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Abstract This is the first paper in a series concerning the study of steady states of a Fokker–
Planck equation in a general domain in R

n with L p
loc drift term and W 1,p

loc diffusion term
for any p > n. In this paper, by using the level set method especially the integral identity
which we introduced in Huang et al. (Ann Probab, 2015), we obtain several new existence
results of steady states, including stationary solutions and measures, of the Fokker–Planck
equation with non-degenerate diffusion under Lyapunov-like conditions. As applications of
these results, we give some examples on the noise stabilization of an unstable equilibrium
and the existence and uniqueness of steady states subject to boundary degeneracy of diffusion
in a bounded domain.
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1 Introduction

We consider a system of ordinary differential equations (ODE’s)

ẋ = V (x), x ∈ U ⊂ R
n (1.1)

under white noise perturbation G(x)Ẇ , where U ⊂ R
n is a connected open set which can

be bounded, unbounded, or the entire space Rn , V = (V i ) is a vector field on U , called the
drift field, G = (gi j ) is an n × m matrix-valued function on U for some positive integer m,
called the noise matrix, and W is the standard m-dimensional Brownian motion. This leads
to the following system of Itô stochastic differential equations

dx = V (x)dt + G(x)dW, x ∈ U ⊂ R
n . (1.2)

A fundamental issue is the impact of noises on the basic dynamics of (1.1). On one hand,
as all differential equations are idealized models of physical motions which are actually sub-
jected to noise perturbations, onewould like to know towhich extent or underwhat conditions
basic dynamics of a differential equation are robust under small noise perturbations. On the
other hand, it has also been observed that large noises can destroy otherwise deterministically
robust or unstable dynamics in a system, leading to interesting dynamical phenomena such
as random destabilization or stabilization.

Noise impacts on dynamics of differential equations have been extensively studied using
a “trajectory based approach” within the framework of random dynamical systems which are
skew-product flows over measurable, ergodic base flows. Due to its similarity with the study
of a deterministic skew-product flow, this approach has been proven to be very useful in
studying random perturbations with respect to problems such as random attractors, random
invariant manifolds, and random bifurcations etc. We refer the reader to [3] and references
therein for many interesting studies on these problems. However, when a physical system
either has sufficiently high complexity or contains intrinsic uncertainties, “trajectory based”
model and study would not provide much information to its dynamical description. Instead, a
“distribution based approach” using Fokker–Planck equations seems necessary to synthesize
the typical patterns of dynamics. The later approach is significantly different from the former
one not only because of distinct dynamical objects considered but also because completely
different natures of noise perturbations they adopt.

In a sequence of papers including [20], we will develop a theoretical framework, from a
distribution point of view, for one to analyze the impact of Itô white noises on compact invari-
ant sets and invariant measures of the ODE system (1.1), and we will link this development
to the study of steady states of Fokker–Planck equations associated with the stochastic dif-
ferential equations (1.2). This paper and [18,19] in the same series, devoting to the existence
and non-existence of these steady states, thus serve as the foundation for such a development.

In the case that both V and G are locally Lipschitz-continuous in U , the stochastic dif-
ferential equation (1.2) generates a local (in time) diffusion process in U whose transition
probability density function p(t, ξ, x), if exists, is actually a fundamental solution of the

Fokker–Planck equation associated with (1.2). More precisely, denote A = (ai j ) = GG�
2 ,
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the diffusion matrix. Then for any bounded, non-negative, measurable function f in U with∫
U f (x)dx = 1,

u(x, t) =
∫

U
p(t, ξ, x) f (ξ)dξ

(formally) satisfies the Fokker–Planck equation (also called Kolmogorov forward equation):

{
∂u(x, t)

∂t
= Lu(x, t), x ∈ U, t > 0,

u(x, t) ≥ 0,
∫
U u(x, t)dx = 1

(1.3)

with u(x, 0) = f (x), where L is the Fokker–Planck operator defined as

Lg(x) = ∂2i j (a
i j (x)g(x)) − ∂i (V

i (x)g(x)), g ∈ C2(U).

Among solutions of the Fokker–Planck equations (1.3), of particular interest are the sta-
tionary solutions, i.e., solutions u(x) of the stationary Fokker–Planck equation

{
Lu(x) = 0, x ∈ U
u(x) ≥ 0,

∫
U u(x)dx = 1.

(1.4)

Wenote that, since A = (ai j ) is everywhere positive semi-definite, L is an elliptic operator.
In the above and also through the rest of the paper, we use short notations ∂i = ∂

∂xi
,

∂2i j = ∂2

∂xi ∂x j
, and we also adopt the usual summation convention on i, j = 1, 2, . . . , n

whenever applicable.
For the generality of our theory, we will assume less regularity conditions on both the drift

field and the diffusion matrix. Following [8–13] and others, we make the following standard
hypothesis:

(A) ai j ∈ W 1,p
loc (U), V i ∈ L p

loc(U) for all i, j = 1, . . . , n, where p > n is fixed.

There aremany situations arising in applications inwhich the drift field is only continuous,
or piece-wise continuous, or even measurable. Also, a white noise perturbed differential
inclusion can often lead to a stochastic selection of form (1.2) in which V is of the class Lq

loc
for some q ≥ 1 in general (see e.g., [14]). Even when a Lipschitz drift field is considered,
there is no physical reason for a multiplicative (i.e., spatially non-homogenous) white noise
perturbation to have sufficiently smooth coefficients.

Due to the weak regularity condition (A), it is necessary to consider weak stationary
solutions of the Fokker–Planck equation (1.3) or weak solutions of the stationary Fokker–
Planck equation (1.4), i.e., continuous functions satisfying the following weak form of the
stationary Fokker–Planck equation:

⎧
⎨

⎩

∫

U
L f (x)u(x)dx = 0, for all f ∈ C∞

0 (U)

u(x) ≥ 0,
∫
U u(x)dx = 1,

(1.5)

where

L = ai j∂2i j + V i∂i

is the adjoint Fokker–Planck operator and C∞
0 (U) denotes the space of C∞ functions on U

with compact supports.
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In the absence of weak solutions satisfying (1.5), one further considers Borel probability
measure-valued solutions μ satisfying

V i ∈ L1
loc(U, μ), i = 1, 2, . . . , n, and, (1.6)

∫

U
L f (x)dμ(x) = 0, for all f ∈ C∞

0 (U). (1.7)

We refer to a Borel probability measure μ satisfying (1.6), (1.7) as a stationary measure
of the Fokker–Planck equation (1.3) or a measure solution of the stationary Fokker–Planck
equation (1.4). We call a stationary measure μ of (1.3) regular if μ admits a continuous
density function u with respect to the Lebesguemeasure, i.e., dμ(x) = u(x)dx . It is clear that
such a density u is necessarily aweak stationary solution of the Fokker–Planck equation (1.3),
and vice versa. In fact, under the condition (A) and the condition that (ai j ) is everywhere
positive definite in U , it follows from a regularity theorem due to Bogachev–Krylov–Röckner
([6], also recalled in Theorem 2.2 below) that all stationary measures of (1.3) are regular
with density functions u ∈ W 1,p

loc (U). If ai j ∈ C2,α
loc (U), V i ∈ C1,α

loc (U), i, j = 1, . . . , n, for
some α ∈ (0, 1), then it follows from the standard Schauder theory that the density functions
become classical solutions of (1.4).

The study of stationary measures of (1.3) is closely related to that of invariant measures
of the diffusion process generated from (1.2). In the case that U = R

n , V , G are locally
Lipschitz-continuous, and (1.2) generates a global (in time) diffusion process in R

n , it is
well-known that any invariant measure of the diffusion process is necessarily a stationary
measure of the Fokker–Planck equation (1.3), and vice versa under some suitable conditions
(see e.g. [12, Thm. 2.12 and Prop. 2.9]). In the case that (1.2) fails to generate a diffusion
process due to low regularity of V,G etc, under certain conditions a stationary measure of
(1.3) is an invariant measure of certain generalized diffusion process associated to (1.2) (see
[7,13,23] for some interesting discussions in this regard, in particular with respect to the
uniqueness of stationary measures and their invariance).

It is well-known that smooth stationary solutions of a Fokker–Planck equation defined
on a compact manifold without boundary always exist and are unique when (ai j ) is a C2-
smooth, everywhere positive definite matrix on the manifold and the drift field is everywhere
smooth (see e.g. [29] for an argument using Perron–Frobenius method). In a bounded domain
� ⊂ R

n , with (ai j ) ∈ W 1,p(�) being uniformly elliptic and (V i ) ∈ L p(�), the existence
of weak stationary solutions of the associated Fokker–Planck equation in � follows from
classical theory of linear elliptic equations (see [8, Proof of Thm. 1.2] which is recalled as
Lemma 2.1 below). These solutions depend on the imposed boundary conditions and thus
they need not be unique.

The existence of stationary solutions of Fokker–Planck equations (1.3) in an unbounded
domain necessarily requires certain “dissipation” conditions, for otherwise the Laplacian
equation in R

n provides a simple counter example. Some “dissipation” conditions are also
needed for the existence of stationary solutions of Fokker–Planck equations (1.3) even in
a bounded domain when (ai j ) becomes degenerate on the boundary. For instance, taking
a(x) = x2, U = (0, 1), and V ≡ 0, the corresponding stationary Fokker–Planck equation
(x2u(x))′′ = 0, x ∈ (0, 1), admits no solution that is non-negative and integrable.

In this paper, we will consider a general domain U ⊂ R
n , which can be bounded,

unbounded or Rn , and focus on the existence of stationary measures of (1.3) in U under
the condition (A) and that (ai j ) is everywhere positive definite in U , by considering “dissipa-
tion” conditions which are compatible with those in deterministic ODE systems. One of such
“dissipation” conditions is the existence of a Lyapunov function U ∈ C2(U) with respect to
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(1.4) which is a so-called compact function in U (see Sect. 2.1) satisfying the “dissipation”
property that

lim sup
x→∂U

LU (x) = lim sup
x→∂U

(ai j (x)∂2i jU (x) + V i (x)∂iU (x)) ≤ −γ (1.8)

for some constant γ > 0, called a Lyapunov constant. We note that when U is unbounded, the
notion of ∂U and the limit x → ∂U in the above should be understood under the topology of
the extended Euclidean space En = R

n ∪ ∂Rn which identifies Rn with the unit ball Bn and
∂Rn with the unit sphere Sn−1, and in particular, identifies each x∗ ∈ S

n−1 with the infinity
element x∞∗ ∈ ∂Rn of the ray through x∗ (see Sect. 2 for details). Consequently, if U = R

n ,
then x → ∂Rn under this topology simply means x → ∞ and (1.8) becomes

lim sup
x→∞

LU (x) = lim sup
x→∞

(ai j (x)∂2i jU (x) + V i (x)∂iU (x)) ≤ −γ. (1.9)

In the case U = R
n , it was first shown by Has’minskiǐ [15,16] for locally Lipschitz-

continuous drift field (V i ) and noise matrix (gi j ) that if there exists a non-negative function
U ∈ C2(Rn) with

lim
x→∞U (x) = +∞ (1.10)

and

lim
x→∞LU (x) = −∞, (1.11)

then the diffusion process generated from (1.2) admits an invariant measure, and conse-
quently (1.3) admits a stationary measure because an invariant measure of the diffusion
process is necessary a stationary measure of (1.3). Has’minskiǐ also remarked in [16] that
same holds when the the condition (1.11) is replaced by (1.9). Recently, a vast amount of
attentions have been paid to the existence of stationary measures of (1.3) for less regular
coefficients under various “dissipation” conditions (see e.g., [1,4–13,22,26–28]). In partic-
ular, Bogachev-Röckner [8] showed the existence of a regular stationary measure of (1.3)
with density function lying in the space W 1,p

loc (Rn) when the condition (A) holds and there
exists a non-negative function U ∈ C2(Rn) satisfying both (1.10) and (1.11). In [10], this
result is shown to actually hold when U satisfies both (1.9) and (1.10). We remark that a
non-negative function U ∈ C2(Rn) is an unbounded Lyapunov function in R

n iff it satisfies
both (1.9) and (1.10) (see Proposition 2.1).

In fact, if V is continuous on R
n , then it is also shown in [8] that stationary measures of

(1.3) in R
n still exist even when (ai j ) is degenerate in R

n . We will leave more discussions
on the degenerate case of (ai j ) to part III of the series [19].

One of our main results of this paper is as follows.

Theorem A Assume that (A) holds in U and (ai j ) is everywhere positive definite in U . If
there exists a Lyapunov function with respect to (1.4) in U , then (1.3) admits a stationary
measure inU which is regular with positive density lying in the space W 1,p

loc (U). If, in addition,
the Lyapunov function is unbounded, then stationary measures are unique in U .

A Lyapunov function with respect to (1.4) may be regarded as a stochastic counterpart
of a Lyapunov function defined for a dissipative dynamical system. Recall that a smooth
Lyapunov function U for an ODE system (1.1) is a compact function such that

lim sup
x→∂U

V (x) · ∇U (x) = lim sup
x→∂U

V i (x)∂iU (x) ≤ −γ (1.12)
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for some constant γ > 0. On one hand, it is well-known in the theory of dissipative dynam-
ical systems that the existence of such a smooth Lyapunov function for the deterministic
ODE system (1.1) with locally Lipschitz-continuous V implies the existence of a (compact)
global attractor of (1.1) in U (see the Appendix in part II of the series [18] contained in
the same volume). On the other hand, in the case that both V and G are locally Lipschitz-
continuous in U , it can be shown using [16, Thm. 4.3] that if there exists an unbounded
Lyapunov function with respect to (1.4), then the stationary measure μ of (1.3) (which
must be invariant and unique in this case) attracts all orbits of the semi-flow defined on the
space of probability measures on U which is generated by the diffusion process of (1.2). In
this sense, one may conclude that a stationary measure of (1.3) obtained from Theorem A
resembles a global attractor in the deterministic case, though for the existence of a station-
ary measure the corresponding deterministic counterpart need not be always dissipative (see
example 4.12).

When the Lyapunov constant γ = 0 in (1.8), in particular LU ≤ 0 near ∂U , the compact
function U is referred to as a weak Lyapunov function. Such a weak Lyapunov function is
insufficient to yield a “dissipation” condition, just like the case of an ODE system when
γ = 0 in (1.12). It turns out that a proper “dissipation” condition requires that U is of the
class of B∗(A)—a condition controlling the decay rates of ai j∂iU∂ jU near ∂U (see Sect. 2.1
for details), which is purely stochastic and unable to be satisfied by an ODE system. Under
this additional condition, we are able to obtain the following result.

Theorem B Assume that (A) holds and (ai j ) is everywhere positive definite in U . If there
exists a weak Lyapunov function with respect to (1.4) in U which is of the class B∗(A), then
(1.3) admits a stationary measure in U which is regular with positive density lying in the
space W 1,p

loc (U).

By assuming weaker Lyapunov-like conditions, Theorems A, B allow a much broader
class of applications. First of all, in many situations the commonly adopted or physical
Lyapunov-like functions are often compact functions and associated with a finite (positive
or zero) Lyapunov constant, which are not necessarily unbounded. As to be demonstrated
in a separate work [20], such finiteness of Lyapunov constants are important in studying
stochastic bifurcation problems in a general domain because it allows to define a function
from the parameter space to Lyapunov constants. Secondly, still as to be seen in [20], when
a family of positive definite diffusion matrices are considered, problems of concentration
and limit behaviors of stationary measures crucially depend on the existence of Lyapunov
functions associated with the family that can bemerely of a finite Lyapunov constant. Thirdly
but not lastly, Theorems A, B, when combined with the non-existence results in part II of
the series [18] contained in the same volume, provide a very useful tool for one to study
stochastic bifurcations from the existence to the non-existence of stationary measures with
respect to parameters lying in either the drift term or the diffusion term. In such stochastic
bifurcations problems, Theorem A is typically used at the non-critical parameter values and
Theorem B should be useful at the critical parameter values.

Generality of the domain considered in the above results does allow a wide range of
applications. For instance, in a population model describing the time evolution of n-species,
the biologically meaningful domain is always taken to be U = R

n+ =: {x = (xi ) ∈ R
n : xi >

0, i = 1, 2, . . . , n}. Even for a system defined in the entire space R
n , one can also apply

the results to any domain U ⊂ R
n which is either the entire space or a bounded open set, to

obtain a global or a local measure, resembling a global or a local attractor of the deterministic
system, respectively. Though stationary measures need not exist in general when U admits
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a usual boundary and (ai j ) becomes degenerate on the boundary of U , Theorem A says
that they exist if a Lyapunov function exists in U , and moreover, stationary measures are
also unique when the Lyapunov function is unbounded. Such uniqueness due to degeneracy
of noise on the boundary is particularly interesting when applying to a bounded domain
because if (ai j ) is uniformly elliptic in the domain, then stationary measures are always
non-unique.

We remark that if the system (1.1) is defined on U × M , where U ⊂ R
n is a connected

open set and M is a smooth, compact manifold without boundary, then one can modify
the definitions of Lyapunov and weak Lyapunov functions in Sect. 2 in an obvious way
by replacing the domain U ⊂ R

n with U × M . Then the proofs in later sections can be
modified accordingly so that Theorems A, B still hold with respect to such a generalized
domain.

The proof of our results uses a level set method which crucially relies on the integral
identity we derived in [17] (see also Theorem 3.1 below). Such a method, by overcoming
limitations of the usual Lyapunov function method, the traditional large deviation theory, and
the classical PDE estimates, has the advantage of allowing more delicate measure estimates
than those made using classical methods (see [21] for some discussions in this regard), and
moreover, unlike existing methods, it works the same in any domain: bounded, unbounded,
or the entire space Rn . Indeed, the integral identity reveals fundamental natures of stationary
Fokker–Planck equations and plays a similar role as the Pohozaev Identity does to semi-
linear elliptic equations. As in [17] and the present series, it enables one to obtain useful
measure estimates for a stationary measure in a sub-domain by making use of informa-
tion of noise distributions on the boundary of the domain. Besides their usefulness in the
study of existence and non-existence of stationary measures, these estimates will also play
important roles in studying problems like the concentration and limit behaviors of stationary
measures when diffusions tend to zero, as what we will explore in separate works (see e.g.,
[20]).

This paper is organized as follows. Section 2 is a preliminary section inwhichwe introduce
the notions of boundary ∂U , compact functions, and Lyapunov-like functions, for a general
domain U ⊂ R

n . We will also review an existence result of stationary solutions of (1.3)
in a bounded domain from [8], a Harnack inequality from [24], and a regularity theorem
from [6]. In Sect. 3, we recall the integral identity from [17], which is of fundamental
importance to the level set method to be adopted in this paper and other parts of the series.
Theorem A and Theorem B will be proved respectively in Sects. 4 and 5. The proof uses the
level set method and measure estimates for stationary measures contained in [17] through
a Lyapunov or a weak Lyapunov function. Some examples and discussions concerning the
noise stabilization of an unstable equilibrium and the existence and uniqueness of stationary
measures subject to boundary degeneracy of diffusion in a bounded domain are also given in
Sect. 4. In the Appendix at the end, we give a characterization of Lyapunov functions in one
dimension.

For measure estimates which we recall from [17], we will also provide proofs in some
special cases. Besides doing so for the reader’s convenience, our purpose is also to highlight
the deep inside of these estimates by avoiding complicated technical details.

Through the rest of the paper, we let U ⊂ R
n be a connected open set which can be

bounded, unbounded, or the entire spaceRn . For simplicity, we will use the same symbol | · |
to denote absolute value of a number, cardinality or Lebesgue measure of a set, and norm of
a vector or a matrix.
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2 Preliminary

2.1 Compact Functions

To unify both cases when U is bounded and unbounded, we consider the extended Euclidean
space En = R

n ∪ ∂Rn which is identified with the closed unit ball B̄n = B
n ∪ ∂Bn , through

the homeomorphism h : En → B̄
n to be defined as follows. Let ∂Rn = {x∞∗ : x∗ ∈ S

n−1},
where for each x∗ ∈ S

n−1, x∞∗ denotes the infinity element of the ray through x∗. Define
h : En → B̄

n :

h(x) =
{ x

1+|x | , x ∈ R
n;

x∗, x = x∞∗ ∈ ∂Rn .

Then h clearly identifiesRn withBn and ∂Rn with Sn−1, and it becomes a homeomorphism
when the topology of ∂Rn is defined as the one inherited from this identification.

Definition 2.1 We call � =: ∂U ⊂ E
n the boundary of U if h(�) is the boundary of h(U)

in B̄
n .

For instance, when U = R
n , U has only one boundary component ∂Rn , and when U =

R
n+—the first octant ofRn for n ≥ 2, U also has only one boundary component� which is the

union of all non-negative, coordinate hyperplanes and the portion of ∂Rn lying in between
these hyperplanes.

Definition 2.2 Let U ∈ C(U) be a non-negative function and denote ρM = supx∈U U (x),
the essential upper bound of U . U is said to be a compact function in U if

(i) U (x) < ρM , x ∈ U ; and
(ii) limx→∂U U (x) = ρM .

According to the topology we described earlier, x → ∂U in the above means that the
Hausdorff semi-distance dist(h(x), h(∂U)) → 0. Therefore, if �∗ is a bounded boundary
component of ∂U , x → �∗ under this topology is equivalent to dist(x, �∗) → 0. Moreover,
if U = R

n , then x → ∂U under this topology simply means x → ∞ in the usual sense.
From the definition, we immediately have the following result.

Proposition 2.1 An unbounded, non-negative function U ∈ C(U) is a compact function in
U iff

lim
x→∂U

U (x) = +∞.

Consequently, an unbounded, non-negative function U ∈ C(Rn) is a compact function in
R
n iff it satisfies (1.10).

For a non-negative function U ∈ C(U) and each ρ ∈ [0, ρM ), where ρM is the essential
upper bound of U , we denote �ρ = {x ∈ U : U (x) < ρ} as the ρ-sublevel set of U .

Proposition 2.2 A continuous, non-negative function U is a compact function in U iff the
following holds:

(a) �ρ ⊂⊂ U for any 0 ≤ ρ < ρM;
(b) h(∂�ρ) → h(∂U) in Hausdorff metric as ρ → ρM.
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Proof Let (i), (ii) be as in Definition 2.2. It is clear that (ii) implies (a). We note that (b) is
equivalent to the following:

(∗) For any neighborhood N of ∂U , there exists a ρN ∈ (0, ρM ) such that ∂�ρ ⊂ N for
all ρ ∈ [ρN , ρM );

(∗∗) For any x ∈ ∂U and any sequence ρk → ρM , there is a sequence of points xk ∈ ∂�ρk

such that xk → x .

Now, (i) implies (∗) and (ii) implies (∗∗) by continuity of U , i.e., (i) and (ii) together
imply (b).

Conversely, it is easy to see that (a) and (b) together imply (i), and (a) implies (ii). ��
Definition 2.3 Let A = (ai j ) be an everywhere positive semi-definite, n × n matrix-valued
function on U . A compact function U ∈ C1(U) with essential upper bound ρM is said to be
of the class B∗(A) if there exist a ρm ∈ (0, ρM ) and a positive function H on [ρm, ρM ) such
that

H(ρ) ≤ ai j (x)∂iU (x)∂ jU (x), x ∈ U−1(ρ), ρ ∈ [ρm, ρM ), and (2.1)
∫ ρM

ρm

1

H(ρ)
dρ < +∞. (2.2)

2.2 Lyapunov-Like Functions

Below, we introduce two types of Lyapunov-like functions with respect to the stationary
Fokker–Planck equation (1.4) or the adjoint Fokker–Planck operator L. Each type will play
an important role to the existence of stationary measures.

Definition 2.4 Let U be a C2 compact function in U with essential upper bound ρM .

1. U is called a Lyapunov function in U with respect to (1.4) orL, if there is a ρm ∈ (0, ρM ),
called essential lower bound of U , and a constant γ > 0, called Lyapunov constant of
U , such that

LU (x) ≤ −γ, x ∈ Ũ =: U \ �̄ρm , (2.3)

where Ũ is called the essential domain of U .
2. U is called a weak Lyapunov function in U with respect to (1.4) or L, if it satisfies (2.3)

in an essential domain Ũ = U \ �̄ρm with γ = 0. We still refer to such ρm as an essential
lower bound of U .

2.3 Stationary Solutions in a Bounded Domain

Let � be a bounded domain in R
n and consider the stationary Fokker–Planck equation (1.4)

in �. Assume that A = (ai j ) is uniformly elliptic in �, i.e., there are positive constants λ,


such that

λ|ξ |2 ≤ ai j (x)ξiξ j ≤ 
|ξ |2, ξ ∈ R
n, x ∈ �. (2.4)

As shown in [8, Thm. 1.2], by imposing Dirichlet boundary condition u|∂� = 1, positive
weak solutions of (1.4) in � can be obtained from classical works of Trudinger on the
existence of weak solutions [24, Thm. 3.2] and weak maximal principle [25, Thm. 7] of
linear elliptic equations with measurable coefficients. More precisely, the following holds.
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Lemma 2.1 [8] Let � be a bounded domain in R
n. Assume that A = (ai j ) is uniformly

elliptic in � and ai j ∈ W 1,p(�), V i ∈ L p(�), i, j = 1, . . . , n, for some p > n. Then (1.4)
admits a positive weak solution u ∈ W 1,p(�), with � ≡ U .

Remark 2.1 We note that if � is a C2 domain and {ai j } ⊂ C2(�̄), {V i } ⊂ C(�̄) in the
operator L , then the above lemma can be alternatively proved by imposing a homogeneous
Robin boundary condition and by using a result of Amann [2] concerning the principle
eigenvalues of general elliptic operators. In fact, consider the equation

Lu = ∂i (a
i j (x)∂ j u + bi (x)u) = 0, x ∈ �,

with the boundary condition

Bu =: ∂ j (a
i j u)νi − (V iνi )u = 0, x ∈ ∂�, (2.5)

where bi = ∂ j ai j − V i , i = 1, . . . , n, and (νi ) denotes the field of unit outward normal
vectors on ∂�. Since, for each x ∈ ∂�, (ai j (x)νi (x)) is transversal to the tangent vector of
∂� at x , the boundary condition (2.5) is of Robin type. Let

T : Dom(T ) ↪→ L p(�) −→ L p(�) : Tu = Lu,

be the linear operator with domain

Dom(T ) = {
u ∈ W 2,p(�) : Bu|∂� = 0

}
.

By [2, Thm. 12.1], T has a principle eigenvalue λ0, i.e, λ0 is a simple eigenvalue with
positive eigenfunction in �̄. Let u0 ∈ Dom(T ) be such an eigenfunction. Then

λ0

∫

�

u0(x) dx =
∫

�

Lu0(x) dx =
∫

∂�

Bu0 ds = 0.

Hence λ0 = 0, i.e., u0 is a positive solution of the equation Lu = 0. Thus, (1.4) with �

in place of U admits a solution u =: u0(
∫
�
u0dx)−1 ∈ W 2,p(�).

2.4 Harnack Inequality

Consider the divergence operators of the form

Lu := ∂i

(
ai j (x)∂ j u + bi (x)u

)
+ ci (x)∂i u + d(x)u,

where ai j , bi , ci , d , i, j = 1, . . . , n, aremeasurable functions on a bounded domain� ⊂ R
n ,

A = (ai j ) is almost everywhere positive definite in � and satisfies

λ(x)|ξ |2 ≤ ai j (x)ξiξ j ≤ 
(x)|ξ |2, ξ ∈ R
n, x ∈ �,

for some positive, integrable functions λ−1, 
 on �.
Let

g(x) := bi j (x)(b
i (x)b j (x) + ci (x)c j (x)) + |d(x)|,

where (bi j ) = (ai j )−1 and assume that g is integrable on �. Denote H1(A,�) as the
completion of C∞(�) under the inner product

〈u, v〉 =
∫

�

ai j uxi vx j dx, u, v ∈ C∞(�).
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We note by [24, Prop. 1.3] that if λ−1, 

λ

∈ L∞(�), then H1(A,�) = W 1,2(A,�) =
H1(�), whereW 1,2(A,�) denotes the class of strongly differentiable functions u in � with
〈u, u〉 < ∞.

Theorem 2.1 (Harnack Inequality, Trudinger [24, Cor. 5.3] ) Let u ∈ H1(A,�) be a non-
negative solution of Lu = 0 in �. Assume that

λ−2 ∈ L p(�), 
, g ∈ Lq(�),
1

p
+ 1

q
<

2

n
.

Then for any �′ ⊂⊂ �,

sup
x∈�′

u(x) ≤ C inf
x∈�′ u(x),

where C > 0 is a constant depending only on n, p, q, |λ−1|L p(�), |
|Lq (�), |g|Lq (�) and
dist(�′, ∂�).

2.5 Regularity of Stationary Measures

The following regularity result on stationary measures of Fokker–Planck equations is proved
in [6].

Theorem 2.2 (Bogachev–Krylov–Röckner [6]) Assume that (A) holds and (ai j ) is every-
where positive definite in U . Then any stationary measureμ of (1.3) admits a positive density
function u ∈ W 1,p

loc (U), i.e., dμ(x) = u(x)dx.

3 Integral Identity and Derivative Formula

In this section, we recall from [17] a fundamental integral identity to be used in the level
set method for conducting measure estimates of stationary measures of (1.3). This identity
plays a crucial role in capturing information of a weak stationary solution in each sublevel
set of a Lyapunov-like function from its boundary.

Theorem 3.1 (Integral Identity, [17, Thm. 2.1]) Assume that (A) holds and let u ∈ W 1,p
loc (U)

be a weak solution of (1.4). Then for any generalized Lipschitz domain �′ ⊂⊂ U and any
function F ∈ C2(�̄′) with F |∂�′ =constant,

∫

�′
(LF)u dx =

∫

∂�′
(ai j∂i Fν j )u ds, (3.1)

where for a.e. x ∈ ∂�′, (ν j (x)) denotes the unit outward normal vector of ∂�′ at x.

Proof For the reader’s convenience, we sketch the proof.
Let F |∂�′ = c and �∗ be a smooth domain such that �′ ⊂⊂ �∗ ⊂⊂ U . Consider the

function

F̃(x) =
{
F(x) − c, x ∈ �′,
0, x ∈ U \ �′

and its regularizations F̃h , 0 < h < 1. Then F̃h ∈ C∞
0 (U), supp(F̃h) ⊂ �̄∗ as 0 < h � 1,

and F̃h → F̃ in W 1,q(�∗), as h → 0, for any 0 < q < ∞. Since u is a weak solution of
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(1.4) in U ,
∫

U
(ai j∂2i j F̃h + V i∂i F̃h)u dx = 0, as 0 < h � 1.

Since (A) holds and u ∈ W 1,p
loc (U), one can show that, as h → 0,

∫

U
(ai j∂2i j F̃h)u dx →

∫

�′
uai j∂2i j F dx −

∫

∂�′
uai j∂i Fν j ds,

∫

U
(V i∂i F̃h)u dx →

∫

�′
uV i∂i F dx .

Hence (3.1) holds. ��

Remark 3.1 1. We note that the theorem does not require (ai j ) to be even positive semi-
definite. It also holds for less regular (ai j ), (V i ), and u, as long as ai j u ∈ W 1,α

loc (U) and
V iu ∈ Lα

loc(U), ∀i, j,= 1, 2, . . . , n, for some α > 1.
2. We recall from [17] that a bounded open set � in R

n is called a generalized Lipschitz
domain if (i) � is a disjoint union of finitely many Lipschitz sub-domains; and (ii)
intersections of boundaries among these Lipschitz sub-domains only occur at finitely
many points. A generalized Lipschitz domain need not be a Lipschitz domain in the
usual sense because the boundary need not be orientable. As a simple example, consider
the function U : R2 → R:

U (u, z) =
⎧
⎨

⎩

−u2 + z2 + 1, |u| ≤ 1,
(u − 1)2 + z2, u > 1,
(u + 1)2 + z2, u < −1.

(3.2)

Let � ≡ �1 be the sublevel set of U corresponding to ρ = 1. Then � has only one
boundary component U−1(1) which is the union of two closed Lipschitz curves inter-
secting at 0 (i.e., the boundary self-intersects at 0). We note that ∂� = U−1(1) encloses
two disjoint connected open sets, and hence � itself is not a single Lipschitz domain but
rather a generalized Lipschitz domain.

4 Stationary Measures Under Lyapunov Condition

We will show Theorem A in this section. In order to apply general Lyapunov functions
as defined in Definition 2.4, our approach differs from existing works on the existence of
stationarymeasures of (1.3). In particular, the integral identity (3.1) contained in Theorem 3.1
will play an important role in our study.

4.1 Measure Estimates via Level Set Method

We first recall from [17] the following measure estimates with respect to a regular stationary
measure of (1.3) in the essential domain of a Lyapunov function. As to be seen in a separate
work [20], such estimateswill also be useful in showing the relative sequential compactness of
a family of stationary measures associated with a so-called null family of diffusion matrices,
as well as in characterizing the concentration of these measures as noises tend to zero.
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Lemma 4.1 [17, Thm. A (a)] Assume that (A) holds and let U be a Lyapunov function in U
with Lyapunov constant γ and essential lower bound ρm and upper bound ρM. Then for any
weak solution u ∈ W 1,p

loc (U) of (1.4) and any ρ0 ∈ (ρm, ρM ),

μ(U \ �ρ0) ≤ γ −1Cρm ,ρ0 |A|C(�ρ0\�ρm )|∇U |2C(�ρ0\�ρm )μ(�ρ0 \ �ρm ), (4.1)

whereμ is themeasurewith density function u, i.e.,dμ(x) = u(x)dx, the constantCρm ,ρ0 > 0
depends only on ρm, ρ0, and �ρ denotes the ρ-sublevel set of U for each ρ ∈ [ρm, ρM ).

Proof The lemma follows immediately from [17, Thm. A (a)] by taking

H(ρ) = sup
x∈U−1(ρ)

(ai j (x)∂iU (x)∂ jU (x))

there. The original proof of [17, Thm. A (a)] uses the approximation of U by a sequence
of Morse functions because its sublevel sets �ρ , ρ ∈ (ρm, ρM ), need not be generalized
Lipschitz domains, though by Proposition 2.2 we always have �ρ ⊂⊂ U , ρ ∈ (ρm, ρM ). In
order to highlight the main ideas of using the integral identity (3.1), we give the proof below
for the special case that ∇U �= 0 everywhere in the essential domain U \ �̄ρm of U . For
this special case, we note that each ∂�ρ agrees with the level setU−1(ρ) which is also a C2

hypersurface with ∇U (x)
|∇U (x)| , x ∈ ∂�ρ , being the unit outward normal vectors.

For given ρ0 ∈ (ρm, ρM ), consider a fixedmonotonically increasing functionφ ∈ C2(R+)

satisfying

φ(t) =
{
0, if t ∈ [0, ρm];
t, if t ∈ [ρ0,+∞).

Then φ′(t) = 0, t ∈ [0, ρm] and φ′′(t) = 0, t ∈ [0, ρm] ∪ [ρ0,+∞).
For any ρ ∈ (ρ0, ρM ), an application of Theorem 3.1 with F = φ ◦ U and �′ = �ρ

yields that
∫

�ρ

(ai j∂2i jφ(U ) + V i∂iφ(U ))u dx =
∫

∂�ρ

uai j∂iφ(U )ν j ds,

i.e.,
∫

�ρ

φ′(U )(LU )u dx +
∫

�ρ

φ′′(U )(ai j∂iU∂ jU )u dx

=
∫

∂�ρ

φ′(U )uai j∂iUν j ds =
∫

∂�ρ

uai j∂iUν j ds, (4.2)

where (ν j ) = ν = ν(x), being the unit outward normal vector at x ∈ ∂�ρ , equals
∇U (x)
|∇U (x)| .

Since

ai j (x)∂iU (x)ν j (x) ≥ 0, x ∈ ∂�ρ,

(4.2) yields that
∫

�ρ

φ′(U )(LU )u dx +
∫

�ρ

φ′′(U )(ai j∂iU∂ jU )u dx ≥ 0.

By the definition of φ, it follows that
∫

�ρ\�ρm

φ′(U )(LU )u dx ≥ −
∫

�ρ\�ρm

φ′′(U )(ai j∂iU∂ jU )u dx .
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Letting ρ → ρM in the above, we obtain
∫

U\�ρm

φ′(U )(LU )u dx ≥ −
∫

U\�ρm

φ′′(U )(ai j∂iU∂ jU )u dx . (4.3)

Using the facts φ′(t) ≥ 0, φ′(t) = 1 as t ≥ ρ0, and that U is a Lyapunov function, we
have

∫

U\�ρm

φ′(U )(LU )u dx ≤ −γ

∫

U\�ρm

φ′(U )u dx ≤ −γμ(U \ �ρ0). (4.4)

Denote Cρm ,ρ0 = maxρm≤ρ≤ρ0 |φ′′(ρ)|. We also have
∫

U\�ρm

|φ′′(U )|(ai j∂iU∂ jU )u dx =
∫

�ρ0\�ρm

|φ′′(U )|(ai j∂iU∂ jU )u dx

≤ Cρm ,ρ0 |A|C(�ρ0\�ρm )|∇U |2C(�ρ0\�ρm )μ(�ρ0 \ �ρm ). (4.5)

The lemma now follows from (4.3) to (4.5). ��
4.2 Proof of Theorem A

To prove the theorem, we let U be a Lyapunov function in U with Lyapunov constant γ ,
essential lower bound ρm and upper bound ρM . We also denote by �ρ the ρ-sublevel set of
U .

Let ρk ∈ (ρm, ρM ), k = 1, 2, . . ., be an increasing sequence such that ρk → ρM as
k → ∞. We denote �k = �ρk and �k = ∂�ρk , k = 1, 2, . . .. Since �k → ∂U by
Proposition 2.2, for any domain �∗ ⊂⊂ U we have that �∗ ⊂ �k as k � 1.

Since (ai j ) is continuous and everywhere positive definite in U and �k ⊂⊂ U by Propo-
sition 2.2 for each k, (ai j ) is uniformly elliptic in �k . Hence by Lemma 2.1, for each k, the
stationary Fokker–Planck equation (1.4) with �k in place of U admits a positive solution
uk ∈ W 1,p(�k) ↪→ C(�̄k). For each k, we extend uk to U by setting uk ≡ 0 in U \ �k , and
still denote it by uk .

For any fixed domain �∗ ⊂⊂ U , we let λ,
, and η be positive constants such that

λ|ξ |2 ≤ ai j (x)ξiξ j , ξ ∈ R
n, x ∈ �∗,

|ai j |W 1,p(�∗) ≤ 
, |V i |L p(�∗) ≤ η, i, j = 1, . . . , n.

Then for any two domains B∗, B∗ with B∗ ⊂⊂ B∗ ⊂⊂ �∗, an application of Harnack
inequality (Theorem 2.1) to � = �∗, �′ = B∗ with 2q = p, bi = ∂ j ai j − V i , ci = d ≡ 0,
i = 1, . . . , n, yields that

sup
B∗

uk ≤ C1 inf
B∗ uk,

for some constant C1 > 0 depending only on n, p, λ, 
, η, and dist(B∗, ∂�∗), in particular,
not on k. For k � 1, since

|B∗| inf
B∗ uk ≤

∫

B∗
uk dx ≤

∫

�k

uk dx ≡ 1,

where |B∗| stands for the volume of B∗, we have

inf
B∗ uk ≤ |B∗|−1.
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This implies that

sup
B∗

uk ≤ C1|B∗|−1, k � 1. (4.6)

For each k � 1, we also have by Hölder estimate that uk ∈ Cα(B∗) and

|uk |Cα(B∗) ≤ C2|uk |L2(B∗) (4.7)

for some constants 0 < α < 1,C2 > 0which depend only on n, p,λ,
,η, and dist(B∗, ∂B∗).
It follows from (4.6), (4.7) that

|uk |Cα(B∗) ≤ C1C2|B∗|− 1
2 , k � 1.

Since B∗, B∗,�∗ are arbitrary, the sequence {uk} is equi-continuous on any compact
subset of U . By taking a subsequence if necessary, we assume without loss of generality that
{uk} converges, as k → ∞, to some non-negative function ũ ∈ C(U) under the compact-
open topology of C(U). For any given f ∈ C∞

0 (U), we let k � 1 such that supp( f ) ⊂ �k ,
i.e., f ∈ C∞

0 (�k). Then
∫

U
L f (x)uk(x) dx = 0, as k � 1.

Since uk → ũ uniformly on supp( f ) as k → ∞, we have
∫

U
L f (x)ũ(x) dx = 0.

Moreover, since
∫
U ukdx = ∫

�k
uk dx ≡ 1 and uk ≥ 0, it follows from Fatou’s Lemma

that
∫

U
ũdx =

∫

U
lim
k→∞ ukdx ≤ limk→∞

∫

U
ukdx = 1.

Thus, if ũ is not identically zero in U , then μ with dμ(x) = ũ(x)∫
U ũdx

dx is a stationary

measure of (1.3), and we have by Theorem 2.2 that μ admits a positive density function
u ∈ W 1,p

loc (U).
We now show that ũ �≡ 0 in U . For k ≥ 1, since the set �k contains �̄ρm ,U is a Lyapunov

function in �k with respect to L having the essential domain �k \ �̄ρm , Lyapunov constant
γ , and essential lower bound ρm and upper bound ρk . For fixed ρ0 ∈ (ρm, ρ1) ⊂ (ρm, ρk),
an application of Lemma 4.1 to μk with dμk(x) = ukdx on �k for every k ≥ 1 yields that

μk(�k \ �ρ0) ≤ γ −1C∗μk(�ρ0 \ �ρm ) ≤ γ −1C∗|�ρ0 \ �ρm ||uk |C(�ρ0\�ρm ),

where C∗ = Cρm ,ρ0 |A|C(�ρ0\�ρm )|∇U |2C(�ρ0\�ρm ) for a positive constant Cρm ,ρ0 depending

only on ρm, ρ0 as in Lemma 4.1. It follows that

1 ≡ μk(�k) = μk(�k \ �ρ0) + μk(�ρ0)

≤ γ −1C∗|�ρ0 \ �ρm ||uk |C(�ρ0\�ρm ) + |�ρ0 ||uk |C(�ρ0 ). (4.8)

If ũ ≡ 0 in U , then uk → 0 as k → ∞ uniformly on �ρ0 , leading to a contradiction to
(4.8).

The uniqueness follows from [13, Example 5.1], where it is shown that if there exists an
unbounded function U ∈ C2(U) satisfying: (i) each set �ρ ∪ U−1(ρ), ρ > 0, is compact;
(ii) for a constant α > 0 and a compact set K ,

LU (x) ≤ αU (x), a. e. x ∈ U \ K , (4.9)
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then (1.4) admits at most one stationary measure in U . Thus, by taking U as the Lyapunov
function when it is unbounded and also taking K as �̄ρm , we obtain the uniqueness result. ��
Remark 4.1 When dealing with a stochastic system over a bounded domain, Theorem A is
particularly useful in showing the existence of stationary measures when the diffusion matrix
becomes degenerate on the boundary, for which Lemma 2.1 fails to apply. For example,
consider

dx = bxdt + √
2(1 − x2)dW, x ∈ U = (−1, 1), (4.10)

where b < 0 is a constant. We note that the noise coefficient vanishes at the boundary of U .
Consider U (x) = − log(1 − x2), x ∈ (−1, 1). It is clear that U (x) → +∞, as |x | → 1,

and

LU (x) = 2 + 2x2 + 2bx2

1 − x2
, x ∈ (−1, 1).

Hence, LU (x) → −∞, as |x | → 1, i.e., U is in fact an unbounded Lyapunov function
with respect to the stationary Fokker–Planck equation associated with (4.10). It follows from
Theorem A that the Fokker–Planck equation associated with (4.10) has a unique stationary
measure in U .

4.3 The Case of Rn

Applying Theorem A to U = R
n , we obtain the following result which generalizes the one

contained in [10].

Corollary 4.1 Assume that (A) holds in R
n and (ai j ) is everywhere positive definite in R

n.
Then the following holds.

(a) If there is a compact function U ∈ C2(Rn) satisfying (1.9), then the Fokker–Planck
equation (1.3) has a regular stationary measure in R

n with positive density function
lying in the space W 1,p

loc (Rn).
(b) If there is a function U satisfying both (1.9) and (1.10), then a stationary measure as in

(a) exists and is also unique.

Proof Part (a) follows immediately from Theorem A.
Part (b) is precisely the main result stated in [10]. By (1.10), we let c be a constant such

that U + c ≥ 0 on R
n . Then by Proposition 2.1, U + c becomes a compact function on R

n .
Since U + c clearly satisfies (1.9), (b) follows from (a). ��
Remark 4.2 (1) In applyingTheoremAorCorollary 4.1 to a particular stochastic system, one

often need to construct a Lyapunov function. Just like in the case of deterministic systems,
such a Lyapunov function is usually constructed (for the sake of using undetermined
coefficients technique) as a polynomial which often ends up with a finite Lyapunov
constant. To give an example, consider

dx = − bx

1 + x2
dt + √

2 dW, x ∈ R, (4.11)

where b > 1 is a constant.
We find that the functions I±(x) defined in the Appendix (Proposition 6.1) are constant

multiples of (1+ x2)− b
2 in the present situation. It is clear that (6.2) is satisfied and hence

by Proposition 6.1 there exists an unbounded Lyapunov function U with respect to the
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stationary Fokker–Planck equation associated with (4.11). Therefore, by Theorem A or
Corollary 4.1, the Fokker–Planck equation associated with (4.11) admits a unique regular
stationary measure.
Now let b ∈ (1, 3). If one would prefer to have a polynomial Lyapunov functionU , then
the Lyapunov constant is always finite. To see this, we note that forU being a polynomial
Lyapunov function, it has to be of even degree with a positive leading coefficient because
it need to satisfy (1.10). Therefore, we may assume without loss of generality that U =
x2p + P(x), x ∈ R, where p ≥ 1 is a natural number and P is a polynomial of degree
k < 2p. A direct calculation yields that

LU = 2px2p−2
(

2p − 1 − bx2

1 + x2

)

+ O
(
|x |k−2

)
, |x | � 1.

As x → ∞, the coefficient of x2p−2 tends to 2p(2p−1−b), which must be non-positive
for U being a Lyapunov function. Since b ∈ (1, 3), it cannot be zero, and it is negative
only when p = 1, in which case we see that γ =: b − 1 is a Lyapunov constant.

(2) It is already known that a sufficiently large noise can stabilize an unstable equilibrium of
a deterministic system. By choosing an appropriate Lyapunov function, one can in fact
quantify the optimal lower bound of amplitudes of diffusions needed for the stabilization
process. For example, consider the stochastic differential equation

dx = bxdt +
√
2σ(x2 + 1) dW, x ∈ R, (4.12)

where b > 0 is a fixed constant. We note that the unperturbed ODE has a unique equi-
librium {0} which is unstable and repelling.
When σ > b, we claim that the Fokker–Planck equation associated with (4.12) has a
unique stationary measure. Hence in this parameter range the diffusion stabilizes the
unperturbed ODE. To show the claim, we consider U (x) = log(x2 + 1). Then

LU (x) = −2 · (σ − b)x2 − σ

x2 + 1
.

HenceLU (x) < −(σ −b) as |x | � 1. Therefore,U is an unbounded Lyapunov function
with respect to the stationary Fokker–Planck equation associated with (4.12). The claim
now follows from Corollary 4.1.
When 0 < σ ≤ b, in fact, it can be shown that (4.12) admits no stationary measure
(see [18]), i.e., b is the optimal lower bound of amplitudes of diffusions needed for this
particular stabilization process.

5 Stationary Measures Under Weak Lyapunov Condition

In this section, we will study the existence of regular stationary measures under a weak
Lyapunov condition. Theorem B will be proved.

5.1 Measure Estimates w.r.t. Weak Lyapunov Function

We recall the following measure estimate from [17].
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Lemma 5.1 [17, Thm. A (c)] Let (A) hold in U . Assume that (1.4) admits a weak Lyapunov
function U in U with essential lower bound ρm and upper bound ρM such that

H1(ρ) ≤ ai j (x)∂iU (x)∂ jU (x) ≤ H2(ρ), x ∈ U−1(ρ), ρ ∈ [ρm, ρM ) (5.1)

for some positive function H1 and continuous function H2 on [ρm, ρM ). Then for any weak
solution u ∈ W 1,p

loc (U) of (1.4) and any ρ0 ∈ (ρm, ρM ),

μ(U \ �ρm ) ≤ μ(�ρ0 \ �ρm )e
∫ ρM
ρ0

1
H̃(ρ)

dρ
, (5.2)

whereμ is the probability measure with density function u, i.e., dμ(x) = u(x)dx,�ρ denotes
the ρ-sublevel set of U for each ρ ≥ 0, and H̃(ρ) = H1(ρ)

∫ ρ

ρm

1
H2(s)

ds, ρ ∈ [ρm, ρM ).

This lemma is proved using Theorem 3.1 and a derivative formula contained in [17,
Thm. 2.2]. We refer the reader to [17] for details.

5.2 Proof of Theorem B

To prove the theorem, we letU denote the weak Lyapunov function in U with respect to (1.4).
Without loss of generality, we may assume that for U the essential lower bound ρm and the
constant ρm appearing in Definition 2.3 are the same. Let {ρk} ⊂ (ρm, ρM ) be a sequence
such that ρk → ρM as k → ∞, where ρM denotes the essential upper bound ofU . As in the
proof of Theorem A, we obtain a sequence of {uk} such that, for each k, uk is a weak solution
of (1.4) in the domain �k =: �ρk , and, as k → ∞, uk converges under the compact-open
topology of C(U) to a non-negative function ũ ∈ C(U) which satisfies

∫
U ũ(x) dx ≤ 1 and

∫

U
L f (x)ũ(x) dx = 0, for all f ∈ C∞

0 (U).

As argued in the proof of Theorem A, we only need to show that ũ is not identically zero
in U .

For a given ρ0 ∈ (ρm, ρM ), we let k̄ be such that ρk ∈ (ρ0, ρM ) as k ≥ k̄. For each k ≥ k̄,
U remains a weak Lyapunov function with respect to (1.4) in the domain �k with essential
upper bound ρk . SinceU is of the class B∗(A), there is a positive function H which satisfies
the properties (2.1) and (2.2) in Definition 2.3 on [ρm, ρM ). Clearly (5.1) is satisfied with

H1(ρ) =: minx∈U−1(ρ)

(
ai j (x)∂iU (x)∂ jU (x)

)
,

H2(ρ) =: maxx∈U−1(ρ)

(
ai j (x)∂iU (x)∂ jU (x)

)
, ρ ∈ [ρm, ρM ).

By (2.1), H ≤ H1. It is also clear that H1 and H2 are positive and continuous. For each
k ≥ k̄, applying (5.2) in Lemma 5.1 with uk , �k , ρk in place of u, U , ρM respectively, yields
that

∫

�k\�ρm

uk(x)dx ≤ e
∫ ρk
ρ0

1
H̃(ρ)

dρ
∫

�ρ0\�ρm

uk(x)dx,

i.e.,

1 =
∫

�k

uk(x)dx ≤
∫

�ρm

uk(x)dx + e
∫ ρk
ρ0

1
H̃(ρ)

dρ
∫

�ρ0\�ρm

uk(x)dx, (5.3)

where

H̃(ρ) = H1(ρ)

∫ ρ

ρm

1

H2(s)
ds, ρ ≥ ρ0.
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Let C =:
∫ ρ0

ρm

1

H2(s)
ds. Then C is a positive constant and CH1(ρ) ≤ H̃(ρ), ρ ∈

[ρ0, ρM ). By (2.2) and the fact that H1 ≥ H ,
∫ ρM

ρm

1

H1(ρ)
dρ < +∞. It follows that

∫ ρM

ρ0

1

H̃(ρ)
dρ < +∞. (5.4)

Now, ũ �≡ 0, for otherwise, (5.4) would lead to a contradiction when taking k → ∞ in (5.3).
��

Remark 5.1 (1) From the above proof, we see that (5.4), which appears weaker than (2.2),
is sufficient to conclude Theorem B. But we remark that condition (2.2) is actually
equivalent to (5.4). To show (5.4) implies (2.2), we note that H̃(ρ) ≤ H1(ρ)

∫ ρ

ρm

1
H1(s)

ds,
i.e.,

y′(ρ) ≤ 1

H̃(ρ)
y(ρ), ρ ∈ (ρm, ρM ),

where y(ρ) = ∫ ρ

ρm

1
H1(s)

ds. It follows that, for any ρ0 ∈ (ρm, ρM ),

∫ ρM

ρ0

1

H̃(ρ)
dρ ≥ log

(∫ ρM

ρm

1

H1(s)
ds

)

− log

(∫ ρ0

ρm

1

H1(s)
ds

)

.

Since H1 is positive and continuous on [ρm, ρ0], we have by (5.4) that (2.2) is satisfied
with H = H1.

(2) The condition that U is of the class B∗(A) cannot be removed in Theorem B. As an
example, consider

dx = x

1 + x2
dt + √

2 dW, x ∈ R. (5.5)

Let γ (x) be a given everywhere positive function satisfying
∫ +∞

−∞
γ (x)(1 + x2)

1
2 dx < ∞.

Then by the proof of Proposition 6.1 below, there is a non-negative C2 function U in R

satisfying

LU (x) = U ′′(x) + x

1 + x2
U ′(x) = −γ (x) < 0, |x | � 1 (5.6)

and U (x) → +∞ as x → ∞. Hence by Proposition 2.1, U is a compact function in
R. It follows from (5.6) that U is a weak Lyapunov function with respect to (5.5) in R,
and in fact a strict weak Lyapunov function in the sense that LU (x) < 0 in its essential
domain. But, as to be seen in [18, Example 5.1], the Fokker–Planck equation associated
with (5.5) admits no stationary measure in R.
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Appendix

When U = R, Lyapunov functions can be explicitly classified in the case of non-degenerate
and bounded diffusion. Consider

dx = V (x)dt + √
2a(x)dW, x ∈ R, (6.1)

where V, a are continuous functions, and 0 < a(x) ≤ 
 in R for some constant 
. We
denote the adjoint Fokker–Planck operator associated with (6.1) by LV,a .

Proposition 6.1 LV,a admits a Lyapunov function in R iff there is a continuous function
γ (x) such that for some constant K > 0, inf |x |≥K γ (x) > 0, and

∫ −K

−∞
I−(t)q(t)dt +

∫ +∞

K
I+(t)q(t)dt < ∞, (6.2)

where

I±(x) = e
∫ x
±K p(s)ds, p(x) = V (x)

a(x)
, q(x) = γ (x)

a(x)
.

Moreover, if LV,a admits a Lyapunov function in R, then it also admits an unbounded
Lyapunov function in R.

Proof Suppose U ∈ C2(R) is a Lyapunov function with respect to LV,a . Denote

γ (x) =: −LV,aU (x) = −a(x)U ′′(x) − V (x)U ′(x), x ∈ R. (6.3)

Then γ (x) is continuous inR and there exists a constant K > 0 such that inf |x |≥K γ (x) >

0. We note that (6.3) is equivalent to

U ′′ + p(x)U ′ = −q(x). (6.4)

A direct integration of (6.4) yields that

U (x) =
{
U−(x), x ≤ −K ,

U+(x), x ≥ K ,
(6.5)

where

U±(x) =
∫ x

±K
U ′±(u)du +U±(±K ), (6.6)

and

U ′±(x) = I±(x)−1
(

−
∫ x

±K
I±(t)q(t)dt +U ′±(±K )

)

.

Since U , as a Lyapunov function, must satisfy 0 ≤ U (x) < U (∞) = U (−∞), x ∈ R,
there are sequences x±

i → ±∞ such that ±U ′±(x±
i ) > 0 for all i . It follows that

∫ +∞

K
I+(t)q(t)dt ≤ U ′+(K ), (6.7)

∫ −K

−∞
I−(t)q(t)dt ≤ −U ′−(−K ), (6.8)

i.e., (6.2) holds.
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Conversely, suppose that there is a continuous γ satisfying (6.2) with inf |x |≥K γ (x) > 0
for some constant K > 0. Let U ′±(±K ) be chosen such that both (6.7) and (6.8) are valid
as strict inequalities. For arbitrarily fixed U±(±K ) > 0, we define positive functions U±
through the formula in (6.6) and letU be a positiveC2 function inRwhich is defined by (6.5)
when |x | ≥ K . Then U satisfies the equation (6.3) when |x | > K , hence it is a Lyapunov
function in R with respect to LV,a if it is also a compact function.

We now claim that U (+∞) = U (−∞) = +∞, which implies that U is an unbounded
Lyapunov function. Suppose for contradiction that U+ is bounded. Since U ′+(x) > 0 as
x ≥ K , U+(+∞) exists. It follows that

∞ >

∫ ∞

K
I+(x)−1

(

−
∫ x

K
I+(u)q(u)du +U ′(K )

)

dx

≥
∫ ∞

K
I+(x)−1dx

(

U ′(K ) −
∫ ∞

K
I+(u)q(u)du

)

=: C
∫ ∞

K
I+(x)−1dx .

Since a(t) is bounded from above and γ (t) is bounded away from 0, q(t) is bounded away
from 0. It follows from (6.2) that

∫ ∞

K
I+(x)dx < ∞.

Then by Hölder’s inequality,

∞ =
∫ ∞

K
I+(x)−

1
2 I+(x)

1
2 dx ≤

(∫ ∞

K
I+(x)−1dx

) 1
2
(∫ ∞

K
I+(x)dx

) 1
2

< ∞,

which leads to a contradiction. Similarly, U−(−∞) = +∞. ��
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