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Abstract This paper deals with the entire solutions to a nonlocal dispersal bistable equa-
tion with spatio-temporal delay. Assuming that the equation has a traveling wave front with
non-zero wave speed, we establish the existence of entire solutions with annihilating-fronts
by using the comparison principle combined with explicit constructions of sub- and super-
solutions. These entire solutions constitute a two-dimensional manifold and the traveling
wave fronts belong to the boundary of the manifold. We also prove the uniqueness, Liapunov
stability and continuous dependence on the shift parameters of the entire solutions.

Keywords Entire solution · Traveling wave front · Nonlocal dispersal equation ·
Spatio-temporal delay · Bistable nonlinearity
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1 Introduction

In recent years, in order to investigate the interaction effects of spatial diffusion and time
delay on the evolutionary behavior of biological systems, the study of reaction-diffusion
equations with spatio-temporal delay (or nonlocal delay) has drawn great attention. We refer
the readers to the survey papers of Gourley et al. [10] and Ruan [23] for more results and
references. For example, the following equation is a typical and important model describing
the evolution of matured population of a single species (see [1,2,24]):
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∂u

∂t
= D

∂2u

∂x2
− du(x, t) +

∫ τ

0

∫ +∞

−∞
G(x − y, s)b(u(y, t − s))dyds, (1.1)

where u(x, t) denotes the density of the adult population at location x ∈ R and time t ≥ 0;
D > 0 and d > 0 are the diffusion rate and death rate of the adult population, respectively;
b(·) is related to the birth function. The kernel functionG(x− y, s) represents the probability
of the population which have been born at location y and time t − s, and become mature at
location x and time t .

The basic assumption for the model (1.1) is that the internal interaction of the species is
random and local, i.e. any individual moves randomly between the adjacent spatial locations.
However, in realistic world, the movements and interactions of many species in ecology and
biology can occur between the non-adjacent spatial locations, see e.g. Lee et al. [14] and
Murray [22]. Taking this fact into account, the authors of [34] recently introduced a nonlocal
dispersal equation for a structured population with spatio-temporal delay. The governing
equation is

∂u

∂t
= D

[
(J ∗ u)(x, t) − u(x, t)

] − du +
∫ τ

0

∫ +∞

−∞
G(x − y, s)b(u(y, t − s))dyds, (1.2)

where (J ∗ u)(x, t) − u(x, t) means the “nonlocal dispersal operator” and (J ∗ u)(x, t) is a
“spatial convolution operator” defined by

(J ∗ u)(x, t) :=
∫ +∞

−∞
J (x − y)u(y, t)dy. (1.3)

In biological and epidemiological models, the existence of traveling wave solutions is
an important issue due to their significant applications. Many mathematical results related
to traveling wave solutions have been established in the past decades. For example, the
traveling wave solutions of reaction-diffusion equations with spatial-temporal delay and
nonlocal dispersal equations have been widely studied in the literature [4,5,7,9,24,26]. On
the other hand, from the viewpoint of dynamical systems, it is significant to understand the
dynamical structure of the global attractor (or the maximal invariant set) which consists of
entire solutions, i.e. solutions defined for all time variable t ∈ R. It is clear that the traveling
wave solution is a special type of entire solutions.

Although the travelingwave solutions constitute important parts of the global attractor, the
structure of global attractor could be quite complicated. Recently, many types of front-like
entire solutions have been observed for various evolution equations by mixing the traveling
wave solutions and some spatially independent solutions, see [11–13,15–17,20,21,25,27–
33]. For examples,Hamel andNadirashvili [12] established three-, four- andfive-dimensional
manifolds of entire solutions for the Fisher-KPP equation. In [13], Hamel and Nadirashvili
further obtained an infinite-dimensional manifold of entire solutions for the Fisher-KPP
equation in high-dimensional spaces. Different from those entire solutions obtained in [12,
13], Morita and Ninomiya [21] further constructed other types of entire solutions for some
bistable reaction-diffusion equations. As mentioned in [21], we see that such entire solutions
also play important roles in some other areas, such as, transient dynamics and distinct history
of two solutions, etc..

For Eq. (1.2), Wu and Ruan [34] recently established the existence and qualitative prop-
erties of entire solutions under the monostable assumption of birth functions. However, for
the case of bistable birth functions, the study for entire solutions of (1.2) other than travel-
ing wave solutions still remains open. Therefore, the purpose of this paper is to study the
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entire solutions of (1.2) with bistable birth functions. To this end, we make the following
assumptions for the kernel functions J (·), G(·) and the birth function b(·).
(G) J (−x) = J (x) ≥ 0, G(x, t) = G(−x, t) ≥ 0, ∀x ∈ R, t ∈ [0, τ ],∫ +∞

−∞
J (y)dy =

∫ τ

0

∫ +∞

−∞
G(y, s)dyds = 1 (normalization),

and for any c, λ ≥ 0,
∫ +∞

−∞
e−λy J (y)dy < +∞ and

∫ τ

0

∫ +∞

−∞
e−λ(y+cs)G(y, s)dyds < +∞.

(B1) There exists some K > 0 such that b(·) ∈ C2([0, K ],R), d > max{b′(0), b′(K )},
b(0) = dK − b(K ) = 0, and b′(u) ≥ 0 for u ∈ [0, K ].

It is well-known that a solution u(x, t) of (1.2) is called a traveling wave solution connect-
ing 0 and K with speed c, if u(x, t) = φ(x + ct), x, t ∈ R, for some function φ(·) ∈ C1(R)

(called wave profile) such that φ(−∞) = 0 and φ(+∞) = K . Following the above defini-
tion, we see that (c, φ) satisfies the following equation

cφ′(ξ) = D
[
(J ∗φ)(ξ)−φ(ξ)

]−dφ(ξ)+
∫ τ

0

∫ +∞

−∞
G(y, s)b

(
φ(ξ − y−cs)

)
dyds, (1.4)

where

(J ∗ φ)(ξ) =
∫ +∞

−∞
J (y)φ

(
ξ − y

)
dy.

Under the basic assumptions (G) and (B1), the following condition ensures the existence of
traveling wave fronts of (1.2) connecting 0 and K

(B2) There exists an a ∈ (0, K ) such that d < b′(a), b(u) < du for u ∈ (0, a) and
b(u) > du for u ∈ (a, K ).

In fact, under the assumptions (G), (B1)–(B2) and applying the abstract theory established by
Chen [4] and Fang and Zhao [8], one can show that (1.4) has a monotone solutionU (x + ct)
(called a traveling wave front of (1.2)) connecting 0 and K with wave speed c. Clearly,
U (−x + ct) is also a traveling wave front of (1.2) connecting 0 and K . Moreover, it could be
verified that b(u) = pu2e−αu with p > 0 and α > 0 satisfies the assumptions (B1)–(B2) for
a wide range of the parameters p and α. Such specific birth function has been widely used
in mathematical biology literature, see e.g. Ma and Zou [18] and Wang et al. [29].

Throughout this paper, we always assume that (G) and (B1) hold and (1.2) has a traveling
wave frontU (x + ct) connecting 0 and K with speed c �= 0. Using the traveling wave fronts
U (x+ct+θ1) andU (−x+ct+θ2), where θ1, θ2 are the shift parameters, we first construct a
pair of sub- and supersolutions of (1.2) (see Definition 2.1). Then we establish the existence
of entire solutions of (1.2) by using the comparison principle combining with the sub- and
supersolutions. According to our constructions, one can see that entire solutions behave as
two traveling wave fronts approaching each other from both sides of the x-axis as t → −∞
and annihilating as time increases.We call such entire solutions as “annihilating-front” entire
solutions. In addition, based on the construction of different pairs of sub- and supersolutions
via the derived entire solutions (see Lemmas 4.2 and 4.3), we prove the uniqueness, Liapunov
stability and continuous dependence on the shift parameters θ1, θ2 of the entire solutions.
Here we point out that the assumption (B2) will not be needed in studying the problems on
the entire solutions.
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For convenience, hereinafter we denote 	±
θ (x, t) := U (±x + ct + θ) for any θ ∈ R. Our

main results are stated as follows.

Theorem 1.1 Assume that (G) and (B1) hold and (1.2) has a traveling wave front U (x+ct)
connecting 0 and K with speed c > 0. Then for any θ1, θ2 ∈ R, there exists a unique entire
solution 	θ1,θ2(x, t) of (1.2) which satisfies

lim
t→−∞

{
sup
x≤0

∣∣	θ1,θ2(x, t) − 	−
θ1

(x, t)
∣∣ + sup

x≥0

∣∣	θ1,θ2(x, t) − 	+
θ2

(x, t)
∣∣} = 0. (1.5)

Furthermore, the following statements hold:

(1) ∂t	θ1,θ2(x, t) > 0 and 0 < 	θ1,θ2(x, t) < K for all (x, t) ∈ R
2.

(2) lim
t→+∞ sup

x∈R
|	θ1,θ2(x, t) − K | = 0, lim

t→−∞ sup
|x |≤N0

	θ1,θ2(x, t) = 0 for any N0 ∈ R+, and

lim|x |→+∞ sup
t≥t0

|	θ1,θ2(x, t) − K | = 0 for any t0 ∈ R.

(3) For any (x, t) ∈ R
2, 	θ1,θ2(x, t) converges to

{
	−

θ1
(x, t) as θ2 → −∞,

	+
θ2

(x, t) as θ1 → −∞.

(4) For any θ∗
1 , θ∗

2 ∈ R, there exists (x0, t0) ∈ R
2 depending on θ1, θ2, θ

∗
1 , θ∗

2 such that
	θ∗

1 ,θ∗
2
(·, ·) = 	θ1,θ2(· + x0, · + t0) on R

2.

(5) For any (x, t) ∈ R
2, 	θ1,θ2(x, t) is increasing with respect to (θ1, θ2) ∈ R

2.
(6) 	θ1,θ2(x, t) depends continuously on (θ1, θ2) ∈ R

2.
(7) The entire solution 	θ1,θ2(x, t) is Liapunov stable in the following sense:

∀ε > 0, ∃ δ̄ > 0 such that ∀ϕ ∈ C[0,K ] (see (2.2) for the definition) satisfying

sup
x∈R

∥∥ϕ(x, ·) − 	θ1,θ2(x + x0, · + t0)
∥∥
L∞[−τ,0] < δ̄,

the solution u(x, t;ϕ) of (1.2) with initial value ϕ satisfies
∣∣u(x, t;ϕ) − 	θ1,θ2(x + x0, t + t0)

∣∣ < ε

for any x ∈ R and t ≥ 0, where x0, t0 ∈ R are two constants.

Following the same discussions in Hamel and Nadirashvili [12], we see that the entire
functions 	θ1,θ2(x, t) established by Theorem 1.1 constitute a two-dimensional manifold
M2. In addition, (1.2) possesses two one-dimensional manifolds M−

1 and M+
1 of entire

solutions of traveling wave type, namely 	−
θ1

(x, t) and 	+
θ2

(x, t) respectively. Then, from

(3) of Theorem 1.1, we know that M−
1 (or M+

1 ) belongs to the boundary of M2 by taking
the limit θ2 → −∞ (or θ1 → −∞).

Similar to Theorem 1.1, when c < 0, we can obtain the following results.

Theorem 1.2 Assume that (G) and (B1) hold and (1.2) has a traveling wave front U (x+ct)
connecting 0 and K with speed c < 0. Then for any θ1, θ2 ∈ R, there exists a unique entire
solution 	̃θ1,θ2(x, t) of (1.2) which satisfies

lim
t→−∞

{
sup
x≤0

∣∣	̃θ1,θ2(x, t) − 	+
θ1

(x, t)
∣∣ + sup

x≥0

∣∣	̃θ1,θ2(x, t) − 	−
θ2

(x, t)
∣∣} = 0. (1.6)

Moreover, the assertions (4)–(7) in Theorem 1.1 and the following statements hold:

(1)′ ∂t 	̃θ1,θ2(x, t) < 0 and 0 < 	̃θ1,θ2(x, t) < K for all (x, t) ∈ R
2.
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(2)′ lim
t→+∞ sup

x∈R
	̃θ1,θ2(x, t) = 0, lim

t→−∞ sup
|x |≤N1

|	̃θ1,θ2(x, t) − K | = 0 for any N1 ∈ R+ and

lim|x |→+∞ sup
t≥t1

	̃θ1,θ2(x, t) = 0 for any t1 ∈ R.

(3)′ For any (x, t) ∈ R
2, 	̃θ1,θ2(x, t) converges to

{
	+

θ1
(x, t) as θ2 → +∞,

	−
θ2

(x, t) as θ1 → +∞.

Remark 1.3 (1) Here we note that Theorem 1.2 is a consequence of Theorem 1.1. In fact, let
us denote c̃ := −c > 0 and Ũ (x + c̃t) := K −U (−(x + c̃t)) = K −U (−x + ct). Then,
Ũ (−∞) = 0, Ũ (+∞) = K , and Ũ (x + c̃t) is an increasing traveling wave solution of
the following equation

∂v

∂t
= D[(J ∗v)(x, t)−v(x, t)]−dv+

∫ τ

0

∫ +∞

−∞
G(x− y, s)b̃(v(y, t−s))dyds, (1.7)

where b̃(v) := b(K ) − b(K − v). Clearly, b̃(·) satisfies the condition (B1). Then it
follows from Theorem 1.1 that there exists an entire solution W (x, t) of (1.7) such that

lim
t→−∞{sup

x≤0
|W (x, t)− Ũ (−x + c̃t − θ1)|+ sup

x≥0
|W (x, t)− Ũ (x + c̃t − θ2)|} = 0. (1.8)

Denote 	̃θ1,θ2(x, t) := K − W (x, t). Since 	+
θ1

(x, t) = K − Ũ (−x + c̃t − θ1) and

	−
θ2

(x, t) = K − Ũ (x + c̃t − θ2), according to (1.8), we see that 	̃θ1,θ2(x, t) is an entire
solution of (1.2) which satisfies the statement of Theorem 1.2. Therefore, in the following
of this work, we only prove Theorem 1.1.

(2) We prove the main results under the assumption that (1.2) has a bistable traveling wave
front with non-zero wave speed. Due to the non-zero wave speed, we can establish the
entire solutions by constructing an appropriate pair of sub- and supersolution of (1.2)
(see Lemmas 3.2 and 3.3). However, when the wave speed is zero, there occurs the
propagation failure or pinning phenomenon for the wave front of (1.2). This fact causes
the construction of sub- and supersolutions becoming very difficult. We will consider
this problem in future research. Moreover, it is also an interesting and important problem
to consider the sign of wave speed of the bistable traveling wave front of (1.2).

The rest of the paper is organized as follows. In Sect. 2, we first establish the existence and
comparison principle for solutions of the Cauchy problem of (1.2). Then we investigate the
asymptotic behavior of the traveling wave fronts at±∞. Sect. 3 is devoted to the construction
of a pair of sub- and supersolution of (1.2). Using the sub- and supersolutions and comparison
principle, we first prove the existence and qualitative properties of entire solutions in Sect.
4. Based on the construction of different pairs of sub- and supersolutions via the derived
entire solutions, the uniqueness, Liapunov stability and continuous dependence on the shift
parameters of the entire solutions are then proved.

2 Preliminaries

Wefirst establish the existence and comparison principle for solutions of the Cauchy problem
of (1.2). Then we investigate the asymptotic behavior of the traveling wave fronts at ±∞. It
could be seen that the asymptotic decay rates of the traveling wave fronts play an important
role in the constructions of sub- and supersolutions of (1.2) (see Lemma 3.2).

Let us define b̂(·) : [0, 2K ] → R by b̂(u) :=
{
b(u), u ∈ [0, K ],
b(K ) + b′(K )(u − K ), u ∈ [K , 2K ].
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Obviously, b̂(u) is an extension of b(u), b̂′(u) ≥ 0 and∣∣b̂′(u1) − b̂′(u2)
∣∣ ≤ max

u∈[0,K ]
∣∣b′′(u)

∣∣|u1 − u2|, for u1, u2 ∈ [0, 2K ].

For the sake of convenience, we still denote b̂(u) by b(u) in the remainder of this paper.

2.1 Cauchy problem and comparison principle

Let X be the Banach space of all bounded and uniformly continuous functions fromR into R
with the supremum norm ‖ · ‖X and C = C([−τ, 0], X) be the Banach space of continuous
functions from [−τ, 0] into X with the supremum norm. Then we denote the following
spaces:

X[0,K ] :={
ϕ ∈ X : ϕ(x) ∈ [0, K ], x ∈ R

}
, (2.1)

C[0,K ] :={
ϕ ∈ C : ϕ(x, s) ∈ [0, K ], x ∈ R, s ∈ [−τ, 0]}. (2.2)

As usual, we identify an element ϕ ∈ C as a function from R × [−τ, 0] into R defined by
ϕ(x, s) = ϕ(s)(x). For any continuous function u(·) : [−τ, ) → X ,  > 0, we define
ut ∈ C, t ∈ [0, ) by ut (s) = u(t + s), s ∈ [−τ, 0]. Then t → ut (·) is a continuous function
from [0, ) to C. Define F[·] : C[0,K ] → X by

F[ϕ](x) := (
J ∗ ϕ

)
(x, 0) +

∫ τ

0

∫ +∞

−∞
G(x − y, s)b

(
ϕ(y,−s)

)
dyds.

It is easy to see that F[·] : C[0,K ] → X is globally Lipschitz continuous and T (t) := e−(D+d)t

is a linear semigroup on X . Then the definitions of super- and subsolutions of (1.2) are given
as follows.

Definition 2.1 A continuous function u(·) : [−τ, ) → X[0,K ],  > 0, is called a superso-
lution (or a subsolution) of (1.2) on [0, ) if

u(t) ≥ (or ≤) T (t − s)u(s) +
∫ t

s
T (t − r)F[ur ]dr

for any 0 ≤ s < t < .

Applying the theory of abstract functional differential equations [19, Corollary5], we have
the following result (see also [34]).

Lemma 2.2 Assume that (G) and (B1) hold and ϕ(·) is the Cauchy data of Eq. (1.2). We
have the following results.

(1) For any ϕ ∈ C[0,K ], (1.2) has a classical and unique solution u(x, t;ϕ) satisfying 0 ≤
u(x, t;ϕ) ≤ K for (x, t) ∈ R × (0,∞).

(2) Let u−(x, t) and u+(x, t) be a pair of sub- and supersolutions of (1.2) on R× [−τ,∞)

such that u−(x, s) ≤ u+(x, s) for (x, s) ∈ R×[−τ, 0], then 0 ≤ u−(x, t) ≤ u+(x, t) ≤
K for (x, t) ∈ R × [0,∞).

2.2 Asymptotic behavior of traveling wave fronts

By elementary computations, the characteristic functions of the profile equation (1.4) with
respect to the equilibria 0, K can be represented by

1(λ) := cλ − D
[J (λ) − 1

] + d − b′(0)G(λ),

123



J Dyn Diff Equat (2017) 29:409–430 415

2(λ) := cλ − D
[J (λ) − 1

] + d − b′(K )G(λ),

respectively, where

J (λ) :=
∫ +∞

−∞
e−λy J (y)dy and G(λ) :=

∫ τ

0

∫ +∞

−∞
G(y, s)e−λ(y+cs)dyds.

Since d > max{b′(0), b′(K )}, one can easily obtain the following result.

Lemma 2.3 Assume (G) and (B1). The equation  j (λ) = 0 ( j = 1, 2) has two real roots
λ j1 := λ j1(c) < 0 and λ j2 := λ j2(c) > 0 such that  j (λ) > 0 if λ ∈ (λ j1, λ j2), and
 j (λ) < 0 if λ ∈ R \ [λ j1, λ j2].

To establish the asymptotic behavior of traveling wave fronts at ±∞, we first recall the
following Ikehara’s Theorem, see e.g. [3,6].

Theorem 2.4 Let u(ξ) be a positive decreasing function and F(�) := ∫ +∞
0 e−�ξu(ξ)dξ .

If F(�) can be written as F(�) = H(�)(� + �0)
−(k+1), where k > −1, �0 > 0 are two

constants and H(�) is analytic in the strip −�0 ≤ Re� < 0, then

lim
ξ→+∞ u(ξ)e�0ξ /ξ k = H(−�0)/�(�0 + 1).

Here �(·) means the gamma-function.
For convenience, we denote

(
G � φ

)
(ξ) :=

∫ τ

0

∫ +∞

−∞
G(y, s)φ

(
ξ − y − cs

)
dyds, ∀φ ∈ C

(
R, [0, 2K ]). (2.3)

Since G(x, t) = G(−x, t) ≥ 0, ∀x ∈ R, t ∈ [0, τ ], it is clear that
(
G � φ

)
(ξ) =

∫ τ

0

∫ +∞

−∞
G(y, s)φ

(
ξ + y − cs

)
dyds. (2.4)

By Lemma 2.3 and Theorem 2.4, we have the following results.

Lemma 2.5 Assume (G) and (B1). Let U (x + ct) be a traveling wave front of (1.2) con-
necting 0 and K with c ∈ R. Then,

lim
ξ→−∞U (ξ)e−λ12ξ = a1, lim

ξ→−∞U ′(ξ)e−λ12ξ = a1λ12, (2.5)

lim
ξ→−∞

(
G �Um) 1

m (ξ)e−λ12ξ = a1G
1
m
(
mλ12

)
, m = 1, 2, (2.6)

lim
ξ→+∞

(
K −U (ξ)

)
e−λ21ξ = b1, lim

ξ→+∞U ′(ξ)e−λ21ξ = −b1λ21, (2.7)

lim
ξ→+∞

[
K − (G �Um)

1
m (ξ)

]
e−λ21ξ = b1G

1
m
(
mλ21

)
, m = 1, 2, (2.8)

where a1 and b1 are positive constants.

Proof The proof is similar to those of [27, Theorem 3.5] and [3, Theorem 1]. For the sake of
completeness and reader’s convenience, we sketch the outline for assertions (2.5) and (2.6)
in the following three steps. Note that the other assertions can be considered by the same
way.

Step 1. We show that U (ξ) is integrable on (−∞, ξ ′] for some ξ ′ ∈ R.
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Step 2. We show thatU (ξ) = O(eγ ξ ) as ξ → −∞ for some γ > 0.We obtain this assertion
by showing that there exists a γ > 0 such that V (ξ) = O(eγ ξ ) as ξ → −∞, where
V (ξ) := ∫ ξ

−∞ U (s)ds.
Step 3. For 0 < Reλ < γ , let us define a two-sided Laplace transformation of U by

F(λ) :=
∫ +∞

−∞
U (ξ)e−λξdξ.

The first part of assertion (2.5) follows from Lemma 2.3, Theorem 2.4 and a property of
Laplace transformation. In addition, it follows that (2.6) and the second part of (2.5) hold.
The proof is complete. ��

3 Construction of sub- and supersolutions

According to Remark 1.3, we may assume c > 0 in the following of this work. By Lemma
2.5, we know that there exist positive constants k, L , η, μ such that

keλ12ξ ≤ U (ξ) ≤ Leλ12ξ , μU (ξ) ≤ U ′(ξ), ξ ≤ 0, (3.1)

keλ12ξ ≤ (
G �Um) 1

m (ξ) ≤ Leλ12ξ , μ
(
G �Um) 1

m (ξ) ≤ U ′(ξ), ξ ≤ 0, m = 1, 2, (3.2)

μηeλ21ξ ≤ μ
(
K −U (ξ)

)
, μ

[
K − (G �Um)

1
m (ξ)

] ≤ U ′(ξ), ξ ≥ 0, m = 1, 2. (3.3)

In order to construct appropriate sub- and superolutions of (1.2), we give the following
definitions and then introduce two important functions p1(t) and p2(t).

Definition 3.1 (1) Let k, L , η and μ be the constants stated in (3.1)–(3.3), we denote

L1 := max
u∈[0,2K ] b

′(u), L2 := max
u∈[0,K ] |b

′′(u)|,
N := max{μ−1k−1L2L

2, μ−1η−1L2LK }.
(2) For any ρ1 ∈ (−∞, 0], we denote the function

ω(ρ1) := ρ1 − 1

λ12
ln

(
1 + N

c
eλ12ρ1

)
and ω̄ := ω(0) < 0. (3.4)

Since ω(ρ1) is increasing in ρ1 ∈ (−∞, 0], we may denote its inverse function by ρ1 =
ρ1(ω) : (−∞, ω̄] → (−∞, 0]. Then, for any (ω, ω̃) ∈ (−∞, ω̄]2, we further define

ρ2(ω, ω̃) := ω̃ + 1

λ12
ln

(
1 + N

c
eλ12ρ1(ω)

)
,

p̃1(t;ω) := ρ1(ω) + ct − 1

λ12
ln

{
1 + N

c
eλ12ρ1(ω)(1 − ecλ12t )

}
, for t ≤ 0,

p̃2(t;ω, ω̃) := ρ2(ω, ω̃) + ct − 1

λ12
ln

{
1 + N

c
eλ12ρ1(ω)(1 − ecλ12t )

}
, for t ≤ 0.

Elementary computations show that p̃1(t;ω) and p̃2(t;ω, ω̃) satisfy the problems:
{
p̃′
1(t;ω) = c + Neλ12 p̃1(t;ω),

p̃1(0;ω) = ρ1(ω),
and

{
p̃′
2(t;ω, ω̃) = c + Neλ12 p̃1(t;ω),

p̃2(0;ω, ω̃) = ρ2(ω, ω̃).
(3.5)
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Obviously, we have ω̃ − ω = ρ2(ω, ω̃) − ρ1(ω),

p̃2(t;ω, ω̃) − p̃1(t;ω) = ρ2(ω, ω̃) − ρ1(ω) = ω̃ − ω, (3.6)

p̃1(t;ω) − ct − ω = p̃2(t;ω, ω̃) − ct − ω̃ = − 1

λ12
ln

(
1 − r

1 + r
ecλ12t

)
, (3.7)

for t ≤ 0, where r := Nc−1eλ12ρ1(ω).
Moreover, given any (ω1, ω2) ∈ (−∞, ω̄]2, we set

or

p1(t) = p1(t;ω1, ω2) := p̃1(t;ω1), p2(t) = p2(t;ω1, ω2)

:= p̃2(t;ω1, ω2), if ω2 ≤ ω1;
p1(t) = p1(t;ω1, ω2) := p̃2(t;ω2, ω1), p2(t) = p2(t;ω1, ω2)

:= p̃1(t;ω2), if ω1 ≤ ω2.

Then, p2(t) ≤ p1(t) ≤ 0 when ω2 ≤ ω1; and p1(t) ≤ p2(t) ≤ 0 when ω1 ≤ ω2. By (3.7),
there exists a positive constant R0, independent of ω1 and ω2, such that

0 < p1(t) − ct − ω1 = p2(t) − ct − ω2 ≤ R0e
cλ12t , for t ≤ 0.

Using p1(t) and p2(t), we are ready to establish the supersolution of (1.2). For simplicity,
we denote

(G � v)(x, t) :=
∫ τ

0

∫ +∞

−∞
G(y, s)v(x − y, t − s)dyds, ∀v ∈ C

(
R
2, [0, 2K ]).

Lemma 3.2 For any (ω1, ω2) ∈ (−∞, ω̄]2, there exists a T < 0 such that the function
u(x, t) defined by

u(x, t) = U (x + p1(t)) +U (−x + p2(t))

is a supersolution of (1.2) on R × (−∞, T ).

Proof We only consider the case ω1 ≤ ω2, since the other case can be discussed in the same
way. In this case, p1(t) ≤ p2(t) and p′

i (t) = c + Neλ12 p2(t), i = 1, 2, for t ≤ 0. By direct
computations, we have

F(u)(x, t) := ut − D
[
(J ∗ u)(x, t) − u(x, t)

] + du − (
G � b(u)

)
(x, t)

= p′
1(t)U

′(x + p1) + p′
2(t)U

′(−x + p2)

− D
[
(J ∗U )(x + p1) + (J ∗U )(−x + p2) −U (x + p1) −U (−x + p2)

]
+ d

[
U (x + p1) +U (−x + p2)

] − (
G � b(u)

)
(x, t)

= (
p′
1(t) − c

)
U ′(x + p1) + (

p′
2(t) − c

)
U ′(−x + p2) − H(x, t)

= [
U ′(x + p1) +U ′(−x + p2)

][
Neλ12 p2(t) − R(x, t)

]
,

where

and
R(x, t) := H(x, t)/

[
U ′(x + p1) +U ′(−x + p2)

]
H(x, t) := (

G � b(u)
)
(x, t) − (

G � b(U )
)
(x + p1(t)) − (

G � b(U )
)
(−x + p2(t)).

Clearly, pi (t − s) ≤ pi (t) − cs for s ∈ [0, τ ], i = 1, 2. Note that |b′(u1) − b′(u2)| ≤
L2|u1 − u2| for u1, u2 ∈ [0, 2K ]. For any v1, v2 ∈ [0, K ], we have
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∣∣b(v1 + v2) − b(v1) − b(v2)
∣∣ =

∣∣∣
∫ 1

0
v2

[
b′(v1 + θv2) − b′(θv2)

]
dθ

∣∣∣ ≤ L2v1v2.

Then, using Cauchy–Schwarz inequality and (2.3) and (2.4), we obtain

H(x, t) =
∫ τ

0

∫ +∞

−∞
G(y, s)

[
b
(
U (x − y + p1(t − s)) +U (−x+y + p2(t − s)))

− b(U (x + p1(t) − y − cs)) − b(U (−x + p2(t)+y − cs)
)]
dyds

≤
∫ τ

0

∫ +∞

−∞
G(y, s)

[
b
(
U (x + p1(t) − y − cs) +U (−x + p2(t)+y − cs)

)

− b(U (x + p1(t) − y − cs)) − b(U (−x + p2(t)+y − cs))
]
dyds

≤L2

∫ τ

0

∫ +∞

−∞
G(y, s)U (x + p1(t) − y − cs)U (−x + p2(t)+y − cs)dyds

≤L2
(
G �U 2) 1

2 (x + p1(t))
(
G �U 2) 1

2 (−x + p2(t)). (3.8)

Now we estimate R(x, t) by dividing R into the following 3 regions:

(1) p2(t) ≤ x ≤ −p1(t) (2) x ≥ −p1(t), (3) x ≤ p2(t).

(1) By (3.1), (3.2) and (3.8), we have H(x, t) ≤ L2L2eλ12(p1+p2) and

U ′(x + p1) +U ′(−x + p2) ≥ μ
[
U (x + p1) +U (−x + p2)

]
≥ μk

[
eλ12(x+p1) + eλ12(−x+p2)

] ≥ 2μkeλ12 p1 .

Hence, it follows that

R(x, t) ≤ 2−1μ−1k−1L2L
2eλ12 p2 . (3.9)

(2) In this case, we further consider two sub-cases:

(2-1)b′(0) ≤ b′(K ) and (2-2)b′(K ) < b′(0).

(2-1) Let us denote

3(λ) := 2(−λ) = −cλ − D
[J (λ) − 1

] + d − b′(K )G(−λ).

It is clear that 3(λ) has exactly one positive zero −λ21. Moreover,

1(λ) − 3(λ) = 2cλ + b′(K )G(−λ) − b′(0)G(λ) ≥ 0, ∀λ ≥ 0.

By the properties of 1(λ) and 3(λ), we see that λ12 ≥ −λ21. Then it follows from (3.2),
(3.3) and (3.8) that

R(x, t) ≤ L2K
(
G �U 2) 1

2 (−x + p2)/U
′(x + p1) ≤ μ−1η−1L2LKeλ12(−x+p2)e−λ21(x+p1)

= μ−1η−1L2LKeλ12 p2e−(λ12+λ21)x e−λ21 p1 ≤ μ−1η−1L2LKeλ12 p2 . (3.10)

(2-2) A direct computation shows that

H(x, t) ≤
∫ τ

0

∫ +∞

−∞
G(y, s)

[
b
(
U (x + p1(t) − y − cs) +U (−x + p2(t) + y − cs)

)

− b(U (x + p1(t) − y − cs)) − b(U (−x + p2(t)+y − cs))
]
dyds
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=
∫ τ

0

∫ +∞

−∞
G(y, s)

[
b′(U (x + p1(t) − y − cs) + θ1U (−x + p2(t)+y − cs)

)

− b′(θ2U (−x + p2(t)+y − cs))
]
U (−x + p2(t)+y − cs)dyds, (3.11)

where θ1, θ2 ∈ (0, 1). Let ε := b′(0) − b′(K ) > 0. Noting that b′(u) = b′(K ) for u ∈
[K , 2K ], there exists a δ > 0 such that

b′(u) < b′(0) − ε/2, for all u ∈ [K − δ/2, 2K ]. (3.12)

By Lemma 2.5, we have

lim
ξ→−∞U ′(ξ)/U (ξ) = λ12 and lim

ξ→+∞U ′(ξ)/U (ξ) = 0.

Then, we can choose β > 0 such that

d

dξ

[
U (ξ)e−βξ

]
= e−βξU (ξ)

[
U ′(ξ)

U (ξ)
− β

]
≤ 0, ∀ξ ∈ R,

that is, U (ξ)e−βξ is decreasing in R. Noting that

lim
ξ→−∞U (ξ)/(G �U )(ξ) = 1/G(λ12) and pi (−∞) = −∞, i = 1, 2,

then there exists a T < 0 such that

U (−x + p2(t)) ≤ 2

G(λ12)
(G �U )(−x + p2(t)), for x ≥ −p1(t) and t ≤ T .

By assumption (G), we can choose B > cτ such that

2L1

G(λ12)

{∫ τ

0

∫ −B

−∞
+

∫ τ

0

∫ +∞

B
eβ(y−cs)

}
G(y, s)dyds ≤ ε

2
.

Thus, for x ≥ −p1(t) and t ≤ T , we have
{∫ τ

0

∫ −B

−∞
+

∫ τ

0

∫ +∞

B

}
G(y, s)b′(U (x + p1(t) − y − cs)+ θ1U (−x + p2(t) + y − cs)

)

×U (−x + p2(t) + y − cs)dyds

≤ L1

{∫ τ

0

∫ −B

−∞
+

∫ τ

0

∫ +∞

B

}
G(y, s)U (−x + p2(t) + y − cs)dyds

≤ L1

{∫ τ

0

∫ −B

−∞
+

∫ τ

0

∫ +∞

B
eβ(y−cs)

}
G(y, s)dydsU (−x + p2(t))

≤ 2L1

G(λ12)

{∫ τ

0

∫ −B

−∞
+

∫ τ

0

∫ +∞

B
eβ(y−cs)

}
G(y, s)dyds(G �U )(−x + p2(t))

≤ ε

2

(
G �U

)
(−x + p2(t)). (3.13)

Since U (+∞) = K , we may assume U (ξ) > K − δ/2 for ξ ≥ −B − cτ by translations if
necessary. If x ≥ −p1(t) and t ≤ T , then it follows from (3.12) and (3.13) that

∫ τ

0

∫ +∞

−∞
G(y, s)b′(U (x + p1(t) − y − cs)

+ θ1U (−x + p2(t) + y − cs)
)
U (−x + p2(t) + y − cs)dyds
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=
{∫ τ

0

∫ −B

−∞
+

∫ τ

0

∫ +∞

B
+

∫ τ

0

∫ B

−B

}
G(y, s)b′(U (x + p1(t) − y − cs)

+ θ1U (−x + p2(t) + y − cs)
)
U (−x + p2(t) + y − cs)dyds

≤ ε

2

(
G �U

)
(−x + p2(t)) +

(
b′(0) − ε

2

) (
G �U

)
(−x + p2(t))

= b′(0)
(
G �U

)
(−x + p2(t)). (3.14)

Using (3.11) and (3.14), for x ≥ −p1(t) and t ≤ T , we conclude that

H(x, t) ≤
∫ τ

0

∫ +∞

−∞
G(y, s)

[
b′(0) − b′(θ2U (−x + p2(t) + y − cs))

]

×U (−x + p2(t) + y − cs)dyds

≤ L2

∫ τ

0

∫ +∞

−∞
G(y, s)U 2(−x + p2(t) + y − cs)dyds

= L2
(
G �U 2)(−x + p2(t)). (3.15)

Therefore, by (3.1), (3.2) and (3.15), we have

R(x, t) ≤ L2
(
G �U 2

)
(−x + p2(t))

U ′(−x + p2)
≤ L2L2e2λ12(−x+p2)

μkeλ12(−x+p2)
≤ μ−1k−1L2L

2eλ12 p2 .

(3.16)

(3) Similar to the discussion of case (2), we can also derive

R(x, t) ≤ max
{
μ−1k−1L2L

2, μ−1η−1L2LK
}
eλ12 p2 . (3.17)

Thus, combining (3.9), (3.10), (3.16) and (3.17), we have F(u)(x, t) ≥ 0, that is u(x, t) is a
supersolution of (1.2) on R × (−∞, T ). This completes the proof. ��

Moreover, we have the following subsolution of (1.2).

Lemma 3.3 For any (ω1, ω2) ∈ (−∞, ω̄]2, the function u(x, t) defined by

u(x, t) := max
{
	+

ω1
(x, t),	−

ω2
(x, t)

}

is a subsolution of (1.2) on R × (−∞,+∞).

Proof The proof is obvious. We omit it here. ��

4 Proof of the main result

Based on the construction of sub- and supersolutions of (1.2), we first prove the assertions
of Theorem 1.1 for the case (θ1, θ2) = (ω1, ω2) ∈ (−∞, ω̄]2. Then, we improve the results
to any (θ1, θ2) ∈ R

2.

4.1 Entire solutions for (θ1, θ2) = (ω1, ω2) ∈ (−∞, ω̄]2

As mentioned in the Introduction, we always assume that (G) and (B1) hold and (1.2) has a
traveling wave front U (x + ct) with speed c > 0.
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4.1.1 Existence of entire solutions

Theorem 4.1 For any (ω1, ω2) ∈ (−∞, ω̄]2, there exists an entire solution 	ω1,ω2(x, t) of
(1.2) satisfying the following statements.

(1) ∂t	ω1,ω2(x, t) > 0 and 0 < 	ω1,ω2(x, t) < K for all (x, t) ∈ R
2.

(2) For any (x, t) ∈ R
2, 	ω1,ω2(x, t) is increasing with respect to (ω1, ω2).

(3) lim
t→−∞{sup

x≤0
|	ω1,ω2(x, t) − 	−

ω1
(x, t)| + sup

x≥0
|	ω1,ω2(x, t) − 	+

ω2
(x, t)|} = 0,

lim
t→+∞ sup

x∈R
|	ω1,ω2(x, t) − K | = 0, lim

t→−∞ sup
|x |≤N0

	ω1,ω2(x, t) = 0, ∀ N0 ∈ R,

lim|x |→+∞ sup
t≥t0

|	ω1,ω2(x, t) − K | = 0, ∀ t0 ∈ R.

(4) For any ω∗
1, ω

∗
2 ∈ (−∞, ω̄], there exists (x0, t0) ∈ R

2 depending on ω1, ω2, ω∗
1, ω∗

2
such that 	ω∗

1 ,ω
∗
2
(·, ·) = 	ω1,ω2(· + x0, · + t0) on R

2.

Proof For any (ω1, ω2) ∈ (−∞, ω̄]2 and n ∈ (−T,+∞) ∩ N, let 	n(x, t) be the unique
solution of the following initial value problem:{

	n
t =D[J ∗ 	n−	n]−d	n+(G � b(	n))(x, t), for x ∈ R, t>−n;

	n(x, s)=u(x, s), for x ∈ R, s ∈ [−n−τ,−n]. (4.1)

By Lemmas 2.2, 3.2 and 3.3, we have

and
u(x, t) ≤ 	n(x, t) ≤ 	n+1(x, t) ≤ u(x, t), for x ∈ R, −n ≤ t < T,

u(x, t) ≤ 	n(x, t) ≤ K , for x ∈ R, t > −n.
(4.2)

Then, there exists a function 	(x, t) such that lim
n→∞ 	n(x, t) = 	(x, t) for any (x, t) ∈ R

2.

Moreover, for any given t0 ∈ R, there exists some n ∈ N such that t0 > −n and 	n(x, t)
satisfies

	n(t)(x) = T (t − t0)	
n(t0)(x) +

∫ t

t0
T (t − r)F

[
(	n)r

]
(x)dr,

where T (t) and F[·] are defined as in Sect. 2.1. By Lebesgue’s dominated convergence
theorem, we obtain

	(t)(x) = T (t − t0)	(t0)(x) +
∫ t

t0
T (t − r)F

[
(	)r

]
(x)dr.

This implies that 	(x, t) is continuous and differentiable with respect to t . In addition, one
can show that

	t = D
[
J ∗ 	 − 	

] − d	(x, t) + (
G � b(	)

)
(x, t).

Therefore,	ω1,ω2(x, t) := 	(x, t) is an entire solution of (1.2). Nowwe prove the assertions
of (1)–(4) in the sequel.

(1) By (4.2), it’s obvious that

and
u(x, t) ≤ 	ω1,ω2(x, t) ≤ u(x, t), for all x ∈ R, t < T,

u(x, t) ≤ 	ω1,ω2(x, t) ≤ K , for all (x, t) ∈ R
2.

(4.3)

Clearly, 	ω1,ω2(x, t) > 0 for all (x, t) ∈ R
2. Since

	n(x, t) ≥ u(x, t) ≥ u(x, s) = 	n(x, s)

for (x, t) ∈ R × [−n,+∞) and s ∈ [−n − τ,−n], by Lemma 2.2, we have ∂t	
n(x, t) ≥ 0

for (x, t) ∈ R × (−n,+∞). This yields to ∂t	ω1,ω2(x, t) ≥ 0 for all (x, t) ∈ R
2.
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Moreover, from (4.1), we have

∂t t	ω1,ω2 =D
[
J ∗ ∂t	ω1,ω2 − ∂t	ω1,ω2

] − d∂t	ω1,ω2

+
∫ τ

0

∫ +∞

−∞
G(x − y, s)b′(	ω1,ω2(y, t − s)

)
∂t	ω1,ω2(y, t − s)dyds

≥ − (D + d)∂t	ω1,ω2 , for (x, t) ∈ R
2,

which implies

∂t	ω1,ω2(x, t) ≥ ∂t	ω1,ω2(x, s)e
−(D+d)(t−s), ∀s < t. (4.4)

Suppose that the first part of (1) is false, then there exists a (x0, t0) ∈ R
2 such that

∂t	ω1,ω2(x0, t0) = 0 and it follows from (4.4) that ∂t	ω1,ω2(x0, t) = 0 for all t ≤ t0.
Hence 	ω1,ω2(x0, t) = 	ω1,ω2(x0, t0) for all t ≤ t0, which implies that

lim
t→−∞ 	ω1,ω2(x0, t) = 	ω1,ω2(x0, t0).

On the other hand, from (4.3), we have

lim
t→−∞ 	ω1,ω2(x0, t) = 0 and 	ω1,ω2(x0, t0) > 0.

This contradiction yields that ∂t	ω1,ω2(x, t) > 0 for all (x, t) ∈ R
2. Moreover, we can show

that 	ω1,ω2(x, t) < K for all (x, t) ∈ R
2.

(2) Noting that U ′(z) > 0 and 0 < U (z) < 1 for z ∈ R, then it follows that
	ω1,ω2(x, t) is increasing with respect to (ω1, ω2).

(3) & (4) Using (4.3), the proofs of these parts are straightforward and thus omitted. The
proof is complete. ��

4.1.2 Uniqueness and stability of entire solutions

In order to prove the uniqueness, stability and continuous dependence on the shift parameters
ω1, ω2 of the entire solution 	ω1,ω2(x, t), we construct different sub-supersolution pairs of
(1.2) to trap the entire solution.

Lemma 4.2 There exist δ0 ∈ (0, K ), ρ0 > 0 and σ0 > 0 such that for any γ ∈ R, δ ∈ (0, δ0]
and σ ≥ σ0, the functions u±(x, t) defined by

u±(x, t) = 	ω1,ω2

(
x, t + γ ± σδ

(
1 − e−ρ0t

)) ± δe−ρ0t

constitute a pair of super- and subsolution of (1.2) on [0,+∞).

Proof We only prove that u+(x, t) is a supersolution of (1.2) on [0,+∞). Following the
same arguments, we can also show that u−(x, t) is a subsolution. Since

and
lim

(ρ,ω̄)→(0,b′(0))

[ −ρ + d − eρτ ω̄
] = d − b′(0) > 0,

lim
(ρ,ω̄)→(0,b′(K ))

[ −ρ + d − eρτ ω̄
] = d − b′(K ) > 0,

we can fix ρ0 > 0 and 0 < δ1 � K such that

and
−ρ0 + d − eρ0τ ω̄ > 0, for ω̄ ∈ [

b′(0) − δ1, b′(0) + δ1
]
,

−ρ0 + d − eρ0τ ω̄ > 0, for ω̄ ∈ [
b′(K ) − δ1, b′(K ) + δ1

]
.

(4.5)

123



J Dyn Diff Equat (2017) 29:409–430 423

Now we choose δ0 ∈ (0, δ1) and ν ∈ (0, K ) such that δ0eρ0τ L2 ≤ δ1/4,

and
b′(u) ∈ [

b′(0) − δ1/2, b′(0) + δ1/2
]
, for u ∈ [0, ν],

b′(u) ∈ [
b′(K ) − δ1/2, b′(K ) + δ1/2

]
, for u ∈ [K − ν, K + ν]. (4.6)

By assumption (G), there exists an M > 0 such that

L1

{∫ τ

0

∫ −M

−∞
+

∫ τ

0

∫ +∞

M

}
G(y, s)dyds ∈ (0, δ1/4), (4.7)

∫ τ

0

∫ M

−M
G(y, s)dyds ≥

(
b′(K ) − 3

4
δ1

)
/

(
b′(K ) − 1

2
δ1

)
, if b′(K ) > 0, (4.8)

∫ τ

0

∫ M

−M
G(y, s)dyds ≥

(
b′(0) − 3

4
δ1

)
/

(
b′(0) − 1

2
δ1

)
, if b′(0) > 0. (4.9)

Take X > 0 such that

and
U (x) ∈ (0, ν/4), for x ≤ −X + M
U (x) ∈ (K − ν/4, K + ν/4) , for x ≥ X − M − cτ.

(4.10)

Since

lim
t→+∞ sup

x∈R

∣∣∣∣
∫ τ

0

∫ +∞

−∞
G(y, s)b′(	ω1,ω2(x − y, t − s)

)
dyds − b′(K )

∣∣∣∣ = 0,

there exists a T1 > τ such that
∫ τ

0

∫ +∞

−∞
G(y, s)b′(	ω1,ω2(x − y, t − s)

)
dyds ∈ [

b′(K ) − δ1/2, b
′(K ) + δ1/2

]
, (4.11)

for any t > T1 and x ∈ R. In view of lim
t→−∞[pi (t) − ct − ωi ] = 0, i = 1, 2, we can take

T2 ≤ T , where T < 0 is defined in Lemma 3.2, such that

2 max
i=1,2

|pi (t) − ct − ωi |max
x∈R U ′(x) ∈ (0, ν/4), for t ≤ T2 − τ. (4.12)

Letting κ1 := min|x |≤X U ′(x) > 0, then there exists a σ1 > 0 such that

1

2
κ1σ1ρ0 − ρ0 + d − eρ0τ L1 > 0. (4.13)

Set �(x, t) := 	+
ω1

(x, t) + 	−
ω2

(x, t). One can easily show that

lim
t→−∞ sup

x∈R
∥∥	ω1,ω2(x, ·) − �(x, ·)∥∥C0((−∞,t]) = 0.

Since 0 < 	ω1,ω2(x, t) < K , ∀(x, t) ∈ R
2, one can verify that

0 < ∂t	ω1,ω2(x, t) ≤ L3 := (D + d)K and |∂t t	ω1,ω2(x, t)| ≤ L4 := [2D + d + L1]L3,

for (x, t) ∈ R
2. Similarly, we have |�t t (x, t)| ≤ 2L4/c2 for (x, t) ∈ R

2. Then, by the
interpolation ‖ · ‖C1 ≤ 2

√‖ · ‖C0‖ · ‖C2 , we obtain

lim
t→−∞ sup

x∈R
∥∥	ω1,ω2(x, ·) − �(x, ·)∥∥C1((−∞,t]) = 0.
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Thus, there exists a T3 ≤ T2 such that

sup
x∈R

∥∥	ω1,ω2(x, ·) − �(x, ·)∥∥C1((−∞,t]) < κ1/2, for any t ≤ T3. (4.14)

Since

lim|x |→+∞ max
t∈[T3,T1]

∣∣∣∣
∫ τ

0

∫ +∞

−∞
G(y, s)b′(	ω1,ω2(x − y, t − s)

)
dyds − b′(K )

∣∣∣∣ = 0,

we can take X1 > 0 such that (4.11) holds for any |x | > X1 and t ∈ [T3, T1]. In addition, let
κ2 := min|x |≤X1,t∈[T3,T1]

∂t	ω1,ω2(x, t) > 0 and take σ0 > σ1 such that

κ2σ0ρ0 − ρ0 + d − eρ0τ L1 > 0. (4.15)

Then, for γ ∈ R, δ ∈ (0, δ0] and σ ≥ σ0, we denote ξ(t) := t + γ + σδ(1− e−ρ0t ). Clearly,
ξ(t − s) ≤ ξ(t) − s for t ≥ 0 and s ∈ [0, τ ]. Since ∂t	ω1,ω2(x, t) > 0 for (x, t) ∈ R

2 and
|b′(u) − b′(v)| ≤ L2|u − v| for u, v ∈ [0, 2K ], direct computations show that

F(u+)(x, t)

:= u+
t − D

[
(J ∗ u+)(x, t) − u+(x, t)

] + du+ − (
G � b(u+)

)
(x, t)

= ∂t	ω1,ω2(x, ξ(t))
(
1 + σδρ0e

−ρ0t
) − ρ0δe

−ρ0t

− D
[(
J ∗ 	ω1,ω2

)
(x, ξ(t)) − 	ω1,ω2(x, ξ(t))

]

+ d	ω1,ω2(x, ξ(t)) + dδe−ρ0t − G � b
(
u+)

(x, t)

= δe−ρ0t
[
σρ0∂t	ω1,ω2(x, ξ(t)) − ρ0 + d

] + (
G � b(	ω1,ω2)

)
(x, ξ(t))

−
∫ τ

0

∫ +∞

−∞
G(y, s)b

(
	ω1,ω2(x − y, ξ(t − s)) + δe−ρ0(t−s))dyds

≥ δe−ρ0t
[
σρ0∂t	ω1,ω2(x, ξ(t)) − ρ0 + d

]

+
∫ τ

0

∫ +∞

−∞
G(y, s)b

(
	ω1,ω2(x − y, ξ(t) − s)

)
dyds

−
∫ τ

0

∫ +∞

−∞
G(y, s)b

(
	ω1,ω2(x − y, ξ(t) − s) + δe−ρ0(t−s))dyds

≥ δe−ρ0t
[
σρ0∂t	ω1,ω2(x, ξ(t)) − ρ0 + d

− eρ0τ

∫ τ

0

∫ +∞

−∞
G(y, s)b′(	ω1,ω2(x − y, ξ(t) − s) + θ1δe

−ρ0(t−s))dyds] (4.16)

≥ δe−ρ0t
{
σρ0∂t	ω1,ω2(x, ξ(t)) − ρ0 + d − eρ0τ

[
δeρ0τ L2

+
∫ τ

0

∫ +∞

−∞
G(y, s)b′(	ω1,ω2(x − y, ξ(t) − s)

)
dyds

]}

≥ δe−ρ0t
{
−ρ0 + d − eρ0τ

[ δ1

4
+

∫ τ

0

∫ +∞

−∞
G(y, s)b′(	ω1,ω2(x − y, ξ(t) − s)

)
dyds

]}
,

(4.17)

where θ1 ∈ (0, 1). Moreover, for ξ(t) ≤ T3, Lemmas 3.2 and 3.3 imply that

max
{
U (x − y + cξ(t) − cs + ω1),U (−x + y + cξ(t) − cs + ω2)

}
≤ 	ω1,ω2(x − y, ξ(t) − s) ≤ U (x − y + p1(ξ(t) − s)) +U (−x + y + p2(ξ(t) − s))
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≤ 2 max
i=1,2

∣∣pi (ξ(t) − s) − c(ξ(t) − s) − ωi
∣∣max
x∈R U ′(x)

+U (x − y + cξ(t) − cs + ω1) +U (−x + y + cξ(t) − cs + ω2). (4.18)

Now, we consider the following seven cases.

(1) ξ(t) > T1. Following (4.5), (4.11) and (4.17), we have F(u+)(x, t) ≥ 0.
(2) ξ(t) ≤ T3 and x + cξ(t) + ω1 ≥ X . Then −x < −X . It follows from (4.7) and (4.17)

that

F(u+)(x, t) ≥δe−ρ0t
{

−ρ0 + d − eρ0τ
[
δ1/2+

∫ τ

0

∫ M

−M
G(y, s)b′(	ω1,ω2(x − y, ξ(t) − s)

)
dyds

]}
. (4.19)

Moreover, from (4.10), (4.12) and (4.18), we have

	ω1,ω2(x − y, ξ(t) − s) ∈ (K − ν, K + ν), for y ∈ [−M, M] and s ∈ [0, τ ].
If b′(K ) > 0, it then follows from (4.6) and (4.8) that

∫ τ

0

∫ M

−M
G(y, s)b′(	ω1,ω2(x − y, ξ(t) − s)

)
dyds ∈ [

b′(K ) − 3δ1/4, b
′(K ) + δ1/2

]
.

Moreover, if b′(K ) = 0, then
∫ τ

0

∫ M

−M
G(y, s)b′(	ω1,ω2(x − y, ξ(t) − s)

)
dyds ∈ [

b′(K ), b′(K ) + δ1/2
]
.

By (4.5) and (4.19), we conclude that F(u+)(x, t) ≥ 0.
(3) ξ(t) ≤ T3 and−x+cξ(t)+ω2 ≥ X . Similar to case (2),we can prove thatF(u+)(x, t) ≥

0.
(4) ξ(t) ≤ T3, x + cξ(t) + ω1 ≤ −X and −x + cξ(t) + ω2 ≤ −X . Using (4.10), (4.12)

and (4.18), we have

	ω1,ω2(x − y, ξ(t) − s) ∈ (0, ν), for y ∈ [−M, M] and s ∈ [0, τ ].
Similar to case (2), we can show that F(u+)(x, t) ≥ 0 by using (4.5), (4.6), (4.9) and
(4.19).

(5) ξ(t) ≤ T3 and x + cξ(t) + ω1 ∈ [−X, X ] or −x + cξ(t) + ω2 ∈ [−X, X ]. According
to (4.14), we have

∂t	ω1,ω2(x, ξ(t)) ≥ ∂t�(x, ξ(t)) − κ1

2

= U ′(x + cξ(t) + ω1) +U ′(−x + cξ(t) + ω2) − κ1

2
≥ κ1

2
.

Then, by (4.13) and (4.16), we obtain F(u+)(x, t) ≥ 0.
(6) T3 ≤ ξ(t) ≤ T1 and |x | > X1. Noting that (4.11) holds for any |x | > X1 and t ∈

[T3, T1], it follows from (4.5), (4.11) and (4.17) that F(u+)(x, t) ≥ 0.
(7) T3 ≤ ξ(t) ≤ T1 and |x | ≤ X1. Following (4.15) and (4.16), it must beF(u+)(x, t) ≥ 0.

Summing up the above seven cases, we see that F(u+)(x, t) ≥ 0 for (x, t) ∈ R × [0,+∞),
i.e. u+(x, t) is a supersolution of (1.2) on [0,+∞). The proof is complete. ��
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Lemma 4.3 There exist δ∗ > 0, ρ∗ > 0 and σ∗ > 0 such that for any γ ∈ R, δ ∈ (0, δ∗]
and σ ≥ σ∗, the functions V±(x, t) defined by

V±(x, t) := U
(

−x + ct + γ ± σδ
(
1 − e−ρ∗t)) ± δe−ρ∗t

constitute a pair of super- and subsolutions of (1.2) on [0,+∞).

Proof The proof is similar to that of Lemma 4.2, we omit it. ��
Let σ0, ρ0, δ0 and σ∗, ρ∗, δ∗ be the positive constants given in Lemmas 4.2 and 4.3,

respectively. We have the following results.

Theorem 4.4 Let 	ω1,ω2(x, t) be the entire solution of (1.2) decided in Theorem 4.1, then
the following statements hold.

(1) If 	̃(x, t) is an entire solution of (1.2) satisfying the first property of (3) of Theorem
4.1, then 	̃(x, t) = 	ω1,ω2(x, t).

(2) For any (x, t) ∈ R
2, 	ω1,ω2(x, t) converges to

{
	+

ω2
(x, t) as ω1 → −∞;

	−
ω1

(x, t) as ω2 → −∞.

(3) 	ω1,ω2(x, t) depends continuously on (ω1, ω2) ∈ (−∞, ω̄]2.
(4) 	ω1,ω2(x, t) is Liapunov stable in the sense of part (7) of Theorem 1.1.

Proof (1) Suppose that 	̃(x, t) is an entire solution of (1.2) satisfying the first property of
(3) of Theorem 4.1. Given any t1 < 0, we define

η := sup
x∈R

∥∥	̃(x, · + t1) − 	ω1,ω2(x, · + t1)
∥∥
L∞[−τ,0].

It suffices to show that η = 0.By our assumptions, for any δ ∈ (0, δ0], there exist a t2 < t1−τ

such that supx∈R ‖	̃(x, · + t2) − 	ω1,ω2(x, · + t2)‖L∞[−τ,0] < δ. Hence,

	ω1,ω2

(
x, s + t2 − σ0δ

(
eρ0τ − e−ρ0s

) ) − δe−ρ0s

≤ 	̃(x, s + t2) ≤ 	ω1,ω2

(
x, s + t2 + σ0δ

(
eρ0τ − e−ρ0s

) ) + δe−ρ0s,

for x ∈ R, s ∈ [−τ, 0]. In addition, by Lemmas 2.2 and 4.2, we have

	ω1,ω2

(
x, t + t2 − σ0δ

(
eρ0τ − e−ρ0t

) ) − δe−ρ0t

≤ 	̃(x, t + t2) ≤ 	ω1,ω2

(
x, t + t2 + σ0δ

(
eρ0τ − e−ρ0t

) ) + δe−ρ0t

for x ∈ R and t ≥ 0. Noting that s + t1 − t2 > 0, then we obtain

	ω1,ω2

(
x, s + t1 − σ0δ(e

ρ0τ − eρ0(s+t1−t2))
) − δ

≤ 	̃(x, s + t1) ≤ 	ω1,ω2

(
x, s + t1 + σ0δ(e

ρ0τ − eρ0(s+t1−t2))
) + δ.

Therefore, for all x ∈ R, it follows that

	ω1,ω2

(
x, s + t1 − σ0δe

ρ0τ
) − δ ≤ 	̃(x, s + t1) ≤ 	ω1,ω2

(
x, s + t1 + σ0δe

ρ0τ
) + δ.

(4.20)

On the other hand, since 0 < ∂t	ω1,ω2(x, t) ≤ M3 := (D + d)K for any (x, t) ∈ R
2,

then (4.20) implies that

sup
x∈R

∥∥	̃(x, s + t1) − 	ω1,ω2(x, s + t1)
∥∥
L∞[−τ,0] ≤ (

1 + M3σ0e
ρ0τ

)
δ.

Thus we have η ≤ (1 + M3σ0eρ0τ )δ. By the arbitrariness of δ, we see that η = 0.
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(2) Let {(ω1, ω
k
2)}k∈N be a sequence satisfying (ω1, ω

k
2) ∈ (−∞, ω̄]2, ωk+1

2 < ωk
2 < ω1

and ωk
2 → −∞ as k → −∞. According to Theorem 4.1, for each k ∈ N, there exist an

entire solution 	ω1,ω
k
2
(x, t) of (1.2) such that for any x ∈ R and t < T , there holds

	−
ω1

(x, t) ≤ max

{
	−

ω1
(x, t),	+

ωk
2
(x, t)

}
≤ 	

ω1,ω
k+1
2

(x, t) ≤ 	ω1,ω
k
2
(x, t)

≤ U
(
−x + p1

(
t;ω1, ω

k
2

)) +U
(
x + p2

(
t;ω1, ω

k
2

))

= U (−x + p̃1(t;ω1)) +U
(
x + p̃2

(
t;ω1, ω

k
2

))
. (4.21)

By the monotonicity of 	ω1,ω
k
2
(x, t) on k, there exists a function �(x, t) such that

lim
k→+∞ 	ω1,ω

k
2
(x, t) = �(x, t). It then follows from (4.21) that

	−
ω1

(x, t) ≤ �(x, t) ≤ U
( − x + p̃1(t;ω1)

)
, for any x ∈ R and t < T . (4.22)

Moreover, given any t3 < T , we define

η̄ := sup
x∈R

∥∥�(x, t3 + ·) −U (−x + c(t3 + ·) + ω1)
∥∥
L∞[−τ,0].

For any δ ∈ (0, δ∗], since p̃1(t;ω1) − ct − ω1 → 0 as t → −∞, it follows from (4.22) that
there exists t4 < t3 − τ such that for any x ∈ R and s ∈ [−τ, 0], there holds
	−

ω1
(x, s + t4) ≤ �(x, s + t4) ≤ U

(−x + c(s + t4) + ω1 + σδ
(
eρ∗τ − e−ρ∗s)) + δe−ρ∗s .

By comparison principle and Lemma 4.3, we have

	−
ω1

(x, t) ≤ �(x, t) ≤ U
(
−x + ct + ω1 + σδ

(
eρ∗τ − e−ρ∗(t−t4)

))
+ δe−ρ∗(t−t4),

for any x ∈ R and t > t4. Then it follows that

	−
ω1

(x, t3 + s) ≤�(x, t3 + s)

≤U
(
−x + c(t3 + s) + ω1 + σδ

(
eρ∗τ − e−ρ∗(t3+s−t4)

))
+ δe−ρ∗(t3+s−t4)

≤U
(−x + c(t3 + s) + ω1 + σδeρ∗τ ) + δ, for x ∈ R,

which implies that

sup
x∈R

∥∥�(x, (t3 + ·)) − 	−
ω1

(x, t3 + ·)∥∥L∞[−τ,0] ≤ δ + σδeρ∗τ max
z∈R U ′(z).

According to the arbitrariness of δ, we obtain η̄ = 0. Thus, �(x, t) = 	−
ω1

(x, t) for any
(x, t) ∈ R

2. Since 	ω1,ω2(x, t) is increasing with respect to ω2, we obtain

lim
ω2→−∞ 	ω1,ω2(x, t) = 	−

ω1
(x, t), f or any (x, t) ∈ R

2.

Similarly, we can show the other assertion of this part.
(3) Given any (ω0

1, ω
0
2) ∈ (−∞, ω̄]2, we choose two sequences {(ωk±,1, ω

k±,2)} with

(ωk±,1, ω
k±,2) ∈ R

2 such that lim
k→+∞(ωk±,1, ω

k±,2) → (ω0
1, ω

0
2) and

(
ωk−,1, ω

k−,2

) ≤ (
ωk+1

−,1 , ωk+1
−,2

)
<

(
ω0
1, ω

0
2

)
<

(
ωk+1

+,1 , ωk+1
+,2

) ≤ (
ωk+,1, ω

k+,2

)
, ∀k ∈ N.
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From Theorem 4.1, there exist entire solutions 	ω0
1,ω

0
2
(x, t) and 	ωk±,1,ω

k±,2
(x, t) of (1.2) for

k ∈ N which satisfy

0 ≤ 	
ωk+1

−,1 ,ωk+1
−,2

≤ 	ωk−,1,ω
k−,2

≤ 	ω0
1,ω

0
2

≤ 	ωk+,1,ω
k+,2

≤ 	
ωk+1

+,1 ,ωk+1
+,2

≤ K

for (x, t) ∈ R
2. Then, there exist 	±(x, t) such that limk→∞ 	ωk±,1,ω

k±,2
(x, t) = 	±(x, t)

and 	±(x, t) are entire solutions of (1.2). Since 0 < U ′(z) ≤ M3/c for z ∈ R, 0 <

pi (t;ωk+,1, ω
k+,2) − ci t − ωk

+,i ≤ R0ecλ12t for t ≤ 0 and

max
{
	−

ω0
1
(x, t),	+

ω0
2
(x, t)

} ≤max
{
	−

ωk+,1
(x, t),	+

ωk+,2
(x, t)

} ≤ 	ωk+,1,ω
k+,2

(x, t)

≤U
( −x + p1

(
t;ωk+,1, ω

k+,2

)) +U
(
x + p2

(
t;ωk+,1, ω

k+,2

))

for any t < T , x ∈ R and k ∈ N, we can easily show that

lim
t→−∞

{
sup
x≤0

|	+(x, t) − 	−
ω0
1
(x, t)| + sup

x≥0
|	+(x, t) − 	+

ω0
2
(x, t)|} = 0.

By the uniqueness of entire solutions, we have 	+(x, t) = 	ω0
1,ω

0
2
(x, t). Similarly, one can

prove that 	−(x, t) = 	ω0
1,ω

0
2
(x, t). Hence, we can easily show that 	ω1,ω2(x, t) depends

continuously on (ω1, ω2).
(4) Given any ε > 0, let us define δ̃ := δ̃(ε) = ε/(2M3) > 0. Then, for all |z| ≤ δ̃, it

follows that

sup
x,t∈R

∣∣	ω1,ω2(x, t) − 	ω1,ω2(x, t + z)
∣∣ ≤ sup

x,t∈R
∣∣∂t	ω1,ω2(x, t)

∣∣|z| ≤ M3δ̃ ≤ ε/2.

(4.23)

Let δ̄ := min{ε/2, δ̃/(σ0eρ0τ ), δ0}. For any ϕ ∈ C[0,K ] satisfying

sup
x∈R

∥∥ϕ(x, ·) − 	ω1,ω2(x + x0, · + t0)
∥∥
L∞[−τ,0] < δ̄,

we have

	ω1,ω2

(
x + x0, s + t0 − σ0δ̄

(
eρ0τ − e−ρ0s

) ) − δ̄e−ρ0s

≤ ϕ(x, s) ≤ 	ω1,ω2

(
x + x0, s + t0 + σ0δ̄

(
eρ0τ − e−ρ0s

) ) + δ̄e−ρ0s

for x ∈ R and s ∈ [−τ, 0]. By comparison principle and Lemma 4.2, we obtain

	ω1,ω2

(
x + x0, t + t0 − σ0δ̄

(
eρ0τ − e−ρ0t

) ) − δ̄e−ρ0t

≤ u(x, t;ϕ) ≤ 	ω1,ω2

(
x + x0, t + t0 + σ0δ̄

(
eρ0τ − e−ρ0t

) ) + δ̄e−ρ0t (4.24)

for x ∈ R and t ≥ 0. It then follows form (4.23) and (4.24) that

∣∣u(x, t;ϕ) − 	ω1,ω2(x + x0, t + t0)
∣∣ ≤ M3σ0δ̄e

ρ0τ + δ̄ ≤ ε, (4.25)

for all x ∈ R and t ≥ 0. The proof is complete. ��

Based on the results of the previous subsection, we are ready to prove Theorem 1.1.
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4.2 Proof of Theorem 1.1

For any θ1, θ2 ∈ R, there exists a T0 < 0 such that cT0 + θ1 < ω̄ and cT0 + θ2 < ω̄. Take

ω1 := cT0 + θ1 and ω2 := cT0 + θ2.

Clearly, (ω1, ω2) ∈ (−∞, ω̄]2. Therefore, there exists an entire solution 	ω1,ω2(x, t) satis-
fying the assertions of Theorems 4.1 and 4.4. Let

	θ1,θ2(x, t) := 	ω1,ω2(x, t − T0),

then 	θ1,θ2(x, t) is also an entire solution of (1.2) which satisfies the assertions of Theorem
1.1.
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