for some n ∈ Z+. Since �n( f ) = ⋃

m∈N{ζ ∈ �; Bn( f )(ζ ) > 1/m},
there exists a nonempty open set V in U such that Bn( f )(ζ ) > 1/m for all ζ ∈ V . So

Ki (B
n( f ))(η) ≥ (1/m)�i (η, V ) > 0, η ∈ U,

and Bn+1( f )(η) > 0 for all η ∈ U by Assumption 7.9 (b) and the homogeneity of φ(ξ, ·).
Since ξ ∈ U , ξ ∈ �̃.

So �̃ is also closed and thus equals � because � is connected. Let �1, . . . , �k like in
Assumption 7.8 (b). Since�k is compact,�k ⊆ �n( f ) for some n ∈ N and inf Bn( f )(�k) >

0. It follows successively that inf Bn+i ( f )(�k−i ) > 0, i = 1, . . . , k − 1. Hence Bn+k( f ) is
u-positive where u is the constant function with value 1. 	
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Since Y = Yu , B continuously maps Y+ into Yu . So we have the following result from
Theorem 6.16, Theorem 7.7, and Proposition 7.10.

Theorem 7.11 Let the assumptions of Theorem 7.7 be satisfied and let the Assumptions 7.8
and 7.9 also hold. If r = r+(B) > 0, B has a homogeneous, concave, bounded eigenfunc-
tional θ : BM+(�) → R+ with θ ◦ B = rθ which is continuous and strictly positive on
BC+(�).

8 The Usual Mating Functions are Concave

We will prove the following conjecture in the case that φ : R2+ → R is twice continuously
differentiable on (0,∞)2.

Conjecture Assume that φ : R
2+ → R is homogeneous and, for all y ∈ R+, φ(·, y) or

φ(y, ·) are concave on R+. Then φ is concave.

We first show that concave dependence on the single variables is necessary.

Proposition 8.1 Let φ : R2+ → R be concave, φ(0) = 0. Then, for all y ∈ R+, φ(·, y) and
φ(y, ·) are concave on R+ and φ(t z) is a concave function of t ≥ 0 for all z ∈ R

2.

Proof Let y ∈ R+ and ψ : R+ → R+ be defined by ψ(x) = φ(x, y). Then, for t ∈ (0, 1),

ψ((1 − t)x + t x̃) = φ((1 − t)(x, y) + t (x̃, y))

≥ (1 − t)φ(x, y) + tφ(x̃, y) = (1 − t)ψ(x) + tψ(x̃).

This implies that φ(·, y) is concave. The concavity of φ(y, ·) follows in the same way. For
z ∈ R

2+ and t, s ≥ 0, r ∈ (0, 1),

φ((1 − r)t z + rsz) ≥ (1 − r)φ(t z) + rφ(sz).

	

The assumption that φ is concave in the separate variables seems natural. If the number

of individuals of males is kept fixed, the number of matings should depend almost linearly
on the number of females as long as this number is small but reach a plateau as the number
of females becomes very large.

Proposition 8.1 shows that the homogeneity of φ cannot be dropped in general for our
conjecture to be true. The function φ(x, y) = xγ yθ is concave in x and in y if γ, θ ∈ (0, 1],
but φ(t, t) = tγ+θ is not concave if γ + θ > 1.

8.1 The Twice Differentiable Case

Weassume thatφ is twice continuously differentiable. Further, we assume that for all y ∈ R+,
φ(·, y) or φ(y, ·) are concave on R+ and φ is homogeneous.

We will show that φ is concave.
Fix z ∈ R

2+ and set ψ(t) = φ(t z) for t ∈ (0, 1). Then, if z = (x, y), since ψ(t) = tφ(z),

φ(z) = ψ ′(t) = ∂1φ(t x, t y)x + ∂2φ(t x, t y)y.

We set t = 1 and obtain

φ(x, y) = x∂xφ(x, y) + y∂yφ(x, y).
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We differentiate once more,

∂xφ(x, y) = ∂xφ(x, y) + x∂2xφ(x, y) + y∂x∂yφ(x, y)

and

∂yφ(x, y) = x∂y∂xφ(x, y) + ∂yφ(x, y) + y∂2yφ(x, y).

Let xy > 0. Then this simplifies to

∂x∂yφ(x, y) = − x

y
∂2xφ(x, y), ∂y∂xφ(x, y) = − y

x
∂2yφ(x, y). (8.1)

We actually need that φ is twice continuously differentiable; then ∂x∂yφ = ∂y∂xφ. By one-
dimensional calculus and our assumptions, ∂2xφ(x, y) ≤ 0 or ∂2yφ(x, y) ≤ 0. But then both
∂2xφ(x, y) ≤ 0 and ∂2yφ(x, y) ≤ 0 and ∂x∂yφ(x, y) ≥ 0.

For the determinant of the Hessian matrix of φ, (8.1) implies

det H = (∂2xφ)(∂2yφ) − (∂x∂yφ)(∂y∂xφ) = 0.

We check whether the Hessian matrix is negative semi-definite on (0,∞)2: Let r, s ≥ 0.
Then

r2∂2xφ(x, y) + rs(∂x∂yφ(x, y) + ∂y∂xφ(x, y)) + s2∂yφ(x, y)

= ∂x∂yφ(x, y)
[

− r2
y

x
+ rs

]
+ ∂y∂xφ(x, y)

[
− s2

x

y
+ rs

]
≤ 0.

Now let z = (x, y), z̃ = (x̃, ỹ) ∈ (0,∞)2. Set ψ(t) = φ((1 − t)z + t z̃). Then

ψ ′(t) = ∂1φ
(
(1 − t)z + t z̃

)
(x̃ − x) + ∂2φ

(
(1 − t)z + t z̃

)
(ỹ − y)

and

ψ ′′(t) = (∂21φ)(x̃ − x)2 + 2(∂1∂2φ)(x̃ − x)(ỹ − y) + (∂22φ)(ỹ − y)2.

Since H is negative semidefinite, ψ ′′ ≤ 0 and ψ is concave. This implies that

ψ(t) = ψ((1 − t)0 + t1) ≥ (1 − t)ψ(0) + tψ(1) = (1 − t)φ(z) + tφ(z̃)

and φ is concave on (0,∞)2. Concavity on R
2+ now follows by an approximation argument.

We remark that, for the relation between concavity and the Hessian matrix, one can refer
to Theorem 4 in [10, Sect. 2–4].

One important class of standard mating functions is

φ(s, t) = (psγ + qtγ )1/γ , s, t > 0, (8.2)

where γ < 0 and p, q > 0, p + q = 1 [14,15]. Set β = −γ . Then

φ(s, t) = st

(qtβ + psβ)1/β
. (8.3)

Notice that, for this form of φ, φ(s, t) = 0 if either s or t = 0, and

min{s, t} ≤ φ(s, t) ≤ max
{
p1/γ , q1/γ

}
min{s, t}, s, t ≥ 0. (8.4)

We conclude that φ(s, t) → 0 as (s, t) → 0 and set

φ(t, s) = 0, t, s ≥ 0, st = 0. (8.5)
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With this definition, φ becomes continuous onR2+. One readily checks that φ is homogeneous
and that φ is a concave function of the first variable.

Another class is
φ(s, t) = s ptq , s, t ≥ 0, (8.6)

with p, q > 0 and p + q = 1. Here it is even more obvious that φ is a concave function of
each separate variable. Actually, this φ is the limit of (8.2) as γ → 0 [14]. Since pointwise
limits of concave functions are concave, the concavity of this φ follows from the concavity
of the previous one. By the same token, the function

φ(x, y) = min{x, y} (8.7)

is concave because it is the limit of (8.2) as γ → −∞ by (8.4).
Notice new homogeneous superadditive functions can be obtained from known ones by

setting

φ̃(x, y) = βφ(αx, α̃y), x, y ≥ 0

where α, α̃, β ≥ 0.
As for the general conjecture, we have tried to use standard mollifying techniques, but

they failed to preserve positive homogeneity.

Acknowledgments I thankWolfgangArendt, Gustav Gripenberg, Karl-Peter Hadeler, and Roger Nussbaum
for useful hints and comments.
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