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Abstract Chenciner in 2001 asked: Is the regular n-gon with equal masses the unique central
configuration such that all the bodies lie on a circle, and the center of mass coincides with
the center of the circle? This question has a positive answer for n = 3. Hampton in 2003
proved that also this question has a positive answer for n = 4. Here we provide a positive
answer for n = 5.
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1 Introduction

The main problem of the classical celestial mechanics is the n-body problem; i.e. the descrip-
tion of the motion of n particles of positive masses under their mutual Newtonian gravitational
forces. This problem is completely solved only when n = 2, and for n > 2 there are only
few partial results.

Consider the Newtonian n-body problem in the plane R
2, i.e.

r̈i =
n∑

j=1, j �=i

m j (r j − ri )

r3
i j

, for i = 1, . . . , n.
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Here mi are the masses of the bodies, ri ∈ R
2 are their positions, and ri j = |ri − r j | are

their mutual distances. The vector r = (r1, . . . , rn) ∈ R
2n is called the configuration of the

system. The differential equations are well-defined if the configuration is of non-collision
type, i.e. ri j �= 0 when i �= j .

The total mass and the center of mass of the n bodies are

M = m1 + . . . + mn, c = 1

M
(m1r1 + · · · + mnrn) ,

respectively. A configuration r is a central configuration if the acceleration vectors of the
bodies satisfy

n∑

j=1, j �=i

m j (r j − ri )

r3
i j

+ λ(ri − c) = 0, for i = 1, . . . , n, (1)

Central configurations started to be studied in the second part of the 18th century, there
is an extensive literature concerning these solutions. For a classical background, see the
sections on central configurations in the books of Wintner [22] and Hagihara [9]. For a
modern background see, for instance, the papers of Albouy and Chenciner [2], Albouy and
Kaloshin [3], Hampton and Moeckel [11], Moeckel [14], Palmore [17], Saari [18], Schmidt
[19], Xia [23]. One of the reasons why central configurations are important is that they allow
to obtain the unique explicit solutions in function of the time of the n-body problem known
until now, the homographic solutions for which the ratios of the mutual distances between
the bodies remain constant. They are also important because the total collision or the total
parabolic escape at infinity in the n-body problem is asymptotic to central configurations,
see for more details Saari [18]. Also if we fix the total energy h and the angular momentum
c of the n-body problem, then some of the bifurcation points (h, c) for the topology of the
level sets with energy h and angular momentum c are related with the central configurations,
see Meyer [15] and Smale [20] for a full background on these topics.

Moulton [16] proved that for a fixed mass vector m = (m1, . . . , mn) and a fixed ordering of
the bodies along the line, there exists a unique collinear central configuration, up to translation
and scaling.

For an arbitrary given set of masses the number of classes of planar non-collinear central
configurations of the n-body problem has been only solved for n = 3. In this case they are
the three collinear and the two equilateral triangle central configurations, due to Euler [7]
and Lagrange [13] respectively. Recently, Hampton and Moeckel [11] proved that for any
choice of four masses there exist a finite number of classes of central configurations. For five
or more masses this result is unproved, but recently an important contribution to the case of
five masses has been made by Albouy and Kaloshin [3].

A periodic solution (r1(t), . . . , rn(t)) of the planar n-body problem of period T and
masses m1, . . . , mn is a choreography if (r1(t), r2(t), . . . , rn(t)) = (r(t + T/n), r(t +
2T/n), . . . , rn(t + T ) = r(t)), i.e. all n bodies follow the same curve r(t) with equal
time spacing. In 2001 Chenciner [5] trying to answer the question: Do there exist planar
choreographies whose masses are not all equal? stated another question: Is the regular n-
gon with equal masses the unique central configuration such that all the bodies lie on a circle,
and the center of mass coincides with the center of the circle?

It is not difficult to show that this last question has a positive answer for n = 3. In 2003
Hampton [10] proved that also this question has a positive answer for n = 4. Up to now this
question remained unsolved for n > 4. The goal of this paper is to provide a positive answer
for n = 5.
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Our proof is analytic and in one step is a computer assisted proof. More precisely, at some
moment of the proof we need to compute the real roots of two polynomials of degrees 70 and
172 in the interval (0, 2). First we detect the exact number of real roots of those polynomials
in such interval using the Sturm method (see [12] or [21]). This method is implemented in
mathematica and Mapple. After we compute such roots as many precision as we want using
these mentioned algebraic manipulators. Only one pair of these roots satisfy the equations
of the co-circular central configurations. Moreover, this pair has the exact expression given
in (14). On the other hand, there are other ways to justify that the computation of these real
roots do not offer any problem, because our polynomials have integer coefficients, and they
can be evaluated exactly on rational numbers, for more details see page 2641 of [1].

On the other hand, recently some authors studied in [4,6] studied the central configurations
of the 4- and 5-body problem with all the bodies on a circle.

2 Co-circular central configurations

In this work a central configuration of the n-body problem satisfying that all the masses are
on a circle centered at the origin of coordinates and such that its center of mass is located at
the origin will be called simply co-circular.

It is well known that the set of all central configurations is invariant by rotations and
homothecies centered at the center of mass. So we can restricted our study on the co-circular
central configurations to the ones which are on the circle of radius one centered at the origin
of coordinates. Thus the position of the mass mk is given by

(ck, sk) = (cos θk, sin θk),

with θi ∈ [0, 2π) and θi �= θ j if i �= j . The angles of a such co-circular central configuration
will be denoted by

{θ1, . . . , θn},
and without loss of generality we can assume that

0 ≤ θ1 < θ2 < . . . < θn < 2π.

These angles θ are measured in counterclockwise sense with origin at the positive x-axis.
The equations for the central configurations (1) restricted to the co-circular ones become

ei =
n∑

j=1, j �=i

m j (c j − ci )

r3
i j

+ λci = 0,

ei+n =
n∑

j=1, j �=i

m j (s j − si )

r3
i j

+ λsi = 0,

(2)

for i = 1, . . . , n where ri j =
√

(ci − c j )2 + (si − s j )2, and additionally

e2n+1 =
n∑

j=1

m j c j = 0,

e2n+2 =
n∑

j=1

m j s j = 0,
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Proposition 1 Let cc = {θ1, . . . , θn} be a co-circular central configuration. Then the fol-
lowing statements hold.

(a) The configuration ccx symmetric with respect to the x-axis of the configuration cc is also
a co-circular central configuration. Moreover ccx = {2π − θn, . . . , 2π − θ1}.

(b) The configuration ccy symmetric with respect to the y-axis of the configuration cc is also
a co-circular central configuration. Moreover ccy = {π−θs, π−θs−1, . . . , π−θ1, 3π−
θn, 3π − θn−1, . . . , 3π − θs+1} if 0 ≤ θ1 < . . . < θs ≤ π < θs+1 < . . . < θn < 2π .

Proof If the configuration cc is (c1, s1, c2, s2, . . . , cn, sn), then the configuration ccx is
(c1,−s1, c2,−s2, . . . , cn,−sn). Since cc satisfies the Eq. (2), then also ccx satisfies the
Eq. (2). Therefore, ccx is a co-circular central configuration. It is easy to check that
ccx = {2π − θn, . . . , 2π − θ1}. Hence statement (a) is proved.

Now the configuration ccy is (−c1, s1,−c2, s2, . . . ,−cn, sn). Since cc satisfies the Eq.
(2), then also ccy satisfies the Eq. (2). Therefore, ccy is a co-circular central configuration. It
follows easily that ccy = {π −θs, π −θs−1, . . . , π −θ1, 3π −θn, 3π −θn−1, . . . , 3π −θs+1}
if 0 ≤ θ1 < . . . < θs ≤ π < θs+1 < . . . < θn < 2π . This completes the proof of statement
(b). ��

3 Co-circular central configurations for n = 5

In all this section n = 5.

Theorem 2 For the 5-body problem the unique co-circular central configuration is the reg-
ular 5-gon with equal masses.

Proof Since the co-circular central configurations are invariant for rotations with respect to
the origin of coordinates, and for symmetries with respect to the x-axis and to the y-axis,
we can assume without loss of generality that we have a co-circular central configuration
cc = {θ1, θ2, θ3, θ4, θ5} such that

c5 = c2, s5 = −s2 < 0, c1 > 0 and m2 ≥ m5.

More precisely, first we localize the biggest mass and we call it m1. After we rename the
masses in counterclockwise starting with m1. We rotate the co-circular central configuration
and we put it so that s5 = −s2 with s2 > 0. If m2 < m5 we do a symmetry with respect
to the x-axis, and the new co-circular central configuration is renamed in counterclockwise
starting again with m1. So we obtain m2 ≥ m5.

Note that if the co-circular central configuration is invariant with respect to the x-axis,
then θ1 = 0 and θ3 = −θ4. Thus s1 = 0, c1 = 1, s3 = −s4 and c3 = c4. This will be used
later on.

Using that the center of mass is at the origin of the circle we get

c4 = −m1c1 + (m2 + m5)c2 + m3c3

m4
and s4 = −m1s1 + (m2 − m5)s2 + m3s3

m4
. (3)

The scheme of the proof is the following. We shall divide the proof in two cases, and
each one of these cases in some subcases. We shall see that the subcase 1.2 will provide
the co-circular central configuration formed by the regular 5-gon with equal masses at the
vertices, and that all the other subcases do not provide co-circular central configurations.
Case 1: m1s1 + (m2 − m5)s2 = 0. We consider two subcases.
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Subcase 1.1: m2 > m5. Hence

s1 = m5 − m2

m1
s2. (4)

Since s2 > 0 and m2 > m5 we get that s1 < 0. Moreover we have that

s4 = −m3

m4
s3.

Therefore, again s3 > 0 and consequently s4 < 0. Hence (m2 − m5)s2 + m3s3 �= 0. Now
we solve the system

c2
j + s2

j = 1 for j = 1, 4,

with respect to the variables s1 and c1. It has two different solutions R j = {c1, j , s1, j } for
j = 1, 2 with

s1,1 = − m1

D1 D3

(
(m2

1 D2
1 + D2

1

(
D2

1 + D2
2 − m2

4

) − D2S1
)
,

c1,1 = −m1

D3
(D2

(
m2

1 + D2
1 + D2

2 − m2
4

) + S1
)
,

s1,2 = − m1

D1 D3

(
(m2

1 D2
1 + D2

1

(
D2

1 + D2
2 − m2

4

) + D2S1
)
,

c1,2 = −m1

D3
(D2

(
m2

1 + D2
1 + D2

2 − m2
4

) − S1
)
,

being

D1 = (m2 − m5)s2 + m3s3, D2 = c3m3 + c2(m2 + m5), D3 = 2m2
1

(
D2

1 + D2
2

)
.

and

S1 =
√

D2
1

(
2m2

1(D2
1 + D2

2 + m2
4) − (m4

1 + D2
1 + D2

2 − m2
4)

)
.

It follows from Proposition 1(a) that the configuration ccx symmetric with respect to the
x-axis of the co-circular central configuration cc is also a co-circular central configuration.
Then either the solution cc is invariant with respect to the x-axis, or

c1,1 = c1,2
∣∣
s2→−s2, s3→−s3

and s1,1 = −s1,2
∣∣
s2→−s2, s3→−s3

. (5)

In the first case as it was before mentioned this implies in particular that s1 = 0, in
contradiction with the fact that we are under the assumptions of Subcase 1.1. Hence (5)
holds. Then we get the conditions S1 = 0 and D2S1 = 0, respectively. So S1 = 0. Since
D1 > 0 we get that

2m2
1(D2

1 + D2
2 + m2

4) − (m4
1 + D2

1 + D2
2 − m2

4) = 0.

Solving with respect to m1 we get four possible solutions that we call them m1, j for
j = 1, 2, 3, 4:

m1, j = (−1) j m4 −
√

D2
1 + D2

2 and m1, j+2 = (−1) j m4 +
√

D2
1 + D2

2, j = 1, 2.

Since m1 is positive, solution m1,1 is never satisfied. So, we consider only m1,2, m1,3 and
m1,4.

If m1 = m1,2 we have that

s1 = −s4 = (m2 − m5)s2 + m3s3√
D2

1 + D2
2

.
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Note that due to (4) we have that s1 < 0. Then s4 > 0 in contradiction with the fact that in
subcase 1.1 we have that s4 < 0. So the solution m1 = m1,2 is not possible.

If m1 = m1,3 we obtain that

s1 = s4 = − (m2 − m5)s2 + m3s3√
D2

1 + D2
2

, c1 = c4 = −c3m3 + (m2 + m5)c2√
D2

1 + D2
2

.

This implies that there is a collision between the masses m1 and m4, a contradiction. Hence
the solution m1 = m1,3 is not possible.

If m1 = m1,4 we get that

s1 = −s4 = − (m2 − m5)s2 + m3s3√
D2

1 + D2
2

.

Therefore the solution m1 = m1,4 is not possible following the same arguments of the solution
m1 = m1,2. This completes the proof of subcase 1.1 showing that under the assumptions of
this subcase there are no co-circular central configurations.
Subcase 1.2: m2 = m5. Then, since m1s1 + (m2 − m5)s2 = 0 we have that s1 = 0. Then
c1 = 1. Then r15 = r12. Moreover, we have that

c4 = −m1 + 2m2c2 + m3c3

m4
and s4 = −m3

m4
s3. (6)

This last equality implies that s3 > 0 and s4 < 0.
Now equation e6 = 0 of (2) reduces to

m3s3

(
1

r3
13

− 1

r3
14

)
= 0.

Therefore r14 = r13. Consequently c4 = c3 and s4 = −s3. So, from (6) we get that m4 = m3

and m1 = −2(c2m2 + c3m3). Note that c3 < 0 due to the fact that the center of mass is at
the center of the circle, i.e. at the origin of coordinates.

Clearly we have

r45 = r23, r35 = r24, r25 = 2s2, r34 = 2s3.

Now from the ten Eq. (2) only equations ek = 0 for k = 1, 3, 7, 8 remain independent,
because e2 = 0 can be obtained from the linear combination m1e1 +2m3e3 +2m2e2 =
0, e4 = e3, e5 = e2, e6 = 0, e9 = −e8 and e10 = −e7. From e1 = 0 we obtain

λ = 2(c2 − 1)m2

r3
12

+ 2(c3 − 1)m3

r3
13

.

Substituting λ in ek = 0 for k = 3, 7, 8 we obtain the equations

f1 = −r2
12r3

24r3
23 − r2

13r3
24r3

23 − r12r13r3
24r3

23 + 2r3
24r3

23 + r12r2
13r3

23 + r2
12r13r3

23

+ r12r2
13r3

24 + r2
12r13r3

24,

f2 = 1

2(r12 − 2)r3
12(r12 + 2)r13r3

23r3
24

(
2m2r13r3

23r3
24

− m3(r12 − 2)r2
12(r12 + 2)r2

13

√
4 − r2

13(r23 − r24)
(
r2

23 + r24r23 + r2
24

)
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− (r12 − 2)(r12 + 2)

√
4 − r2

12

( − m3r3
12r3

24r3
23 + m3r3

13r3
24r3

23

−2m2r13r3
24r3

23 − 2m3r13r3
24r3

23 + m3r3
12r13r3

23 + m3r3
12r13r3

24

))
,

f3 = 1

2r12(r13 − 2)r3
13(r13 + 2)r3

23r3
24

(
2m3r12r3

23r3
24r13

− m2r2
12

√
4 − r2

12(r13 − 2)(r13 + 2)(r23 − r24)(r
2
23 + r24r23 + r2

24)r
3
13

− (r13 − 2)(r13 + 2)

√
4 − r2

13

(
m2r12r3

13r3
23 + m2r3

12r3
24r3

23 − m2r3
13r3

24r3
23

− 2m2r12r3
24r3

23 − 2m3r12r3
24r3

23 + m2r12r3
13r3

24

)
r13

)
,

respectively; where we have used that

c2 = 1

2

(
2 − r2

12

)
, c3 = 1

2

(
2 − r2

13

)
.

In what follows we shall omit the denominators from f2 and f3 because they cannot be zero
in a co-circular central configuration of the 5-body problem. For instance, r13 cannot be 2,
otherwise r14 would be also equal to 2, and we will have a collision between the masses m3

and m4.
The system formed by the two equations f2 = 0 and f3 = 0 is a homogeneous linear

system in the variables m2 and m3. Since we are interested in positive solutions for m2 and
m3, the determinant of this homogeneous linear system must be zero, obtaining the equation

f4 = 4r2
12(r13 − 2)r2

13(r13 + 2)

√
4 − r2

13r6
23r6

24 + r2
12r2

13

(
r4

13r6
23r8

12 − 4r2
13r6

23r8
12

− r4
13r6

24r8
12 + r3

13r3
23r6

24r8
12 − 4r13r3

23r6
24r8

12 + 4r2
13r6

24r8
12 − r3

13r6
23r3

24r8
12

+ 4r13r6
23r3

24r8
12 − 8r4

13r6
23r6

12 + 32r2
13r6

23r6
12 + 8r4

13r6
24r6

12 − r5
13r3

23r6
24r6

12

+ 16r13r3
23r6

24r6
12 − 32r2

13r6
24r6

12 + r5
13r6

23r3
24r6

12 − 16r13r6
23r3

24r6
12

− r6
13r3

23r6
24r5

12 + 6r4
13r3

23r6
24r5

12 − 8r2
13r3

23r6
24r5

12 + r6
13r6

23r3
24r5

12

− 6r4
13r6

23r3
24r5

12 + 8r2
13r6

23r3
24r5

12 + r8
13r6

23r4
12 − 8r6

13r6
23r4

12 + 32r4
13r6

23r4
12

− 64r2
13r6

23r4
12 − r8

13r6
24r4

12 + 8r6
13r6

24r4
12 − 32r4

13r6
24r4

12 + 6r5
13r3

23r6
24r4

12

− 32r3
13r3

23r6
24r4

12 + 32r13r3
23r6

24r4
12 + 64r2

13r6
24r4

12 − 6r5
13r6

23r3
24r4

12

+ 32r3
13r6

23r3
24r4

12 − 32r13r6
23r3

24r4
12 + r8

13r3
23r6

24r3
12 − 32r4

13r3
23r6

24r3
12

+ 64r2
13r3

23r6
24r3

12 − r8
13r6

23r3
24r3

12 + 32r4
13r6

23r3
24r3

12 − 64r2
13r6

23r3
24r3

12

− 4r8
13r6

23r2
12 + 32r6

13r6
23r2

12 − 64r4
13r6

23r2
12 + 4r8

13r6
24r2

12 − 32r6
13r6

24r2
12

+ 64r4
13r6

24r2
12 − 8r5

13r3
23r6

24r2
12 + 64r3

13r3
23r6

24r2
12 − 128r13r3

23r6
24r2

12

+ 8r5
13r6

23r3
24r2

12 − 64r3
13r6

23r3
24r2

12 + 128r13r6
23r3

24r2
12 − 4r8

13r3
23r6

24r12
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+ 16r6
13r3

23r6
24r12 + 32r4

13r3
23r6

24r12 − 128r2
13r3

23r6
24r12 + 4r8

13r6
23r3

24r12

− 16r6
13r6

23r3
24r12 − 32r4

13r6
23r3

24r12 + 128r2
13r6

23r3
24r12 + 4r6

23r6
24

)

+
√

4 − r2
12

(
4(r12 − 2)r2

12(r12 + 2)r2
13r6

23r6
24

− (r12 − 2)r12(r12 + 2)(r13 − 2)r13(r13 + 2)

√
4 − r2

13

( − r6
12r6

24r6
23

− r6
13r6

24r6
23 + 2r4

12r6
24r6

23 + 2r4
13r6

24r6
23 + 2r3

12r3
13r6

24r6
23 − 2r12r3

13r6
24r6

23

− 2r3
12r13r6

24r6
23 + 2r4

12r4
13r6

23 + r12r6
13r3

24r6
23 − r3

12r4
13r3

24r6
23 − 2r12r4

13r3
24r6

23

− r4
12r3

13r3
24r6

23 + r6
12r13r3

24r6
23 − 2r4

12r13r3
24r6

23 + r12r6
13r6

24r3
23 − r3

12r4
13r6

24r3
23

− 2r12r4
13r6

24r3
23 − r4

12r3
13r6

24r3
23 + r6

12r13r6
24r3

23 − 2r4
12r13r6

24r3
23 + 2r4

12r4
13r6

24

))
.

Note that no mass appears in the equations f1 = 0 and f4 = 0 since they only depend on
the distances r12, r13, r23 and r24. Now we shall compute the distances r23 and r24 in function
of the distances r12 and r13 using the Ptolemy’s Theorem, which says that if four masses
m1, m2, m3 and m4 lie on a circle and are ordered sequentially then

r12r34 + r14r23 − r13r24 = 0.

So we obtain that

r24 = r12

√
4 − r2

13 + r23. (7)

Applying Ptolemy’s Theorem to the masses m1, m2, m3 and m5 we get

r12r35 + r15r23 − r13r25 = 0.

Therefore

r23 =
√

4 − r2
12r13 −

√

r2
13 + 1

2
r12

(√
4 − r2

12r13

√
4 − r2

13 − r12
(
r2

13 − 2
))

. (8)

Now we substitute r23 and r24 in the equations f1 = 0 and f4 = 0. Elevating these two
equations three times to the square we can eliminate all the squareroots, obtaining two new
equations g1 = 0 and g4 = 0 having the solutions of f1 = 0 and f4 = 0 and some additional
solutions which are not solution of f1 = 0 and f4 = 0. Thus, we have

g1 = −(r12 + r13)
6g2

11g12,

where

g11 = r14
12 − 4r2

13r12
12 − 4r12

12 − 2r3
13r11

12 + 4r13r11
12 + 6r4

13r10
12 + 16r2

13r10
12 + 4r10

12

+ 8r5
13r9

12 − 12r3
13r9

12 − 8r13r9
12 + r8

13r8
12 − 9r6

13r8
12 − 19r4

13r8
12 − 12r2

13r8
12

− 12r7
13r7

12 + 8r5
13r7

12 + 32r3
13r7

12 − 9r8
13r6

12 + 62r6
13r6

12 − 28r4
13r6

12

+ 8r9
13r5

12 + 8r7
13r5

12 − 48r5
13r5

12 + 6r10
13 r4

12 − 19r8
13r4

12 − 16r6
13r4

12

− 2r11
13 r3

12 − 12r9
13r3

12 + 32r7
13r3

12 − 4r12
13 r2

12 + 16r10
13 r2

12 − 16r8
13r2

12

+ 4r11
13 r12 − 8r9

13r12 + r14
13 − 4r12

13 + 4r10
13 .
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The expression of the polynomial g12 is more than ten times longer than the polynomial g11,
and since it will not provide any solution of the system f1 = 0 and f4 = 0, we do not write
it. Moreover

g4 = −r8
12(r12 − r13)

12r8
13(r12 + r13)

12g41g42,

where the expression of the polynomial g41 is approximately two hundred times longer than
the expression of g11, and the expression of g42 is approximately six hundred times longer
than the expression of g11. We do not provide these expressions here. They are easy to obtain
with the help of an algebraic manipulator as mathematica or mapple.

Looking at the expressions of g1 and g4, for computing the co-circular central configura-
tions we are only interested in the solutions of the system

g11g12 = 0 g41g42 = 0,

or equivalently in the solutions of the four systems

g11 = 0, g41 = 0; (9)

g11 = 0, g42 = 0; (10)

g12 = 0, g41 = 0; (11)

g12 = 0, g42 = 0. (12)

For solving each one of these system we do the following. Every gi j is a polynomial in the
variables r12 and r13.

We restrict now our attention to solving the system (9). We define the polynomials in one
variable

p(r12) = Resultant[g11, g41, r13],
q(r13) = Resultant[g11, g41, r12],

where Resultant[g11, g41, r13] denotes the resultant of the polynomials g11 and g41 with
respect to the variable r13. This resultant is a polynomial in the variable r12. By the properties
of the resultant we have that if (r∗

12, r∗
13) is a solution of system (9), then r∗

12 is a root of
the polynomial p(r12), and r∗

13 is a root of the polynomial q(r13). For more details on the
resultant see for instance the book [8]. We have

p(r12) = a(r12 − 2)96r416
12 (r12 + 2)96(r2

12 − 2)8(r4
12 − 5r2

12 + 5)p140(r12)p304(r12),

q(r13) = b(r13 − 2)96r416
13 (r13 + 2)96(r2

13 − 2)8(r4
13 − 5r2

13 + 5)q140(r13)q304(r13),

where a and b are some positive integers, pk(r12) denotes a polynomial with integer coef-
ficients in the variable r12 of degree k, and ql(r13) denotes a polynomial with integer
coefficients in the variable r13 of degree l. We note that p140(r12) �= q140(r12) and that
p304(r12) �= q304(r12), but the polynomials p140(x), p304(x), q140(x), q304(x) depend on x
through x2, i.e. are polynomials in the variable x2 of degrees 70 and 152.

Our co-circular central configurations satisfy that

0 < r12 < r13 < 2. (13)

So we only are interested in the real roots r∗
12 and r∗

13 of the polynomials p(r12) and q(r13)

which are in the interval (0, 2). Then we take all the pairs (r∗
12, r∗

13) with r∗
12 < r∗

13 and we
check if they are solutions of the system f1 = 0 and f4 = 0. Only one of such pairs is
solution of the mentioned system, namely the pair

(r∗
12, r∗

13) =
(√

1

2

(
5 − √

5
)
,

√
1

2

(
5 + √

5
) )

. (14)
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In short, this is the unique solution of system (9) which is solution of the system f1 = 0 and
f4 = 0.

Now we study the solutions of systems (10), (11) and (12) in the same way that we
have studied the solutions of the system (9), but these systems do not provide any solution
satisfying f1 = 0, f4 = 0 and (13). Hence the unique solution of the system f1 = 0 and
f4 = 0 satisfying (13) is the solution (14).

Finally we substitute the solution (14) in the equations f2 = 0 and f3 = 0, where
previously we have substituted r24 and r23 by their expressions (7) and (8), and we obtain

−50
(

1 + √
5
)

(m2 − m3) = 0 and 50
(
−3 + √

5
)

(m2 − m3) = 0,

respectively. So m2 = m3, and it follows that the five masses are all equal. This completes
the proof of subcase 1.2 showing that under the assumptions of this subcase there is a unique
co-circular central configuration given by the regular 5-gon with equal masses.
Case 2: m1s1 + (m2 − m5)s2 �= 0. Now we shall solve the system

c2
j + s2

j = 1 for j = 3, 4,

with respect to the variables s3 and c3. It has two different solutions T j = {c3, j , s3, j } for
j = 1, 2 with

s3,1 = − m3

D4 D6

(
D2

4

(
D2

5 + m2
3 − m2

4 + D2
4

) − D5S2
)

c3,1 = −m3

D6

(
D5

(
D2

5 + m2
3 − m2

4 + D2
4

) + S2
)

s3,2 = − m3

D4 D6

(
D2

4

(
D2

5 + m2
3 − m2

4 + D2
4

) + D5S2
)

c3,2 = −m3

D6

(
D5

(
D2

5 + m2
3 − m2

4 + D2
4

) − S2
)

being

D4 = m1s1 + (m2 − m5)s2, D5 = c1m1 + c2(m2 + m5), D6 = 2m2
3(D2

4 + D2
5)

and

S2 =
√

−D2
4(D2

5 − (m3 − m4)2 + D2
4)(D2

5 − (m3 + m4)2 + D2
4).

It follows from Proposition 1(a) that the configuration ccx symmetric with respect to the
x-axis of the co-circular central configuration cc is also a co-circular central configuration.
Then, either the cc is invariant with respect to the x-axis, or

c3,1 = c3,2
∣∣
s1→−s1, s2→−s2

and s3,1 = −s3,2
∣∣
s1→−s1, s2→−s2

. (15)

In the first case as it was before mentioned this implies that s1 = 0, c1 = 1, s4 = −s3 and
c4 = −c3. Then s3 > 0 and s4 < 0. Moreover, since we are under the assumptions of Case
2 and m2 ≥ m5, we must have m2 > m5. Using (3) we get that

s2 = m4 − m3

m2 − m5
s3.

Since s2 > 0 we must have m4 > m3. Note that now r14 = r13 and r15 = r12. Now equation
e6 = 0 of (2) reduces to

(m3 − m4)s3

(
1

r3
12

− 1

r3
13

)
= 0.
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Therefore r13 = r12, which is not possible because we would have a collision between the
two masses m2 and m3.

In short (15) must hold. Then we get the conditions S2 = 0 and D5S2 = 0, respectively.
So S2 = 0. Since in this case D4 �= 0 we get that

(D2
5 − (m3 − m4)

2 + D2
4)(D2

5 − (m3 + m4)
2 + D2

4) = 0.

Solving D2
5 − (m3 + m4)

2 + D2
4 = 0 with respect to m1 we get two possible solutions that

we call them M1, j for j = 1, 2:

M1, j = −((m2 + m5)c1c2 + (m2 − m5)s1s2 + (−1) j+1
√

N ),

for j = 1, 2 where

N = (
(m3 + m4)

2 − (m2 + m5)
2c2

2)s
2
1 + 2(m2

2 − m2
5)c1c2s1s2 + ((m3 + m4)

2

− (m2 − m5)
2s2

2 )c2
1.

Solving D2
5 − (m3 − m4)

2 + D2
4 = 0 with respect to m1 we get two possible solutions that

we call them M1, j for j = 3, 4:

M1, j+2 = −((m2 + m5)c1c2 + (m2 − m5)s1s2 + (−1) j+1
√

N1),

for j = 1, 2 where

N1 = (
(m3 − m4)

2 − (m2 + m5)
2c2

2)s
2
1 + 2(m2

2 − m2
5)c1c2s1s2 + ((m3 − m4)

2

− (m2 − m5)
2s2

2 )c2
1.

Note that m3 �= m4 otherwise D2
5 + D2

4 cannot be zero, because D4 �= 0.
We consider the four possible solutions M1,1, M1,2, M1,3 and M1,4.
If m1 = M1,1 we have that

s3 = s4 = 1

(m3 + m4)

(
(m2 + m5)c1c2s1 + (m5 − m2)c

2
1s2 + s1

√
N

)
,

c3 = c4 = 1

(m3 + m4)

( − (m2 + m5)c2s2
1 + (

(m2 − m5)s1s2 + √
N

)
c1

)
.

This implies that there is a collision between the masses m3 and m4, a contradiction. Hence
this solution is not possible.

If m1 = M1,2 we obtain that

s3 = s4 = 1

(m3 + m4)

(
(m2 + m5)c1c2s1 + (m5 − m2)c

2
1s2 − s1

√
N

)
,

c3 = c4 = − 1

(m3 + m4)

(
(m2 + m5)c2s2

1 + (
(m5 − m2)s1s2 + √

N
)
c1

)
.

As before this solution is not possible.
If m1 = M1,3 we get that

s3 = −s4 = 1

(m3 − m4)

(
(m2 + m5)c1c2s1 + (m5 − m2)c

2
1s2 + s1

√
N1

)
,

c3 = −c4 = 1

(m3 − m4)

( − (m2 + m5)c2s2
1 + c1

(
(m2 − m5)s1s2 + √

N1
))

.
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If (m2 − m5)s2 + m3s3 = 0 then m2 > m5, otherwise s3 = 0 because m2 ≥ m5. So
s4 = 0 and c3 = −1 and c4 = 1 in contradiction with the fact that θ4 < θ5. So

s3 = −m2 − m5

m3
s2.

Since m2 > m5 and s2 > 0 we get that s3 < 0. Then s4 > 0, in contradiction with the
fact that θ4 > θ3. Hence (m2 − m5)s2 + m3s3 �= 0. Now, using the same arguments than in
subcase 1.1 it follows that m1 must be one of the three solutions m1, j for j = 2, 3, 4. Note
that m1 = m1,3 is not possible because it implies collision between m1 and m4. When m1

is equal to either m1,2 or m1,4 we have that s1 = −s4 and c1 = −c4. Then, since s3 = −s4

and c3 = −c4 we have a collision between the masses m1 and m3, a contradiction. Hence
the solution m1 = M1,3 is not possible.

If m1 = M1,4 we have that

s3 = −s4 = 1

(m3 − m4)

(
(m2 + m5)c1c2s1 + (m5 − m2)c

2
1s2 − s1

√
N1

)
,

c3 = −c4 = 1

(m3 − m4)

( − (m2 + m5)c2s2
1 + c1

(
(m2 − m5)s1s2 − √

N1
))

.

Now the same arguments used in the solution m1 = M1,3 can be applied for the solution
m1 = M1,4, obtaining that this last solution is not possible. This completes the proof of the
theorem. ��
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