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Abstract In this paper, the spatiotemporal patterns of a reaction–diffusion substrate–
inhibition chemical Seelig model are considered. We first prove that this parabolic Seelig
model has an invariant rectangle in the phase plane which attracts all the solutions of the
model regardless of the initial values. Then, we consider the long time behaviors of the
solutions in the invariant rectangle. In particular, we prove that, under suitable “lumped para-
meter assumption” conditions, these solutions either converge exponentially to the unique
positive constant steady states or to the spatially homogeneous periodic solutions. Finally,
we study the existence and non-existence of Turing patterns. To find parameter ranges where
system does not exhibit Turing patterns, we use the properties of non-constant steady states,
including obtaining several useful estimates. To seek the parameter ranges where system
possesses Turing patterns, we use the techniques of global bifurcation theory. These two
different parameter ranges are distinguished in a delicate bifurcation diagram. Moreover,
numerical experiments are also presented to support and strengthen our analytical analysis.

Keywords Seelig reaction–diffusion chemical model · Invariant rectangle · Lumped
parameter assumption · Global bifurcation analysis · Turing patterns

1 Introduction

A fundamental problem in theoretical biology is to understand how patterns and shapes
are formed. In his seminal paper, Turing [20] proposed a striking idea of “diffusion-driven
instability,” which states that diffusion could destabilize an otherwise stable steady state of
a reaction–diffusion system and generate new stable time-independent nonuniform spatial
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Fig. 1 Schematic chemical reaction of Seelig model (1.1)

patterns. Over the years, Turing’s idea has attracted the attention of many researchers and
has been successfully developed on the theoretical backgrounds. Not only has it been studied
in biological and chemical fields, but also some investigations range as far as economics,
semiconductor physics, and star formation [5].

The existence of Turing patterns in biology is still controversial, but it had been observed
in chemistry. The first experimental evidence of Turing patterns was reported in 1990 by D.
Kepper and her associates on the chlorite-iodide-malonic acid and starch reaction (CIMA
reaction) in an open unstirred gel reactor [2,4], nearly forty years after the publication of
[20]. This CIMA reaction can be modeled by the famous Lengyel–Epstein system [12,13]
which has been extensively studied experimentally, numerically and theoretically (see [1,7–
11,15,22–24] and the references therein).

In this paper, we consider a reaction–diffusion model which has a very similar mathemat-
ical form to the Lengyel–Epstein CIMA reaction system, even though they describe different
chemical reactions. Our model was first proposed by Seelig in [18] to explain the observed
oscillatory behavior in substrate–inhibition chemical reaction: X + Y → P + Q effected
by a catalyst M such as an enzyme. The chemical reaction scheme is (see also Fig. 1): The
substrates X and Y are supplied at constant rates j1 and j2 respectively. The substrate X flows
out at rate k0. The substrate X reacts with catalyst M to form the inert complex MX at rate
k1. This reaction is reversible in the sense that MX can form X and M at rate k−1. Whenever
there is MX , then X will react with MX , and form MX2 at a rate k2. This reaction is also
reversible, MX2 can form X and MX at rate k−2. The substrate Y reacts with MX , forming
P , Q and M at rate k3. This reaction is irreversiable. In the whole substrate–inhibition chem-
ical reactions, all the reversible reactions are taken to be fast and all the irreversible ones are
slow.

Let [·] denote the concentrations of the chemical substances at time τ , then by the law of
mass action, we obtain the following kinetic equations for the reaction mechanism:
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d[X ]
dτ

= j1 − k0[X ] − k1[X ][M] + k−1[MX ] − k2[X ][MX ] + k−2[MX2],
d[Y ]
dτ

= j2 − k3[Y ][MX ],
d[M]
dτ

= −k1[X ][M] + k−1[MX ] + k3[Y ][MX ],
d[MX2]

dτ
= k2[X ][MX ] − k−2[MX2],

d[MX ]
dτ

= k1[X ][M] − k−1[MX ] − k2[X ][MX ] − k3[Y ][MX ] + k−2[MX2].

(1.1)

It is assumed that the sumof the various forms of the catalystM, MX, MX2 is constant and
is represented by the adjustable parameter [M]total := [M]+[MX ]+[MX2].We also assume
a quasi steady state for the concentrations of M , MX , and MX2, since their concentrations
are normally small compared to [X ] and [Y ] so that they can follow virtually inertness the
movements of [X ] and [Y ]. Namely., letting d[M]/dτ , d[MX ]/dτ and d[MX2]/dτ equal
to zero. Thus,

d[X ]
dτ

= j1 − k0[X ] − k3[Y ][MX ],
d[Y ]
dτ

= j2 − k3[Y ][MX ],
0 = −k1[X ][M] + k−1[MX ] + k3[Y ][MX ],
0 = k2[X ][MX ] − k−2[MX2],
0 = k1[X ][M] − k−1[MX ] − k2[X ][MX ] − k3[Y ][MX ] + k−2[MX2].

(1.2)

From the last three equations of (1.2), we obtain

k3[Y ][MX ] = k−1[M]total ·
k1[X ]
k−1

· k3[Y ]
k−1

1 + k1[X ]
k−1

+ k1k2[X ]2
k−1k−2

+ k3[Y ]
k−1

. (1.3)

Introducing the following dimensionless quantities,

u = k1[X ]
k−1

, v = k3[Y ]
k−1

, t = k0τ, K = k2k−1

k−2k1
, β1 = k1 j1

k0k−1
, β2 = k3 j2

k0k−1
,

γ1 = [M]totalk1
k0

, γ2 = [M]totalk3
k0

,

(1.4)

one can reduce the first two equations of (1.2) to the following system of ordinary differential
equations (ODEs):

du

dt
= β1 − u − γ1uv

1 + u + v + Ku2
,
dv

dt
= β2 − γ2uv

1 + u + v + Ku2
. (1.5)
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Since the chemical reaction obeys the diffusion process, it is natural to add diffusion to
the model (1.5), which leads to the following reaction–diffusion system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− d1�u = β1 − u − γ1uv

1 + u + v + Ku2
, x ∈ �, t > 0,

∂v

∂t
− d2�v = β2 − γ2uv

1 + u + v + Ku2
, x ∈ �, t > 0,

∂νu = ∂νv = 0, x ∈ ∂�, t ≥ 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ �,

(1.6)

where u = u(x, t) and v = v(x, t) stand for the rescaled concentrations of the chemical
substances at time t and position x ∈ �. Here � is an open bounded domain in RN , N ≥ 1,
with smooth boundary ∂�; d1 and d2 are diffusion coefficients of u and v respectively.
u0, v0 ∈ C2(�) ∩ C0(�) and the Neumann boundary conditions indicate that there are no
flux of the chemical substances of u and v on the boundary.

The Seelig model (1.6) has been studied extensively by several authors, but most of
the research focuses either on the corresponding ODE system (1.5) or on the R–D system
(1.6) in the one-dimensional spatial domain. Seelig [18] considered the boundedness of the
solutions of ODE system (1.5) by proving the existence of invariant rectangles. He also
proved the existence of stable time-periodic limit cycle by applying Poincare–Bendixson
theorem. However, the authors did not prove whether the PDE system (1.6) has the invariant
rectangles or not. Mimura and Murray [14] studied the steady state patterns of system (1.6)
subject to homogeneous Neumann boundary conditions. However, the spatial dimension
is only restricted to one dimension. Nishiura [16] considered the global structure of the
bifurcating steady state solutions of some reaction–diffusion equations whose reaction terms
share with common properties. Seelig model is one of these reaction–diffusion models. In
his work, to gain detailed information of global bifurcation branches, it is crucial to assume
the uniform boundedness of the solutions (especially bounded regardless of the diffusion
coefficients). To the best of our knowledge, for the Seelig model, the uniform boundedness
of the solutions are still completely open so far.

In this paper, we first answer the open questions in [16] and [18]. We show that the R–D
system (1.6) have an invariant rectangle which attracts all its solutions regardless of the initial
values u0 and v0.

The second question arises naturally. Once the solutions of system (1.6) are attracted by the
attraction region (rectangle), where do they go eventually?Andwhat are the global attractors?
We prove that, under suitable conditions, these solutions either converge exponentially to the
unique positive constant equilibrium or to the spatially homogeneous periodic solutions. Our
results thus verify the striking idea of “lumped parameter assumption”, stating that, under
suitable conditions, the dynamics of the PDEs (1.6) can be completely determined by the
dynamics of the ODEs (1.5) (see [3] for lumped parameter assumption).

Finally, we prove the existence and nonexistence of Turing patterns of system (1.6).
Mathematically, Ni and Tang [15], and Peng et al. [17] have already reported the critical role
of the system parameters in leading to Turing patterns of the Lengyel–Epstein system and
Degn–Harrison system respectively. We show that, although these three chemical reaction
models have similar mathematical forms, system parameters leading to Turing patterns are
quite different.

This paper is organized as follows. In Sect. 2, we study the boundedness and uniqueness of
global-in-time solutions of the system (1.6). In particular, we show that an invariant rectangle
exists which attracts all the solutions of system (1.6) regardless of the initial values. Then,
we consider the long time behaviors of the solutions of system (1.6), and derive precise
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conditions so that the solutions of R–D (1.6) converge exponentially either to its unique
constant steady state solution, or to its spatially homogeneous orbitally periodic solutions. In
Sect. 3, we derive conditions so that system (1.6) does not have non-constant positive steady
states, including Turing patterns. In Sect. 4, we use global bifurcation theory to prove the
existence of Turing patterns. In Sect. 5, we included the numerical simulations to support
our analytical analysis. In appendix, we include the results on dynamics of ODEs system.
Throughout this paper, we use N0 to stand for the set of nonnegative integers, and use |�| to
represent the Lebesgue measure of �.

2 Attraction Region and Large Time Behaviors of the Solutions

For convenience of our discussions, we copy (1.6) here:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− d1�u = β1 − u − γ1uv

1 + u + v + Ku2
, x ∈ �, t > 0,

∂v

∂t
− d2�v = β2 − γ2uv

1 + u + v + Ku2
, x ∈ �, t > 0,

∂νu = ∂νv = 0, x ∈ ∂�, t ≥ 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ �.

(2.1)

System (2.1) has (u∗, v∗) as the unique constant equilibrium solution, with

u∗ := β1 − γ1

γ2
β2, v∗ := β2(1 + u∗ + Ku2∗)

γ2u∗ − β2
, (2.2)

which are positive if and only if
β1

1 + γ1
>

β2

γ2
holds.

We first show that (2.1) has a unique solution (u(x, t), v(x, t)) defined for all t > 0 and
is bounded by some positive constants depending on β1, β2, γ1, γ2, K , and the maximum
and minimum of the initial conditions, u0(x) and v0(x).

Proposition 1 Suppose that β1, β2, γ1, γ2, K > 0, with
β1

1 + γ1
>

β2

γ2
. Then, for

any d1, d2 > 0, the initial boundary value problem (2.1) admits a unique solution
(u(x, t), v(x, t)), defined for all x ∈ � and t > 0. Moreover, there exist two positive
constants M1 and M2, depending on β1, β2, γ1, γ2, K , u0(x) and v0(x), such that

M1 < u(x, t), v(x, t) < M2, x ∈ �, t > 0. (2.3)

Proof The existence and uniqueness of local-in-time solutions to the initial-boundary value
problem (2.1) is classical [6].

For the global existence and the boundedness of the solutions, we partially use the tech-
niques of invariant region [15,21]. Recall from [15,21] that a region (rectangle) R :=
[U1,U2] × [V1, V2] in the (u, v) phase plane is called a positively invariant region of system
(2.1) if the vector field

(

β1 − u − γ1uv

1 + u + v + Ku2
, β2 − γ2uv

1 + u + v + Ku2

)

(2.4)

points inward on the boundary of R for all t ≥ 0. Thus, if one can find such a positively
invariant rectangle R, then the solution (u(x, t), v(x, t)) of (2.1) exists for all x ∈ � and
t ≥ 0, and stays in R.
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We consider two cases:
Case 1 Suppose that minx∈�{u0(x)} > β2/γ2 holds. We construct the invariant rectangle

R := [U1,U2] × [V1, V2] in the following way:

U1 : = min

{
β1

1 + γ1
,min
x∈�

{u0(x)}
}

, U2 := max

{

β1,max
x∈�

{u0(x)}
}

,

V1 : = min

{
β2

γ2
,min
x∈�

{v0(x)}
}

, V2 := max

{
β2(1 +U2 + KU 2

2 )

γ2U1 − β2
,max
x∈�

{v0(x)}
}

.

(2.5)

Clearly, u0(x) and v0(x) are closed by the rectangleR. We now prove that the vector field
(2.4) points inward on the boundary of R. In fact,

On the left side u = U1, V1 ≤ v ≤ V2, by the definition of U1, we have,

β1−u− γ1uv

1 + u + v + Ku2
= β1−U1− γ1U1v

1 +U1 + v + KU 2
1

> β1−U1−γ1U1 ≥ 0. (2.6)

On the right side u = U2, V1 ≤ v ≤ V2, by the definition of U2, we have

β1 − u − γ1uv

1 + u + v + Ku2
= β1 −U2 − γ1U2v

1 +U2 + v + KU 2
2

< β1 −U2 ≤ 0. (2.7)

On the bottom side v = V1, U1 ≤ u ≤ U2, by the definition of V1, we have

β2 − γ2uv

1 + u + v + Ku2
= β2 − γ2uV1

1 + u + V1 + Ku2
> β2 − γ2V1 ≥ 0. (2.8)

On the top side v = V2, U1 ≤ u ≤ U2, by the definition of V2, we have

β2 − γ2uv

1 + u + v + Ku2
= β2 − γ2uV2

1 + u + V2 + Ku2
< β2 − γ2U1V2

1 +U2 + V2 + KU 2
2

≤ 0.

(2.9)
So far, we have proved that R := [U1,U2] × [V1, V2] is the invariant rectangle for the

vector field (2.4). Thus, we can choose M1 = min{U1, V1} and M2 = max{U2, V2}.
Case 2 Suppose that 0 < minx∈�{u0(x)} ≤ β2/γ2 holds. In this case, the aforementioned

R is not the invariant rectangle anymore, since the last inequality in (2.9) fails. (In fact, we
have U1 ≤ β2/γ2. Thus, the term γ2U1 − β2 in the definition of V2 is negative or zero.) But,
the inequalities in (2.6), (2.7) and (2.8) still hold.

We divide [U1,U2] into two parts: [U1, β2/γ2] and [β2/γ2,U2].
We now show that if (u0(x), v0(x)) ∈ [U1, β2/γ2]×[V1,∞) holds, then solutions initiat-

ing from (u0(x), v0(x))will be bounded in [U1, β2/γ2]×[V1,∞). Moreover, these solutions
will go through the “line” u ≡ β2/γ2 and enter into [β2/γ2,U2] × [V1,∞). Suppose not.
Then, by (2.6) and (2.8), for any fixed x∗ ∈ �, there exist positive constants Û (≤ β2/γ2),
T∞(0 < T∞ ≤ +∞), and a subsequence of solutions (u(x∗, tk), v(x∗, tk)) of system (2.1),
such that as tk → T∞, we have

u(x∗, tk) → Û , v(x∗, tk) → +∞. (2.10)

Substituting u(x∗, tk) and v(x∗, tk) into (2.1), we have

∂u(x∗, tk)
∂t

− d1�u(x∗, tk) = β1 − u(x∗, tk) − γ1u(x∗, tk)v(x∗, tk)
1 + u(x∗, tk) + v(x∗, tk) + Ku(x∗, tk)2

.

(2.11)
Setting k → ∞ (or equiv. tk → T∞) in (2.11), one has 0 = β1 − Û − γ1Û . Thus,

Û = β1/(1 + γ1). However, this is impossible, since Û ≤ β2/γ2 < β1/(1 + γ1). We then
reach a contradiction.
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Since the solutions will eventually enter into [β2/γ2,U2] × (V1,∞), one can construct a
new invariant rectangle as we did in Case 1. This leads to another suitable positive constants
M1 andM2. Thus, we have prove the global existence and boundedness of the solutions. 
�

Our next result shows that system (2.1) has an attraction region defined by

A :=
(

β1

1 + γ1
, β1

)

×
(

β2

γ2
,
β2(1 + β1 + Kβ2

1 )(γ1 + 1)

β1γ2 − β2(1 + γ1)

)

(2.12)

in the phase plane which actually attracts all solutions of this system, regardless of the initial
values u0 and v0.

Theorem 2 Suppose that
β1

1 + γ1
>

β2

γ2
holds and let (u(x, t), v(x, t)) be the unique solution

of system (2.1). Then, for any x ∈ �, we have,

1.
β1

1 + γ1
< lim inf

t→∞u ≤ lim sup
t→∞

u < β1;

2.
β2

γ2
< lim inf

t→∞v ≤ lim sup
t→∞

v <
β2(1 + β1 + Kβ2

1 )(γ1 + 1)

β1γ2 − β2(γ1 + 1)
.

Proof 1)We first prove that lim inf
t→∞u >

β1

1 + γ1
. By Proposition 1, there exists a sufficiently

small ρ > 0 such that for all x ∈ � and t > 0,
γ1uv

1 + u + v + Ku2
+ρ <

γ1uv

v
= γ1u holds.

Let uρ be the unique solution of the following ODE:

duρ(t)

dt
= β1 + ρ − (1 + γ1)uρ(t), uρ(0) = (1 − ρ)min

x∈�

u0(x). (2.13)

Setting w1(x, t) = u(x, t) − uρ(t), and by (2.1) and (2.13), we have

−∂w1(x, t)

∂t
+ d1�w1(x, t) = w1(x, t) − γ1uρ(t) + γ1uv

1 + u + v + Ku2
+ ρ

< w1(x, t) − γ1uρ(t) + γ1u = (1 + γ1)w1(x, t),

w1(x, 0) > 0.

(2.14)

Thus,

−∂w1(x, t)

∂t
+ d1�w1(x, t) − (1 + γ1)w1(x, t) < 0, w1(x, 0) > 0. (2.15)

Then by the maximum principle for parabolic equations, we have w1(x, t) > 0, which
implies that u(x, t) > uρ(t) for all x ∈ � and t ≥ 0. From (2.13), it follows that lim

t→∞uρ(t) =
(β1 + ρ)/(1 + γ1). Thus, we have lim inf

t→∞u > β1/(1 + γ1).

2) We then prove that lim sup
t→∞

u < β1. By Proposition 1, there exists a sufficiently small

0 < δ < β1 such that for all x ∈ � and t > 0, δ < γ1uv/(1 + u + v + Ku2) holds. Let
uδ = uδ(t) be the unique solution of the following ODE:

duδ(t)

dt
= β1 − δ − uδ(t), uδ(0) = (1 + δ)max

x∈�

u0(x). (2.16)

Setting w2(x, t) = u(x, t) − uδ(t), and by (2.1) and (2.16), we have

−∂w2(x, t)

∂t
+d1�w2(x, t)−w2(x, t) = γ1uv

1 + u + v + Ku2
−δ > 0, w2(x, 0) < 0. (2.17)

123



226 J Dyn Diff Equat (2017) 29:219–241

Then by the maximum principle for parabolic equations, we have w2(x, t) < 0, which
implies that u(x, t) < uδ(t) for all x ∈ � and t ≥ 0. From (2.16), it follows that lim

t→∞uδ(t) =
β1 − δ. Thus, we have lim sup

t→∞
u < β1.

3) We now prove that lim inf
t→∞v >

β2

γ2
. By Proposition 1, there exists a sufficiently small

τ > 0 such that for all x ∈ � and t > 0,
γ2uv

1 + u + v + Ku2
+ τ <

γ2uv

u
= γ2v holds. Let

vτ be the unique solution of the following ODE:

dvτ (t)

dt
= β2 + τ − γ2vτ (t), vτ (0) = (1 − τ)min

x∈�

v0(x). (2.18)

Setting p1(x, t) = v(x, t) − vτ (t), and by (2.1) and (2.18), we have

−∂p1(x, t)

∂t
+ d2�p1(x, t) − γ2 p1(x, t) = γ2uv

1 + u + v + Ku2
+ τ − γ2v < 0,

p1(x, 0) > 0.
(2.19)

Then by the maximum principle for parabolic equations, we have p1(x, t) > 0, which
implies that v(x, t) > vτ (t) for all x ∈ �. From (2.18), it follows that lim

t→∞vτ (t) = (β2 +
τ)/γ2. Thus, we have lim inf

t→∞v > β2/γ2.

4) Finally, we prove that lim sup
t→∞

v <
β2(1 + β1 + Kβ2

1 )(γ1 + 1)

β1γ2 − β2(γ1 + 1)
. By

lim inf
t→∞ u >

β1

1 + γ1
, lim sup

t→∞
u < β1, (2.20)

there exists a finite number t0, depending on u0 and v0, such that for any t ≥ t0 and all x ∈ �,

β1

1 + γ1
< u(x, t) < β1, t ≥ t0. (2.21)

By Proposition 1 and (2.21), there exists a sufficiently small χ > 0, such that for all x ∈ �

and t ≥ t0, one has

0 <
γ2β1

(1 + β1 + v + Kβ2
1 − χ)(γ1 + 1)

<
γ2u

1 + u + v + Ku2
. (2.22)

This can be done by choosing χ > 0 sufficiently small, since when χ = 0, (2.22) holds
automatically.

Let vχ be the unique solution of the following ODE:

dvχ (t)

dt
= β2 − γ2β1vχ

(1 + β1 + vχ + Kβ2
1 − χ)(γ1 + 1)

, t > t0,

vχ (t0) = (1 + χ)max
x∈�

v(x, t0).
(2.23)

Setting p2(x, t) = v(x, t) − vχ (t), and by (2.1) and (2.23), we have

−∂p2(x, t)

∂t
+ d2�p2(x, t) = γ2uv

1 + u + v + Ku2
− γ2β1vχ

(1 + β1 + vχ + Kβ2
1 − χ)(γ1 + 1)

,

t > t0, p2(x, t0) < 0.
(2.24)
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The maximum principle for parabolic equations cannot be directly applicable to this case.
Motivated by [15],we nowuse an elementary argument ofHopf’s boundary lemma for elliptic
equations to prove that for all x ∈ � and t > t0, p2(x, t) < 0, and thus v(x, t) < vχ(t).

Suppose not. Then, there exists a T ∗ > t0, such that p2(x, t) < 0 for all (x, t) ∈
� × (t0, T ∗), and p2(x, T ∗) = 0 for some x ∈ �. Thus, max

x∈�

p2(x, T ∗) = 0.

If for some x∗ ∈ �, such that p2(x∗, T ∗) = 0. Then, we have ∂p2(x∗, T ∗)/∂t ≥ 0 and
�p2(x∗, T ∗) ≤ 0. Thus,

− ∂p2(x∗, T ∗)
∂t

+ �p2(x∗, T ∗) ≤ 0. (2.25)

At (x, t) = (x∗, T ∗), we have v = vχ . And u < β1. Then, we have,

γ2β1vχ

(1 + β1 + vχ + Kβ2
1 − χ)(γ1 + 1)

= γ2β1v

(1 + β1 + v + Kβ2
1 − χ)(γ1 + 1)

<
γ2uv

1 + u + v + Ku2
.

(2.26)

Then, (2.26) and (2.24) reveals that −∂p2(x∗, T ∗)/∂t + d2�p2(x∗, T ∗) > 0, which
contradicts with (2.25). Thus, one can not find such point x∗ ∈ �, such that p2(x∗, T ∗) = 0.

If for some x∗ ∈ ∂�, such that p2(x∗, T ∗) = 0. The right-hand side of (2.24) is positive
at (x∗, T ∗), and by continuity it remains positive in �0 × {T ∗}, where �0 is a sub-domain
of � and x∗ ∈ ∂�0. Then, on �0 × {T ∗}, we have −∂p2(x, t)/∂t + d2�p2(x, t) ≥ 0.
Treating (2.24) as an elliptic equation in�0 ×{T ∗} and by Hopf’s boundary lemma, we have
∂ν p2(x∗, T ∗) = ∂νv(x∗, T ∗) > 0, which contradicts the Neumann boundary condition.
Thus, for any x ∈ � and t > t0, we have v(x, t) < vχ (t).

From (2.23), it follows that

lim
t→∞ vχ (t) = β2(1 + β1 + Kβ2

1 − χ)(γ1 + 1)

β1γ2 − β2(γ1 + 1)
<

β2(1 + β1 + Kβ2
1 )(γ1 + 1)

β1γ2 − β2(γ1 + 1)
. (2.27)

Thus, we have proved that lim sup
t→∞

v <
β2(1 + β1 + Kβ2

1 )(γ1 + 1)

β1γ2 − β2(γ1 + 1)
. 
�

Our final result in this section is that under certain conditions (“lumped parameter
assumption” [3]), the dynamics of system (2.1) can be determined by the dynamics of the
corresponding ODEs (1.5).

Following [3], we define σ := dλ1 − Q, where λ1 is the principal eigenvalue of −� on
� subject to homogeneous Neumann boundary conditions, d := min{d1, d2}, and

Q := sup
(u,v)∈A

{||J (u, v)||}, (2.28)

where the Jacobin matrix J (u, v) is given by

J (u, v) =
(−1 − γ1ρ1(u, v), −γ1ρ2(u, v)

−γ2ρ1(u, v), −γ2ρ2(u, v)

)

, (2.29)

where

ρ1(u, v) := v(1 + v − Ku2)

(1 + u + v + Ku2)2
, ρ2(u, v) := u(1 + u + Ku2)

(1 + u + v + Ku2)2
. (2.30)
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Obviously, for u, v > 0, the following inequalities hold

|ρ1(u, v)| <
1 + u + Ku2

1 + u + v + Ku2
, |ρ2(u, v)| <

1 + u + Ku2

1 + u + v + Ku2
. (2.31)

For any (u, v) ∈ A, defined precisely in (2.12), we have

1 + u + Ku2

1 + u + v + Ku2
< ξ := γ2(1 + γ1)

2(1 + β1 + Kβ2
1 )

γ2(1 + γ1)2 + β1γ2(1 + γ1) + β2(1 + γ1)2 + Kγ2β
2
1

. (2.32)

Thus,

Q = max

{

sup
(u,v)∈A

(
∣
∣1 + γ1ρ1(u, v)

∣
∣ + γ1ρ2(u, v)), sup

(u,v)∈A
(
∣
∣γ2ρ1(u, v)

∣
∣ + γ2ρ2(u, v))

}

< D := max{1 + 2γ1ξ, 2γ2ξ}.
(2.33)

We conclude that, when d1 and d2 fall into certain ranges, the solutions of system (1.6)
either converge exponentially to the unique positive constant steady states or to the spatially
homogeneous periodic solutions.

Theorem 3 Suppose thatβ1/(1+γ1) > β2/γ2, and that (d1, d2) ∈ [D/λ1,∞)×[D/λ1,∞),
where D is defined in (2.33). If (6.8) holds, then every solution (u(x, t), v(x, t)) of sys-
tem (2.1) converges exponentially to (u∗, v∗); while if (6.7) holds, then every solution
(u(x, t), v(x, t)) of system (2.1) converges exponentially to the spatially homogeneous peri-
odic solutions.

Proof By Theorem 2, there exists T > 0, such that for any t > T , the solution
(u(x, t), v(x, t)) ∈ A for all x ∈ �. Without loss of generality, we can assume that T = 0.

Clearly, from (2.33), if (d1, d2) ∈ [D/λ1,∞) × [D/λ1,∞), then σ > 0. Define

f (u, v) := β1 − u − γ1uv

1 + u + v + Ku2
, g(u, v) := β2 − γ2uv

1 + u + v + Ku2
. (2.34)

Then by [3,24], there exist constants Ni > 0, i = 1, 2, 3, such that, for any solution
(u(t, x), v(t, x)) of system (2.1)

||∇x (u(·, t), v(·, t))||L2(�) ≤ N1e
−σ t , ||(u(·, t), v(·, t)) − (u(t), v(t))||L2(�) ≤ N2e

−σ t ,

(2.35)
where u, v are the average of u and v over � respectively satisfying

⎧
⎪⎪⎨

⎪⎪⎩

du

dt
= f (u, v) + o1(t), u(0) = 1

|�|
∫

�

u0(x)dx, |o1(t)| ≤ N3e
−ρt ,

dv

dt
= g(u, v) + o2(t), v(0) = 1

|�|
∫

�

v0(x)dx, |o2(t)| ≤ N3e
−ρt .

(2.36)

Moreover, the ω−limit set of (2.36) is the subset of the ω−limit set of the following ODEs
⎧
⎪⎪⎨

⎪⎪⎩

du

dt
= f (u, v), u(0) = 1

|�|
∫

�

u0(x)dx,

dv

dt
= g(u, v), v(0) = 1

|�|
∫

�

v0(x)dx .
(2.37)

Finally, combining the results of Lemmas 9 and 10 in Appendix, we complete the proof
of the Theorem 3. 
�
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3 Non-existence of Turing Patterns: Some Estimates

In this section, we show the non-existence of the non-constant positive steady state solutions
of the system: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−d1�u = β1 − u − γ1uv

1 + u + v + Ku2
, x ∈ �,

−d2�v = β2 − γ2uv

1 + u + v + Ku2
, x ∈ �,

∂νu = ∂νv = 0, x ∈ ∂�.

(3.1)

Lemma 4 (A priori estimates) Suppose that
β1

1 + γ1
>

β2

γ2
holds, and let (u(x), v(x)) be

any given positive steady state solution of system (1.6). Then, for any x ∈ �, the following
conclusions hold:

β1

1 + γ1
< u(x) < β1,

β2

γ2
< v(x) <

β2(1 + β1 + Kβ2
1 )(γ1 + 1)

β1γ2 − β2(γ1 + 1)
. (3.2)

Remark 5 Lemma 4 is the direct consequence of Theorem 2.

For a steady state solution pair (u(x), v(x)) of system (3.1), we define

u = 1

|�|
∫

�

u(x)dx, v = 1

|�|
∫

�

v(x)dx . (3.3)

Multiplying the first equation of (3.1) by γ2, the second equation of (3.1) by −γ1, and
adding them, we can obtain that

�(γ2d1u − γ1d2v) + γ2β1 − γ1β2 − γ2u = 0. (3.4)

Integrating (3.4) over �, we obtain

u = 1

|�|
∫

�

udx = β1 − γ1

γ2
β2 = u∗ > 0. (3.5)

Define
φ(x) := u(x) − u, ψ(x) := v(x) − v. (3.6)

We are now stating the following useful estimates on the steady state solutions:

Lemma 6 Suppose that (u(x), v(x)) is the solution pair of (3.1), and let φ(x), ψ(x) be
defined in (3.6). Then,

γ 2
1 d

2
2λ

2
1

γ 2
2 (2d21λ

2
1 + 2d1λ1 + 1)

∫

�

|∇ψ |2dx ≤
∫

�

|∇φ|2dx ≤ γ 2
1 d

2
2

γ 2
2 d

2
1

∫

�

|∇ψ |2dx, (3.7)

where λ1 is the principle eigenvalue of −� on � subject to the homogeneous Neumann
boundary conditions.

Proof Rewrite (3.4) as

�(γ2d1u − γ1d2v) = γ2(u − u) = γ2φ. (3.8)

Multiplying (3.8) by γ2d1u − γ1d2v, integrating over � by parts, and noticing that∫

�

φdx =
∫

�

ψdx = 0, we can yield

−
∫

�

∣
∣∇(d1γ2u − d2γ1v)

∣
∣2dx = γ 2

2 d1

∫

�

φ2dx − γ1γ2d2

∫

�

φψdx . (3.9)
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Thus, we have

γ1γ2d2

∫

�

φψdx = γ 2
2 d1

∫

�

φ2dx +
∫

�

∣
∣∇(d1γ2u − d2γ1v)

∣
∣2dx ≥ 0. (3.10)

If we multiplify (3.8) by φ and integrate over � by parts, we have

γ2

∫

�

φ2dx = −d1γ2

∫

�

|∇φ|2dx + d2γ1

∫

�

∇φ∇ψdx, (3.11)

which implies that

d2γ1

∫

�

∇φ∇ψdx = γ2

∫

�

φ2dx + d1γ2

∫

�

|∇φ|2dx . (3.12)

On the other hand, the left side of (3.9) also equals

−
∫

�

∣
∣∇(d1γ2u − d2γ1v)

∣
∣2dx = −

∫

�

(

d21γ 2
2 |∇u|2 − 2d1d2γ1γ2∇u∇v + d22γ 2

1 |∇v|2
)

dx

= −
∫

�

(

d21γ 2
2 |∇φ|2 − 2d1d2γ1γ2∇φ∇ψ + d22γ 2

1 |∇ψ |2
)

dx .

(3.13)

Then, from (3.9), (3.12) and (3.13), we have

d22γ
2
1

∫

�

|∇ψ |2dx = d21γ
2
2

∫

�

|∇φ|2dx + d1γ
2
2

∫

�

φ2dx + γ1γ2d2

∫

�

φψdx, (3.14)

which together with (3.10) implies that

d21γ
2
2

∫

�

|∇φ|2dx ≤ d22γ
2
1

∫

�

|∇ψ |2dx . (3.15)

Thus,
∫

�

|∇φ|2dx ≤ d22γ 2
1

d21γ 2
2

∫

�

|∇ψ |2dx . (3.16)

On the other hand, by the Poincare inequality, it follows that
∫

�

φ2dx ≤ 1

λ1

∫

�

|∇φ|2dx . (3.17)

The Cauchy inequality says that, for any given real number x and y, and ε > 0, the

inequality xy ≤ 1

4ε
x2 + εy2 always holds. It then follows that

∫

�

φψdx ≤ γ2

2λ1γ1d2

∫

�

φ2dx + λ1γ1d2
2γ2

∫

�

ψ2dx . (3.18)

Then,

γ1γ2d2

∫

�

φψdx ≤ γ 2
2

2λ1

∫

�

φ2dx + 1

2
λ1γ

2
1 d

2
2

∫

�

ψ2dx

≤ γ 2
2

2λ21

∫

�

|∇φ|2dx + 1

2
γ 2
1 d

2
2

∫

�

|∇ψ |2dx .
(3.19)

Thus, from (3.14), (3.17) and (3.19), we have

1

2
γ 2
1 d

2
2

∫

�

|∇ψ |2dx ≤ γ 2
2

(

d21 + d1
λ1

+ 1

2λ21

) ∫

�

|∇φ|2dx, (3.20)
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which implies
γ 2
1 d

2
2λ21

γ 2
2 (2d21λ

2
1 + 2d1λ1 + 1)

∫

�

|∇ψ |2dx ≤
∫

�

|∇φ|2dx . (3.21)

This completes the proof. 
�
For the convenience of our later discussions, we define

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1(u, v) := (1 + u + v + Ku2)−1(Kuu − (1 + v))
v

1 + u + v + Ku2
,

h2(u, v) := (1 + u + v + Ku2)−1
(

u v

1 + u + v + Ku2
− u

)

,

h3(u, v) := (1 + u + v + Ku2)−1 1 + u + u v

1 + u + v + Ku2
,

h4(u, v) := u v

1 + u + v + Ku2
− u,

(3.22)

where u and v are defined precisely in (3.3).
From Lemma 4, it follows that, any positive solutions (u, v) of system (3.1) satisfies

(u, v) ∈ A, where A is defined in (2.12). Define

Hi := sup
(u,v)∈A

|hi (u, v)|, i = 1, 2, 3, 4, (3.23)

and

χ1(x) := H2γ2x

λ1x − H1γ1
, χ2(x) :=

H4γ2

√

2λ21x
2 + 2λ1x + 1

λ1(λ1x − H3γ1)
. (3.24)

Clearly, the functions χ1(x) and χ2(x) are decreasing functions defined on (H2γ1/λ1,∞)

and (H3γ1/λ1,∞) respectively, satisfying

lim
x→ (H1γ1/λ1)

+ χ1(x) = +∞, lim
x→+∞ χ1(x) = H2γ2

λ1
,

lim
x→ (H3γ1/λ1)

+ χ2(x) = +∞, lim
x→+∞ χ2(x) =

√
2H4γ2

λ1
.

(3.25)

We are now in the position to state the following theorem regarding the non-existence of
non-constant positive solutions of the system (3.1):

Theorem 7 Let hi (u, v),Hi , i = 1, 2, 3, 4, and χ j (x), j = 1, 2, be defined in (3.22), (3.23)
and (3.25) respectively. Then, for any (d1, d2) ∈ �, system (3.1) does not have non-constant
positive solutions, where

� :=
{

(d1, d2) ∈ R2 : d1 >
H1γ1

λ1
, d2 > χ1(d1)

}

∪
{
(d1, d2) ∈ R2 : d1

>
H3γ1

λ1
, d2 > χ2(d1)

}
. (3.26)

Proof We first prove that if (d1, d2) ∈ {(d1, d2) ∈ R2 : d1 >
H1γ1

λ1
, d2 > χ1(d1)}, then

system (3.1) does not have non-constant positive solutions.

123



232 J Dyn Diff Equat (2017) 29:219–241

Multiplying the second equation of (3.1) by ψ and integrating over �, we have

−
∫

�

d2ψ�ψdx = β2

∫

�

ψdx − γ2

∫

�

uvψ

1 + u + v + Ku2
dx

= −γ2

∫

�

uvψ

1 + u + v + Ku2
dx . (3.27)

Thus,

d2

∫

�

|∇ψ |2dx = −γ2

∫

�

uvψ

1 + u + v + Ku2
dx . (3.28)

Direct calculations show that the right hand side of (3.28) is

−γ2

∫

�

(
u(v − v)

1 + u + v + Ku2
+ uv

1 + u + v + Ku2
− u v

1 + u + v + Ku2

)

ψdx

= − γ2

∫

�

uψ2

1 + u + v + Ku2
dx − γ2

∫

�

vψ(φ + vu − uv − Kuuφ)

(1 + u + v + Ku2)(1 + u + v + Ku2)
dx

= − γ2

∫

�

uψ2

1 + u + v + Ku2
dx − γ2v

1 + u + v + Ku2

∫

�

(φ + vu − uv − Kuuφ)ψ

1 + u + v + Ku2
dx

= − γ2

∫

�

u

1 + u + v + Ku2
ψ2dx − γ2v(1 + v)

1 + u + v + Ku2

∫

�

1

1 + u + v + Ku2
φψdx

+ γ2u v

1 + u + v + Ku2

( ∫

�

Ku

1 + u + v + Ku2
φψdx +

∫

�

1

1 + u + v + Ku2
ψ2dx

)

=γ2

∫

�

h1(u, v)φψdx + γ2

∫

�

h2(u, v)ψ2dx,

≤γ2

∫

�

H1|φψ |dx + γ2

∫

�

H2ψ
2dx .

(3.29)
Then,

d2
γ2

∫

�

|∇ψ |2dx ≤ H1

∫

�

|φψ |dx + H2

∫

ψ2dx ≤ H1

∫

�

|φψ |dx + H2

λ1

∫

|∇ψ |2dx .
(3.30)

On the other hand, we have

∫

�

|φψ |dx ≤
(∫

�

|φ|2dx
) 1

2
(∫

�

|ψ |2dx
) 1

2 ≤
(

1

λ1

∫

�

|∇φ|2dx
) 1

2
(

1

λ1

∫

�

|∇ψ |2dx
) 1

2

= 1

λ1

(∫

�

|∇φ|2dx
) 1

2
(∫

�

|∇ψ |2dx
) 1

2

.

(3.31)
Then, combining (3.7) and (3.31), we have

∫

�

|φψ |dx ≤ d2γ1
λ1d1γ2

∫

�

|∇ψ |2dx . (3.32)

So far, (3.30) is reduced to

d2
γ2

∫

�

|∇ψ |2dx ≤
(H2

λ1
+ H1d2γ1

λ1d1γ2

) ∫

�

|∇ψ |2dx . (3.33)
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For any (d1, d2) ∈ {(d1, d2) ∈ R2 : d1 >
H1γ1

λ1
, d2 > χ1(d1)}, we have

d2
γ2

>
H2

λ1
+ H1d2γ1

λ1d1γ2
. (3.34)

Thus, we have ∇ψ ≡ 0. This together with (3.7), reveals that ∇φ ≡ 0. Then system (3.1)
does not have non-constant positive solutions.

We then prove that if (d1, d2) ∈ {(d1, d2) ∈ R2 : d1 >
H3γ1

λ1
, d2 > χ2(d1)}, then system

(3.1) does not have non-constant positive solutions.
Multiplying the first equation of system by φ and integrating over �, we have

d1

∫

�

|∇φ|2dx =
∫

�

φ(β1 − u)dx −
∫

�

γ1uv

1 + u + v + Ku2
φdx . (3.35)

A direct calculation shows that

d1

∫

�

|∇φ|2dx =γ1

∫

�

(
u v

1 + u + v + Ku2
− u

)

φψdx

−
∫

�

(

1 + γ1v

1 + u + v + Ku2

)

ψ2dx

+ γ1

∫

�

(1 + u + v + Ku2)−1 1 + u + u v

1 + u + v + Ku2
φ2dx

≤γ1

∫

�

(
u v

1 + u + v + Ku2
− u

)

φψdx

+ γ1

∫

�

(1 + u + v + Ku2)−1 1 + u + u v

1 + u + v + Ku2
φ2dx

=γ1

∫

�

h3(u, v)φ2dx + γ1

∫

�

h4(u, v)φψdx,

≤γ1

∫

�

H3φ
2dx + γ1

∫

�

H4|φψ |dx .

(3.36)

By (3.21) and (3.31), we have

∫

�

|φψ |dx ≤ γ2(2d21λ21 + 2d1λ1 + 1)
1
2

γ1d2λ21

∫

�

|∇φ|2dx . (3.37)

Thus,

d1

∫

�

|∇φ|2dx ≤
(H3γ1

λ1
+ H4γ2(2d21λ21 + 2d1λ1 + 1)

1
2

d2λ21

) ∫

�

|∇φ|2dx . (3.38)

For any (d1, d2) ∈ {(d1, d2) ∈ R2 : d1 >
H3γ1

λ1
, d2 > χ2(d1)}, we have

d1 >
H3γ1

λ1
+ H4γ2(2d21λ21 + 2d1λ1 + 1)

1
2

d2λ21
. (3.39)

This together with (3.16), reveals that∇φ ≡ 0. Then system (3.1) does not have non-constant
positive solutions. 
�
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4 Existence of Turing Patterns: Global Steady State Bifurcations

In this section, we use the global bifurcation theory to prove the existence of positive non-
constant of steady state system (3.1). In particular, we are concerned with the existence of
Turing patterns.

Let j0 and k0 be defined precisely in (6.4) in Appendix. Then, if j0 < − 1

γ1
holds, system

(2.1) is a substrate–inhibition system, that is the Jacobian matrix of the corresponding ODEs
evaluated at (u∗, v∗) takes in the form of

(+, −
+, −

)

. (4.1)

And if
β1

1 + γ1
>

β2

γ2
, − 1

γ1
− γ2k0

γ1
< j0, (4.2)

holds, then (u∗, v∗) is positive and stable in the ODEs (1.5).
Thus, in the rest of the paper, we always assume that the conditions

β1

1 + γ1
>

β2

γ2
, − 1

γ1
− γ2k0

γ1
< j0 < − 1

γ1
(4.3)

are satisfied.
The linearized operator of system (3.1) evaluated at (u∗, v∗) is given by (choosing d1 as

the bifurcation parameter)

L(d1) =
(
d1� − 1 − γ1 j0, −γ1k0

−γ2 j0 d2� − γ2k0

)

. (4.4)

Let λi and ξi (x), i ∈ N0, be the eigenvalues and the corresponding eigenfunctions of −�

in � subject to Neumann boundary conditions. Then, by [15,25], the eigenvalues of L(d1)
are given by those of the following operator Li (d1):

Li (d1) =
(−d1λi − 1 − γ1 j0, −γ1k0

−γ2 j0 −d2λi − γ2k0

)

, (4.5)

whose characteristic equation is

μ2 − μTi (d1) + Di (d1) = 0, i ∈ N0,

where {
Ti (d1) : = −(d1 + d2)λi − (1 + γ1 j0 + γ2k0),

Di (d1) : = d1d2λ
2
i + (γ2k0d1 + (1 + γ1 j0)d2)λi + γ2k0.

(4.6)

According to [19,25], if there exist i ∈ N0 and d∗
1 > 0, such that

Di (d
∗
1 ) = 0, Ti (d

∗
1 ) �= 0, Tj (d

∗
1 ) �= 0, Dj (d

∗
1 ) �= 0 for all j �= i, (4.7)

and the derivative
d

dd1
Di (d

∗
1 ) �= 0, then a global steady state bifurcation occurs at the critical

point d∗
1 .

By (4.3), we have T0(d1) < 0. Thus, for all i ∈ N0, we have Ti (d1) < 0. Solving
Di (d1) = 0, we have the set of critical values of (d1, d2), given by the hyperbolic curves Ci ,
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with i ∈ N := N0\{0} (see also page 561 of [16]):

(Ci ) : di2 = γ1γ2k0 j0/λ2i
d1 + (1 + γ1 j0)/λi

− γ2k0
λi

, i ∈ N. (4.8)

Suppose that λi , i ∈ N, is the simple eigenvalue of −�. Following [16], we call B :=
⋃∞

i=1 Ci the bifurcation set with respect to (u∗, v∗), and denote by B0 be the countable set
of intersection points of two curves of {Ci }∞i=1, and B̂ = B\B0.

Clearly, for any fixed d2 > 0, there exists a unique di1 such that (d
i
1, d2) ∈ B̂ ∩ Ci , and at

d = di1, both (4.7) and
d

dd1
Di (d

i
1) �= 0 are satisfied.

Then, from [16,25], we have the following results regarding the existence of Turing
patterns:

Theorem 8 Suppose that (4.3) holds and that Ci is defined in (4.8), where λi , i ∈ N, is the
simple eigenvalue of −�. Then for any (di1, d2) ∈ B̂ ∩ Ci with d2 fixed, there is a smooth
curve �i of positive solutions of (3.1) bifurcating from (d1, u, v) = (di1, u∗, v∗), with �i

contained in a global branch Ci of the positive solutions of (3.1). Moreover

1. Near (d1, u, v) = (di1, u∗, v∗), �i = {(d1(s), u(s), v(s)) : s ∈ (−ε, ε)}, where u(s) =
u∗ + saiξi (x) + so1(s), v(s) = v∗ + sbiξi (x) + so2(s) for s ∈ (−ε, ε) for some C∞
smooth functions d1(s), o1(s), o2(s) such that d1(0) = di1 and o1(0) = o2(0) = 0. Here
ai and bi satisfy Li (d1)(ai , bi )T = (0, 0)T , and ξi (·) is the corresponding eigenfunction
of the eigenvalue λi of −�.

2. Moreover, the projection of Ci onto di1-axis contains the interval (0, d
i
1).

Proof From discussions above, at d1 = di1, we can apply Theorem 3.2 in [25] to assert the
existence of local and global steady state bifurcations. By Theorem 2.3 of [16], we can rule
out the possibility that Ci contains another (d j

1 , u∗, v∗) with i �= j . We thus complete the
proof of this theorem (Fig. 2). 
�

5 Numerical Experiments

In this section we perform two numerical experiments to show that for some sets of para-
meters chosen accordingly the system (2.1) produces Turing patterns, that is., the solutions
converge to spatially non-homogenous steady state. On the other hand, for some parameters
the solutions of the system (2.1) either converge exponentially to uniform steady state or
spatially homogenous periodic solution.

Experiment 1: Turing patterns
In this experiment, we show that the model (2.1) produces Turing patterns in a two-
dimensional domain. The model (2.1) is defined in the square domain � = [0, π] × [0, π]
in R

2 and the final time of interest is T = 100. Parameters are chosen according to the
bifurcation analysis presented in Sect. 4 and by the eigenvalues of the Laplacian opera-
tor, −� in domain � which are λi, j = i2 + j2. The parameters for this experiment are
β1 = 2.47, β2 = 1, γ1 = 150.8, γ2 = 72.07, K = 25.5, d1 = 0.09, d2 = 2. The parame-
ters β1, β2, γ1, γ2, and K are fixed so that the inequality (4.3) holds. Thus in the absence
of diffusion the uniform steady state u∗ = 0.38 and v∗ = 0.19 is locally asymptotically
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Fig. 2 Bifurcation diagram: For any i ∈ N, Ci , defined precisely in (4.8), is the hyperbolic curve where the
steady state bifurcation point (di1, d2) locates (for fixed d2 > 0). The area on the left side of the vertical line
d1 ≡ −(1 + γ1 j0)/λ1, Turing patterns are possible; While in the shaded area on the right side of vertical
line d1 ≡ H3γ1/λ1, system (2.1) does not possess any non-constant positive steady states, including Turing
patterns. Here Hi , i = 1, 2, 3, 4, are defined in (3.23)

stable. For d2 = 2, we find the diffusion constant d1 such that the conditions in (4.7) sat-
isfied. We take λ = λi, j = 22 + 32 = 13, in which the corresponding eigenfunctions are
cos(2πx) cos(3πy). Hence,

d1 = −γ2k0 − (1 + γ1 j0)d2λ

d2λ2 + γ2k0λ
= 0.09 for d2 = 2 and λ = 13.

We use finite element method for spatial discretization and implicit finite difference for the
time derivative to approximate the solutions of the model (2.1). The mesh size h = 0.0982
which is achieved by 7938 elements (triangles), and the time step size is �t = 0.1. Initial
conditions are small random perturbations around the uniform steady state in the absence of
diffusion. The chemical concentrations u and v at times t = 0, 10, 50, 100 are shown in the
Fig. 5.

Experiment 2: Asymptotic behavior of the solutions
In this examplewe simulate the results of the Theorem 3.We show that for diffusion constants
sufficiently large, namely for (d1, d2) ∈ [D/λ1,∞)×[D/λ1,∞), the solutions of the system
(2.1) either converges to the constant steady state if (6.6) holds, or to the spatially homogenous
periodic solutions if (6.7) holds. For the first case, we choose parameters as β1 = 5, β2 =
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Fig. 3 Experiment 1: Turing patterns arising from the system (2.1) in a square domain �. The figures in the
first column correspond to the chemical concentration u and the figures in the second column correspond to
the chemical concentration v at specific time levels
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Fig. 4 Experiment 2: The solutions of the system (2.1) converging to constant steady state solutions u∗ = 2.95
(a) and v∗ = 1.03 (b)

Fig. 5 Experiment 2: The solutions of the system (2.1) converging to the spatially homogenous temporally
periodic steady state

1, γ1 = 150, γ2 = 73, and take the diffusion constants to be d1 = 2×105, d2 = 3×105. As
shown in Fig. 5, the solutions converge to the constant steady states u∗ = 2.95 and v∗ = 1.03
(Figs. 3, 4).

For the latter case, we choose the parameters as β1 = 5, β2 = 2, γ1 = 146, γ2 = 71,
and take the diffusion constants to be d1 = 2 × 105, d2 = 3 × 105. As shown in Fig. 5, the
solutions converge to the spatially homogenous periodic solutions in time.
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0755), Scientific Research Foundation for the Returned Overseas Chinese Scholars of Heilongjiang Province
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Appendix: The Dynamics of ODEs

In this section, we consider the local/global asymptotic stability of (u∗, v∗), as well as the
occurrence of stable periodic solutions of the following Ordinary Differential Equations
(ODEs):

du

dt
= β1 − u − γ1uv

1 + u + v + Ku2
=: f (u, v),

dv

dt
= β2 − γ2uv

1 + u + v + Ku2
=: g(u, v).

(6.1)
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System (6.1) has a positive equilibrium (u∗, v∗), with

u∗ := β1 − γ1

γ2
β2, v∗ := β2(1 + u∗ + Ku2∗)

γ2u∗ − β2
, (6.2)

if and only if
β1

1 + γ1
>

β2

γ2
holds.

The linearized operator of system (6.1) evaluated at (u∗, v∗) is given by

J (u∗, v∗) :=
(−1 − γ1 j0 −γ1k0

−γ2 j0, −γ2k0

)

, (6.3)

where

j0 := v∗(1 + v∗ − Ku2∗)
(1 + u∗ + v∗ + Ku2∗)2

, k0 := u∗(1 + u∗ + Ku2∗)
(1 + u∗ + v∗ + Ku2∗)2

. (6.4)

Then, the characteristic equation of (6.3) is given by

μ2 + (1 + γ1 j0 + γ2k0)μ + γ2k0 = 0. (6.5)

Lemma 9 Suppose that
β1

1 + γ1
>

β2

γ2
is satisfied so that (u∗, v∗) is the unique positive

equilibrium of (6.1). If

j0 > −1 + γ2k0
γ1

(6.6)

holds, then (u∗, v∗) is locally asymptotically stable in system (6.1). However, if

j0 < −1 + γ2k0
γ1

(6.7)

holds, then (u∗, v∗) is unstable in system (6.1), and the system (6.1) has a locally orbitally
stable periodic orbit, denoted by (p(t), q(t)).

Proof Suppose that (6.6) holds. Then, all the eigenvalues of (6.5) has strictly negative real
parts, thus (u∗, v∗) is locally asymptotically stable; While if (6.7) holds, then (6.5) has one
eigenvalue with positive real parts, thus (u∗, v∗) is unstable. According to Theorem 2, the
solutions is bounded, then from Poincare–Bendixson theorem, we conclude the existence of
a locally orbitally stable periodic orbit, denoted by (p(t), q(t)). 
�

The next result is on the global asymptotic stability of the positive equilibrium (u∗, v∗)
in (6.1):

Lemma 10 Suppose that
β1

1 + γ1
>

β2

γ2
is satisfied so that (u∗, v∗) is the unique positive

equilibrium of (6.1). Assume also that 0 < β1 + β2 ≤ 1 holds. Then, (u∗, v∗) is globally
asymptotically stable in system (6.1), if

K ∈
(

0,
γ2 + 2

2β1

]

∪
[

γ2 + 2

2β1
+ ε−

2β2
1

,
γ2 + 2

2β1
+ ε+

2β2
1

]

, (6.8)

where

ε± :=
√

9(1 − β1 − β2)2 + 6β1(γ2 + 2)(1 − β1 − β2) ± 3(1 − β1 − β2) > 0. (6.9)
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Proof We first use the Dulac criteria to exclude the existence of periodic orbits in the first
quadrant. Define b(u, v) = 1 + u + v + Ku2, then, we have

∂( f b)

∂u
+ ∂(gb)

∂v
= W(u) − (γ1 + 1)v, (6.10)

where W(u) := −3Ku2 − (γ2 + 2 − 2β1K )u + β1 + β2 − 1.
Let uW be the symmetry axis of the function W(u). Then, uW = 1

3β1K − 1
6 (2 + γ2).

If K ∈ (
0,

γ2 + 2

2β1

]
holds, we have uW ≤ 0. Thus, W(u) ≤ 0, which indicates that under

∂( f b)/∂u + ∂(gb)/∂v < 0 in the first quadrant.
On the other hand, let �W be the discriminant of the function W(u). Then,

�W = (2β1K − 2 − γ2)
2 + 12K (β1 + β2 − 1). (6.11)

Suppose that K ∈ [γ2 + 2

2β1
+ ε−

2β2
1

,
γ2 + 2

2β1
+ ε+

2β2
1

]
holds. Then �W ≤ 0. Again, we can

conclude that W(u) ≤ 0, which indicates that under ∂( f b)/∂u + ∂(gb)/∂v < 0 in the first
quadrant.

So far, under (6.8) and 0 < β1 + β2 ≤ 1, by Dulac criteria, system (6.1) does not have
closed orbits in the first quadrant. By Theorem 2, it follows that the solution is bounded. Thus,
by Poincare–Bendixson theorem, we know that (u∗, v∗) is globally asymptotically stable in
ODEs. 
�
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