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Abstract We exhibit a differential delay equation with state-dependent delay

x ′(t) = f (x(t − h(xt )))

for which the familiar non-increasing “oscillation speed” is defined and for which there exists
an asymptotically stable rapidly oscillating periodic solution.

Keywords Delay equation · Periodic solution · State-dependent delay

1 Introduction

In this paper we study a particular version of the equation

x ′(t) = f
(
x(t − h(xt ))

)
, (1)

where f is continuous with negative feedback and h : C([−1, 0],R) → R is a continuous
delay functional.

Our goal is to exhibit pairs h and f such that

(i) the solutions of Eq. (1) have a non-increasing “oscillation speed”;
(ii) Equation (1) has a periodic solution that is both “rapidly oscillating” and stable.

Our motivation, of course, is comparison with the extensively studied constant-delay
equation with negative feedback

x ′(t) = f
(
x(t − 1)

)
. (2)

The oscillation speed for this latter equation—roughly speaking, the number of zeros a
solution has per unit time interval—has been described by many authors (often in somewhat
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more general contexts: see, e.g., [9]) and is a basic tool for understanding the equation’s
global dynamics. In particular, there is an invariant set of solutions that are “eventually slowly
oscillating”—that is, whose successive zeros are eventually separated by more than one unit
time. When f is strictly decreasing and smooth, the set of initial conditions of eventually
slowly oscillating solutions of Eq. (2) is dense in the phase space C([−1, 0],R). (This result
was conjectured in [4] and is proven in [11]; see [14] for an earlier proof under stronger
hypotheses.) In particular, when f is strictly decreasing and smooth no rapidly oscillating
periodic solution of Eq. (2) can be stable. The question of whether stable rapidly oscillating
periodic solutions of Eq. (2) can exist when f is not monotonic remains open.

It is natural to ask, then, what alterations of Eq. (2)might admit rapidly oscillating periodic
solutions, still worthy of the name, that are stable. For example, instances have been found
of constant-delay equations with instantaneous damping (and non-monotonic f )

x ′(t) = μx(t) + f
(
x(t − 1)

)

that have stable rapidly oscillating periodic solutions ([3,13]). In [6] a family of state-
dependent delay equations of the form

x ′(t) = f
(
x
(
t − �(x(t))

))
(3)

is described for which f is nonincreasing and for which the instability of particular rapidly
oscillating periodic solutions (as measured by the spectral radius of the derivative of an
appropriate Poincaré map) can be made arbitrarily weak. (State-dependent equations of the
form (3), and various of its generalizations, are relatively well-studied. Results include [8,10]
on existence of slowly oscillating periodic solutions, and [7] on oscillation speed and the
structure of the set of slowly oscillating solutions).

In this paper we modify the equations studied in [6] in two particular ways chosen to
circumvent the apparent barriers to the solutions considered in [6] being stable. In the first
place, we allow the delay to depend on somewhat more of the initial condition than its current
value only, so the equation we actually study here is of the form

x ′(t) = f
(
x
(
t − d(x(t), x(t − r))

))
, (4)

where r ∈ (0, 1) (we shall see that we can take r to be fairly small). In the second place,
we allow the delayed time (the quantity t − h(xt ) in the notation of Eq. 1) to decrease over
certain intervals. (For several different types of equations of the form (1), various authors
have either imposed the condition that t − h(xt ) be increasing, or had this condition emerge
as a consequence of other hypotheses; see, for example, [1,6,7,16]. See especially [17] for a
discussion of the monotonicity of t − h(xt ) for a well-motivated subclass of state-dependent
delay equations).

We shall exhibit an instance of Eq. (4) that has a non-increasing oscillation speed and a
rapidly oscillating periodic solution that is asymptotically stable. We shall see that we can
take f to be non-increasing. The equation we shall study is admittedly contrived; it is best
regarded as a smoothed and state-dependent alteration of the well-studied prototype equation

x ′(t) = −sign
(
x(t − 1)

)
, (5)

and the solution we shall study is best regarded as an analog of the periodic solution p(t)
of Eq. (5) whose zeros are separated by 2/5. This solution (the dashed line) and a solution
x(t) of Eq. (5) with a nearby initial condition (solid line) are shown below. We assume that
x has precisely two negative zeros −u2 − u1 and −u1 that are close to −4/5 and −2/5,
respectively.
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The reason for the instability of p(t) is not hard to grasp. Let us write z for the first positive
zero of x(t). For x0 close enough to p0, the zero z (indeed, the entire restriction of x to [0, z])
is completely determined by −u2 − u1. More particularly, z is given by the formula

z = 2
[
1 − (u1 + u2)

]
.

If x0 is close enough to p0 and has the two negative zeros we have assumed, the same
conditions we have just assumed for x0 will hold for xz also, and the negative zeros of
xz are −u1 − z and −z. More generally, as long as x(t) stays close enough to p(t)
the map that “advances xt by one zero” is semiconjugate to the two-dimensional affine
map

(u1, u2) �→ (z, u1) =
(
2 [1 − (u1 + u2)] , u1

)

with fixed point (2/5, 2/5). This fixed point, however, is repelling—and so, for the solu-
tion x pictured above, as time increases we shall see the spacing between successive
zeros of x deviating more and more from 2/5 until x actually becomes slowly oscillat-
ing. Loosely speaking, our objective is to “stabilize” p(t) by altering Eq. (5) so that the
map (u1, u2) �→ (z, u1) acquires an asymptotically stable fixed point. More broadly, we
shall choose f and d carefully so that, in a small neighborhood about our periodic solu-
tion p(t) of interest, solution trajectories are characterized (or eventually characterized) by
the convergent orbit of a finite-dimensional map to which an appropriate Poincaré map is
semiconjugate.

This idea of exploiting a semiconjugacy between a Poincaré map and a finite-dimensional
map is an old one, and has been used by several authors to exhibit phenomena for spe-
cial delay equations whose general forms are not tractable. A relatively general discussion
of how to assess stability of periodic solutions of delay equations when such a semi-
conjugacy is available is presented in [5]. In the present paper, though, we will be able
to prove the asymptotic stability of our periodic solution with a minimum of formal
machinery.
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2 Existence, Uniqueness, and Oscillation Speed

For general theory on state-dependent delay equations, we refer to the survey article [2].
We shall assume that Eq. (4) satisfies the following hypotheses:

(i) f : R → R is continuous and globally Lipschitz with Lipschitz constant c;
(ii) | f (x)| ≤ 1 for all x ;
(iii) d : R2 → [0, 1] is continuous and globally Lipschitz with Lipschitz constant L (with

respect to the sup norm on R
2);

(iv) r ∈ (0, 1).

In the usual way we write C = C([−1, 0],R) for the Banach space of real-valued con-
tinuous functions on [−1, 0], equipped with the sup norm; if x is any real-valued continuous
function whose domain includes the interval [t −1, t] we write xt for the member of C given
by

xt (s) = x(t + s), s ∈ [−1, 0].
We write K for the closed subset of C consisting of Lipschitz continuous functions with

Lipschitz constant at most M ≥ 1. Notice that, if x and y are in K , we have
∣∣∣ f

(
x(−d(x(0), x(−r)))

) − f
(
y(−d(y(0), y(−r)))

)∣∣∣

≤ c
∣∣∣x

( − d(x(0), x(−r))
) − y

( − d(y(0), y(−r))
)∣∣∣

≤ c
[∣∣x(−d(x(0), x(−r))) − x(−d(y(0), y(−r)))

∣∣

+ ∣∣x(−d(y(0), y(−r))) − y(−d(y(0), y(−r)))
∣∣
]

≤ c
[
M

∣∣d(x(0), x(−r)) − d(y(0), y(−r))
∣∣ + ‖x − y‖

]

≤ c
(
ML + 1

)∥∥x − y‖.
Thus the map K 
 x �→ f ((x(−d(x(0), x(−r)))) ∈ R is Lipschitz.
If x : [−1,∞) → R is a function for which x0 ∈ K and x ′(t) satisfies Eq. (4) for all

t > 0, we call x a continuation of x0 as a solution of Eq. (4).

Proposition 2.1 (Existence, uniqueness, and continuous dependence in K for Eq. (4)) Any
x0 ∈ K has a unique continuation x : [−1,∞) → R as a solution of Eq. (4). x is differen-
tiable for all t > 0, and xt ∈ K for all t ≥ 0. �


Moreover, the solution semiflow T : R+ × K → K for Eq. (4) is continuous in the sense
that, given any x0 ∈ K, ε > 0, and τ0 > 0, there exists a δ > 0 such that ‖y0 − x0‖ < δ

(where y0 ∈ K) implies that ‖T (t, y0) − T (t, x0)‖ < ε for all t ∈ [0, τ0].
Proof Since x �→ f ((x(−d(x(0), x(−r)))) is Lipschitz, existence and uniqueness of solu-
tions, and continuous dependence on initial conditions, are standard. xt ∈ K for all t ≥ 0
since ‖x ′(t)‖ ≤ 1 ≤ M for all t > 0, by hypothesis (ii). �


In the present paper we shall content ourselves with working in the phase space K . With
additional smoothness hypotheses on f and d we could use the “C1-solution framework”
developed in [15] and presented also in [2].

We now turn to oscillation speed. We add the additional hypotheses that

(v) u f (u) < 0 for all u �= 0 (negative feedback);
(vi) There is some γ1 > 0 such that d(u, v) = 1 when |u| ≤ γ1.
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Let us write K̂ for the subset of initial conditions in K that have only finitely many zeros.
Given a solution x of Eq. (4) with xt ∈ K̂ , let us define

τ(xt ) = inf
(
s ≥ t : x(s) = 0

)

(where τ(xt ) = ∞ if the above infimum does not exist). We now define the following
oscillation speed for xt—it is essentially the familiar one.

ω(xt ) =
{

number of zeros of x on [τ(xt ) − 1, τ (xt )], τ (xt ) < ∞;
1, τ (xt ) = ∞.

Proposition 2.2 Suppose that hypotheses (i–vi) hold, that x : [−1,∞) → R is a solution
of Eq. (4), and that xt ∈ K̂ , t ≥ 0. Then

(a) xs ∈ K̂ for all s ≥ t; and
(b) ω(xs) ≤ ω(xt ) for all s ≥ t .

Proof If t ≤ s ≤ τ(xt ), we clearly have xs ∈ K̂ , τ(xs) = τ(xt ), and ω(xs) = ω(xt ). Let us
write z = τ(xt ).

Since xz has only finitely many zeros, there is some ε ∈ (0, γ1) (here γ1 is as in hypothesis
vi) such that x is strictly of one sign on (z − 1, z − 1 + ε); since |x ′(s)| ≤ 1 for all s > 0,
|x(s)| < γ1 for s ∈ (z, z+ε) and so d(x(s), x(s−r)) = 1 for all such s. Thus x ′ is strictly of
one sign on (z, z + ε). Let us suppose, for the sake of definiteness, that x is strictly negative
on (z − 1, z − 1 + ε) and so that x ′ > 0 on (z, z + ε).

Since x is continuous its set of zeros is closed; it follows that either x has no zeros after
z (in which case both parts of the proposition hold) or that there is a well-defined first zero
z′ > z. Observe that xs ∈ K̂ for all s ∈ (z, z′]; we wish to show that ω(xs) ≤ ω(xz) = ω(xt )
for all such s. This is the same as saying that ω(xz′) ≤ ω(xz), which is in turn the same as
saying that [z′ − 1, z′] does not contain more zeros of x than does [z − 1, z].

The only zero of x that might lie in [z′ − 1, z′] but not in [z − 1, z] is z′ itself; to prove
that ω(xz′) ≤ ω(xz), then, it suffices to show that there is some zero of x in [z − 1, z] that is
not in [z′ − 1, z′].

An argument similar to that above shows that there is some ε′ ∈ (0, γ1) such that x is
strictly of one sign on (z′ −1−ε′, z′ −1), and that consequently x ′(t)must also be strictly of
one sign on (z′ − ε′, z′). Since there are no zeros of x between z and z′, the sign of x ′(t) must
be negative on this latter interval and so the sign of x must be positive on (z′ −1− ε′, z′ −1).
This shows that there must be a zero of x on [z − 1 + ε, z′ − 1 − ε′]. Let us write z̃ for the
first zero of x greater than or equal to z − 1 + ε. Either z̃ = z or z̃ < z; either way, z̃ is a
zero of x that is on the interval [z − 1, z] and that is not on [z′ − 1, z′]. We conclude that
ω(xz′) ≤ ω(xz).

Since xz′ ∈ K̂ , an argument just like that above shows that z′ is an isolated zero of x .
Proceeding inductively we conclude that, if xt ∈ K̂ , then the subsequent zeros of x form an
increasing sequence t < z1 < z2 < z3 < · · · (perhaps finite) of isolated points with

ω
(
xzk+1

) ≤ ω
(
xzk

)
.

These zeros cannot have a finite accumulation point, since if they did [zk − 1, zk] would
eventually contain a large number of zeros of x . We conclude that the sequence of zeros is
either finite or approaches ∞. The proposition now follows. �


We are now in a position to state our main Theorem.
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Theorem 2.3 (A stable rapidly oscillating periodic solution for Eq. (4)). There are instances
of Eq. (4) satisfying hypotheses (i–vi), including instances where f is nonincreasing, such
that Eq. (4) has a periodic solution p satisfying the following conditions.

(a) The zeros of p occur at integer multiples of z∗, where 2z∗ < 1 < 3z∗ (in particular, p
has constant oscillation speed 3).

(b) p is asymptotically stable in the following sense: there is a neighborhood U about p0 in
K such that, given any x0 ∈ U with continuation x as a solution of Eq. (4), there is an
infinite increasing sequence z1 < z2 < z3 < · · · of positive numbers such that xzk = 0
for all k, |zk − zk+1| → z∗ as k → ∞, and xz2k → p0 as k → ∞.

3 The Example Equation

We now introduce the much more specific version of Eq. (4) that we will work with. In
particular, we assume the following additional hypotheses.

(vii) f is odd, and there is an α > 0 such that f (x) = −sign(x) for all |x | ≥ α.
(viii) There are numbers γ2, γ , κ andm such that the following hold: r < γ1 < γ2 < γ < κ;

m > 1; and 1 − m(κ − (γ − r)) ≥ 0 (here γ1 is as in hypothesis vi)).
(ix) d(x(t), x(t − r)) = g(x(t − r)) for |x(t)| ≥ γ2, where g is even and satisfies

g(u) =
⎧
⎨

⎩

1, u ∈ [0, γ − r ];
1 − m(u − (γ − r)); u ∈ [γ − r, κ];
1 − m(κ − (γ − r)), u ≥ κ.

Also, d(x(t), x(t −r)) ∈ [g(x(t −r)), 1] for all (x(t), x(t −r)), and d(−x(t),−x(t −
r)) = d(x(t), x(t − r)) for all (x(t), x(t − r)).

We emphasize especially the requirement that m > 1, which will play a crucial role
below. The requirement that 1 − m(κ − (γ − r)) ≥ 0 ensures that d ∈ [0, 1]. Observe
that hypotheses (i–ix) can be satisfied with both non-monotonic and monotonic (though not
strictly monotonic) feedback functions f .

One consequence of the evenness of d and g, and the oddness of f , is the following.

Lemma 3.1 Suppose that hypotheses (i–ix) are satisfied, and write T : R+ × K → K for
the solution semiflow of Eq. (4). Then T (t,−x0) = −T (t, x0) for all t ≥ 0 and all x0 ∈ K.

We now consider an initial condition x0 ∈ K satisfying the following assumptions, which
we shall refer to collectively as (I ). Throughout, α is as in hypothesis vii).

• x(0) = 0;
• x has a smallest zero−ζ < 0 on [−1, 0]; [−ζ −α,−ζ +α] ⊂ (−1, 0); and x has constant

slope 1 on [−ζ − α,−ζ + α] and on [−α, 0].
• x(t) ≤ −α on [−1,−ζ − α].
• There is some 
 > 0 such that x(t) ≥ α for all t ∈ [−ζ + α,−ζ + α + 
].

The following figure illustrates an initial condition x0 satisfying the assumptions (I ), and
some of its continuation. The notations τ and z will be explained later.
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We now assume the following conditions, where

τ̃ = 1 + mγ − ζ − α

1 + m
.

(C1) 0 < α < r < γ1 < γ2 < γ < κ, and m > 1, and 1 − m(κ − (γ − r)) ≥ 0;
(C2) γ − 1 < −ζ − α;
(C3) τ̃ < κ;
(C4) 2r < τ̃ − γ ;
(C5) τ̃ + r − 1 + m(τ̃ − γ ) + mr + (2 + m)α/(m + 1) < −ζ + 
;
(C6) γ > γ2 + 2r;
(C7) (m − 1)(τ̃ − γ ) < 2r − 2α + 2α/(m + 1);
(C8) 2τ̃ + α − 1 < −ζ + 
.

Note that (C1) just expresses conditions we have already imposed, along with the addi-
tional requirement that that α < r .

We first establish that it is possible to satisfy all of these conditions.

Lemma 3.2 There are choices of r , γ1, γ2, γ , κ , m, and α such that conditions (C1) through
(C8) are all satisfied for all ζ in some open interval about ζ∗ = 2z∗ and all 
 in some open
interval about 
∗ = z∗ − 2α, where

z∗ = 2 + 2mγ

5 + m
.

Furthermore, m and γ can be chosen such that

0 < z∗ − 2α < 2z∗ + 2α < 1 < 3z∗ − 2α. (6)

We shall use condition (6) in Sect. 4.

Proof Since the set of parameters for which conditions (C1) through (C8) hold is open, it
is enough to show that there are choices of r , γ1, γ2, γ , κ , and m such that conditions (C1)
through (C8) (except of course for the positivity of α) hold when we take ζ = ζ∗, 
 = 
∗,
and α = 0. Direct computation shows that this occurs when we take (for example)

r = 1/100, γ1 = 1/20, γ2 = 1/10, γ = 1/6, κ = 1/4, m = 3/2.
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With these choices, we get z∗ ≈ 0.385, so with a sufficiently small α the bounds in (6)
are satisfied. �


We henceforth assume that conditions (C1) through (C8), as well as (6), hold. Let us now
choose an initial condition x0 ∈ K satisfying the assumptions (I ) described above. We write
x for the continuation of x0 as a solution of Eq. (4), and z for the first positive zero of x . For
t ≥ 0, we also write

y(t) = x
(
t − d(x(t), x(t − r))

)
.

The following proposition is the key result of the paper.

Proposition 3.3 With notation as above, the following hold.

(i) x |[0, z] is completely determined by ζ , and depends continuously on ζ .
(ii) z is given by the formula

z = 2τ̃ + 2α

m + 1
,

where τ̃ is as above.
(iii) x ′(t) = 1 on (0, α), x ′(t) = −1 on (z−α, z), x(t) ≥ α on [α, z−α], and x(z−1) ≥ α.

The reader may find it helpful to refer to the above figure while reading the following
proof. Also, for a first reading the essential ideas are unchanged, and the calculations slightly
simpler, if the reader supposes that α = 0 and that γ1 = γ2 (these simplifications make f
and d non-continuous).

Proof By our assumptions on d and the fact that ‖x ′(t)‖ ≤ 1, d(x(t), x(t − r)) = 1 at least
for all t ∈ [0, γ1] and so, by assumptions (I ) and conditions (C1) and (C2), y(t) ≤ −α and
x ′(t) = 1 for all such t . Since α < γ1 by condition (C1), the first part of point iii) of the
proposition is established.

Let us write

τ = inf
{
t ≥ 0 : t − d(x(t), x(t − r)) = −ζ − α

}
.

For all t ∈ (0, τ ], x ′(t) = 1 and so, for such t , x(t) = t . Since r < γ1 by (C1), we have
x(t − r) = t − r for all t ∈ [γ1, τ + r ]. By hypothesis ix), then, for t ∈ [0,min(τ, γ )] we
have d(x(t), x(t − r)) = 1. Since γ − 1 < −ζ − α by (C2), τ cannot be less than or equal
to γ ; we therefore have

d
(
x(γ ), x(γ − r)

) = 1 and γ − d
(
x(γ ), x(γ − r)

)
< −ζ − α and τ > γ.

We have already established that x(t − r) = t − r for all t ∈ [γ1, τ + r ]. Since |x ′(s)| ≤ 1
for all s and τ − r > γ − r > γ2 by (C6), we have that |x(t)| ≥ γ2 for all t ∈ [γ2, τ + r ].
Combining these two observations yields that

d(x(t), x(t − r)) = g(x(t − r)) = g(t − r) = 1 − m(t − r − (γ − r)) = 1 − m(t − γ )

for all t ∈ [γ,min(τ + r, κ + r)].
Recall that we are writing

τ̃ = 1 + mγ − ζ − α

1 + m
.
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Direct computation now shows that τ̃ is the unique solution in τ of

τ − (1 − m(τ − γ )) = −ζ − α.

Since τ̃ < κ by condition (C3), we see that in fact τ = τ̃—that is, that

τ = 1 + mγ − ζ − α

1 + m
.

The above expression for d(x(t), x(t − r)) can also be made more specific:

d
(
x(t), x(t − r)

) = 1 − m(t − γ ) for all t ∈ [γ, τ + r ]. (7)

Now, as long as t − d(x(t), x(t − r)) ∈ [−ζ − α,−ζ + α] and t ∈ [τ, τ + r ], we have
x ′(t − d(x(t), x(t − r))) = 1 and so

d

dt
y(t) = d

dt

(
t − d(x(t), x(t − r))

) = 1 − d

dt
d
(
x(t), x(t − r)

) = 1 + m.

Since α < r and m > 1 by (C1), we certainly have 2α/(m + 1) < r and so we have that

y
(
τ + 2α/(m + 1)

) = α.

More generally, on the interval [τ, τ + 2α/(m + 1)], x(t) satisfies the second-order ODE
x ′(t) = f (y(t)), y′(t) = m + 1; x(τ ) = τ, y(τ ) = −α.

Since f is odd, we conclude that the graph of x(t) forms a symmetric arc on this interval,
and that x(τ + 2α/(m + 1)) = τ . Up to translation, this arc does not depend on ζ—or
anything about x0 except that it satisfies assumptions (I ).

The rest of the proof consists in proving the following claim: that y(t) ≥ α for all

t ∈ [
τ + 2α/(m + 1), τ + 2α/(m + 1) + τ

]
.

For then we will have that x ′(t) = −1 for all such t , and the formula for z (and the rest
of the proposition as well) will follow. In particular, the restriction of x to [0, z] depends
completely (and continuously) on τ , which in turn depends continuously on ζ .

As t moves from τ to τ + 2α/(m + 1) + 2r , x(t) moves from τ to at least τ − 2r (since
|x ′(t)| ≤ 1). Since τ − 2r > γ by condition (C4), for all t in this interval the value of
d(x(t), x(t − r)) is completely determined by the value of x(t − r).

At time t = τ , we have x(τ − r) = τ − r and

d
(
x(τ ), x(τ − r)

) = 1 − m(τ − γ ).

As already explained (recall (7)), as t moves from τ to τ + r > τ + 2α/(m + 1),
d(x(t), x(t−r)) decreases with derivative−m, t−d(x(t), x(t−r)) increases with derivative
1 + m, and we have

d
(
x(τ + r), x(τ )

) = 1 − m(τ − γ ) − mr.

This tells us that t − d(x(t), x(t − r)) ≥ −ζ + α for t ∈ [τ + 2α/(m + 1), τ + r ].
Furthermore, we have

τ + r − d
(
x(τ + r), x(τ )

) = τ + r − 1 + m(τ − γ ) + mr,

which is less than −ζ + 
 by (C5), so we actually have that y(t) ≥ α and x ′(t) = −1 on
[τ + 2α/(m + 1), τ + r ].
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Now, as t moves from τ + r to τ + r + 2α/(m + 1), x(t − r) travels a symmetric
arc from value τ , up to a maximum value less than τ + α/(m + 1), and then back down
to τ . In this interval, since d(x(t), x(t − r)) = g(x(t − r)) and g is nonincreasing on
the positive real line, we have that d(x(t), x(t − r)) ≤ d(x(τ + r), x(τ )). Therefore we
certainly have that t − d(x(t), x(t − r)) > −ζ + α on this interval. Very crudely, the
largest that t − d(x(t), x(t − r)) can be on this interval is obtained by taking the maximum
value of t and subtracting the smallest possible value of g(x(t − r)): therefore, for t ∈
[τ + r, τ + r + 2α/(m + 1)], we have

t − d
(
x(t), x(t − r)

) ≤ τ + r + 2α/(m + 1) − g
(
τ + α/(m + 1)

)

≤ τ + r + 2α/(m + 1) − 1 + m(τ − γ ) + mr + mα/(m + 1).

This is less than−ζ +
 by (C5). Thus we actually have that y(t) ≥ α and that x ′(t) = −1
on [τ + r, τ + r + 2α/(m + 1)], and hence on [τ + 2α/(m + 1), τ + 2α/(m + 1) + r ].

Nowwe consider the interval [τ +2α/(m+1)+r, τ +2α/(m+1)+2r ]. d(x(t), x(t−r))
is still completely determined by x(t − r) on this interval, and in fact x(t − r) moves with
derivative −1 from τ < κ down to τ − r > γ . Thus, on this interval, d(x(t), x(t − r)) has
derivativem and t−d(x(t), x(t−r)) has derivative 1−m. The delayed time t−d(x(t), x(t−
r)) is actually moving backwards here. It is therefore clear that t−d(x(t), x(t−r)) ≤ −ζ +


for all t in this interval. To ensure that t −d(x(t), x(t −r)) ≥ −ζ +α for all t in this interval,
we just have to check that the inequality holds at the rightmost endpoint τ +2α/(m+1)+2r .
Since the value of x(t − r) at t = τ + 2α/(m + 1) + 2r is τ − r , and

g(τ − r) = 1 − m(τ − γ ),

and τ − (1−m(τ − γ )) = −ζ − α (remember how we derived τ in the first place), we have
that

t − d
(
x(t), x(t − r)

) = τ + 2α/(m + 1) + 2r − (
1 − m(τ − γ )

)

= −ζ − α + 2r + 2α/(m + 1)

for t = τ + 2α/(m + 1) + 2r . The last number above is certainly greater than −ζ + α since
r > α.

Let us write τ2 = τ +2α/(m+1)+2r . We have proven that y(t) ≥ α and that x ′(t) = −1
for all t ∈ [τ + 2α/(m + 1), τ2]. Note that x(τ2) = τ − 2r . We are about to use the just-
established equality

τ2 − d
(
x(τ2), x(τ2 − r)

) = −ζ − α + 2r + 2α/(m + 1). (8)

Consider the interval [τ2, τ2 + (τ − γ )]. There are two possibilities: either

− ζ + α < t − d(x(t), x(t − r)) < −ζ + α + 
 (9)

for all t in this interval, or not. Imagine not, and let t∗ be first time on the interval where the
inequality fails. Then, on [τ2, t∗], we have that x(t) has derivative −1 and value no less than
γ − 2r > γ2 (see condition (C6)). Thus d(x(t), x(t − r)) is still given by g(x(t − r)) on
[τ2, t∗] and the delayed time t − d(x(t), x(t − r)) has derivative 1 − m < 0. Thus only the
first inequality in (9) can fail, so we are imagining that t∗ − d(x(t∗), x(t∗ − r)) = −ζ + α.
Since (t∗ − τ2) ≤ (τ − γ ), then, we must have

(m − 1)(τ − γ ) ≥ τ2 − d
(
x(τ2), x(τ2 − r)

) − (−ζ + α)

= −ζ − α + 2r + 2α/(m + 1) + ζ − α

= 2r − 2α + 2α/(m + 1)
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— but this contradicts condition (C7). We conclude that x ′(t) = 1 and y(t) ≥ α throughout
the interval [τ2, τ2 + (τ − γ )]. Note that x(τ2 + τ − γ ) = γ − 2r > γ2 (again, condition
(C6)) and that x(τ2 + τ − γ − r) = γ − r .

From time t = τ2 + (τ − γ ) to time t = τ2 + τ − 2r , the delay is equal to 1 (and
x ′(t) = −1) as long as y(t) ≥ α (since x(t − r) ∈ [0, γ − r ] for all such t). Since we
have already shown that t − d > −ζ + α for t = τ2 + (τ − γ ), we certainly have that
t − d > −ζ + α on this interval. Finally, since 2τ + α − 1 < −ζ + 
 by (C8), we certainly
have 2τ + 2α/(m + 1) − 1 < −ζ + 
. This completes the proof. �


The figure below shows a numerically approximated solution of the kind described in the
above proposition, where the parameters m, γ1, γ2, γ , κ are as in the proof of Lemma 3.2,
and α = 1/200. The dashed horizontal lines about the t-axis are at heights α and −α. The
thicker line is x(t); the other line is y(t).
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Remark 3.4 Though we have not carried through the details in either case, we here sketch
two ways that the existence of nontrivial slowly oscillating periodic solutions of Eq. (4) could
be demonstrated. Let us write Ks ⊂ K for the set of initial conditions satisfying the following
assumptions: x0(s) ≤ −α for all s ∈ [−1,−α], and x0(s) = s for all s ∈ [−α, 0]. Given
x0 ∈ Ks with continuation x and writing z for the first positive zero of x , we canmake similar
calculations as in the above proposition to show that −xz ∈ Ks as well. An application of
Schauder’s theorem to the square of the map x0 �→ −xz on the compact, convex set Ks now
shows that Eq. (4) has a nontrivial slowly oscillating periodic solution. Alternatively, since
d(x(t), x(t − r)) = 1 when |x(t)| is close to zero, if we assume that f is differentiable with
f ′(0) < π/2 the now-standard arguments in [12] show that 0 is an ejective fixed point of an
appropriate Poincaré map, and that a nontrivial slowly oscillating periodic solution exists.

In the next section we show that there is a stable rapidly oscillating periodic solution p of
Eq. 4. The initial condition p0 of this solution will satisfy the hypotheses of Proposition 3.3.
The figure below shows the numerical approximation of a solution whose initial condition
is near such an initial condition p0; note the apparent convergence to p. A solution appar-
ently converging to a slowly oscillating periodic solution is also shown. (For this figure, the
parameters are again as in the proof of Lemma 3.2, and α = 1/200.)
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The next figure shows the numerical approximation of the continuation of another initial
condition near a segment of a stable rapidly oscillating solution p (for this figure the para-
meters are the same as in the last figure, expect that m = 1.3). The thicker line shows the
solution; the thinner line shows, for t ≥ 0, the value of y(t) = x(t − d(x(t), x(t − r))).
The dashed lines are at heights ±α. Let us write z1 < z2 < z3 < · · · for the positive zeros
of this solution x . Observe that −xz1 does not satisfy assumptions (I ), and that accordingly
|y(t)| < α for multiple subintervals of (z1, z2). x0 is close enough to p0, however, that xz4
apparently does satisfy assumptions (I ). As will become clear next section, if xz4 satisfies
assumptions (I ) and is close enough to p0, convergence of x to p is now assured.
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4 The Stable Rapidly Oscillating Periodic Solution of Eq. (4)

In this section we use Proposition 3.3 to identify a particular rapidly oscillating periodic
solution of Eq. (4), and prove its stability.
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Let Eq. (4), α, r , γ1, γ2, γ , κ , and m be as in the previous section; we assume that
hypotheses (i–ix) hold. We recall the notation

z∗ = 2 + 2mγ

5 + m
.

Following Lemma 3.2, we henceforth view α, r , γ1, γ2, γ , and κ and ε∗ ∈ (0, α) as fixed
such that conditions (C1)–(C8) are satisfied for all

ζ ∈ (
2z∗ − ε∗, 2z∗ + ε∗

)
and for all 
 ∈ (

z∗ − 2α − ε∗, z∗ − 2α + ε∗
)
. (10)

We also assume that (6) holds, so that the interval (−1, 0) contains
[ − 2z∗ − 2α,−2z∗ + 2α

]
and

[ − z∗ − 2α,−z∗ + 2α
]

but the interval [−1, 0] is disjoint from [−3z∗ − 2α,−3z∗ + 2α].
We now define some more particular subsets of initial conditions that satisfy assumptions

(I ). For any ε ∈ (0, ε∗], we take �ε ⊂ K to be the subset of all initial conditions x0 ∈ K
satisfying the following:

• x0(0) = 0 and x0(−1) ≤ −α;
• |x0(s)| < α on precisely three subintervals of [−1, 0], and these subintervals are

I−2 = ( − u−1 − u−2 − α,−u−2 − u−1 + α
)
,

I−1 = ( − u−1 − α,−u−1 + α
)
, I0 = (−α, 0]

(here u−1 and u−2 vary with x0);
• x0 has constant slope 1 on I0 and I−2, and constant slope −1 on I−1;
• |u−2 − z∗| < ε/2 and |u−1 − z∗| < ε/2.

A picture of a typical member x0 of �ε is below. The darkened intervals about −z∗ and
−2z∗ have radius ε. Observe that the zeros of x0 are precisely−u−2−u−1 < −u−1 < 0.We
emphasize that �ε does not have diameter 2ε; various members of �ε are only guaranteed
to be close to one another near 0, −z∗, and −2z∗.

t

x

2z* z*

u 2 u 1 u 1

Let us define the map Z : �ε → R
2 by Z(x0) = (u−1, u−2). (We endow R

2 with the
sup metric.) Since any member of �ε has slope ±1 around its negative zeros, we have the
following.

Lemma 4.1 Z : �ε → R
2 is continuous and open.
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Proof Suppose that x0 and w0 are in �ε , with ‖x0 − w0‖ = δ ≤ ε. Let −ζ = −u−1 − u−2

and −ζ ′ = −u′−1 − u′−2 be the most negative zeros of x0 and w0, respectively. Then
∣
∣w0(−ζ )

∣
∣ ≤ δ ≤ ε ≤ ε∗ < α.

Since w0 has slope ±1 wherever |w0(s)| < α, we have that |ζ ′ − ζ | ≤ δ. A similar
argument shows that |u−1 − u′−1| ≤ δ. That Z is continuous (in fact, Lipschitz continuous
with Lipschitz constant 1) follows. On the other hand, drawing a picture it is easy to see that
an open ball of size δ in �ε about x0, for all δ sufficiently small, has image under Z that is
an open ball of radius δ in R

2 about Z(x0). Thus Z is open too. �

The most negative zero of x0 ∈ �ε is, again, −u−2 − u−1, and we have

∣
∣ − u−2 − u−1 − 2z∗

∣
∣ < ε ≤ ε∗.

Thus x0 satisfies the assumptions (I ) of the last section, with u−2 + u−1 in the role of ζ

and u−2 − 2α in the role of 
 (note that with ζ and 
 thus specified, the bounds in (10) are
satisfied). We therefore have the following.

Lemma 4.2 If x0 ∈ �ε with ε ≤ ε∗, then x0 satisfies assumptions (I ) of last section with
ζ = u−1 + u−2 and 
 = u−2 − 2α, and so Proposition 3.3 applies to x0. In particular, if we
write x for the continuation of x0 as a solution of Eq. (4) and z for the first positive zero of
x, we have the following:

(i) x |[0,z] is completely and continuously determined by u−1 + u−2;
(ii) x ′(t) = 1 on (0, α), x ′(t) = −1 on (z−α, z), x(t) ≥ α on [α, z−α], and x(z−1) ≥ α;
(iii) z is given by the formula

z = 2 + 2mγ

1 + m
− 2

1 + m
(u−2 + u−1);

iv) The map �ε 
 x0 → xz ∈ K is continuous.

Proof The only point that isn’t a direct restatement of Proposition 3.3 is (iv); this is clear
from the point (i), the Lipschitz continuity of x , and the continuity of Z . �


Now observe that, in the situation described in the above lemma, the zeros of xz are at 0,
−z, and −z − u−1. Let us define the following affine map M : R2 → R

2:

M

(
u−1

u−2

)
=

( 2+2mγ
1+m − 2

1+m (u−2 + u−1)

u−1

)
.

Lemma 4.3 (z∗, z∗) lies in Z(�ε) for all ε ∈ (0, ε∗), and is a globally attracting fixed point
of M : R2 → R

2.

Proof By the definition of�ε we certainly have that (z∗, z∗) is in Z(�ε). Direct computation
shows that (z∗, z∗) is a fixed point of M . The linear part of M is

( −2
1+m

−2
1+m

1 0

)
.

Since m > 1, the eigenvalues of this matrix are distinct and strictly inside the unit circle;
the lemma follows. �
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We continue to write x for the continuation of x0 as a solution of Eq. (4), and to write z for
the first positive zero of x . Since (z∗, z∗) is a fixed point of M and M is continuous, if u−1

and u−2 are both close to z∗ then z is also close to z∗. In particular, we can take (u−1, u−2)

close enough to (z∗, z∗) to guarantee that |z− z∗| < ε∗/2 and |u−1 − z∗| < ε∗/2. Moreover,
as established in point (ii) of Lemma 4.2, we have that x(z − 1) ≥ α (and so in particular
z−1 lies between−u−2 −u−1 +α and−u−1 −α), that x ′(t) = 1 on (0, α), that x ′(t) = −1
on (z − α, z), and that x(t) ≥ α on [α, z − α]. Therefore, |xz(s)| < α for s on precisely the
three intervals

(−u−1 − z − α,−u−1 − z + α), (−z − α,−z + α), (−α, 0],
and on these intervals xz has slope ±1.

We have established the following.

Lemma 4.4 There is an ε0 ≤ ε∗ such that, if x0 ∈ �ε0 , then −xz ∈ �ε∗ , and

Z
( − xz

) = M
(
Z(x0)

)
.

Repeating the above argument (shrinking ε further if necessary) and appealing to the
continuity of M , Lemmas 3.1, and 4.2, we get the following proposition.

Proposition 4.5 There is an ε1 ∈ (0, ε0) such that, if x0 ∈ �ε1 , then the following hold.

(i) The first four positive zeros z1 < z2 < z3 < z4 of x are defined, z4 > 1, and
(−1)nxzn ∈ �ε∗ for all n ∈ {1, 2, 3, 4};

(ii) The map R : �ε1 → �ε∗ given by R(x0) = xz4 is continuous;
(iii) Z(R(x0)) = M4(Z(x0)) for all x0 ∈ �ε1 ;
(iv) If x0 and y0 in �ε1 satisfy Z(x0) = Z(y0), then R(x0) = R(y0).

Proof The only points that perhaps need amplification are the last part of (i), and (iv). Since
4z∗ > 1, taking ε1 small enough ensures that z4 > 1. It is clear that the restriction of x to
[0, z4] depends only (and continuously) on Z(x0), and so (since z4 > 1) R(x0) depends only
(and continuously) on Z(x0). Point iv) of the proposition follows. (It is in fact to guarantee
this last part of the proposition that we define R as advancing solutions by four zeros, rather
than the more natural-seeming two zeros). �


Suppose that x0 ∈ �ε1 satisfies Z(x0) = (z∗, z∗) (there certainly is such an x0). Then,
since Z(R(x0)) = M4(Z(x0)), we have that Z(R(x0)) = (z∗, z∗) as well. In particular,
R(x0) ∈ �ε1 . Since R(x0) is completely determined by Z(x0) and R(R(x0)) is completely
determined by Z(R(x0)) = Z(x0), we see that R(R(x0)) = R(x0)—that is, that p0 := R(x0)
is a fixed point of R. We have established the following.

Proposition 4.6 R has a fixed point p0 ∈ �ε1 .

The continuation p of p0 as a solution of Eq. (4) is a periodic solution with zeros at kz∗,
k ∈ Z, with period 2z∗, satisfying the symmetry

p(t + z∗) = −p(t) for all t ∈ R.

We now complete the proof of Theorem 2.3. We proceed in a few steps.

Claim 1 There is a γ̄ ∈ (α, γ1) and a σ > 0 such that |p(t)| ≤ γ̄ implies that |p(t − 1)| >

α + σ .
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Proof of Claim 1 The calculations of Proposition 3.3 show that |p(t − 1)| ≥ α for all t ∈
[0, γ1] (where p has constant slope 1) and for all t ∈ [z∗ − γ1, z∗] (where p has constant
slope −1). The periodicity and symmetry of p now implies that p has slope ±1 whenever
|p(t)| ≤ γ1, and that |p(t − 1)| ≥ α for all such t . Now choose γ̄ ∈ (α, γ1), and define

ν = min{ |p(t − 1)| : |p(t)| ≤ γ̄ }.

We know that ν ≥ α; if we imagine that ν = α, then there is some t̄ such that |p(t̄)| ≤ γ̄

but |p(t̄ − 1)| = α < γ1. Since p has slope ±1 both near t̄ and t̄ − 1, there are values of t
near t̄ for which |p(t)| ≤ γ1 but |p(t − 1)| < α—a contradiction. This proves the claim. �


Claim 2 Given ε2 ∈ (0, ε1], there is a neighborhood U about p0 in K such that, given
x0 ∈ U with continuation x as a solution of (4), there is some t0 > 0 for which xt0 ∈ �ε2 .

Proof of Claim 2 From Proposition 2.1 we have the following: given any η > 0 and T > 0,
there is some δ > 0 such that x0 ∈ K and ‖x0 − p0‖ ≤ δ implies that ‖xt − pt‖ < η for
all t ∈ [0, T ]. From Claim 1 we have that, whenever |p(t)| ≤ γ̄ , then |p(t − 1)| > α + σ .
Suppose that T > 5z∗ and that η ≤ min(α, γ̄ − α, σ, ε2). Then whenever |x(t)| ≤ α for
t ∈ [0, T ], we have that |p(t)| ≤ γ̄ and so |x(t − 1)| > α and x ′(t) = ±1 (recall that
|x(t)| ≤ α < γ1 implies that d(x(t), x(t −r)) = 1). In particular, as t moves across the open
interval (z∗ − η, 4z∗ + η), we have that |x(t)| < α on four subintervals, that |x ′(t)| = ±1 on
each of these subintervals, and that the unique zeros of x on each of these subintervals are
within ε2 of a zero of p. This tells us that there is an open neighborhood U about p0 in K
such that solutions starting in U eventually flow into �ε2 . �


Claim 3 There is an ε2 ∈ (0, ε1] such that, if x0 ∈ �ε2 , R
n(x0) is defined for all n ∈ N and

Rn(x0) → p0.

Proof of Claim 3 Note that if x0 ∈ �ε2 , then |Z(x0) − (z∗, z∗)| < ε2. Since (z∗, z∗) is a
globally asymptotically attracting fixed point ofM , we can choose ε2 such that |Mn(Z(x0))−
(z∗, z∗)| < ε1 for all n ∈ N. Suppose now that Rk(x0) is defined and lies in �ε1 for all
k ∈ {1, . . . , n}. Then Rn+1(x0) is defined and lies in �ε∗ by Proposition 4.5. Repeated
application of point (iii) of Proposition 4.5 shows that Z(Rn+1(x0)) = M4(n+1)(Z(x0)).
Since M4(n+1)(Z(x0)) is within ε1 of (z∗, z∗), Rn+1(x0) actually lies in �ε1 . By induction
we now have that Rn(x0) is defined and lies in �ε1 for all n.

The continuity of R implies that, given ε > 0, there is a δ > 0 small enough that
‖y0 − p0‖ < δ (and y0 ∈ �ε1 ) implies that ‖R(y0)− p0‖ < ε. The global convergence of M
implies that, given x0 ∈ �ε2 ,M

4n(Z(x0)) is within δ of (z∗, z∗) = Z(p0) for all n sufficiently
large. Now,we cannot conclude from this that Rn(x0) is within δ of p0, but there is an element
x̃0 of �ε1 with ‖x̃0 − p0‖ < δ and Z(x̃0) = Z(Rn(x0)). Since R(x̃0) = R(Rn(x0)) by point
iv) of Proposition 4.5, we have that Rn+1(x0) is within ε of p0. The claim follows. �


Strictly speaking, since R “advances solutions by four zeros,” combining the above three
claims we have proven the following: there a neighborhood U about p0 such that, given
x0 ∈ U with continuation x as a solution of Eq. (4), there is a sequence z1 < z2 < z3 · · · of
successive positive zeros of x such that xz4k → p0. By the continuity of the solution semiflow
and the periodicity of p, though, it is now clear that |zk+1 − zk | → z∗ and that we actually
have xz2k → p0; Theorem 2.3 is proven.
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