
J Dyn Diff Equat (2017) 29:783–797
DOI 10.1007/s10884-015-9461-y

A Note on the Convergence of Singularly Perturbed
Second Order Potential-Type Equations

Lorenzo Nardini1

Received: 16 March 2015 / Revised: 29 May 2015 / Published online: 24 March 2016
© Springer Science+Business Media New York 2016

Abstract In this paper we study the limit as ε → 0 of the singularly perturbed second order
equation ε2üε + ∇x V (t, uε(t)) = 0, where V (t, x) is a potential. We assume that u0(t) is
one of its equilibrium points such that ∇x V (t, u0(t)) = 0 and ∇2

x V (t, u0(t)) > 0. We find
that, under suitable initial data, the solutions uε converge uniformly to u0, by imposing mild
hypotheses on V . A counterexample shows that they cannot be weakened.
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1 Introduction

A problem of interest in various areas of applied mathematics is to find stable equilibrium
points for time-dependent energies. In a simplified setting, the problem is to find an evolution
t → u(t) such that {∇x V (t, u(t)) = 0,

∇2
x V (t, u(t)) > 0,

(1.1)

where V (t, x) is a potential, ∇x denotes the gradient with respect to x , and ∇2
x the corre-

sponding Hessian. This problem can be locally solved by means of the Implicit Function
Theorem, which provides a smooth solution defined in a neighborhood of t = 0.

Problem (1.1) has also been studied in finite dimension as the limit case of ε-gradient
flows. A first general result was given by Zanini [15], where the author studies the system

εu̇ε(t) + ∇x V (t, uε(t)) = 0. (1.2)

B Lorenzo Nardini
lnardini@sissa.it

1 SISSA, Via Bonomea, 265, 34136 Trieste, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-015-9461-y&domain=pdf


784 J Dyn Diff Equat (2017) 29:783–797

In [15] it is proved that the solutions uε to (1.2) converge to a solution u to (1.1), obtained
by connecting smooth branches of solutions to the equilibrium equation (1.1) through suitable
heteroclinic solutions of the ε-gradient flows (1.2).

In [1] V. Agostiniani analysed the second order approximation with a dissipative term:

ε2Aüε(t) + εBu̇ε(t) + ∇x V (t, uε(t)) = 0, (1.3)

where A and B are positive definite and symmetric matrices. It turns out that (uε, εBu̇ε) →
(u, 0), where u is piecewise continuous and satisfies (1.1). Moreover the behaviour of the
system at jump times is described by trajectories connecting the states before and after the
jumps; such trajectories are given by a suitable autonomous second order system related to
A, B, and ∇x V .

We remark that studying the asymptotic behaviour of solutions, as ε → 0, in systems of
the form (1.3) with A �= 0 and B = 0 (vanishing inertia), or A = 0 and B �= 0 (vanishing
viscosity), or A, B �= 0 (vanishing viscosity and inertia), may give a selection principle
for quasistatic evolutions (namely those evolutions whose loading is assumed to be so slow
that at every time the system is at equilibrium and internal oscillation can be neglected).
This approach has been successfully adopted in various situations in the case of vanishing
viscosity (cf. e.g. [3–7,10,11]) and in the case of vanishing viscosity and inertia (cf. e.g.
[2,9,12–14]). We remark that in [2] viscosity can be neglected under suitable assumptions.

The above mentioned results [1,15] require strong smoothness assumptions on V (C3-
regularity is required). The aim of the present paper is to weaken the assumptions under
which second order perturbed problems converge to (1.1). More precisely, we consider a
second order equation of the form (1.3) without the dissipative term Bu̇ε. (Notice that in
general, when B > 0, it is easier to prove the convergence of solutions.) We therefore study
the asymptotic behaviour of the solutions uε of the problem

ε2üε(t) + ∇x V (t, uε(t)) = 0 (1.4)

to a continuous stable equilibrium u0 of (1.1). Our main result is that the convergence
uε → u0 still holds under some regularity and growth conditions on V that are weaker than
those required in [1,15]. Furthermore we provide a counterexample to that convergence when
such assumptions do not hold.

More precisely we require continuity for V in both variables and we assume that V (t, ·) ∈
C2. We also suppose that there is a function Vt (t, x) of class C1-Carathéodory (i.e., Vt (·, x)

is measurable and Vt (t, ·) is of class C1) such that

V (t2, x) − V (t1, x) =
∫ t2

t1
Vt (t, x) dt,

for a.e. t1, t2. With some further boundedness conditions on V (listed in Sect. 2) we prove
that u0(t) is absolutely continuous and we obtain the convergence result, see Theorem 3.3 in
Sect. 3. Specifically, we find that solutions to (1.4) satisfy

uε → u0 uniformly and ε‖u̇ε − u̇0‖L1 → 0 (1.5)

as ε → 0.
In Sect. 4 we show that, if we weaken the assumptions on V , we are not able to get (1.5).

More precisely we provide a counterexample for a model case where the time-dependent
energy is given by

V (t, x) := 1

2
|x − u0(t)|2.
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We remark that, when u0 ∈ W 1,1(0, T ), then V in its turn satisfies the assumptions of
Sect. 3. In this case, solutions uε of (1.4) converge uniformly to u0. On the other hand we
show that, if u0 is the Cantor–Vitali function, then (1.5) can not be satisfied (see Example
4.3). In fact we prove that no subsequences of solutions to (1.4) could converge to u0 and
that the continuous functions u0 with this property are infinitely many (see Proposition 4.1,
Remark 4.2).

This result thus shows a case in which the dynamic solutions do not converge to the
expected (quasistatic) equilibrium. A similar phenomenon was observed in [8] where the
authors give an example of non-convergence, in the context of a one-dimensional peeling
test without viscosity: more precisely, their dynamic solutions converge to a limit that does
not fulfill first order stability. Our non-convergence result in Sect. 4 can therefore be regarded
as an example in which, in the absence of a damping viscous term, dynamic solutions do not
converge to stable equilibria even in very simple situations.

2 Setting of the Problem

Let V : R×R
n → R be a continuous function such that V (t, ·) ∈ C2(Rn). It will play the

role of a time-dependent energy. We assume that there exists a function u0 ∈ C0([0, T ];Rn)

such that the following properties are satisfied:

∇x V (t, u0(t)) = 0, for every t ∈ [0, T ], (2.1)

∃ α > 0 : ∇2
x V (t, u0(t))ξ · ξ ≥ α|ξ |2, for all ξ ∈ R

n . (2.2)

Furthermore, for a.e. t ∈ [0, T ] and for every x ∈ R
n , we assume that there is a constant

A > 0 such that
|∇x V (t, x)|, |∇2

x V (t, x)| ≤ A. (2.3)

We also assume that there exists a C1-Carathéodory function Vt : R×R
n → R, i.e., a

Carathéodory function such that Vt (t, ·) ∈ C1(Rn), satisfying

V (t2, x) − V (t1, x) =
∫ t2

t1
Vt (t, x) dt, (2.4)

for a.e. t1, t2 ∈ R and all x ∈ R
n . Moreover, for every R > 0, we require that there exists

aR ∈ L1(R) such that
|Vt (t, x)|, |∇x Vt (t, x)| ≤ aR(t), (2.5)

for a.e. t ∈ R and all x ∈ BR(0). We notice that, by condition (2.5), it is possible to prove
that ∇x V is continuous in both variables.

We consider, for fixed ε > 0, the Cauchy problem⎧⎨
⎩

ε2üε + ∇x V (t, uε(t)) = 0,
uε(0) = u0

ε,

u̇ε(0) = v0ε ,

(2.6)

where we assume that
u0

ε → u0(0) = 0 and εvε(0) → 0. (2.7)

Global existence and uniqueness of the solutions uε to (2.6) are consequences of standard
theorems on ordinary differential equations thanks to the continuity of ∇x V and to condition
(2.3). Our goal is to study when convergence, as ε → 0, of solutions uε to (2.6) satisfying
conditions (2.7) to u0 is possible.
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Using (2.3) and (2.5), we now study the dependence on x of the set of Lebesgue points
for a function t 
→ f (t, x) which will then play the role of Vt and ∇x Vt .

Lemma 2.1 Let f : R×R
n → R

m be a Carathéodory function such that, for every R > 0,
there exists aR ∈ L1(R) with f (t, x) ≤ aR(t) for every x ∈ BR(0). Fix x ∈ R

n, then for a.e.
t ∈ R

lim
y→x

lim
h→0

1

h

∫ t+h

t
[ f (τ, y) − f (t, y)] dτ = 0.

Proof Let t ∈ R be a right Lebesgue point for τ 
→ f (τ, x), i.e.,

lim
h→0

1

h

∫ t+h

t
[ f (τ, x) − f (t, x)] dτ = 0.

Let δ > 0 and define

ωδ
R(τ ) := sup

x,y∈BR(0)
|x−y|<δ

| f (τ, x) − f (τ, y)|. (2.8)

By assumption we have that ωδ
R(τ ) ≤ 2aR(τ ); moreover ωδ

R is measurable because the
supremum can be taken over all rational points and along a sequence δ = 1/n. Therefore
ωδ

R(·) ∈ L1(R).
If t is also a right Lebesgue point for τ 
→ ωδ

R(τ ) for every δ ∈ Q, δ > 0 and |x − y| < δ,
then

lim
h→0

1

h

∫ t+h

t
| f (τ, x) − f (t, x) − ( f (τ, y) − f (t, y))| dτ

≤ lim
h→0

1

h

∫ t+h

t

[
ωδ

R(τ ) + ωδ
R(t)

]
dτ = 2ωδ

R(t). (2.9)

Since f (t, ·) is uniformly continuous in BR(0), the last term in (2.9) tends to zero as
δ → 0 for a.e. t ∈ R. ��
Remark 2.2 Given any u ∈ W 1,1(0, T ;Rn), we are now able to get a chain rule for a.e.
t ∈ [0, T ], by differentiating z(t) := V (t, u(t)). Indeed, if t is a Lebesgue point for τ 
→
Vt (τ, u(t)), by (2.4) we have

z(t + h) − z(t)

h
= V (t + h, u(t + h)) − V (t, u(t + h))

h
+ V (t, u(t + h)) − V (t, u(t))

h

= 1

h

∫ t+h

t
Vt (τ, u(t + h)) dτ + ∇x V (t, ξ)

u(t + h) − u(t)

h
, (2.10)

for some point ξ belonging to the segment [u(t), u(t+h)], thanks to theMeanValueTheorem.
We now re-write the first summand of (2.10) in the following form:

1

h

∫ t+h

t
Vt (τ, u(t + h)) dτ

= 1

h

∫ t+h

t
[Vt (τ, u(t + h)) − Vt (t, u(t + h))] dτ + Vt (t, u(t + h). (2.11)

In view of Lemma 2.1, the integral in (2.11) tends to zero, for a.e. t ∈ [0, T ] as h → 0:
this is done by a diagonal argument using the fact that u(t + h) → u(t), because u is an
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absolutely continuous function. Moreover, by continuity of Vt (t, u(·)), the second summand
in (2.11) tends to Vt (t, u(t)). Therefore, as h → 0 in (2.10), we get

d

dt
V (t, u(t)) = ż(t) = Vt (t, u(t)) + ∇x V (t, u(t))u̇(t), (2.12)

for a.e. t ∈ [0, T ], because ∇x V (t, ·) is continuous.
We now argue similarly for ∇x V (t, u(t)) and get a chain rule again. Since Vt (t, ·) ∈

C1(Rn) for a.e. t and condition (2.5) holds, by an application of the Dominated Convergence
Theorem, we have that

∇x V (t2, x) − ∇x V (t1, x) =
∫ t2

t1
∇x Vt (t, x) dt. (2.13)

Therefore,

∇x V (t + h, u(t + h)) − ∇x V (t, u(t))

h

= ∇x V (t + h, u(t + h)) − ∇x V (t, u(t + h))

h
+ ∇x V (t, u(t + h)) − ∇x V (t, u(t))

h

= 1

h

∫ t+h

t
∇x Vt (τ, u(t + h)) dτ + ∇x V (t, u(t + h)) − ∇x V (t, u(t))

h
. (2.14)

Since ∇x Vt (t, ·) is continuous and ∇x Vt (·, x) is measurable (indeed, it can be obtained as
the limit along a sequence of measurable difference quotients), then ∇x Vt is a Carathéodory
function controlled by an integrable function aR(t). Arguing as before and recalling that
V (t, ·) ∈ C2(Rn), we have that for a.e. t ∈ [0, T ]

lim
h→0

∇x V (t + h, u(t + h)) − ∇x V (t, u(t))

h
= ∇x Vt (t, u(t)) + ∇2

x V (t, u(t))u̇(t).

In particular, since ∇x V (t, u0(t)) = 0, we have

∇x Vt (t, u0(t)) + ∇2
x V (t, u0(t))u̇0(t) = 0. (2.15)

We are now in the position to state the following result which will enable us to restrict to
the case of absolutely continuous functions throughout the sequel.

Proposition 2.3 Let V : R×R
n → R be a continuous function which satisfies V (t, ·) ∈

C2(Rn) for a.e. t ∈ R. Let Vt fulfill conditions (2.4) and (2.5), and let u0 : [0, T ] → R
n be

a continuous function such that there exists α > 0 :
∇2

x V (t, u0(t))ξ · ξ ≥ α|ξ |2, (2.16)

for every ξ ∈ R
n and for a.e. t ∈ [0, T ]. Then, u0 is absolutely continuous in [0, T ].

Proof We want to show that, if ε is small enough, there exists δ > 0 such that, for a.e.
t1, t2 ∈ [0, T ] with |t1 − t2| < δ, there exists Mε > 0 and an integrable function g such that

|u0(t2) − u0(t1)| ≤ Mε

∫ t2

t1
g(t) dt. (2.17)

We know that

0 = ∇x V (t2, u0(t2)) − ∇x V (t1, u0(t1))

= ∇x V (t2, u0(t2)) − ∇x V (t1, u0(t2)) + ∇x V (t1, u0(t2)) − ∇x V (t1, u0(t1))

= ∇x V (t2, u0(t2)) − ∇x V (t1, u0(t2)) + ∇2
x V (t1, y)(u0(t2) − u0(t1)),
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where y is in the segment [u0(t1), u0(t2)]. Therefore we have
u0(t2) − u0(t1) = −∇2

x V (t1, y)−1[∇x V (t2, u0(t2)) − ∇x V (t1, u0(t2))]. (2.18)

Since ∇2
x V (t1, ·) is continuous and satisfies the coercivity assumption (2.16), we can find

ε > 0 such that, if y ∈ Bε(u0(t1)) then

∇2
x V (t1, y)ξ · ξ ≥ α

2
|ξ |2.

We can thus invert ∇2
x V (t1, ·) in a neighborhood of u0(t1). Let λy be the minimum eigen-

value of ∇2
x V (t1, y). Therefore we can control the norm of ∇2

x V (t1, y)−1 with 1/λy . If vy is
an eigenvector of ∇2

x V (t1, y) with eigenvalue λy , then we have

λy |vy |2 = ∇2
x V (t1, y)vy · vy ≥ α

2
|vy |2,

from which we deduce that λy ≥ α
2 and therefore

‖∇2
x V (t1, y)−1‖ ≤ 2

α
. (2.19)

We can now plug (2.19) in (2.18) and, arguing as in (2.13) of the previous Remark, we
get

|u0(t2) − u0(t1)| ≤ 2

α

∫ t2

t1
|∇x Vt (t, u0(t2))| dt ≤ 2

α

∫ t2

t1
aR(t) dt

and we have thus obtained (2.17). ��

3 Convergence of Solutions

This section is devoted to the study of the convergence for solutions uε of problem (2.6). We
will show that uε uniformly converges to u0, which is the equilibrium for the potential V
introduced in the previous section, provided initial conditions (2.7) are satisfied.

We recall here the standard Gronwall lemma which will be used as a main tool in the
proof of the convergence.

Lemma 3.1 (Gronwall) Let ϕ ∈ L∞(R), ϕ(t) ≥ 0 for a.e. t ∈ R and a ∈ L1(R), a(t) ≥ 0
for a.e. t ∈ R. We assume that there exists a constant C > 0 such that

ϕ(t) ≤
∫ t

0
a(s)ϕ(s) ds + C, for a.e. t ∈ R.

Then,

ϕ(t) ≤ C exp

(∫ t

0
a(s) ds

)
, for a.e. t ∈ R.

Remark 3.2 From now on assume that there exists ψ : [0,+∞) → R such that

lim
t→+∞ ψ(t) = +∞ and V (t, x) ≥ ψ(|x |), (3.1)

for all t ∈ [0, T ] and x ∈ R
n , and there exist a(·), b(·) ∈ L1(0, T ) such that

Vt (t, x) ≤ a(t) + b(t)V (t, x), (3.2)
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for a.e. t ∈ [0, T ] and for all x ∈ R
n . Then it is easy to deduce uniform boundedness for the

sequence {uε}, by applying Lemma 3.1 to the following energy estimate:

V (t, uε(t)) ≤ ‖a‖L1(0,T ) +
∫ T

0
b(t)V (t, uε(t)) dt.

We remark that conditions (3.1) and (3.2), which are standard in this context, are not
necessary for establishing our result if we already know that the sequence {uε} is uniformly
bounded.

We are now in the position to state the main result of this section.

Theorem 3.3 Let V be a function fulfilling the assumptions of Proposition 2.3 and let u0 ∈
C0([0, T ];Rn) be such that ∇x V (t, u0(t)) = 0 for every t ∈ [0, T ]. Assume also that
conditions (3.1) and (3.2) are satisfied and that ∇2

x V (t, x) and ∇x Vt (t, x) are locally equi-
Lipschitz in x, uniformly in t, i.e. for every x ∈ R

n there exists δ > 0 and constants
C1, C2 > 0 (which may depend on x), such that, for every |h| < δ

|∇2
x V (t, x + h) − ∇2

x V (t, x)| ≤ C1|h|,
|∇x Vt (t, x + h) − ∇x Vt (t, x)| ≤ C2|h|, (3.3)

for a.e. t ∈ [0, T ]. Let uε be a solution of the Cauchy problem⎧⎨
⎩

ε2üε + ∇x V (t, uε(t)) = 0,
uε(0) = u0

ε,

u̇ε(0) = v0ε ,

(3.4)

where the initial data u0
ε and v0ε are such that

u0
ε → u0(0) = 0 and εv0ε → 0. (3.5)

Then, uε → u0 uniformly in [0, T ] and ε‖u̇ε − u̇0‖L1 → 0, as ε → 0.

Proof We fix a sequence ε j → 0 and we prove convergence for uε j : this will show con-
vergence for the whole family {uε} to u0, by the arbitrariness of ε j . However we will keep
writing just uε for the sake of simplicity of notation.

By Proposition 2.3, we have that u0 ∈ W 1,1(0, T ;Rn). Since C2([0, T ];Rn) is dense in
W 1,1(0, T ;Rn), for every k ∈ N there exists a sequence {uk

0} ⊂ C2([0, T ];Rn) such that

‖u0 − uk
0‖W 1,1 <

1

k
. (3.6)

A suitable choice of k will take place in due course. However, we can already notice that,
since W 1,1(0, T ;Rn) ⊂ C0([0, T ];Rn), then uk

0 uniformly converges to u0 in [0, T ] and
therefore they are all contained in a compact set containing {u0(t), t ∈ [0, T ]}.

We now introduce a surrogate of energy estimate, multiplying the equation in (3.4) by
u̇ε(t) − u̇k

0(t). After an integration we get

ε2

2
|u̇ε(t) − u̇k

0(t)|2 + V (t, uε(t))

= ε2

2
|u̇ε(0) − u̇k

0(0)|2 + V (0, uε(0)) −
∫ t

0
ε2ük

0(s)(u̇ε(s) − u̇k
0(s)) ds

+
∫ t

0

[
Vt (s, uε(s)) + ∇x V (s, uε(s))u̇

k
0(s)

]
ds (3.7)
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Our aim is thus to infer some lower and upper bounds for (3.7) in order to get, by Lemma
3.1, convergence of uε − uk

0 and then deduce convergence to u0. It is thus convenient to
consider the following “shifted” potential Ṽ defined as

Ṽ (t, x) := V (t, x) − V (t, uk
0(t)). (3.8)

Since uk
0 is of class C2, then all regularity assumptions on V are inherited by Ṽ . We have,

in particular, that

Ṽt (t, x) = Vt (t, x) − Vt (t, uk
0(t)) − ∇x V (t, uk

0(t))u̇
k
0(t). (3.9)

Moreover it is easy to show that

∇x Ṽ (t, u0(t)) = 0, ∀t ∈ [0, T ]. (3.10)

We also notice that (3.7) is equivalent to

ε2

2
|u̇ε(t) − u̇k

0(t)|2 + Ṽ (t, uε(t))

= ε2

2
|u̇ε(0) − u̇k

0(0)|2 + Ṽ (0, uε(0)) −
∫ t

0
ε2ük

0(s)(u̇ε(s) − u̇k
0(s)) ds

+
∫ t

0
Ṽt (s, uε(s)) + ∇x Ṽ (s, uε(s))u̇

k
0(s) ds. (3.11)

We set Aε:= ε2

2 |u̇ε(0) − u̇k
0(0)|2 + Ṽ (0, uε(0)), which tends to 0 as ε → 0, by the initial

conditions (3.5) and because uk
0 → u0 uniformly in [0, T ].

We now subdivide the proof into parts obtaining estimates which will then be used in the
final Gronwall argument.

Lower Estimate. We look for a lower bound for the summand Ṽ (t, uε) in the left hand side
of (3.11). We have that, by first order expansion, there exists y in the segment [0, x] such
that

V (t, x + u0(t)) = V (t, u0(t)) + ∇x V (t, u0(t))x + ∇2
x V (t, y)x · x

= V (t, u0(t)) + ∇2
x V (t, y)x · x, (3.12)

because ∇x V (t, u0(t)) = 0 for every t ∈ [0, T ]. We now compute twice (3.12), once for
x = uε(t)− u0(t) and once for x = uk

0(t)− u0(t), and then we make the difference between
the two results. Therefore, for suitable y1 between u0(t) and uε(t), and y2 between u0(t) and
uk
0(t), we have

Ṽ (t, uε(t)) = ∇2
x V (t, y1)(uε(t) − u0(t)) · (uε(t) − u0(t))

− ∇2
x V (t, y2)(u

k
0(t) − u0(t)) · (uk

0(t) − u0(t)). (3.13)

By a continuity argument and the coercivity assumption for∇2
x V (2.16) we can find δ > 0

such that, if |z| < δ, then

∇2
x V (t, z + u0(t))ξ · ξ ≥ α

2
|ξ |2.

We apply this estimate in the first summand of the right hand side of (3.13), while for the
other one we use boundedness of ∇2

x V (t, ·). We thus get

Ṽ (t, uε(t)) ≥ α

2
|uε(t) − u0(t)|2 − c|uk

0(t) − u0(t)|2, (3.14)
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for a suitable c > 0, provided that

|uε(t) − u0(t)| < δ for every t ∈ [0, T ] and for ε small enough. (3.15)

For the moment we assume that this bound holds and postpone its proof to the end.
Since

α

4
|uε(t) − uk

0(t)|2 ≤ α

2
|uε(t) − u0(t)|2 + α

2
|u0(t) − uk

0(t)|2,
we deduce, from (3.14), that

Ṽ (t, uε(t)) ≥ α

4
|uε(t) − uk

0(t)|2 − (c + α

2
)|uk

0(t) − u0(t)|2, (3.16)

where the last summand on the right hand side of (3.16) is small by the uniform convergence
of uk

0 to u0.

Upper Estimate. We now switch our attention to the estimate on the right hand side of
(3.11), which we now re-write in the following way:

Aε −
∫ t

0
ε2ük

0(s)(u̇ε(s) − u̇k
0(s)) ds +

∫ t

0

[
Ṽt (s, uε(s)) + ∇x Ṽ (s, uε(s))u̇

k
0(s)

]
ds

=: Aε − A1 + A2.

Estimate of A1. We first apply the Cauchy inequality and obtain

|A1| =
∣∣∣∣
∫ t

0
ε2ük

0(u̇ε − u̇k
0) ds

∣∣∣∣ ≤ ε2

2

∫ t

0
|ük

0|2 ds + ε2

2

∫ t

0
|u̇ε − u̇k

0|2 ds (3.17)

The second summand in (3.17) will enter the final estimate via the Gronwall lemma,
while for the first one we argue in the following way. We have no information about how big
‖ük

0‖L2(0,T ) is, nevertheless we can find, for every k ∈ N, an ε > 0 such that

‖ük
0‖2L2(0,T )

≤ 1

ε
. (3.18)

Then, we can invert the function which associates ε to k and get k(ε) → ∞ as ε → 0,
though this convergence may be very slow. This is done by recalling that ε = ε j and then
defining

k(ε j ) := min

{
k ∈ N : ‖ük

0‖2L2(0,T )
>

1

ε j

}
− 1.

From now on we will keep writing k intending k(ε j ) with this peculiar construction and
we have, combining (3.17) with (3.18),

|A1| ≤ Aε
1 + ε2

2

∫ t

0
|u̇ε − u̇k

0|2 ds, (3.19)

where Aε
1 → 0 as ε → 0.

Estimate of A2. By using a variable x which will play the role of uε(t) − uk
0(t), we have

that, for a.e. t ∈ [0, T ],
|Ṽt (t, x + uk

0) + ∇x Ṽ (t, x + uk
0)u̇

k
0|

≤ |Ṽt (t, x + uk
0) − Ṽt (t, x + u0)| + |∇x Ṽ (t, x + uk

0)u̇
k
0 − ∇x Ṽ (t, x + uk

0)u̇0|
+ |∇x Ṽ (t, x + uk

0)u̇0 − ∇x Ṽ (t, x + u0)u̇0| + |Ṽt (t, x + u0) + ∇x Ṽ (t, x + u0)u̇0|.
(3.20)
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The first three summands on the right are easy to deal with, by using Lipschitz and
boundedness assumptions. They are estimated, independently of x , by

C(1 + |u̇0|)(|uk
0 − u0| + |u̇k

0 − u̇0|).
As for the fourth summand, we call

f (x) := Ṽt (t, x + u0) + ∇x Ṽ (t, x + u0)u̇0.

If we set g(x) := f (x) − ∇ f (0)x , then there exists y in the segment [0, x] such that
g(x) − g(0) = ∇g(y)x . Therefore we have, for a.e. t ∈ [0, T ],

Ṽt (t, x + u0) + ∇x Ṽ (t, x + u0) · u̇0 − Ṽt (t, u0)

− ∇x Ṽ (t, u0) · u̇0 − ∇x Ṽt (t, u0) · x − ∇2
x Ṽ (t, u0)u̇0 · x

≤
∣∣∣∇x Ṽt (t, y + u0) + ∇2

x Ṽ (t, y + u0)u̇0 − ∇x Ṽt (t, u0) − ∇2
x Ṽ (t, u0)u̇0

∣∣∣ |x |
≤ c(1 + |u̇0|)|y||x |
≤ c|x |2(1 + |u̇0|), (3.21)

since ∇x Ṽt and ∇2
x Ṽ are locally equi-Lipschitz in x uniformly in t , by condition (3.3), and

the constant c > 0 is independent of x = uε − uk
0 because the functions uε are bounded in ε

as we pointed out in Remark 3.2. Moreover, by (3.9),

|Ṽt (t, u0)| = |Vt (t, u0) − Vt (t, uk
0) − ∇x V (t, uk

0) · u̇k
0|

≤ |Vt (t, u0) − Vt (t, uk
0)| + |∇x V (t, u0) · u̇k

0 − ∇x V (t, uk
0) · u̇k

0|
≤ C |u0 − uk

0|(1 + |u̇k
0|), (3.22)

for a.e. t ∈ [0, T ]. As in (2.15), we have that for a.e. t ∈ [0, T ],
∇x Ṽt (t, u0(t)) + ∇2

x Ṽ (t, u0(t))u̇0(t) = 0. (3.23)

Therefore, plugging (3.10), (3.21), (3.22), and (3.23) in (3.20), we get

|Ṽt (t, x + uk
0) + ∇x Ṽ (t, x + uk

0) · u̇k
0|

≤ c1(1 + |u̇0|)(|uk
0 − u0| + |u̇k

0 − u̇0|) + c2|x |2(1 + |u̇0|) + c3|u0 − uk
0|(1 + |u̇k

0|),
(3.24)

for a.e. t ∈ [0, T ], where c1, c2, and c3 > 0. We may therefore compute (3.24) with x =
uε(t) − uk

0(t) and, if we integrate between 0 and t , we find that

c1

∫ t

0
(1 + |u̇0|)(|uk

0 − u0| + |u̇k
0 − u̇0|) ds → 0,

as k → ∞ by W 1,1-convergence of uk
0 to u0. Also

c3

∫ t

0
|u0 − uk

0|(1 + |u̇k
0|) ds → 0,

as k → ∞ using this time the uniformconvergence of uk
0 to u0 and the fact that u̇k

0 ∈ L1(0, T ).
Therefore the second integral in (3.11) is estimated by

c2

∫ t

0
|uε − uk

0|2(1 + |u̇0|) ds + Ak, (3.25)

where Ak → 0 as k → ∞.
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Gronwall Argument. We are now able to get, by the previous estimates, the conclusion of
the proof. We set

Bε := Aε + Aε
1 + Ak(ε) +

(
c + α

2

)
|uk(ε)

0 (t) − u0(t)|2,
which tends to zero as ε → 0, and we plug (3.16), (3.17), (3.18), and (3.25) into (3.11). We
therefore have, for every t ∈ [0, T ],

ε2

2
|u̇ε(t) − u̇k

0(t)|2 + α

4
|uε(t) − uk

0(t)|2

≤ Bε + ε2

2

∫ t

0
|u̇ε − u̇k

0|2 + c2

∫ t

0
|uε − uk

0|2(1 + |u̇0|). (3.26)

With some further manipulations we are in position to apply Lemma 3.1. Therefore, there
exists C > 0 such that

ε2

2
|u̇ε(t) − u̇k

0(t)|2 + α

4
|uε(t) − uk

0(t)|2 ≤ Bε exp

(
C

∫ t

0
(1 + |u̇0(s)|) ds

)
. (3.27)

Since u0 ∈ W 1,1(0, T ), we have that the right hand side of (3.27) tends to zero as ε → 0,
for every t ∈ [0, T ]. In particular, since |uε(t) − u0(t)| ≤ |uε(t) − uk

0(t)| + |uk
0(t) − u0(t)|,

we obtain that uε(t) → u0(t) uniformly in [0, T ] as ε → 0. We also have

ε‖u̇ε − u̇0‖L1(0,T ) ≤ ε‖u̇ε − u̇k
0‖L1(0,T ) + ε‖u̇k

0 − u̇0‖L1(0,T )

≤ ε2T
∫ T

0
|u̇ε − u̇k

0|2 + ε‖u̇k
0 − u̇0‖L1(0,T ),

from which we deduce

ε‖u̇ε − u̇0‖L1 → 0,

as ε → 0, because ‖u̇k
0 − u̇0‖L1(0,T ) is bounded.

Proof of (3.15). In order to conclude we only need to prove that |uε(t) − u0(t)| < δ, for
every t ∈ [0, T ] and for ε small enough. We can define, for every ε > 0

tε = inf{t ∈ [0, T ] : |uε(t) − u0(t)| > δ},
with the convention that inf ∅ = T . Notice that the continuity of uε(·) − u0(·) and the initial
condition uε(0) → u0(0) as ε → 0, implies that tε > 0. We thus have that (3.15) is satisfied
for every t ∈ [0, tε). We now assume, by contradiction, that tε < T . Then, with the previous
Gronwall argument, we can find ε̄ so small such that |uε(t)−u0(t)| < δ

2 for every ε ∈ (0, ε̄)
and t ∈ [0, tε]. However this contradicts the continuity of uε −u0 in t = tε . Therefore tε = T
and this concludes the proof of the theorem. ��

4 Counterexample

In the previous section we proved that, under certain assumptions on V , the solutions uε

of problems (3.4) converge in W 1,1(0, T ) to u0, whenever u0 is continuous and the initial
conditions (3.5) are satisfied. We now prove that assumptions on V can not be further relaxed
in order to get the same result.
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Let us consider the sample case⎧⎨
⎩

ε2üε + uε − u0 = 0,
uε(0) = u0

ε,

uε(0) = v0ε ,

(4.1)

where we assume that u0
ε → u0(0) = 0 and εv0ε → 0 as ε → 0. In this case the potential V

is given by

V (t, x) := 1

2
|x − u0(t)|2.

We have that ∇x V (t, u0(t)) = 0 for every t and ∇2
x V (t, u0(t)) is the identity matrix. We

notice that, if we only assume continuity of u0, then a chain rule similar to (2.12) can not be
established. We can, nevertheless, find an explicit solution of (4.1) with standard methods of
ordinary differential equations:

uε(t) =
(

−1

ε

∫ t

0
u0(s) sin s

ε
ds + u0

ε

)
cos t

ε
+

(
1

ε

∫ t

0
u0(s) cos s

ε
ds + εv0ε

)
sin t

ε
. (4.2)

If we assume that u0 ∈ W 1,1(0, T ), then assumption of Theorem 3.3 are satisfied and
therefore uε → u0 uniformly for every t ∈ [0, T ] and that εu̇ε → 0 for a.e. t ∈ R. This
result can be equivalently obtained by direct computation through the explicit formula (4.2).
We may remark the fact that, in the presence of a dissipative term as in [1], the convergence
of the solutions to the approximated problems is satisfied with weaker assumptions on the
initial conditions. More precisely if the equation is

ε2üε + εu̇ε + uε − u0 = 0,

then it is sufficient to assume only that

u0
εe− 1

2ε → 0 and εv0ε e− 1
2ε → 0 as ε → 0.

We now show that convergence for the problem (4.1) fails if we only assume that u0 is
continuous. This gives a counterexample to the convergence result of Theorem 3.3 when the
regularity assumptions on V are not satisfied. Indeed, there is at least a continuous function
that can not be approximated by solutions to second order perturbed problems, as we show
in the next proposition; we will exhibit one of these functions in Example 4.3. Furthermore
in W 1,1 there is a dense set of C0

0 functions with this property (see Remark 4.2).

Proposition 4.1 There exists u0 ∈ C0
0 ([0, T ]) such that the functions uε, defined in (4.2),

do not converge uniformly to u0 as ε → 0.

Proof We argue by contradiction. Assume that for every u0 ∈ C0
0 ([0, T ]) uε uniformly

converges to u0 as ε → 0. Without loss of generality we can assume that T ≥ 1 and we
show that the convergence fails at t = 1. Let us fix εk → 0. Then we have, from (4.2),

uεk (1) = − 1

εk

∫ 1

0
u0(s)

[
sin s

εk
cos 1

εk
− cos s

εk
sin 1

εk

]
ds + u0

εk
cos 1

εk
+ εkv

0
εk
sin 1

εk
.

Since u0
εk

, εkv
0
εk

→ 0 by assumption, we have convergence of uε(1) to u0(1) if and only
if the operator Fεk : C0

0 ([0, T ]) → R, defined as

Fεk (u0) := − 1

εk

∫ 1

0
u0(s)

[
sin s

εk
cos 1

εk
− cos s

εk
sin 1

εk

]
ds,
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converges. We thus have pointwise convergence of Fεk to F0 defined by F0(u0) = u0(1). By
the Banach–Steinhaus Theorem this implies uniform equiboundedness. On the other hand
we notice that

Fεk (u0) =
∫ 1

0
u0(s) dμεk (s),

where dμεk (s) = − 1
εk

[sin s
εk
cos 1

εk
− cos s

εk
sin 1

εk
] ds. However

sup
k

|μεk |(0, 1) = sup
k

(
1

εk

∫ 1

0
| sin s−1

εk
| ds

)
= sup

k

∫ 0

− 1
εk

| sin τ | dτ = +∞

which contradicts the uniform equiboundedness. ��
Remark 4.2 The Banach–Steinhaus Theorem also implies that the set

R := {u0 ∈ C0
0 ([0, T ]) : sup

ε
|Fε(u0)| = +∞}

is dense. Therefore there are indeed infinitely many functions for which uε can not converge
to u0.

Example 4.3 We now give an explicit example of a continuous function that is not approxi-
mated by solutions to second order perturbed problems. We consider as u0 the Cantor–Vitali
function û : [0, 1] → [0, 1]. Plugging u0 = û into (4.2) and through integration by parts, we
get

uε(t) = û(t) − cos t
ε

∫ t

0
cos s

ε
dμ(s) − sin t

ε

∫ t

0
sin s

ε
dμ(s) + u0

ε cos
t
ε

+ εv0ε sin
t
ε
, (4.3)

where μ is intended to be the distributional derivative of u0. We now choose εk = 1
2kπ

and
remark that ∫

cos(2kπs) dμ(s) =
∫

e−i2kπs dμ(s),

where û and μ have been extended to R by setting û = 0 in the complement of [0, 1]. By
using the well-known expression for the Fourier Transform of the Cantor measure we can
compute (4.3) in t = 1 and get

uεk (1) = û(1) + u0
εk

−
∫ 1

0
cos(2kπs) dμ(s) = û(1) + u0

εk
− (−1)k

∞∏
h=1

cos 2kπ
3h .

Since u0
εk

→ 0 by the assumptions on the initial conditions, we focus our attention on the
term

(−1)k
∞∏

h=1

cos 2kπ
3h = (−1)k f (2kπ),

where we have defined f : [0,+∞) → [−1, 1] by

f (x) =
∞∏

h=1

cos x
3h .

We now prove that there exists a sequence kn such that (−1)kn f (2knπ) does not converge
to 0.
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By the definition f satisfies

f (3x) = f (x) cos(x).

In particular this implies

f (6π) = f (3 · 2π) = f (2π).

Inductively one gets

f (3n · 2π) = f (2π)

and similarly

f (2 · 3n · 2π) = f (4π).

Therefore we choose as kn the sequence

{3, 2 · 3, 32, 2 · 32, . . . , 3n, 2 · 3n, . . .}.
Along this sequence (−1)kn f (2knπ) tends to − f (2π) for the odd indeces and to f (4π)

for the odd indexes and to f (4π) for the even ones. We now prove that f (2π) and f (4π)

are real numbers with the same sign. This implies that (−1)kn f (2knπ) does not converge
and therefore uεk (1) does not converge to û(1).

We have that (using the convention that log 0 = −∞)

log f (x) =
∞∑

h=1

log
∣∣∣cos x

3h

∣∣∣ ≥ −
∞∑

h=1

x2

32h ,

if y ∈ (0, 1), because in this interval

log | cos y| = log cos y ≥ cos y − 1

cos y
.

Moreover

1 − 1

cos y
≥ −x2 ⇐⇒ cos y(1 + y2) ≥ 1,

which is verified in (0, 1) using the fact that cos y ≥ 1− y2

2 . Since
2π
3h and 4π

3h are in the interval
(0, 1) for h large enough, then f (2π) and f (4π) are controlled by the geometric series and
therefore f (2π), f (4π) �= 0. This is enough in order to prove that along the sequences k2n

or k2n+1 convergence of uεkn
(1) to û(1) is not satisfied. Moreover we notice that f (2π) and

f (4π) have the same sign because cos 2π
3 = cos 4π

3 = − 1
2 , while cos

( 2π
3n

) ≥ 0 for every
n ≥ 3. Therefore we have found more than we claimed, since uεkn

(1) does not converge at
all.

We have thus shown an explicit example in which convergence of (4.2) to a particular
continuous function u0 fails.
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