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Abstract We study the existence and uniqueness of (locally) absolutely continuous trajec-
tories of a dynamical system governed by a nonexpansive operator. The weak convergence
of the orbits to a fixed point of the operator is investigated by relying on Lyapunov analysis.

We show also an order of convergence of o
(

1√
t

)
for the fixed point residual of the trajectory

of the dynamical system. We apply the results to dynamical systems associated with the
problem of finding the zeros of the sum of a maximally monotone operator and a cocoercive
one. Several dynamical systems from the literature turn out to be particular instances of this
general approach.
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1 Introduction and Preliminaries

Having their origins in the nowadays standard works of Brézis, Baillon and Bruck (see
[6,12,14]), differential inclusions and continuous dynamical systems governed by maximal
monotone operators still play an important role in optimization and differential equations.
While usually the existence anduniqueness of such trajectories is guaranteed in the framework
of the Cauchy–Lipschitz theorem, their (ergodic) convergence to the set of zeros of the
involved maximally monotone operators (which in case of the convex subdifferential of a
convex function coincides with the set of its minima) relies on Lyapunov analysis.
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In this paper we turn our attention to dynamical systems formulated via resolvents of
maximal monotone operators, being motivated by several papers on this subject, like [1–
3,5,8]. In [8], Bolte studied the convergence of the trajectories of the following dynamical
system {

ẋ(t) + x(t) = PC
(
x(t) − μ∇φ(x(t))

)
x(0) = x0.

(1)

where φ : H → R is a convexC1 function defined on a real Hilbert spaceH,C is a nonempty,
closed and convex subset ofH, x0 ∈ H,μ > 0 and PC denotes the projection operator on the
set C . In this context it is shown that the trajectory of (1) converges weakly to a minimizer
of the optimization problem

inf
x∈C φ(x), (2)

provided the latter is solvable.We refer also to [3] for further statements and results concerning
(1).

The following generalization of the dynamical system (1) has been recently considered
by Abbas and Attouch in [1, Section 4.2]:

{
ẋ(t) + x(t) = proxμ�

(
x(t) − μB(x(t))

)
x(0) = x0,

(3)

where � : H → R ∪ {+∞} is a proper, convex and lower semicontinuous function defined
on a real Hilbert space H, B : H → H is a cocoercive operator, x0 ∈ H, μ > 0 and
proxμ� : H → H,

proxμ�(x) = argmin
y∈H

{
�(y) + 1

2μ
‖y − x‖2

}
, (4)

denotes the proximal point operator of �.
According to [1], in case zer(∂� + B) 	= ∅, the weak convergence of the orbit x of (3)

is ensured by choosing the step-size μ in a suitable domain bounded by the parameter of
cocoercivity of the operator B (notice that ∂� denotes the convex subdifferential of �).

Let usmention that the time discretization of the dynamical system (3) leads to the classical
forward–backward algorithm, a scheme which iteratively generates a sequence that weakly
converges to a zero of ∂� + B, see [1] and [7]. For more on the relations between the
continuous and discrete dynamics we refer the reader to [19]. We also refer to [10,11,25] for
more insights into the outstanding role played by the discrete forward–backward algorithm
in connection to the solving of complexly structured monotone inclusion problems.

The dynamical systems (1) and (3) are the starting points of our research. It is known, see
[7], that the discrete version of the forward–backward algorithm and some of its convergence
properties follow from a more general iterative scheme, namely the Krasnosel’skiı̆–Mann
algorithm, which generates a sequence which approaches the set of fixed points of a non-
expansive operator. Let us mention here that the classical Douglas–Rachford algorithm,
designed for determining the set of zeros of the sum of two set-valued maximally monotone
operators (see [7]) can be embedded in the framework of the Krasnosel’skiı̆–Mann-type
algorithm.

In this paperwe study a time-continuous dynamical systemwhich involves a nonexpansive
operator, see (5). Firstly, we address the existence and uniqueness of (locally) absolutely
continuous trajectories of the considered system, which follows by reformulating in the
framework of Cauchy–Lipschitz problems and by applying a classical result, see [17,24]. In
the next section we study the convergence of the trajectories to a fixed point of the operator,
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the investigation relying on Lyapunov analysis combined with the continuous version of the
celebrated Opial Lemma. We study also the convergence rates of the fixed point residual of
the orbits of the dynamical system, for which we obtain a speed of convergence of order
o(1/

√
t). Further, we propose a generalization of the forward–backward continuous version

of the dynamical system (3) by considering instead of the convex subdifferential a maximally
monotone operator and a relaxedbackward step.Adiscussion onpossible time-discretizations
of the investigated dynamical systems is also made. In the last section we present a second
approach which reduces the study of the dynamical system (5) via time rescaling arguments
to the one of autonomous systems governed by cocoercive operators and which allows the
formulation of convergence statements underweaker assumptions than in the direct approach.

Let us fix a few notations used throughout the paper. Let N = {0, 1, 2, . . .} be the set of
nonnegative integers. Let H be a real Hilbert space with inner product 〈·, ·〉 and associated
norm ‖ · ‖ = √〈·, ·〉.

2 A Dynamical System: Existence and Uniqueness of Global Solutions

Let T : H → H be a nonexpansive mapping (that is ‖T x−T y‖ ≤ ‖x− y‖ for all x, y ∈ H),
λ : [0,+∞) → [0, 1] be a Lebesgue measurable function and x0 ∈ H. In this paper we are
concerned with the following dynamical system:

{
ẋ(t) = λ(t)

(
T (x(t)) − x(t)

)
x(0) = x0.

(5)

The first issue we investigate is the existence of strong solutions for (5). As in [2,5], we
consider the following definition of an absolutely continuous function.

Definition 1 (see, for instance, [2,5]) A function f : [0, b] → H (where b > 0) is said to
be absolutely continuous if one of the following equivalent properties holds:

(i) there exists an integrable function g : [0, b] → H such that

f (t) = f (0) +
∫ t

0
g(s)ds ∀t ∈ [0, b];

(ii) f is continuous and its distributional derivative is Lebesgue integrable on [0, b];
(iii) for every ε > 0, there exists η > 0 such that for any finite family of intervals Ik =

(ak, bk) we have the implication:
(
Ik ∩ I j = ∅ and

∑
k

|bk − ak | < η

)
�⇒

∑
k

‖ f (bk) − f (ak)‖ < ε.

Remark 1 (a) It follows from the definition that an absolutely continuous function is dif-
ferentiable almost everywhere, its derivative coincides with its distributional derivative
almost everywhere and one can recover the function from its derivative f ′ = g by the
integration formula (i).

(b) If f : [0, b] → H (where b > 0) is absolutely continuous and B : H → H is L-Lipschitz
continuous (where L ≥ 0), then the function h = B ◦ f is absolutely continuous. This
can be easily verified by considering the characterization in Definition 1(iii). Moreover, h
is almost everywhere differentiable and the inequality ‖h′(·)‖ ≤ L‖ f ′(·)‖ holds almost
everywhere.
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Definition 2 We say that x : [0,+∞) → H is a strong global solution of (5) if the following
properties are satisfied:

(i) x : [0,+∞) → H is absolutely continuous on each interval [0, b], 0 < b < +∞;
(ii) ẋ(t) = λ(t)

(
T (x(t)) − x(t)

)
for almost every t ∈ [0,+∞);

(iii) x(0) = x0.

In what follows we verify the existence and uniqueness of strong global solutions of (5).
To this end we use the Cauchy–Lipschitz theorem for absolutely continues trajectories (see
for example [17, Proposition 6.2.1], [24, Theorem 54]).

It is immediate that the system (5) can be written as
{
ẋ(t) = f (t, x(t))
x(0) = x0,

(6)

where f : [0,+∞) × H → H is defined by f (t, x) = λ(t)(T x − x).

(a) Take arbitrary x, y ∈ H. Relying on the nonexpansiveness of T , for all t ≥ 0 we have

‖ f (t, x) − f (t, y)‖ ≤ 2λ(t)‖x − y‖.
Since λ is bounded above, one has 2λ(·) ∈ L1([0, b]) for any 0 < b < +∞;

(b) Take arbitrary x ∈ H and b > 0. One has
∫ b

0
‖ f (t, x)‖dt = ‖T x − x‖

∫ b

0
λ(t)dt ≤ b‖T x − x‖,

hence

∀x ∈ H, ∀b > 0, f (·, x) ∈ L1([0, b],H).

By considering the statements proven in (a) and (b), the existence and uniqueness of a
strong global solution of the dynamic system (5) follows.

Remark 2 From the considerations above one can easily notice that the existence and unique-
ness of strong global solutions of (5) can be guaranteed in the more general setting when T
is Lipschitz continuous and λ : [0,+∞) → R is a Lebesgue measurable function such that
λ(·) ∈ L1

loc([0,+∞)).

3 Convergence of the Trajectories

In this section we investigate the convergence properties of the trajectories of the dynamical
system (5).We show that undermild conditions imposed on the functionλ, the orbits converge
weakly to a fixed point of the nonexpansive operator, provided the set of such points is
nonempty.

In order to achieve this, we need the following preparatory result.

Lemma 3 ([2, Lemma 5.2]) If 1 ≤ p < ∞, 1 ≤ r ≤ ∞, F : [0,+∞) → [0,+∞) is
locally absolutely continuous, F ∈ L p([0,+∞)), G : [0,+∞) → R, G ∈ Lr ([0,+∞))

and for almost all t

d

dt
F(t) ≤ G(t),

then limt→+∞ F(t) = 0.
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The next result which we recall here is the continuous version of the Opial Lemma (see
for example [2, Lemma 5.3], [1, Lemma 1.10]).

Lemma 4 Let S ⊆ H be a nonempty set and x : [0,+∞) → H a given map. Assume that

(i) for every z ∈ S, limt→+∞ ‖x(t) − z‖ exists;
(ii) every weak sequential cluster point of the map x belongs to S.

Then there exists x∞ ∈ S such that w − limt→+∞ x(t) = x∞.

The following result, which is a consequence of the demiclosedness principle (see [7,
Theorem 4.17]), will be used in the proof of Theorem 6. which is the main theorem of this
paper.

Lemma 5 ([7, Corollary 4.18]) Let T : H → H be nonexpansive and let (xn)n∈N be a
sequence in H and x ∈ H such that w − limn→+∞ xn = x and (T xn − xn)n∈N converges
strongly to 0 (as n → +∞). Then x ∈ Fix T .

The following identity will be used several times in the paper (see for example [7, Corol-
lary 2.14]):

‖αx+ (1−α)y‖2+α(1−α)‖x− y‖2 = α‖x‖2+ (1−α)‖y‖2 ∀α ∈ R ∀(x, y) ∈ H×H.

(7)

Theorem 6 Let T : H → H be a nonexpansive mapping such that Fix T 	= ∅,
λ : [0,+∞) → [0, 1] a Lebesgue measurable function and x0 ∈ H. Suppose that one
of the following conditions is fulfilled:

∫ +∞

0
λ(t)(1 − λ(t))dt = +∞ or inf

t≥0
λ(t) > 0.

Let x : [0,+∞) → H be the unique strong global solution of (5). Then the following
statements are true:

(i) the trajectory x is bounded and
∫ +∞
0 ‖ẋ(t)‖2dt < +∞;

(ii) limt→+∞(T (x(t)) − x(t)) = 0;
(iii) limt→+∞ ẋ(t) = 0;
(iv) x(t) converges weakly to a point in Fix T , as t → +∞.

Proof We rely on Lyapunov analysis combined with the Opial Lemma. We take an arbitrary
y ∈ Fix T and give an estimation for d

dt ‖x(t) − y‖2. Take an arbitrary t ≥ 0. By (7), the fact
that y ∈ Fix T and the nonexpansiveness of T we obtain:

d

dt
‖x(t) − y‖2 = 2 〈ẋ(t), x(t) − y〉 = ‖ẋ(t) + x(t) − y‖2 − ‖x(t) − y‖2 − ‖ẋ(t)‖2

= ‖λ(t)(T (x(t)) − y) + (1 − λ(t))(x(t)) − y)‖2 − ‖x(t) − y‖2 − ‖ẋ(t)‖2
= λ(t)‖T (x(t)) − y‖2 + (1 − λ(t))‖x(t) − y‖2

−λ(t)(1 − λ(t))‖T (x(t) − x(t))‖2 − ‖x(t) − y‖2 − ‖ẋ(t)‖2
≤ −λ(t)(1 − λ(t))‖T (x(t) − x(t))‖2 − ‖ẋ(t)‖2.

Hence for all t ≥ 0 we have that

d

dt
‖x(t) − y‖2 + λ(t)(1 − λ(t))‖T (x(t) − x(t))‖2 + ‖ẋ(t)‖2 ≤ 0. (8)
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Since λ(t) ∈ [0, 1] for all t ≥ 0, from (8) it follows that t �→ ‖x(t) − y‖ is decreasing,
hence limt→+∞ ‖x(t) − y‖ exists. From here we obtain the boundedness of the trajectory
and by integrating (8) we deduce also that

∫ +∞
0 ‖ẋ(t)‖2dt < +∞ and

∫ +∞

0
λ(t)(1 − λ(t))‖T (x(t)) − x(t)‖2dt < +∞, (9)

thus (i) holds. Since y ∈ Fix T has been chosen arbitrary, the first assumption in the contin-
uous version of Opial Lemma is fulfilled.

We show in the following that limt→+∞(T (x(t)) − x(t)) exists and it is a real number.
This is immediate if we show that the function t �→ 1

2‖T (x(t)) − x(t)‖2 is decreasing.
According to Remark 1(b), the function t �→ T (x(t)) is almost everywhere differentiable
and ‖ d

dt T (x(t))‖ ≤ ‖ẋ(t)‖ holds for almost all t ≥ 0. Moreover, by the first equation of (5)
we have

d

dt

(
1

2
‖T (x(t)) − x(t)‖2

)
=

〈
d

dt
T (x(t)) − ẋ(t), T (x(t)) − x(t)

〉

= −〈ẋ(t), T (x(t)) − x(t)〉 +
〈
d

dt
T (x(t)), T (x(t)) − x(t)

〉

= −λ(t)‖T (x(t)) − x(t) 2 +
〈
d

dt
T (x(t)), T (x(t)) − x(t)

〉

≤ −λ(t)‖T (x(t)) − x(t)‖2 + ‖ẋ(t)‖ · ‖T (x(t)) − x(t)‖ = 0,

hence limt→+∞(T (x(t)) − x(t)) exists and is a real number.

(a) Firstly, let us assume that
∫ +∞
0 λ(t)(1 − λ(t))dt = +∞. This immediately implies by

(9) that limt→+∞(T (x(t)) − x(t)) = 0, thus (ii) holds. Taking into account that λ is
bounded, from (5) and (ii) we deduce (iii). For the last property of the theorem we need
to verify the second assumption of the Opial Lemma. Let x ∈ H be a weak sequential
cluster point of x , that is, there exists a sequence tn → +∞ (as n → +∞) such that
(x(tn))n∈N converges weakly to x . Applying Lemma 5 and (ii) we obtain x ∈ Fix T and
the conclusion follows.

(b) We suppose now that inf t≥0 λ(t) > 0. From the first relation of (5) and (i) we easily
deduce that T x − x ∈ L2([0,+∞),H), hence the function t �→ 1

2‖T (x(t)) − x(t)‖2
belongs to L1([0,+∞)). Since d

dt

( 1
2‖T (x(t)) − x(t)‖2) ≤ 0 for almost all t ≥ 0, we

obtain by applying Lemma 3 that limt→+∞ ‖T (x(t)) − x(t)‖2 = 0, thus (ii) holds. The
rest of the proof can be done in the lines of case (a) considered above. ��

Remark 7 Notice that the function λ1(t) = 1
t+1 , for all t ≥ 0, verifies the condition∫ +∞

0 λ1(t)(1 − λ1(t))dt = +∞, while inf t≥0 λ1(t) > 0 is not fulfilled. On the other
hand, the function λ2(t) = 1, for all t ≥ 0, verifies the condition inf t≥0 λ2(t) > 0, while∫ +∞
0 λ2(t)(1−λ2(t))dt = +∞ fails. This shows that the two assumptions on λ under which
the conclusions of Theorem (6) are valid are independent.

Remark 8 The explicit discretization of (5) with respect to the time variable t , with step size
hn > 0, yields for an initial point x0 the following iterative scheme:

xn+1 = xn + hnλn(T xn − xn) ∀n ≥ 0.

By taking hn = 1 this becomes

xn+1 = xn + λn(T xn − xn) ∀n ≥ 0, (10)
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which is the classical Krasnosel’skiı̆–Mann algorithm for finding the set of fixed points of
the nonexpansive operator T (see [7, Theorem 5.14]). Let us mention that the convergence of
(10) is guaranteed under the condition

∑
n∈N λn(1− λn) = +∞. Notice that in case λn = 1

for all n ∈ N and for an initial point x0 different from 0, the convergence of (10) can fail,
as it happens for instance for the operator T = − Id. In contrast to this, as pointed out in
Theorem 6, the dynamical system (5) has a strong global solution and the convergence of
the trajectory is guaranteed also in case λ(t) = 1 for all t ≥ 0.

An immediate consequence of Theorem 6 is the following corollary, where we consider
dynamical systems involving averaged operators. Let α ∈ (0, 1) be fixed. We say that R :
H → H is α − averaged if there exists a nonexpansive operator T : H → H such that
R = (1 − α) Id+αT . For α = 1

2 we obtain as an important representative of this class the
firmly nonexpansive operators. For properties and other insides concerning these families of
operators we refer to [7].

Corollary 9 Let α ∈ (0, 1), R : H → H be α-averaged such that Fix R 	= ∅,
λ : [0,+∞) → [0, 1/α] a Lebesgue measurable function and x0 ∈ H. Suppose that one of
the following conditions is fulfilled:

∫ +∞

0
λ(t)(1 − αλ(t))dt = +∞ or inf

t≥0
λ(t) > 0.

Let x : [0,+∞) → H be the unique strong global solution of the dynamical system
{
ẋ(t) = λ(t)

(
R(x(t)) − x(t)

)
x(0) = x0.

(11)

Then the following statements are true:

(i) the trajectory x is bounded and
∫ +∞
0 ‖ẋ(t)‖2dt < +∞;

(ii) limt→+∞(R(x(t)) − x(t)) = 0;
(iii) limt→+∞ ẋ(t) = 0;
(iv) x(t) converges weakly to a point in Fix R, as t → +∞.

Proof Since R is α-averaged, there exists a nonexpansive operator T : H → H such that
R = (1 − α) Id+αT . The conclusion follows by taking into account that (11) is equivalent
to

{
ẋ(t) = αλ(t)

(
T (x(t)) − x(t)

)
x(0) = x0

and Fix R = Fix T . ��
In the following we investigate the convergence rate of the trajectories of the dynamical

system (5). This will be done in terms of the fixed point residual function t �→ ‖T x(t)−x(t)‖
and of t �→ ‖ẋ(t)‖. Notice that convergence rates for the discrete iteratively generated
algorithm (10) have been investigated in [15,16,18].

Theorem 10 Let T : H → H be a nonexpansive mapping such that Fix T 	= ∅, λ :
[0,+∞) → [0, 1] a Lebesgue measurable function and x0 ∈ H. Suppose that

0 < inf
t≥0

λ(t) ≤ sup
t≥0

λ(t) < 1.
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Let x : [0,+∞) → H be the unique strong global solution of (5). Then for all t > 0 we
have

‖ẋ(t)‖ ≤ ‖T (x(t)) − x(t)‖ ≤ d(x0,Fix T )√
τ t

,

where τ = inf t≥0 λ(t)(1 − λ(t)) > 0.

Proof Take an arbitrary y ∈ Fix T and t > 0. From (8) we have for all s ≥ 0:

d

ds
‖x(s) − y‖2 + λ(s)(1 − λ(s))‖T (x(s) − x(s))‖2 ≤ 0. (12)

By integrating we obtain
∫ t

0
λ(s)(1 − λ(s))‖T (x(s)) − x(s)‖2ds ≤ ‖x0 − y‖2 − ‖x(t) − y‖2 ≤ ‖x0 − y‖2.

We have seen in the proof of Theorem 6 that t �→ 1
2‖T (x(t)) − x(t)‖2 is decreasing, thus

the last inequality yields

tτ‖T (x(t)) − x(t)‖2 ≤ ‖x0 − y‖2.
Since this inequality holds for an arbitrary y ∈ Fix T , we get for all t ≥ 0 :

√
tτ‖T (x(t)) − x(t)‖ ≤ d(x0,Fix T ).

By taking also into account (5), the conclusion follows. ��
Next we show that the convergence rates of fixed point residual function t �→ ‖T x(t) −

x(t)‖ and of t �→ ‖ẋ(t)‖ can be improved to o
(

1√
t

)
.

Theorem 11 Let T : H → H be a nonexpansive mapping such that Fix T 	= ∅, λ :
[0,+∞) → [0, 1] a Lebesgue measurable function and x0 ∈ H. Suppose that

0 < inf
t≥0

λ(t) ≤ sup
t≥0

λ(t) < 1.

Let x : [0,+∞) → H be the unique strong global solution of (5). Then for all t ≥ 0 we
have

t‖ẋ(t)‖2 ≤ t‖T (x(t)) − x(t)‖2 ≤ 2

τ

∫ t

t/2
λ(s)(1 − λ(s))‖T (x(s)) − x(s)‖2ds,

where τ = inf t≥0 λ(t)(1 − λ(t)) > 0 and limt→+∞
∫ t
t/2 λ(s)(1 − λ(s))‖T (x(s)) −

x(s)‖2ds = 0.

Proof Define the function f : [0,+∞) → [0,+∞),

f (t) =
∫ t

0
λ(s)(1 − λ(s))‖T (x(s)) − x(s)‖2ds.

According to (9) we have that limt→+∞ f (t) ∈ R.
Since t �→ 1

2‖T (x(t)) − x(t)‖2 is decreasing (see the proof of Theorem 6), we have for
all t ≥ 0 :

‖T (x(t)) − x(t)‖2
∫ t

t/2
λ(s)(1 − λ(s))ds ≤

∫ t

t/2
λ(s)(1 − λ(s))‖T (x(s)) − x(s)‖2ds

= f (t) − f (t/2).
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Taking into account the definition of τ , we easily derive

τ

2
t‖T (x(t)) − x(t)‖2 ≤

∫ t

t/2
λ(s)(1 − λ(s))‖T (x(s)) − x(s)‖2ds,

and the conclusion follows by using again (5). ��
The rest of the section is dedicated to the formulation and investigation of a continuous

version of the forward–backward algorithm. For readers convenience let us recall some
standard notions and results in monotone operator theory which will be used in the following
(see also [7,9,21–23]). For an arbitrary set-valued operator A : H ⇒ Hwe denote byGr A =
{(x, u) ∈ H×H : u ∈ Ax} its graph.We use also the notation zer A = {x ∈ H : 0 ∈ Ax} for
the set of zeros of A. We say that A is monotone, if 〈x − y, u− v〉 ≥ 0 for all (x, u), (y, v) ∈
Gr A. A monotone operator A is said to be maximally monotone, if there exists no proper
monotone extension of the graph of A onH×H. The resolvent of A, JA : H ⇒ H, is defined
by JA = (IdH +A)−1, where IdH : H → H, IdH(x) = x for all x ∈ H, is the identity
operator on H. Moreover, if A is maximally monotone, then JA : H → H is single-valued
and maximally monotone (see [7, Proposition 23.7 and Corollary 23.10]). For an arbitrary
γ > 0 we have (see [7, Proposition 23.2])

p ∈ Jγ Ax if and only if (p, γ −1(x − p)) ∈ Gr A. (13)

The operator A is said to be uniformly monotone if there exists an increasing function
φA : [0,+∞) → [0,+∞] that vanishes only at 0, and 〈x − y, u − v〉 ≥ φA (‖x − y‖)
for every (x, u) ∈ Gr A and (y, v) ∈ Gr A. A well-known class of operators fulfilling this
property is the one of the strongly monotone operators. Let γ > 0 be arbitrary. We say
that A is γ -strongly monotone, if 〈x − y, u − v〉 ≥ γ ‖x − y‖2 for all (x, u), (y, v) ∈
Gr A. We consider also the class of cocoercive operators: B : H → H is γ -cocoercive, if
〈x − y, Bx − By〉 ≥ γ ‖Bx − By‖2 for all x, y ∈ H.

Theorem 12 Let A : H ⇒ H be a maximally monotone operator, β > 0 and B : H → H
be β-cocoercive such that zer(A+ B) 	= ∅. Let γ ∈ (0, 2β) and set δ = min{1, β/γ }+ 1/2.
Let λ : [0,+∞) → [0, δ] be a Lebesgue measurable function and x0 ∈ H. Suppose that one
if the following conditions is fulfilled:

∫ +∞

0
λ(t)(δ − λ(t))dt = +∞ or inf

t≥0
λ(t) > 0.

Let x : [0,+∞) → H be the unique strong global solution of
{
ẋ(t) = λ(t)

[
Jγ A

(
x(t) − γ B(x(t))

)
− x(t)

]

x(0) = x0.
(14)

Then the following statements are true:

(i) the trajectory x is bounded and
∫ +∞
0 ‖ẋ(t)‖2dt < +∞;

(ii) limt→+∞
[
Jγ A

(
x(t) − γ B(x(t))

)
− x(t)

]
= 0;

(iii) limt→+∞ ẋ(t) = 0;
(iv) x(t) converges weakly to a point in zer(A + B), as t → +∞.

Suppose that inf t≥0 λ(t) > 0. Then the following hold:

(v) if y ∈ zer(A + B), then limt→∞ B(x(t)) = By and B is constant on zer(A + B);
(vi) if A or B is uniformly monotone, then x(t) converges strongly to the unique point in

zer(A + B), as t → ∞.
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Proof It is immediate that the dynamical system (14) can be written in the form
{
ẋ(t) = λ(t)

(
T (x(t)) − x(t)

)
x(0) = x0,

(15)

where T = Jγ A ◦ (Id−γ B). According to [7, Corollary 23.8 and Remark 4.24(iii)], Jγ A is
1/2-cocoercive.Moreover, by [7, Proposition 4.33], Id−γ B is γ /(2β)-averaged. Combining
thiswith [7, Proposition 4.32],we derive that T is 1/δ-averaged. The statements (i)-(iv) follow
now from Corollary 9 by noticing that Fix T = zer(A + B), see [7, Proposition 25.1(iv)].

We suppose in the following that inf t≥0 λ(t) > 0.
(v) The fact that B is constant on zer(A + B) follows from the cocoercivity of B and

the monotonicity of A. A proof of this statement when A is the subdifferential of a proper,
convex and lower semicontinuous function is given in [1, Lema 1.7].

We use the following inequality:

‖T x − T y‖2 ≤ ‖x − y‖2 − γ (2β − γ )‖Bx − By‖2 ∀(x, y) ∈ H × H, (16)

which follows from the nonexpansiveness property of the resolvent and the cocoercivity of
B:

‖T x − T y‖2 ≤ ‖x − y − γ (Bx − By)‖2
= ‖x − y‖2 − 2γ 〈x − y, Bx − By〉 + γ 2‖Bx − By‖2
≤ ‖x − y‖2 − γ (2β − γ )‖Bx − By‖2.

Take an arbitrary y ∈ zer(A+ B) = Fix T . From the first part of the proof of Theorem 6 and
(16) we get for all t ≥ 0

d

dt
‖x(t) − y‖2 + λ(t)(1 − λ(t))‖T (x(t) − x(t))‖2 + ‖ẋ(t)‖2

= λ(t)‖T (x(t)) − y‖2 − λ(t)‖x(t) − y‖2 ≤ −γ (2β − γ )λ(t)‖B(x(t)) − By‖2.
Taking into account that inf t≥0 λ(t) > 0 and 0 < γ < 2β, by integrating the above

inequality we obtain
∫ +∞

0
‖B(x(t)) − By‖2dt < +∞.

Since B is 1/β-Lipschitz (this follows from the β-cocoercivity of B by applying the
Cauchy-Schwarz inequality) and t �→ ‖ẋ(t)‖ ∈ L2([0,+∞)), from Remark 1(b) we derive
that t �→ d

dt B(x(t)) ∈ L2([0,+∞),H). From the Cauchy-Schwarz inequality we obtain for
all t ≥ 0

d

dt

(‖B(x(t))−By‖2)=2

〈
d

dt
B(x(t)), B(x(t)) − By

〉
≤

∥∥∥∥
d

dt
B(x(t))

∥∥∥∥
2

+‖B(x(t))−By‖2.

Combining these considerations with Lemma 3, we conclude that B(x(t)) converges strongly
to By, as t → +∞.

(vi) Suppose that A is uniformly monotone and let y be the unique point in zer(A + B).
According to (14) and the definition of the resolvent, we have

−B(x(t)) − 1

γ λ(t)
ẋ(t) ∈ A

(
1

λ(t)
ẋ(t) + x(t)

)
∀t ≥ 0.
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From −By ∈ Ay we get for all t ≥ 0 the inequality

φA

(∥∥∥∥
1

λ(t)
ẋ(t) + x(t) − y

∥∥∥∥
)

≤
〈

1

λ(t)
ẋ(t) + x(t) − y,−B(x(t)) − 1

γ λ(t)
ẋ(t) + By

〉
,

where φA : [0,+∞) → [0,+∞] is increasing and vanishes only at 0.
The monotonicity of B implies

φA

(∥∥∥∥
1

λ(t)
ẋ(t) + x(t) − y

∥∥∥∥
)

≤ − 1

γ λ2(t)
‖ẋ(t)‖2 + 1

λ(t)
〈ẋ(t),−B(x(t)) + By〉

+ 〈x(t) − y,−B(x(t)) + By〉 − 1

γ λ(t)
〈ẋ(t), x(t) − y〉

≤ − 1

γ λ2(t)
‖ẋ(t)‖2 + 1

λ(t)
〈ẋ(t),−B(x(t)) + By〉 − 1

γ λ(t)
〈ẋ(t), x(t) − y〉 ∀t ≥ 0.

The last inequality implies, by taking into consideration (iii), (iv) and (v), that

lim
t→+∞ φA

(∥∥∥∥
1

λ(t)
ẋ(t) + x(t) − y

∥∥∥∥
)

= 0.

The properties of the function φA allow to conclude that 1
λ(t) ẋ(t) + x(t) − y converges

strongly to 0, as t → +∞, hence from (iii) we obtain the conclusion.
Finally, suppose that B is uniformly monotone, with corresponding function φB :

[0,+∞) → [0,+∞], which is increasing and vanishes only at 0. The conclusion follows
by taking in the inequality

〈x(t) − y, B(x(t)) − By〉 ≥ φB(‖x(t) − y‖)
the limit as t → +∞ and by using (i) and (v). ��

Remark 13 Let us mention that in case A = ∂�, where � : H → R ∪ {+∞} is a proper,
convex and lower semicontinuous function defined on a real Hilbert spaceH, and forλ(t) = 1
for all t ≥ 0, the dynamical system (14) becomes (3), which has been studied in [1]. Notice
that the weak convergence of (3) is obtained in [1, Theorem 4.2] for a constant step-size
γ ∈ (0, 4β).

Remark 14 The explicit discretization of (14) with respect to the time variable t , with step
size hn > 0 and initial point x0, yields the following iterative scheme:

xn+1 − xn
hn

= λn

[
Jγ A

(
xn − γ Bxn

)
− xn

]
∀n ≥ 0.

For hn = 1 this becomes

xn+1 = xn + λn

[
Jγ A

(
xn − γ Bxn

)
− xn

]
∀n ≥ 0, (17)

which is the classical forward–backward algorithm for finding the set of zeros of A + B
(see [7, Theorem 25.8]). Let us mention that the convergence of (17) is guaranteed under the
condition

∑
n∈N λn(δ − λn) = +∞.
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Remark 15 As mentioned in the introduction, the Douglas–Rachford algorithm for finding
the set of zeros of the sum of two maximally monotone operators follows from the discrete
version of the Krasnosel’skiı̆–Mann numerical scheme, see [7]. Following the approach
presented above, one can formulate a dynamical system of Douglas–Rachford-type, the
existence and weak convergence of the trajectories being a consequence of the main results
presented here. The same can be done for other iterative schemes which have their origins
in the discrete Krasnosel’skiı̆–Mann algorithm, like are the generalized forward–backward
splitting algorithm in [20] and the forward-Douglas–Rachford splitting algorithm in [13].

4 An Alternative Approach Relying on Time Rescaling Arguments

The content of this section has as starting point a comment made by H. Attouch on a pre-
liminary version of this manuscript. We will show, by using time rescaling arguments, that
the convergence behavior of the dynamical system (5) can be derived from the one of an
autonomous dynamical system governed by a cocoercive operator. Let us recall first the fol-
lowing classical result, which can be deduced for example from [1, Theorem 3.1] by taking
� = 0 as well as from Theorem 12 by choosing Ax = 0 for all x ∈ H and λ(t) = 1 for all
t ≥ 0.

Theorem 16 Let B : H → H be a cocoercive operator such that zer B 	= ∅ and w0 ∈ H.
Let w : [0,+∞) → H be the unique strong global solution of the dynamical system

{
ẇ(t) + B(w(t)) = 0
w(0) = w0.

(18)

Then the following statements are true:

(a) the trajectory w is bounded and
∫ +∞
0 ‖ẇ(t)‖2dt < +∞;

(b) w(t) converges weakly to a point in zer B, as t → +∞;
(c) B(w(t)) converges strongly to 0, as t → +∞.

Let us consider again the dynamical system (5), written as
{
ẋ(t) + λ(t)(Id−T )(x(t)) = 0
x(0) = x0.

We recall that T is nonexpansive such that Fix T 	= ∅ and λ : [0,∞) → [0, 1] is
Lebesgue measurable. By using a time rescaling argument as in [4, Lemma 4.1], we can
prove a connection between the dynamical system (5) and the system

{
ẇ(t) + (Id−T )(w(t)) = 0
w(0) = x0.

(19)

In the following we suppose that
∫ +∞

0
λ(t)dt = +∞. (20)

Notice that the considerations which we make in the following remain valid also when one
requires for the function λ an arbitrary positive upper bound. However, we choose as upper
bound 1 in order to remain in the setting presented in the previous section.

Suppose that we have a solution w of (19). By defining the function T1 : [0,+∞) →
[0,+∞), T1(t) = ∫ t

0 λ(s)ds, one can easily see that w ◦ T1 is a solution of (5).
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Conversely, if x is a solution of (5), then x◦T2 is a solution of (19), where T2 : [0,+∞) →
[0,+∞) is defined for every t ≥ 0 implicitly as

∫ T2(t)
0 λ(s)ds = t (this is possible due to the

properties of the the function λ).
In the arguments above we used that

T ′
1(t) = λ(t) ∀t ≥ 0 (21)

and
T ′
2(t)λ(T2(t)) = 1 ∀t ≥ 0. (22)

Further, since B := Id−T is 1/2-cocoercive (this follows from the nonexpansiveness
of T ), for the dynamical system (19) one can apply the convergence results presented in
Theorem 16. We would also like to notice that the existence of a strong global solution of (5)
follows from the corresponding result for (19), while for the uniqueness property we have to
make use of the considerations at the end of Sect. 2.

In the following we deduce the convergence statements of Theorem 6 from the ones of
Theorem 16 by using the time rescaling arguments presented above.

Let x be the unique strong global solution of (5). Due to the uniqueness of the solutions
of (5) and (19), we have x = w ◦ T1, where w is the unique strong global solution of (19).

(i) From Theorem 16(a) we know that w is bounded, hence x is bounded, too. We have

∫ +∞

0
‖ẋ(s)‖2ds = lim

t→+∞

∫ t

0
‖w′(T1(s))‖2(λ(s))2ds ≤ lim

t→+∞

∫ t

0
‖w′(T1(s))‖2λ(s)ds

= lim
t→+∞

∫ T1(t)

0
‖w′(u)‖2du < +∞,

where we used Theorem 16(a) and the change of variables T1(s) = u.
(ii) This statement follows from Theorem 16(c).
(iii) Is a direct consequence of the boundedness of λ, (ii) and of the way the dynamic is

defined.
(iv) From Theorem 16(b) it follows that x(t) = w(T1(t)) converges weakly to a point in

zer B = Fix T as t → +∞.

Remark 17 In the light of the above considerations it follows that the conclusion ofTheorem6
remains valid also when assuming that

∫ +∞
0 λ(t)dt = +∞, which is a weaker condition than

asking that
∫ +∞
0 λ(t)(1 − λ(t))dt = +∞ or inf t≥0 λ(t) > 0. A similar statement applies

to Theorem 12, too. Notice also that the assumption that λ takes values in [0, 1], being
strictly bounded away from the endpoints of this interval, was essential, in combination to
the considerations made in the proof of Theorem 6, for deriving convergence rates for the
trajectories of (5). Finally, let us mention that, as pointed out in Remark 8, the assumption∫ +∞
0 λ(t)(1−λ(t))dt = +∞ has a natural counterpart in the discrete case which guarantees
convergence for the sequence of generated iterates, while this is not the case for the other
two conditions on λ considered in this paper.
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25. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Com-

put. Math. 38(3), 667–681 (2013)

123

http://dx.doi.org/10.1080/02331934.2014.971412
http://dx.doi.org/10.1080/02331934.2014.971412
http://dx.doi.org/10.1007/s10107-014-0766-0
http://dx.doi.org/10.1007/s10107-014-0766-0
http://dx.doi.org/10.1080/02331934.2013.855210
http://arxiv.org/abs/1406.4834
http://arxiv.org/abs/1404.4837

	A Dynamical System Associated with the Fixed Points Set of a Nonexpansive Operator
	Abstract
	1 Introduction and Preliminaries
	2 A Dynamical System: Existence and Uniqueness of Global Solutions
	3 Convergence of the Trajectories
	4 An Alternative Approach Relying on Time Rescaling Arguments
	Acknowledgements
	References




