
J Dyn Diff Equat (2016) 28:867–896
DOI 10.1007/s10884-015-9428-z

Stability of Concatenated Traveling Waves

Xiao-Biao Lin · Stephen Schecter

Received: 28 August 2014 / Revised: 6 January 2015 / Published online: 22 January 2015
© Springer Science+Business Media New York 2015

Abstract We consider a reaction–diffusion equation in one space dimension whose initial
condition is approximately a sequence of widely separated traveling waves with increasing
velocity, each of which is individually asymptotically stable. We show that the sequence of
traveling waves is itself asymptotically stable: as t → ∞, the solution approaches the con-
catenated wave pattern, with different shifts of eachwave allowed. Essentially the same result
was previously proved by Wright (J Dyn Differ Equ 21:315–328, 2009) and Selle (Decom-
position and stability of multifronts and multipulses, 2009), who regarded the concatenated
wave pattern as a sum of traveling waves. In contrast to their work, we regard the pattern as
a sequence of traveling waves restricted to subintervals of R and separated at any finite time
by small jump discontinuities. Our proof uses spatial dynamics and Laplace transform.

Keywords Interaction of waves · Reaction–diffusion equation · Spatial dynamics ·
Laplace transform · Exponential dichotomy in trace space

1 Introduction

Consider the system of reaction–diffusion equations in one space dimension

ut = uxx + f (u), (1.1)

where f ∈ C2(Rn). Throughout this paper we assume that the solutions of (1.1) are in
H2,1
loc (R × R

+) and both sides of (1.1) are in L2
loc(R × R

+) . Notice that H2,1
loc (R × R

+) is
continuously imbedded in Cloc(R × R

+) therefore f (u) ∈ L2
loc(R × R

+). We choose the
diffusion terms uxx to simplify the illustration of our method. More general systems, such
as ut = Auxx + f (u) in [24,26], where A is positive definite, can be treated by our method.
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We assume that (1.1) has m traveling wave solutions, with widely separated centers,
that connect m + 1 spatially constant, time-independent solutions. These spatially constant
solutions correspond to m + 1 equilibria e0, . . . , em of the ordinary differential equation
ut = f (u). The j th traveling wave, which has speed c j , is q j (ξ j ), ξ j = x − y j − c j t . It
connects q j (−∞) = e j−1 to q j (∞) = e j .

We write ξ instead of ξ j if it is clear which y j and c j are used. In the coordinates (ξ, t),
q j (ξ) is a stationary solution of

ut = uξξ + c j uξ + f (u), ξ = ξ j = x − y j − c j t. (1.2)

The traveling wave q j (ξ) satisfies the ODE

q ′′
j + c jq

′
j + f (q j ) = 0, 1 ≤ j ≤ m.

The function (u(ξ), v(ξ)) = (q j (ξ), q ′
j (ξ)) is a heteroclinic orbit of the associated first-order

system
uξ = v, vξ = −c jv − f (q j ) (1.3)

that connects the equilibria (e j−1, 0) and (e j , 0).
After a phase shift, we may assume for definiteness that |q ′

j (0)| = max{|q ′
j (ξ)| : ξ ∈ R}.

Then q j (0), which we regard as the center of the wave q j , travels on the characteristic line
ξ = 0, which corresponds to x = y j + c j t . We assume the waves are widely separated, i.e.,
y1 << y2 << · · · << ym , and we assume c1 < c2 < · · · < cm .

We define a concatenated wave pattern by dividing the domain (x, t) ∈ R × R
+ into m

sectors and placing one traveling wave in each sector. More precisely, for 1 ≤ j ≤ m−1, let
c̄ j = (c j+c j+1)/2 be the average speed of thewavesq j andq j+1, and let x j = (y j+y j+1)/2,
. For convenience let x0 = −∞ and xm = ∞. Define

Mj = {(x, t) : x = y j + c j t, t ≥ 0},
� j = {(x, t) : x = x j + c̄ j t, t ≥ 0},
� j = {(x, t) : x j−1 + c̄ j−1t < x < x j + c̄ j t, t ≥ 0},

so thatMj is inside� j , and� j separates� j and� j+1. Define the concatenated wave pattern
to be

ucon(x, t) = q j (x − y j − c j t) for (x, t) ∈ � j , 1 ≤ j ≤ m.

The center of the wave q j in � j moves on the line Mj , and the lines M1, . . . , Mm spread
apart as t → ∞. The concatenated pattern satisfies (1.1) in each � j but is not continuous
across the � j (Fig. 1).

For η > 0 and π/2 < θ < π , define the sector

�(−η, θ) = {s ∈ C : | arg(s + η)| ≤ θ}.
�(−η, θ) has vertex at s = −η and opens to the right with opening angle 2θ . It contains the
half plane �(λ) ≥ −η.

For 1 ≤ j ≤ m, the linearization of (1.2) at the traveling wave q j (ξ) is

ut = uξξ + c j uξ + Df (q j (ξ))u, ξ = ξ j = x − y j − c j t. (1.4)

Define the linear operator L j on L2(R) with domain H2(R) by

L ju = uξξ + c j uξ + Df (q j (ξ))u.

Throughout this paper we make the following standard assumptions.
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Fig. 1 For the case m = 3, the concatenated pattern consists three waves separated by two lines �1 and �2

H1 For 0 ≤ j ≤ m, �σ(Df (e j )) < 0.
H2 For 1 ≤ j ≤ m, the operator L j on L2(R),with domain H2(R), has the simple eigenvalue

λ = 0, with one-dimensional eigenspace spanned by q ′
j .

From H1, for 0 ≤ j ≤ m, the linear first-order system uξ = v, vξ = −cv − Df (e j )u
has, counting multiplicity, n eigenvalues with negative real part and n eigenvalues with
positive real part. Together with H2, we can show that there are numbers η > 0 and θ , with
π/2 < θ < π , such that

(A1) for 0 ≤ j ≤ m, the spectrum of the operator u → uξξ + c j uξ + Df (e j )u on L2 is
contained in the complement of �(−η, θ);

(A2) for 1 ≤ j ≤ m, the spectrum of the operator L j on L2, is contained in the complement
of �(−η, θ) (essential spectrum), plus the simple eigenvalue 0.

Let L∗
j be the adjoint operator for L j on L2(R), with domain H2(R):

L∗
j z = zξξ − c j zξ + Df (q j (ξ))∗z. (1.5)

Hypothesis (H2) implies that the adjoint equation L∗
j z = 0 has a unique (up to constant

multiples) bounded solution z j . Moreover, since q ′
j is not in the range of L j ,

∫ ∞
−∞ < z j , q ′

j >

dξ 
= 0. Assume that ∫ ∞

−∞
< z j , q

′
j > dξ = 1, 1 ≤ j ≤ m. (1.6)

Let H2,1(� j , γ ), γ ≤ 0, be the space of functions u on � j such that e−γ t u(x, t) ∈
H2,1(� j ). Let I j be the interval (x j−1, x j ).

For u ∈ H2,1
loc (R×R

+), the function t → u(·, t) is continuous in H1
loc(R). So it is natural

to consider the initial condition u(x, 0) = u0(x) ∈ H1
loc(R). We assume further that on the

first and last intervals, u0(·) − q(· − y j ) ∈ H1(I j ), j = 1,m. If v ∈ H2,1(� j ), and if
� is a line in the closure of � j , then by the trace theory, (v, vx ) has well-defined limit in

H0.75(�) × H0.25(�)
de f= H0.75×0.25(�), denoted by (v(�), vx (�)). In particular, let

Wj = (q j , q
′
j ), J j0 = Wj (� j ) − Wj+1(� j ), then J j0 ∈ H0.75×0.25(� j ).

Consider

q j (� j ) =q j (x j − y j + (c̄ j − c j )t),

q j (� j−1) =q j (x j−1 − y j + (c̄ j−1 − c j )t).
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From x j − y j = y j − x j−1 ≥ inf{y j+1 − y j }/2, there exist C̄ > 0, μ < 0,−η < 0 such
that for all 1 ≤ j ≤ m,

|q j (� j ) − e j | + |q jξ (� j )| ≤ C̄e−η inf{y j+1−y j }/2, t = 0,

|q j+1(� j ) − e j | + |q j+1,ξ (� j )| ≤ C̄e−η inf{y j+1−y j }/2, t = 0,

|q j (� j ) − e j | + |∂t q j (� j )| ≤ C̄eμt , t ≥ 0,

|q j+1(� j ) − e j | + |∂t q j+1(� j )| ≤ C̄eμt , t ≥ 0,

(1.7)

Definition 1.1 The concatenated wave pattern ucon(x, t) is exponentially stable with the rate
eγ t , provided there exist γ < 0 and δ0 > 0 for which the following is true.

(1) The set Sinit := {u0 ∈ H1
loc(R) : max j {|u0(x) − q j (x − y j )|H1(I j ) < δ0} is nonempty.

(2) For any u0 ∈ Sinit , there exist a unique solution u(x, t) ∈ H2,1
loc (R × R

+) to (1.1)
and a sequence of numbers r1, . . . , rm such that u(x, 0) = u0(x). Moreover, if
ρ := max j {|u0(x) − q j (x − y j )|H1(I j ), and if in each � j , u(x, t) = q j (x − y j
−c j t + r j ) + u j (x, t), then

∂t u j ∈ L2(� j , γ ) and |u j (·, t)|H1(x) < Cρeγ t , t ≥ 0.

Intuitively, on each � j , u(x, t) exponentially approaches a shifted concatenated wave
as t → ∞. Different shifts are allowed in different � j . Note if max{|u0(x) − q j (x −
y j |)H1(I j )} = ρ, then max{|J j0|} ≤ Cρ. Given a concatenated patter ucon , if δ0 is too small,
then Sinit is an empty set.

We now state the main result of this paper.

Theorem 1.1 Assume that the conditions (H1) and (H2) hold. Let−η andμ be the constants
in (A1), (A2) and (1.7)and letγ satisfiesmax{−η,μ} < γ < 0. Then there exists a sufficiently
large � > 0, a small δ0 > 0 and a constant C1 > 0 such that if

inf{y j+1 − y j } ≥ �, and C̄e−η inf{y j+1−y j }/2 < δ0,

then the concatenated wave ucon(x, t) is stable with the rate eγ t . Moreover, u0 ∈ H1
loc(R) is

in Sinit if

C̄e−η inf{y j+1−y j }/2 < max{|u0(x) − q j (x − y j )|H1(I j )} < δ0.

Remark 1.1 First, �must be sufficiently large so that the existence of exponential dichotomies
and related contraction rates conditions, as will be introduced later, are satisfied. We may
need to choose inf{y j+1 − y j } even greater so the set Sinit is nonempty.

The “spatial dynamics” used in this paper were developed by Kirchgassner [7], Renardy
[20], Mielke [18], Sandstede, Scheel, and collaborators [1,19], and others. This approach
treats the space variable as “time”, and evolve functions of t which is natural to handle the
concatenated waves that are placed side by side with jumps along common boundaries. In
[11,12], the interaction of stable, standing waves for a boundary value problem of parabolic
systems in finite domain was considered by the method similar to that used in this paper.
However, λ = 0 was not an eigenvalue and wave speed was not an issue in those papers.
The new contribution of this paper is to treat the eigenvalue λ = 0 and the variation of
wave speeds and shifts related to λ = 0. To simplify the notation, the equation considered
in this paper is similar to that of [11]. Using the ideas of this paper, but changing the trace
spaces to the more general ones used in [12], we should be able to handle interactions of
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traveling waves of general higher order parabolic systems as in [12]: ut + (−1)mD2m
x u

= f (u, ux , . . . , (Dx )
2m−1u), u ∈ R

n .

To illustrate our method, consider the simple case of two traveling waves q j (x − c j t),
j = 1, 2 of (1.1) moving in opposite direction: c1 < 0 < c2. Define the concatenated wave
ucon(x, t) separated by � = {x = 0, t ≥ 0} as follows
ucon(x, t) = q1(x + N − c1t) if x < 0, ucon(x, t) = q2(x − N − c2t) if x > 0. (1.8)

Assume N > 0 is a large constant so that the jumps along �, [ucon, uconx ](�), are small and
decay to zero as functions of time t .

Consider the perturbation of the initial data around ucon(x, 0). Notice that ucon is not a
solution of (1.1). Let the exact solution be

u(x, t) = ucon + u1(x, t) for x < 0, u(x, t) = ucon + u2(x, t) for x > 0. (1.9)

The corrections u1(x, t) and u2(x, t) will be solved as initial-boundary value problems of
PDEs in x ≤ 0 and x ≥ 0 respectively, cf. (2.3). The boundary values are determined by two
conditions: (1) The boundary values for u1, u2 at � must compensate the jumps of ucon at �
as follows

u2(0, t) − u1(0, t) = −(ucon(0+, t) − ucon(0−, t)),

u2x (0, t) − u1x (0, t) = −(uconx (0+, t) − uconx (0−, t)).

(2) The boundary conditions for u1 at x = 0− (or for u2 at x = 0+) must belong to the
unstable subspace (or stable subspace) of the dichotomies of the “spatial dynamics” of the
system (such dichotomies exist at least near each equilibirum point). So with the help of the
variations of wave speeds as parameters, the solution u1(x, t) (or u2(x, t)) can pass the center
of q1 (or q2) where the left half and right half of exponential dichotomies do not match, and
still decay to zero as x → −∞ (or x → ∞). The condition (2) may sound complicated but
it is based on how Lions and Magenes treated the boundary values of PDEs in the popular
text book [15].

Now consider the concatenation of m traveling waves. After linearization, the correction
term u j defined in � j , j = 1, . . . ,m, should satisfy the initial-boundary value problems
with prescribed jump J j (�) along � j , as in (2.6):

u jt = u j,xx + Df (q j )u j + h j (x, t), u j (x, 0) = u j0(x),

([{u j }], [{u jx }])(� j ) = J j (� j ).

If the linear system can be solved then the exact {u j }m1 is obtained by the contractionmapping
argument. Compared to the “inverse systems” used in other papers to treat wave interactions,
this system is simpler, and highly localized such that the coefficient of the j th equation only
depends on q j . It can easily be adapted to many nonstandard cases where q j is not a saddle
to saddle connection, or some e j is non-hyperbolic and q j connects to its center manifold,
or weighted norm must be used to ensure the stability of each individual wave, etc. See
discussions of the generalized Fisher/KPP equation in Sect. 6.

Essentially the same result was proved by Wright [26] and Selle [24], who regarded the
concatenated wave pattern as a sum of traveling waves. Besides being easier to treat some less
standard systems as mentioned above, the other advantage of our approach is that it directly
links the wave speeds and phase shifts to the perturbations of initial conditions and the jumps
between adjacent waves, cf. (4.6), (4.22) and (5.4) where β j (t)q ′

j (ξ) is in the eigenspace
associated to λ = 0. This information can be useful in some practical applications where we
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are not only interested in the existence of the the concatenated traveling wave, but also in
how each wave component is changed by the interaction with other waves.

Here is a brief outline of the paper. In Sect. 2 we outline the proof. The structure of the
proof is based on the approach of Sattinger [23], in which the linear variational system is
obtained around the original traveling wave, not around an undetermined shift of the wave
(here shifts of the waves).When linear variational systems are considered, the unknown shifts
appear as multiples of q ′

j . The nonlinear system is considered in the last section where we
solve for the entire solution and asymptotic shift (here shifts) simultaneously by a contraction
mapping principle. We remark that Rottmann-Matthes has developed a method parallel to
Sattinger’s approach [21,22].

In Sect. 3we give somebackground about exponential dichotomies andLaplace transform.
In Sect. 3.1, we discuss exponential dichotomies in frequency domain where the equation can
be treated pointwise in s. In Sect. 3.2, we discuss exponential dichotomies where the equation
in frequency domain cannot be treated pointwise in s. In Sect. 3.3, we discuss the roughness
of exponential dichotomies for general abstract equations in Banach spaces. In Sect. 3.4 we
discuss exponential dichotomies for linear variational system near the equilibrium e j . In
Sect. 3.5 we discuss exponential dichotomies for linear variational system near the traveling
wave solution q j . In Sect. 4 we study the linear non-homogeneous system obtained by
linearizing (1.1) at the discontinuous concatenated wave solution ucon(x, t). A solution to
the non-homogeneous system, ignoring jump discontinuities along the � j , is obtained in
Sect. 4.1, and a solution to the homogeneous system with prescribed jumps is obtained in
Sect. 4.2. InSect. 5we complete the proof ofTheorem1.1 by solving the nonlinear initial value
problem using our solution of the linearized problem and a contraction mapping argument.
In Sect. 6, we discuss the wave interaction of the generalized Fisher/KPP equation where an
important proposition used in [26] is not satisfied, but may still be treated by our method.

2 Outline of Proof

Let � = I × R
+ or an open subset of R × R

+, always thought of as xt-space. Define the
following Banach spaces:

Hk(R+) = Wk,2(R+,Rn), k ≥ 0, the usual Sobolev space.

Hk1×k2(R+) = Hk1(R+) × Hk2(R+), k1 ≥ 0, k2 ≥ 0.

H2,1(�) = {u : � → R
n | u, uxx and ut ∈ L2(�;Rn}.

|u|H2,1(�) = |u|L2 + |uxx |L2 + |ut |L2 .

As usual, H0 = L2 and Hk
0 (R+) ⊆ Hk(R+) consists of functions that are 0 at t = 0. We

say u(x, t) ∈ H2,1
loc (�) if it is in H2,1 when restricted to a bounded subset of �.

For a constant γ < 0, define:

Hk(R+, γ ) = {u : R+ → R
n | e−γ t u ∈ Hk(R+}; |u|Hk (R+,γ ) = |e−γ t u|Hk (R+).

Hk1×k2(R+, γ ) = Hk1(R+, γ ) × Hk2(R+, γ ).

L2(�, γ ) = {u : � → R
n | e−γ t u ∈ L2(�)}; |u|L2(�,γ ) = |e−γ t u|L2(�).

H2,1(�, γ ) = {u : � → R
n | e−γ t u ∈ H2,1(�)}; |u|H2,1(�,γ ) = |e−γ t u|H2,1(�).
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Let X1(R+, γ ), or X1(γ ) for short, be the space of functions β(t) such that β̇ ∈
L2(γ ), γ < 0. Define the norm in X1(γ ) as

|β|X1(γ ) := |β(0)| + |β̇|L2(γ ).

For β ∈ X1(γ ), the limit β(∞) exists. By the Cauchy-Schwarz inequality, have

|β(t) − β(∞)| = |
∫ ∞

t
eγ t (e−γ t β̇(t))dt | ≤ Ceγ t |β̇|L2(γ ). (2.1)

The change of coordinates ξ = x − y − ct converts � to a subset �̃ of R × R
+, with

coordinates (ξ, t), and converts a function u(x, t) on� to a function ũ(ξ, t) = u(ξ +y+ct, t)
on �̃.

Lemma 2.1 The map u → ũ is a linear isomorphism of H2,1(�, γ ) to H2,1(�̃, γ ). The
map u → ũ and its inverse ũ → u both have norm at most 1 + |c|.

Proof Let u ∈ H2,1
0 (�, γ ). Then ũξ = ux , ũξξ = uxx , ũt = ut + c j ux . Thus

|ũ| + |ũξ | + |ũξξ | + |ũt | ≤ |u| + |ux | + |uxx | + |ut | + |c||ux |.
Here all the norms are in L2(�, γ ). The lemma follows easily. �


Let �(x0, c) = {(x, t) : x = x0 − ct, t ≥ 0}.

Lemma 2.2 If �(x0, c) ⊂ �, then the mapping u → u|�(x0,c) is bounded linear from
H2,1(�, γ ) to H0.75×0.25(R+, γ ). Moreover, there is a number K > 0, independent of x0
and c, such the norm of the linear map is at most K (1 + |c|).

Proof For c = 0, see [15,25]. For c 
= 0, use Lemma 2.1 followed by letting c = 0. �


Now assume that v ∈ H2,1
loc (R×R

+), and �(x0, c) is the line as in Lemma 2.2. It follows
from a localization process and Lemmas 2.1 and 2.2, the restriction of v to �, as a function
of t , belongs to H0.75×0.25

loc (R+).

Lemma 2.3 Let x = 0 be the line that divides {x ∈ R, t ≥ 0} into two regions: �−
= {(x, t) : x < 0, t ≥ 0} and �− = {(x, t) : x > 0, t ≥ 0}. Let v− ∈ H2,1(�−) and
v+ ∈ H2,1(�+). Assume the traces v−|x=0 = v+|x=0 in the space H0.75×0.25(R+). Then
the function v that equals v− on �− and v+ on �+ is in the space H2,1(R × R

+).

Proof The proof is a simple excise of the trace theory, and is outlined below. Letw be defined
on {x ∈ R, t ≥ 0}, and equals to Dxv

− (or Dxv
+) on �− (or �+). Using integration by

parts, it is easy to show that Dxv = w inR×R
+. Thus vx ∈ L2(R×R

+). Same proof shows
that vxx , vt ∈ L2(R × R

+). Therefore v ∈ H2,1(R × R
+). �


Remark 2.1 Suppose v ∈ L2
loc(R × R

+), and its restrictions to the left and right of �, v−
and v+, are locally H2,1 functions. Using the cut-off functions and change of coordinates as
in Lemma 2.1, it is easy to see that v ∈ H2,1

loc (R×R
+) if and only if the traces of v− and v+

on � are equal.
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2.1 Deriving the Linear Variational System

Write the exact solution of (1.1), with the initial condition uex (x, 0) = uex0 (x), as uex (x, t) =
uap(x, t) + ucor (x, t), (x, t) ∈ R×R

+, with uap(x, t) = q j (x − y j − c j t + r j ) in � j . For
the rest of the paper, denote ucor (x, t) by u(x, t), and its restriction to � j by u j .

Let {r j }mj=1 = (r1, . . . , rm), oftenwith the range of j omitted, samenotation for a sequence
of functions {u j }. The {r j } are parameters to be determined so that u j (x, t) will lie in the
appropriate space. The equation for u j , the perturbation to q j (x − y j − c j t + r j ), is

ut = uxx + Df (q j (x − y j − c j t + r j ))u + O(u2), (x, t) ∈ � j

The initial value for u j (x, t) in � j is

u j0(x) = u j (x, 0) = uex0 (x) − q j (x − y j + r j ), x ∈ I j = (x j−1, x j ).

Recall that � j = {(x, t) : x = x j + c̄ j t, t ≥ 0} separates � j ,� j+1. The traces u j (� j )

and u j+1(� j ) exist. Define the jump of {u j } across � j , a function of t , by

[{u j }](� j ) = u j+1(� j ) − u j (� j ).

We will use this notation for any sequence of functions defined on {� j }, such as {q j (ξ +
y j + c j t)}, and even after the change of variables to ξ j in � j . With this notation, the jump
conditions along � j are

[{u j }, {u jx }](� j ) = −[uap, uapx ](� j ), 1 ≤ j ≤ m − 1. (2.2)

The jump conditions depend on the parameters {r j } since uap does.
Notice the compatibility between the jump conditions at t = 0 and the jumps of the initial

condition at x = x j :

[{u j }, {u jx }](� j )|t=0 = [{u j0}, {u̇ j0}](x j ), 1 ≤ j ≤ m − 1.

The unknown {r j } appears in the argument of uap(x, t). To avoid having an undetermined
r j in Df (uap), we shall follow the idea of Sattinger [23] to linearize around q j (x− y j −c j t).
With the moving coordinate ξ j = x − y j − c j t , denoted by ξ when there should be no
ambiguity, the exact solution in � j becomes ũex (ξ, t) = uex (ξ + y j + c j t, t). However,
both the approximate solution and the perturbation depend on the parameter r j . To show this
dependence, in � j we write

ũex (ξ, t) = q(ξ + r j ) + ũ(ξ, t; r j ), ũ(ξ, t; r j ) = uex (ξ + y j + c j t, t) − q j (ξ + r j ).

We find that ũ(ξ, t; r j ) is a solution of the following differential equation:

ut = uξξ + ci uξ + Df (q j (ξ))u + Bj (r j )u + R j (u, r j ), (ξ, t) ∈ � j , (2.3)

where Bj (r j )u + R j (u, r j ) = f (q j (ξ + r j ) + u) − f (q j (ξ + r j )) − Df (q j (ξ))u, and

Bj (r j ) = Df (q j (ξ+r j ))−Df (q j (ξ))=r j

∫ 1

0
D2 f (q j (ξ+sr j ))q

′
j (ξ+sr j )ds=O(r j ),

R j (u, r j ) = f (q j (ξ + r j ) + u) − f (q j (ξ + r j )) − Df (q j (ξ + r j ))u = O(|u|2).
Since B(r j )u = O(r j |u|), so the terms B(r j )u, R(u, r j ) are of second order in (u, r j ).

When r j = 0, the initial condition for the perturbation ũ is

ũ(ξ, 0; 0) = uex (ξ + y j , 0) − q j (ξ)
de f= ū j0(ξ).
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For general r j , the initial condition for the perturbation is

ũ(ξ, 0; r j ) = uex (ξ + y j , 0) − q j (ξ + r j ) = ū j0(ξ) + q j (ξ) − q j (ξ + r j ).

Let g j (ξ, r j ) = q j (ξ) − q j (ξ + r j ) + r j q ′
j (ξ) = O(r2j ). We have the initial conditions for

the correction term

u j (ξ, 0) = ū j0(ξ) − r j q
′
j (ξ) + g j (ξ, r j ), x ∈ I j . (2.4)

Let Wj = (q j , q ′
j ), {r j } = (r1, . . . , rm). We rewrite the jump conditions (2.2) to empha-

size the dependence on {r j }

−[uap, uapξ ](� j )
de f= J j (� j , {r j }) = Wj (� j + r j ) − Wj+1(� j + r j+1)

= Wj (� j ) − Wj+1(� j ) + G j ({r j }),
where

G j ({r}) := Wj+1(� j ) − Wj+1(� j + r j+1)

+Wj (� j + r j ) − Wj (� j ).

Recall that J j0 = Wj (� j )−Wj+1(� j ), which is the jump condition when {r j } = 0. Now
(2.2) can be written as

[{u j }, {u jx }](� j ) = J j (� j , {r j }) = J j0(� j ) + G j ({r j }), 1 ≤ j ≤ m − 1. (2.5)

As shown in Lemma 2.3 and the remark that follows, to have ucon ∈ H2,1
loc (R × R

+), the
jumps across each � j must satisfy

u j+1(� j ) − u j (� j ) = q j (� j + r j ) − q j+1(� j + r j+1) ∈ H0.75(� j ),

u j+1,x (� j ) − u j,x (� j ) = q j,x (� j + r j ) − q j+1,x (� j + r j+1) ∈ H0.25(� j ).

In order to solve the nonlinear system (2.3), (2.4), (2.5),we shall first consider the following
nonhomogeneous linear system:

u jt = u j,xx + Df (q j )u j + h j (x, t), u j (x, 0) = u j0(x), (2.6a)

([{u j }], [{u jx }])(� j ) = J j (� j ), (2.6b)

[{u j0}, {u̇ j0}](x j ) = J j (� j )|t=0. (2.6c)

In these equations, for j = 1, . . .m, h j ∈ L2(� j , γ ), γ < 0, u j (x, 0) ∈ H1(I j ); and for
j = 1, . . .m − 1, J j (� j ) ∈ H0.75×0.25(γ ). Temporarily they do not depend on ({r j }, {u j }).
The last one is the compatibility between the initial conditions and the jump conditions. We
look for u j ∈ H2,1(� j , γ )+span{β(t)q ′

j (ξ), β(t) ∈ X1(γ )}, as will be specified in Sect. 4.
For the nonlinear systems (2.3–2.5), the forcing terms, initial and jump conditions depend

on the parameters {r j }, since uap does. In Sect. 5, the correction term u(x, t), together with
shifts {r j } will be solved by letting

h j = Bj (r j )u + R j (r j , u j ),

u j0 = ū j0(ξ) − r j q
′
j (x − y j ) + g j (ξ, r j ) for x ∈ I j ,

J j (� j ) = J j0(� j ) + G j ({r j }).
(2.7)

We look for ({u j }, {r j }) with u j ∈ H2,1(� j , γ ) by using a contraction mapping argument
adapted from [23].
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3 Function Spaces and Exponential Dichotomies

The following definitions come from [11]. A function f (s) is in the Hardy-Lebesgue class
H(γ ), γ ∈ R, if

(1) f (s) is analytic in �(s) > γ ;
(2) {supσ>γ (

∫ ∞
−∞ | f (σ + iω)|2dω)1/2} < ∞.

H(γ ) is a Banach space with norm defined by the left side of (2).
According to the Paley–Wiener Theorem [28], u(t) ∈ L2(R+, γ ) if and only if its Laplace

transform û(s) ∈ H(γ ), and the mapping u → û is a Banach space isomorphism.
For k, k1, k2 ≥ 0 and γ ∈ R, let

Hk(γ ) = {u(s) | u(s) and (s − γ )ku(s) ∈ H(γ )},
|u|Hk (γ ) = |u|Hk (γ ) + |(s − γ )ku|Hk (γ ),

Hk1×k2(γ ) = Hk1(γ ) × Hk2(γ ).

An equivalent norm on Hk(γ ) is

|u|Hk (γ ) =
(

sup
σ>γ

∫ ∞

−∞
|u(σ + iω)|2(1 + |σ + iω|2k)dω

)1/2

.

It can be shown that u(t) ∈ Hk
0 (R+, γ ) if and only if û(s) ∈ Hk(γ ), and the mapping u → û

is a Banach space isomorphism. Clearly (u, v) ∈ Hk1×k2
0 (R+, γ ), k1, k2 ≥ 0, if and only if

(û, v̂) ∈ Hk1×k2(γ ), and the mapping (u, v) → (û, v̂) is a Banach space isomorphism.
To treat Laplace transformed linear systems that depend on the parameter s, following

[11,12], we introduce the following family of norms on u ∈ C
n and C

n × C
n :

Definition 3.1 For Re(s) > γ and k1 ≥ 0, let Ek1(s) denote Cn with the weighted norm

|u|Ek1 (s) = (1 + |s|k1)|u|,
and let Ek1×k2(s) denote Cn × C

n with the weighted norm
∣
∣(u, v)τ

∣
∣
Ek1×k2 (s) = (1 + |s|k1)|u| + (1 + |s|k2)|v|,

where |u| and |v| are the usual norms on C
n .

Using Ek1(s) and Ek1×k2(s), we define some equivalent norms for u ∈ Hk1(γ ) and
(u, v)τ ∈ Hk1×k2(γ ):

(

sup
σ>γ

∫ ∞

−∞
|u|2

Ek1 (σ+iω)
dω

)1/2

,

(

sup
σ>γ

∫ ∞

−∞
|(u, v)τ |2

Ek1×k2 (σ+iω)
dω

)1/2

.

Consider the second order linear equation and its Laplace transform

ut = uξξ + cuξ + A(ξ, t)u, u(ξ, 0) = 0, (3.1)

ûξξ = sû − cûξ − Â(ξ, s)
s∗ û. (3.2)

Here A(ξ, t) is C1 in t ∈ R
+ for each fixed ξ , and is piecewise continuous in ξ in the

C1(R+) norm. Examples are A(ξ, t) = Df (e j ), A(ξ, t) = Df (q j (ξ)), and A(ξ, t) =
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Df (q j (ξ+kt)), t ≥ 0, ξ ∈ R. The convolution represents the operatorL(A(ξ, t)L−1û(ξ, s))
and is performed along the vertical axis in C where both b̂ and û are defined:

Â(ξ, s)
s∗ û(ξ, s) := 1

2π i

∫ σ+i∞

σ−i∞
Â(ξ, p)û(ξ, s − p)dp.

Convert (3.1), (3.2) to the equivalent first order system and its Laplace transform

uξ = v, vξ = ut − cv − A(ξ, t)u, u(ξ, 0) = 0, (3.3)

ûξ = v̂, v̂ξ = sû − cv̂ − Â(ξ, s)
s∗ û. (3.4)

3.1 Exponential Dichotomies if A(ξ) is Independent of t

If A(ξ, t) = A(ξ) is independent of time t , then (3.4) becomes

ûξ = v̂, v̂ξ = sû − cv̂ − A(ξ)û. (3.5)

This equation is defined point-wise in s and can be solved one s at a time.
Let T (ξ, ζ ; s) be the principal matrix solution for (3.5), s be a parameter in S ⊂ C, I ⊂ R

be an interval, and I d be an identity matrix.

Definition 3.2 We say that (3.5) has an s-dependent exponential dichotomy for s ∈ S and
ξ ∈ I if there exist projections Ps(ξ, s)+Pu(ξ, s) = I d onC2n , analytic in s and continuous
in ξ , such that, with the s-dependent constants K (s), β(s) > 0, the following properties hold:

T (ξ, ζ ; s)Ps(ζ, s) = Ps(ξ, s)T (ξ, ζ ; s), ξ ≥ ζ,

|T (ξ, ζ ; s)Ps(ζ, s)|R2n ≤ K (s)e−β(s)|ξ−ζ |, ξ ≥ ζ,

|T (ξ, ζ ; s)Pu(ζ, s)|R2n ≤ K (s)e−β(s)|ξ−ζ |, ξ ≤ ζ.

(3.6)

We say that (3.5) has a uniform exponential dichotomy on the spaces E (k+0.5)×k(s), k ≥ 0
for s ∈ S and ξ ∈ I if it has an s-dependent exponential dichotomy, and in addition there
are constants K , α > 0, independent of s and ξ , such that

(1) |Ps(ξ, s)| ≤ K and |Pu(ξ, s)| ≤ K for all s ∈ S and ξ ∈ I ,
(2) each K (s) ≤ K , and
(3) β(s) = α(1 + |s|0.5).
Here |Ps(ξ, s)| and |Ps(ξ, s)| are calculated using the norms on E (k+0.5)×k(s). The s depen-
dent stable and unstable subspaces for the dichotomy shall be denoted by

Es(ξ, s) = RPs(ξ, s), Eu(ξ, s) = RPu(ξ, s).

Given ξ0 ∈ R, if I = (−∞, ξ0], then the unstable subspace Eu(ξ, s), ξ ∈ I is unique,
although the exponential dichotomy in I is not unique. Similarly, If I = [ξ0,∞), then
Es(ξ, s) is unique, although the exponential dichotomy in I is not unique.

3.2 Exponential Dichotomies if A(ξ, t) Depends on t

In general (3.4) involves a global operator û(ξ, s) → Â(ξ, s)
s∗ û(ξ, s) so the exponential

dichotomy cannot be considered by fixing one s at a time. We find the following lemma
useful.
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Lemma 3.1 Let B(ξ, t) be aC1 bounded function in t for each ξ and is piecewise continuous
in ξ in the norm of |B|C1(t). Then

B(ξ, t)u(ξ, t)|H0.75
0 (R+) ≤ |B(ξ, t)|C1(t)|u|H0.75

0 (R+).

Moreover, after the Laplace transform, we have

|B̂(ξ, s)
s∗ û(ξ, s)|H0.75(0) ≤ |B(ξ, t)|C1(t)|û(ξ, s)|H0.75(0).

Proof It is straightforward to show that u(ξ, t) → B(ξ, t)u(ξ, t) is bounded in the spaces
Hk
0 (R+), for k = 0, 1:

|B(ξ, t)u(ξ, t)|Hk
0 (R+) ≤ |B|C1 |u|Hk

0 (R+), k = 0, 1.

Expressed as the interpolation of two spaces H0.75
0 = [L2, H1

0 ]0.75, the first estimate of the
lemma can be obtained by the theory of interpolations [15,16]. The second estimate can be
obtained by applying the Laplace transform to Bu. �


Consider the abstract differential equation Uξ = L(ξ)U, ξ ∈ I in the Banach space
E . Here I is a bounded or unbounded interval in R, L(ξ) : E → E is a linear (possibly
unbounded) operator for each ξ ∈ I .

Definition 3.3 We sayUξ = L(ξ)U has an exponential dichotomy on E defined for ξ ∈ I , if
there exist projections Ps(ξ)+Pu(ξ) = I d in E , continuous in ξ ∈ I , and a solution operator
T (ξ, ζ ) that is defined and invariant on subspaces of E as in (3.7a), (3.7b). Moreover there
exist constants K , α > 0 such that the last inequalities (3.7c), (3.7d) are satisfied.

T (ξ, ζ ) : RPs(ζ ) → RPs(ξ) is defined and continuous for ξ ≥ ζ ; (3.7a)

T (ξ, ζ ) : RPu(ζ ) → RPu(ξ) is defined and continuous for ξ ≤ ζ ; (3.7b)

|T (ξ, ζ )Ps(ζ )|E ≤ Ke−α|ξ−ζ |, ξ ≥ ζ ; (3.7c)

|T (ξ, ζ )Pu(ζ )|E ≤ Ke−α|ξ−ζ |, ξ ≤ ζ. (3.7d)

We assume that T (ξ, ζ )u is a solution of the differential equation uξ = L(ξ)u if

(1) u ∈ RPs(ζ ) and ξ ≥ ζ , or
(2) u ∈ RPu(ζ ) and ξ ≤ ζ .

For each initial data (û, v̂) ∈ H0.75×0.25(γ ) at ζ ∈ I , there may not exist a solution of

(3.4) in H0.75×0.25(γ ) for ξ ≤ ζ or ξ ≥ ζ . Assume that û(ξ, s) → Â(ξ, s)
s∗ û(ξ, s) is a

bounded operator in H0.25(γ ), (3.4) can be written as Uξ = L(ξ)U in the Banach space
E = H0.75×0.25(γ ) where U = (û, v̂).

Definition 3.4 We say that (3.4) has an exponential dichotomy in E = H0.75×0.25(γ ) for
ξ ∈ I if there exist projections Ps(ξ) + Pu(ξ) = I d , partially defined solution operator
T (ξ, ζ ) and constants K , α > 0 as in Definition 3.3.

Suppose that u ∈ H2,1
0 (R × R

+) is a solution of (3.1). Then for any ξ0 ∈ R the trace
(u, uξ )(ξ0) can be defined and is a continuous function R → H0.75×0.25

0 (R+), cf. [15].
However, to each (u0, v0) ∈ H0.75×0.25

0 (R+), there may not exist a solution for (3.1) in

H2,1
0 (I × R

+) such that the trace at ξ0 is (u0, v0).
To be more specific, consider (3.3) as a first order system with the independent variable ξ ,

we look for (u, v) ∈ H0.75×0.25
0 (γ ) in the space of functions in t . The function A(ξ, t) should

be smooth enough such that the mapping u → A(ξ, t)u is continuous from H0.75
0 (γ ) →

H0.25
0 (γ ).
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Definition 3.5 We say that (3.3) has an exponential dichotomy in E = H0.75×0.25
0 (γ ) for

ξ ∈ I if if there exist projections P̌s(ξ) + P̌u(ξ) = I d , partially defined solution operator
Ť (ξ, ζ ) and constants K , α > 0 as in Definition 3.3.

Lemma 3.2 (1) Assume that (3.4) or (3.5) has an exponential dichotomy inH0.75×0.25(γ )

for ξ ∈ R. Then (3.3) has an exponential dichotomy in H0.75×0.25
0 (γ ) with the projec-

tions P̌j (ξ) = L−1Pj (ξ)L where j = s, u and the partially defined solution operator
Ť (ξ, ζ ) = L−1T (ξ, ζ )L for ξ, ζ ∈ I .

(2) Assume that (3.5) has an exponential dichotomy in E (k+0.5)×k(s) for k ≥ 0, Re(s) ≥
γ, ξ ∈ R. Then (3.5) has an exponential dichotomy in H(k+0.5)×k(γ ) with the same
projections derived from those in E (k+0.5)×k(s), and the same constants K , α.

Proof (1) Observe that (u0, v0) → L(u0, v0), H0.75×0.25
0 (γ ) → H0.75×0.25(γ ) is a

Banach spaces isomorphism.
(2) The proof of part (2) follows from that of Lemma 3.1 in [11].

�

3.3 Roughness of Exponential Dichotomies

Consider the abstract differential equation uξ = A(ξ)u, ξ ∈ I in the Banach space E . The
following result gives the basic facts about persistence of exponential dichotomies under
perturbation in a Banach space E .

Theorem 3.3 (Roughness of Exponential Dichotomies) Assume that I is a bounded or
unbounded interval in R, A(ξ) : E → E is a bounded operator for each ξ ∈ I and is
in L∞(I ) in the norm of bounded operators in E, and the linear differential equation in E,
uξ = A(ξ)u, has an exponential dichotomy on I with projections P0(ξ) + Q0(ξ) = I d and
constants K0, α0 > 0. Assume that B(ξ) : E → E is another bounded linear operator in
L∞(I ) with δ = sup{|B(ξ)|, ξ ∈ I } < ∞.

Consider the perturbed linear equation

uξ = (A(ξ) + B(ξ))u. (3.8)

Let 0 < α̃ < α0, and assume that δ is sufficiently small so that

C1δ < 1 and C2δ < 1, where C1 = 2K0

α0 − α̃
, C2 = 2K 2

0

(α0 − α̃)(1 − C1δ)
. (3.9)

Then (3.8) also has an exponential dichotomy on I with projections P̃(ξ) + Q̃(ξ) = I d
and the exponent α̃. The multiplicative constant is K̃ = K0(1 − C1δ)

−1(1 − C2δ)
−1 and

the following inequalities hold for ξ, ζ ∈ I : There exists a partially defined and invariant
solution operator TB(ξ, ζ ) for the linear system (3.8) that satisfies (3.7a), (3.7b) with T
replaced by TB. And

|TB(ξ, ζ )P̃(ζ )| ≤ K̃ e−α̃(ξ−ζ ), ζ ≤ ξ ;
|TB(ξ, ζ )Q̃(ζ )| ≤ K̃ e−α̃(ζ−ξ), ξ ≤ ζ ;
|P̃(ξ) − P0(ξ)| ≤ C2δ

1 − C2δ
.

If E is finite dimensional, then the proof of Theorem 3.3 is well known, [3]. If E is an
infinite dimensional Banach space, we cannot write the solution operator backwards in time,
the proof is quite different, [5,10]. For a shorter proof with almost identical notations, see [13]
(simply replace the rate function a(x) by ex and the decay rate (a(x)/a(y))−α be e−α(x−y)).
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3.4 Exponential Dichotomies for Linear Variational Systems Around e j

We study the linear variational system around e j and a small perturbation that depends on
time t . Consider the linear variational system around e j and its Laplace transform:

uξ = v, vξ = ut − c̄ jv − Df (e j )u, u(ξ, 0) = 0, (3.10)

ûξ = v̂, v̂ξ = (s I − Df (e j ))û − c̄ j v̂. (3.11)

Let b(ξ, t) be piecewise continuous in ξ and is C1 in t ∈ R
+. Consider the following

perturbed system and its Laplace transform:

uξ = v, vξ = ut − c̄ jv − Df (e j )u − b(ξ, t)u, u(ξ, 0) = 0, (3.12)

ûξ = v̂, v̂ξ = (s I − Df (e j ))û − b̂
s∗ û − c̄ j v̂. (3.13)

Lemma 3.4 (1) If (H1) is satisfied, then system (3.11) has an exponential dichotomy in the
function space E (k+0.5)×k(s) for k ≥ 0, Re(s) ≥ γ, ξ ∈ R.

(2) Assume that the linear operator û(ξ, s) → b̂
s∗ û is piecewise continuous in ξ ∈ R,

uniformly bounded from H0.75(γ ) → H0.25(γ ), and satisfies

|b̂ s∗ û|H0.25(γ ) ≤ δ|û(ξ, s)|H0.75(γ ), ξ ∈ R.

Then if δ > 0 is sufficiently small, the first order system (3.13) also has an exponential
dichotomy in H0.75×0.25(γ ) for ξ ∈ R.

Proof (1) Simply use the spectral projections of (3.11) as the projections of the dichotomy.
(2) Result from part (1) implies that (3.11) has an exponential dichotomy inH0.75×0.25(γ ).

If δ is small, we can treat (3.13) as a small perturbation of (3.11), then apply Theorem3.3.
�


Lemma 3.5 Assume the conditions of Lemma 3.4 are satisfied. Let Es(ξ), Eu(ξ) be the
stable and unstable subspaces of the dichotomy for (3.13) in H0.75×0.25(γ ).

(1) Let φ ∈ Es(a). For ξ ≥ a, define (u, v)τ (ξ, t) = L−1(T (ξ, a)Ps(a)φ). Then u ∈
H2,1
0 ([a,∞) × R

+, γ ) and is a solution to (3.1). Moreover

|u|H2,1(γ ) ≤ C |φ|H0.75×0.25(γ ). (3.14)

(2) Let φ ∈ Eu(a). For ξ ≤ a, define (u, v)τ (ξ, t) = L−1(T (ξ, a)Pu(a)φ). Then u ∈
H2,1
0 ((−∞, a] × R

+, γ ) and is a solution to (3.1). Estimate (3.14) is also satisfied.

Proof We shall prove (1) only. By the definition of (u, v), we have û ∈ H0.75(γ ).

FromLemma 3.1, b̂
s∗ û ∈ H0.75(γ ) ⊂ H0(γ ). Thus g = (0, b̂

s∗ û)τ ∈ H0.5×0(γ ). Rewrite
(3.13) as a first order system

(
û
v̂

)

ξ

=
(

0 I
s I − Df (e j ) −c̄ j

) (
û
v̂

)

+ g. (3.15)

Let the projections of the dichotomy for (3.10), in E0.75×0.25(s) be Ps(ξ, s) and Pu(ξ, s).
Using the solution mapping T (ξ, ζ ; s), the solution of (3.15) in ξ ≥ a can be expressed as

(û, v̂)τ = T (ξ, a; s)Ps(a, s)φ(s) +
∫ ξ

a
T (ξ, ζ ; s)Ps(ζ, s)g(ζ )dζ

+
∫ ξ

∞
T (ξ, ζ ; s)Pu(ζ, s)g(ζ )dζ.
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Therefore, (u, v)τ ) = L−1(û, v̂)τ can be expressed as (u(1), v(1))τ + (u(2), v(2))τ , where
(u(1), v(1))τ and (u(2), v(2))τ are the inverse L-transform of the first term and the two inte-
gral terms respectively. From Lemma 3.1 in [11], u(1) ∈ H2,1

0 (ξ ≥ a, γ ) and is bounded

by |φ|H0.75×0.25(γ ). From Lemma 3.8 in [11], u(2) ∈ H2,1
0 (ξ ≥ a, γ ) and is bounded by

|g|H0.5×0(γ ) ≤ C |φ|H0.75×0.25(γ ). The proof of part (1) has been completed. �

3.5 Exponential Dichotomies for Linear Variational Systems Around q j

We remark that if b(ξ, t) = b(ξ) is independent of t , then

b̂(ξ)
s∗ û(ξ, s)) = b(ξ)û(ξ, s).

This is the case considered in this subsection where b(ξ) = Df (q j (ξ))− Df (ek), k = j −1
or j . The principle matrix solution T (ξ, η, s) with a parameter s of the linear system

Uξ = V, Vξ = (s I − Df (q j (ξ)))U − c j V, ξ ∈ R. (3.16)

can be viewed as a linear flow in the Banach space E0.75×0.25(s). We now consider the
existence of exponential dichotomies for the linear system (3.16).

Lemma 3.6 Let (q j (ξ), q ′
j (ξ)) be the heteroclinic solution connecting (u, v) = (e j−1, 0)

to (e j , 0). Assume that (H1) and (H2) are satisfied. Then in the space E0.75×0.25(s), system
(3.16), with s ∈ �(−η, θ)\{0}, has an exponential dichotomy on R. The projections of the
dichotomy are analytic in s. For any ε > 0, if |s| ≥ ε then the Projections Ps(ξ, s) and
Pu(ξ, s) are uniformly bounded by K (ε) > 0. The exponent is α(1+ |s|0.5) for some α > 0.

Moreover, let Ps(e j−1, s) and Pu(e j , s) be the spectral projections at the two limiting
points (e j−1, 0) or (e j , 0). There is a large constant M > 0 such that depending on |s| ≥ M
or |s| < M, we have

|Ps(ξ, s) − Ps(e j−1, s)| ≤ 16K 2(ε)δk

α(1 + |s|0.5) , ξ ≤ −N ,

|Pu(ξ, s) − Pu(e j , s)| ≤ 16K 2(ε)δk

α(1 + |s|0.5) , ξ ≥ N ,

(3.17)

where the constant δk are as follows. If |s| ≥ M then k = 1 and if ε ≤ |s| ≤ M then k = 2,
with δ1 = supξ |Df (q j (ξ))| and δ2 as in (3.20).

Proof The proof is adapted from that of [11], see also [14].

Step 1: Exponential dichotomy for |s| ≥ M . Let M > 0 be a sufficiently large constant.
In the region {|s| ≥ M} ∩ �(−η, θ), we treat (3.16) as perturbations to the system

Uξ = V, Vξ = sU + c j V . (3.18)

From [11], the system above has an exponential dichotomy in E0.75×0.25(s)with the constant
K0 and the exponent α0 = α(1 + |s|0.5).

Although δ1 = supξ |Df (q j (ξ))| is not small, but the conditions C1δ1 < 1 and C2δ1 < 1
in Theorem 3.3 can be satisfied if we choose α̃ = α(1 + |s|0.5)/2. Then from α0 = α(1 +
|s|0.5), α0 − α̃ = α(1 + |s|0.5)/2 can be large from the condition |s| ≥ M for a large
constant M . If M is sufficiently large then (3.9) in Theorem 3.3 is satisfied and system (3.16)
has exponential dichotomies in E0.75×0.25(s) with the constant K̃ independent of s. The
exponent of the dichotomy is α̃ = α

2 (1 + |s|0.5). The projections satisfy (3.17) with k = 1.
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Observe that the stable and unstable subspaces of (3.18) are analytic in s. Since the
perturbed equaion is analytic in s, and the contraction mapping principle is used to find the
stable and unstalbe subspace of (3.16), Thus the projections Ps(ξ, s) and Pu(ξ, s) are analitic
in s for {|s| > M} ∩ �(−η, θ).

Step 2: Exponential dichotomies onR for 0 < |s| ≤ M . AfterM > 0 has been determined,
for any 0 < ε < M , we consider the spectral equation in the compact set {ε ≤ |s| ≤
M} ∩ �(−η, θ).

Assume that N > 0 is a sufficiently large constant so that on I− = (−∞,−N ] or
I+ = [N ,∞), q j (ξ) is close to e j−1 or e j respectively. Consider the following system with
constant coefficient, where s as a parameter:

Uξ = V, Vξ = (s I − Df (ek))U − c j V, k = j − 1, j. (3.19)

From (H1), the eigenvalues for the constant system has n eigenvalues with positive real parts
and n eigenvalues with negative real parts. Thus, (3.19) has exponential dichotomies with
the common exponent α0(s) > 0, and the projections depend analytically on s. Also in
�(−η, θ), the constant K is uniformly valid with respect to s.

For such N > 0, let

δ2=max{sup{|Df (q j (ξ))−Df (e j−1)| : ξ ≤−N }, sup{|Df (q j (ξ)) − Df (e j )| : ξ ≥ N }}.
(3.20)

If δ2 as in (3.20) is sufficiently small, then system (3.16) has nonunique exponential
dichotomies in I− and I+. The unstable subspace Eu(ξ, s), ξ ≤ −N and the stable subspace
Es(ξ, s), ξ ≥ N are unique. Since they are constructed by contraction mapping principle,
both spaces depend analytically on s ∈ �(−η, θ). We shall use them to construct the unified
dichotomy onR. The stable subspace Es(ξ, s), ξ ≤ −N and unstable subspace Eu(ξ, s), ξ ≥
N are not unique, and shall be modified as follows.

Using the unique subspaces Eu(−N , s), Es(N , s), we extend them by

Eu(ξ, s) = T (ξ,−N , s)Eu(−N , s), for − N ≤ ξ ≤ ∞,

Es(ξ, s) = T (ξ, N , s)Es(N , s) for − ∞ ≤ ξ ≤ N .

From (H1) and (H2), if s 
= 0, T (N ,−N , s)Eu(−N , s) intersects with Es(N , s) trans-
versely, or equivalently T (−N , N , s)Es(N , s) intersects with Eu(−N , s) transversely. The
dichotomy has been extended to ξ ∈ R, and is analytic for s ∈ �(−η, θ)\{0} and |s| ≤ M .
The exponent of the dichotomy is α1(1 + |s|0.5) where α1 is independent of s.

In the compact set {ε ≤ |s| ≤ M} ∩ �(−η, θ), the angle between Eu(±N , s) and
Es(±N , s) are bounded below by a constant that depends on ε. Thus, the constant K (ε)

depends on ε.

Final Step: If we combine the two cases and select any 0 < α < min{α̃/2, α1}, then
(3.16) has an exponential dichotomy in E0.75×0.25(s) for ξ ∈ R and s ∈ �(−η, θ)\{0}. The
exponent is α(1 + |s|0.5). This completes the proof of the lemma �


In the next lemmawe discuss exponential dichotomies of (3.16) for s ≈ 0 which is treated
as a perturbation of s = 0.

Lemma 3.7 Let a = −N or N where N > 0 is the constant as in (3.20).

(1) For a small ε > 0 and |s| ≤ ε, let Eu(ξ, s), ξ ≤ a be the unstable subspace and
Es(ξ, s), ξ ≥ a be the stable subspace for (3.16). Then the angle between Eu(a−, s)
and Es(a+, s) are bounded below by C |s|, C > 0.
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(2) For a small ε > 0, if |s| ≤ ε, then (3.16) has two separate dichotomies on ξ ∈ (−∞, a]
and [a,∞) respectively. The two separate dichotomies are not unique. However they
can be constructed such that the projections, denoted by

P−
s (ξ, s) + P−

u (ξ, s) = I d, ξ ≤ a; P+
s (ξ, s) + P+

u (ξ, s) = I d, ξ ≥ a,

are analytic in s and satisfy the property

|P±
s (ξ, s)| + |P±

u (ξ, s)| ≤ K , for all |s| ≤ ε.

Proof We prove part (1) first. For each vector φ ∈ Es(ξ, s = 0) there exists a unique
φ̃ ∈ Es(ξ, s) such that φ̃−φ ∈ Eu(ξ, s = 0) and |φ̃−φ| = O(|s|). Similarly for each vector
φ ∈ Es(ξ, s = 0) there exists a unique φ̃ ∈ Eu(ξ, s) such that φ̃ − φ ∈ Es(ξ, s = 0) and
|φ̃ − φ| = O(|s|). The perturbation argument used in the proof also shows that the spaces
Es(ξ, s) and Eu(ξ, s) are analytic in s. When s = 0, the intersection of Eu(a−, s = 0) and
Es(a+, s = 0) is one dimensional, spanned by (q ′

j (a), q ′′
j (a)). Melnikov’s method can be

used to show that the 1D intersection breaks if s 
= 0 and small. And the angle is of O(|s|).
See Lemma 3.9 of [9].

Toprove part (2), let us considera = −N only for the casea = N is similar. In (−∞,−N ],
define Es(−N , s) to be a subspace that is orthogonal to Eu(−N , s = 0). Then use the flow
T (ξ,−N , s) to define Es(ξ, s) for ξ ≤ −N . In [−N ,∞), let the stable subspace be the
extension of Es(N , s) by the flow. Define Eu(−N , s) to be the subspace that is orthogonal
to Es(−N , s = 0), then extend it to ξ ≥ −N by the flow. Once the subspaces Es(ξ, s) and
Eu(ξ, s) are defined for ξ ≤ −N and ξ ≥ −N respectively , the exponential dichotomies on
the two separate intervals are determined.

The validity of extension of dichotomies used above has been proved in Lemmas 2.3 and
2.4 in [8]. �


The definition of angles between two subspaces and its relation to the norms of Pu, Ps
can be found in Lemma 3.9 of [9]. In Lemma 3.10 of that paper, perturbation of a linear
system from ε = 0 to ε 
= 0 but small is discussed, see also [4]. The result can apply to our
case by changing ε to s. The perturbation argument used in the proof also shows that the
dichotomies near s = 0 are analytic in s. In particular, based on part (1) of Lemma 3.7, we
have the following corollary.

Corollary 3.8 For the unified dichotomy as in Lemma 3.6, the projections satisfy the property
|Ps(0, s)| + |Pu(0, s)| ≤ C/|s|.

4 Solution of the Nonhomogeneous Linear System (2.6)

In Sect. 4.1, we solve the initial value problem (2.6a), ignoring the jump condition (2.6b).
Then in Sect. 4.2, we solve the full linear system (2.6) with h j = 0 and u j0 = 0. These
results can be combined to solve (2.6).

4.1 Solve the Nonhomogeneous System with Initial Conditions

In this subsection we look for a solution u j of the nonhomogenous system with the initial
condition in each � j , 1 ≤ j ≤ m.

u jt = u jxx + Df (q j )u j + h j , u j (x, 0) = u j0(x), (4.1)
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where u j0(x) is the restriction of u0(x) to (x j−1, x j ). We will ignore the jump conditions
and leave them for the next subsection.

Assume that u j0 ∈ H1(x j−1, x j ) and h j ∈ L2(� j , γ ), γ < 0. We extend the initial
data and the forcing term to the whole space u j0(x) → ũ j0(x), h j (x, t) → h̃ j (x, t) so the
fundamental solution can be used to solve (4.1). In particular, we make the zero extension of
h j to h̃ j outside� j . We extend u j0 ∈ H1(x j−1, x j ) to ũ j0 ∈ H1(R) by a bounded extension
operator H1(x j−1, x j ) → H1(R). Then consider the initial value problem in R × R

+,

ũ j t = ũ j xx + Df (q j )ũ j + h̃ j (x, t), ũ j (x, 0) = ũ j0(x).

In the moving coordinates ξ = x − y j − c j t , we have

ũ j t = ũ jξξ + c j ũ jξ + Df (q j )ũ j + h̃ j (ξ, t), ũ j (ξ, 0) = ũ j0(ξ). (4.2)

Recall that λ = 0 is always an eigenvalue for the associated homogeneous equation to
(4.2). We want to show that the solution u j will have a term β j (t)q ′

j in the eigenspace
associated to λ = 0, and the remaining part approaches zero exponentially.

Consider the general linear equation

Ut = Uξξ + c jUξ + Df (q j )U, 1 ≤ j ≤ m.

Recall that q ′
j (ξ) ∈ ker(Lcj ), z j ∈ ker(L∗

cj ) and
∫ ∞
−∞ < z j , q j > dx = 1, 1 ≤ j ≤ m. The

spectral projection to the eigenspace corresponding to λ = 0 is

PjU (x) =
(∫ ∞

−∞
< z j (x),U (x) > dx

)

q ′
j (x).

The complementary projection is Q j := I d − Pj . Define

X j := {Y :
∫ ∞

−∞
< z j , Y > dx = 0}. (4.3)

Then RQ j = X j , which is an invariant subspace with all the spectrum points in the comple-
ment of �(−η, θ). See the condition (A2) following H1 and H2.

By the spectral decomposition, u j (ξ, t) = Y j (ξ, t)+β j (t)q ′
j whereY j ∈ X j . The operator

L jY = Yxx+c jYx+Df (q j )Y defined onX j is sectorial and generates an analytic semigroup
eLcj t . For ũ j0 ∈ H1(R) and h̃ j ∈ L2(γ ), we have

Y j = eL j t Q j ũ j0 +
∫ t

0
eL j (t−τ)Q j h̃ j (τ )dτ. (4.4)

From Lemma 3.11 of [11], it is easy to show if −η < γ < 0, then Y j ∈ H2,1(R × R
+, γ )

and satisfies

|Y j |H2,1(γ ) ≤ C(|ũ j0| + |h̃ j |) ≤ C(|u j0|H1(R) + |h j |L2(γ )). (4.5)

We then consider the equation in RPj :

β̇ j (t) =
∫ ∞

−∞
< z j (ξ), h̃ j (ξ, t) > dξ, β j (0) =

∫ ∞

−∞
< z j (ξ), ũ j0(ξ) > dξ. (4.6)

Since h̃ j ∈ L2(γ ), we have β̇ j ∈ L2(γ ), γ < 0. By solving this ODE we obtain the
solution β j (t)q ′

j (x) in the space RPj . Using also (2.1), we have

|β j (0)| ≤ C |ũ j0| ≤ C |u j0|H1(R), |β̇ j |L2(γ ) ≤ C |h j |L2(γ ),

|β j (∞) − β j (t)| ≤ Ceγ t |h j |L2(γ ), |β j |X1(γ ) ≤ C(|u j0|H1(R) + |h j |L2(γ )).
(4.7)
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By restricting Y j to � j , we have the following theorem.

Theorem 4.1 In each � j , 1 ≤ j ≤ m, the initial value problem (4.1) has a solution
u j (ξ, t) = Y j (ξ, t) + β j (t)q ′

j where Y j ∈ H2,1(� j , γ ) satisfies (4.5) and β j ∈ X1(γ )

satisfies (4.7). The solution is the restriction of the solution of (4.2) in R×R
+ to � j , and is

unique once the extension operators are fixed.

4.2 System of Equations with Jumps Along � j

Let {u(1)
j (x, t)} be the solution of (4.1) obtained in Sect. 4.1 and

J̃ j (� j ) := −([{uapj + u(1)
j }, {uapjx + u(1)

j x }])(� j ) = J j (� j ) − ([{u(1)
j }, {u(1)

j x }])(� j ).

In this subsection, we consider the linear system for u j defined on � j with nonzero jump
conditions along � j :

u jt = u j,xx + Df (q j )u j , (x, t) ∈ � j , u j (x, 0) = 0, ([{u j }{u jx }])(� j ) = J̃ j (�i ),

(4.8)
The main results of this subsection are summarized in the following theorem:

Theorem 4.2 Given { J̃ j (� j )} ∈ ∏m−1
1 H0.75×0.25

0 (γ ), under (H1)–(H2), if y j+1 − y j is
sufficiently large, then the linear system (4.8) has a unique solution {u j (x, t)} that can be

expressed as u j = β j (t)q ′
j + Y j , where Y j ∈ H2,1

0 (� j , γ ), β j (0) = 0, β̇ j (t) ∈ L2(γ ). The

solution mapping, expressed as { J̃ j (� j )}m−1
j=1 → ({(Y j , β j )}mj=1 is a bounded operator

m−1∏

1

H0.75×0.25
0 (γ ) →

m∏

1

(H2,1
0 (� j , γ ) × X1(γ )).

Proof Let N be the fixed large constant defined in Lemma 3.6 and let

y−
j = y j − N , M−

j = {(x, t) : x = y−
j + c j t, t ≥ 0},

y+
j = y j + N , M+

j = {(x, t) : x = y+
j + c j t, t ≥ 0}. (4.9)

See Fig. 2. The proof of the theorem is based on an iteration process by repeating Part A and
Part B described below. First, we use Pat A to achieve the prescribed jumps along � j , 1 ≤
j ≤ m−1. In doing so we introduced some jump error along the line M±

j , 1 ≤ j ≤ m. Then

we use Pat B to eliminate the jumps along M±
j which in turn introduces some jump errors

back to � j . However the jump errors along � j are exponentially smaller than the prescribed
jumps along � j . We can repeat procedures in Part A and Part B to treat the jump errors
along � j , each time reduce the errors by an exponentially small factor. The iteration process
converges to the exact solution with the prescribed jump conditions along � j .

Due to the lack of a unified exponential dichotomy when looking for a solution with the
prescribed jump along M±

j , we introduce a term β j (t)q ′
j in the solution of the linear system.

This is done each time the iteration is performed so the term β j (t)q ′
j is the sum of an infinite

series that converges at the rate of a geometric series. Details will be given at the end of this
section. �
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Fig. 2 Illustration of the lines M±
j defined in (4.9)

Part A: We look for a piecewise smooth u(x, t) that is defined between M+
j and M−

j+1,
with the jump δ j along � j , and satisfies the equations:

ut = uxx + Df (q j )u, if (x, t) is between M+
j and � j , (4.10)

ut = uxx + Df (q j+1)u, if (x, t) is between � j and M−
j+1. (4.11)

u(x, 0) = 0 [(u, ux )](� j ) = δ j . (4.12)

We are interested in solutions that decay exponentially as (x, t) moves away from � j . The
solution between M+

j and M−
j+1 is non-unique, depends on the modification of the vector

fields to the left of M+
j and the right of M−

j+1, as will be specified in the proof.

Lemma 4.3 For each δ j ∈ H0.75×0.25
0 (γ ) defined on � j , there exists a piecewise smooth

solution u defined onR×R
+ that satisfies equations (4.10), (4.11) and jump condition (4.12).

The support of u is between M+
j and M−

j+1. Moreover the solutions satisfy the following
estimates

|u(x, t)|M+
j
| + |u(x, t)|M−

j+1
| ≤ C(e−α(x j−y j−N ) + e−α(y j+1−x j−N ))|δ j |. (4.13)

where all the norms are in H0.75×0.25
0 (γ ).

Proof Using the moving coordinate ξ = x − x j − c̄ j t , the line � j becomes ξ = 0. Equations
(4.10), (4.11) become

ut = uξξ + c̄ j uξ + Df (qk)u, k = j, j + 1

respectively.
From the definitions of y±

j and M±
j in (4.9) and ξ = x − x j − c̄ j t , we have

M+
j = {(ξ, t) : ξ = y j − x j + N + (c j − c̄ j )t, t ≥ 0},

M−
j+1 = {(ξ, t) : ξ = y j+1 − x j − N + (c j+1 − c̄ j )t, t ≥ 0}.

To the left and right of � j , let uap(x, t) = qk(x − yk − ckt), k = j, j +1. If (ξ, t) is between
M+

j and M−
j+1, let A(ξ, t) = Df (uap(ξ + x j + c̄ j t, t)). Ussing a smooth cut-off function,

we can extend A(ξ, t) to all R × R
+, so that to the left of M+

j ,

A(ξ, t) = Df (q j (N ), ξ = y j − x j + N + (c j − c̄ j )t,

A(ξ, t) = Df (e j ), ξ < y j − x j + N − 1 + (c j − c̄ j )t.
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Similarly to the right of M−
j+1,

A(ξ, t) = Df (q j+1(−N )), ξ = y j+1 − x j − N + (c j+1 − c̄ j )t,

A(ξ, t) = Df (e j ), ξ ≥ y j+1 − x j − N + 1 + (c j+1 − c̄ j )t.

Also B(ξ, t) := A(ξ, t) − Df (e j ) = O(eγ t ) is piecewise continuous in ξ and C1 in t . It
is uniformly small for all ξ ∈ R if N is sufficiently large. Since the system uξ = v, vξ =
ut − c̄ jv−Df (e j )u has an exponential dichotomy for ξ ∈ R, by the roughness of exponential
dichotomies, the linear system

uξ = v, vξ = ut − c̄ jv − A(ξ, t)u

has an exponential dichotomy for all ξ ∈ R in H0.75×0.25
0 (γ ). Applying the exponential

weight function to Bu and u, from Lemma 3.1, we have |Bu|H0.75
0 (γ ) ≤ |B|C1 |u|H0.75

0 (γ ).

Since δ = |B̂(ξ, s)|C1 can be arbitrarily small if N is sufficiently large, the existence of the
exponential dichotomy follows from Theorem 3.3.

Let the projections of this dichotomy be denoted P̌u(0−) + P̌s(0+) = I d at ξ = 0. For
the given δ j ∈ H0.75×0.25

0 (γ ), let

u1−(ξ) = −T (ξ, 0)P̌u(0−)δ j , u1+(ξ) = T (ξ, 0)P̌s(0+)δ j .

Then

|u1−(y+
j )| ≤ Ce−α(x j−y j−N )|δ j |, |u1+(y−

j+1)| ≤ Ce−α(y j+1−x j−N )|δ j |.
To the left of ξ = y+

j , or to the right of ξ = y−
j+1, we have

|u1−|H2,1(γ ) ≤ Ce−α(x j−y j−N )|δ j |, |u1+|H2,1(γ ) ≤ Ce−α(y j+1−x j−N )|δ j |,
Therefore, the traces of u1− and u1+ on M+

j and M−
j+1 are exponentially small. This proves

(4.13). Finally we truncate u1± so that to the left of M+
j and to the right of M−

j+1, u
1± = 0.�


For the truncated u1±, the jump condition (4.12) along � j is satisfied, but the function u1±
has jump discontinuities along M+

j and M−
j+1. Notice that

x j − y j − N = y j+1 − x j − N = (y j+1 − y j )/2 − N , 1 ≤ j ≤ m − 1.

From (4.13), the jumps are exponentially small in H0.75×0.25
0 (γ ) if y j+1−y j , 1 ≤ j ≤ m−1

are sufficiently large.

Part B: We consider a linear variational PDE around q j (ξ j ) in the domain R×R
+ with

the zero initial condition and two prescribed jumps along M±
j :

ut = uxx + Df (q j )u, u(x, 0) = 0, [(u, ux )](M±
j ) = φ±

j .

We can treat one jump at a time. To combine the two cases, let a = −N or N , where
N > 0 is the fixed large constant in Lemma 3.6 and let Ma := {ξ = a} = {x = a+ y j +c j t}.
In the moving coordinates, the equations before and after the Laplace transform are:

ut = uξξ + c j uξ + Df (q j (ξ))u, u(ξ, 0) = 0, [(u, uξ )](Ma) = φa, (4.14)

0 = ûξξ + c j ûξ − sû + Df (q j (ξ))û, [(û, ûξ )](Ma) = φ̂a . (4.15)

Converting to the first order system

ûξ = v̂, v̂ξ = (s I − Df (q j (ξ)))û − c j v̂, [(û, v̂)](Ma) = φ̂a . (4.16)
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The specified jump φa(t) is a function in H0.75×0.25
0 (γ ), and φ̂a(s) is in H0.75×0.25(γ ).

We look for solutions that decay to zero as ξ moves away from Ma .

Lemma 4.4 For s ∈ �(−η, θ)\{0}, system (4.15) has a unique solution that decays expo-
nentially as ξ → ±∞. If 0 < ε ≤ |s|, then the solution satisfies

|û(·, s)|L2(ξ≤a) + |û(·, s)|L2(ξ≥a) ≤ C(ε)

1 + |s| |φ̂a |E0.75×0.25(s), (4.17)

|(û, v̂)(ξ, s)|E0.72×0.25(s) ≤ C(ε)e−α|ξ−a||φ̂a |E0.72×0.25(s). (4.18)

The constant C(ε) = O(1/ε) as ε → 0.

Proof Using the unified exponential dichotomy which is analytic in s ∈ �(−η, θ)\{0}, we
can express the solution of (4.15) as follows:

(û(ξ, s), v̂(ξ, s))τ = −T (ξ, a, s)Pu(a, s)φ̂a(s), ξ ≤ a,

(û(ξ, s), v̂(ξ, s))τ = T (ξ, a, s)Ps(a, s)φ̂a(s), ξ ≥ a.
(4.19)

The analytic functions (û, v̂) may have a simple pole at s = 0.
The proof of (4.17), (4.18) follows from the existence of an exponential dichotomy for

(4.15) and part (2) of Lemma 3.1 in [11]. �

Our next step is to treat (4.15) at s ≈ 0. To this end, wewrite u(ξ, t) = Y (ξ, t)+β(t)q ′(ξ)

where Y (·, t) ∈ X j is defined in (4.3). The initial conditions are Y (ξ, 0) = 0 and β(0) = 0.
Then before and after the Laplace transform, we have

Yt = Yξξ + c jYξ + Df (q j )Y − β̇(t)q ′(ξ), [(Y, Yξ )](Ma) = φ̂a,

Ŷξξ + c j Ŷξ + Df (q j )Ŷ − sŶ = sβ(s)q ′(ξ), [(Ŷ , Ŷξ )](a) = φ̂a . (4.20)

Multiplying by z j and integrating by parts, we obtain a necessary condition for (4.20) to be
solvable in the domain Ŷ ∈ X j , s ∈ �(−η, θ):

∫ ∞

−∞
< z j (ξ), sβ(s)q ′(ξ) > dξ+ < (c j z j − z′j , z j )(a), φ̂a >= 0. (4.21)

From (4.21) and
∫

< z j (ξ), q ′
j (ξ) > dξ = 1, we have:

sβ̂(s) = − < (c j z j − z′j , z j )(a), φ̂a > . (4.22)

From φ̂a ∈ H0.75×0.25(γ ), sβ(s) ∈ H0.25(γ ). Thus, for t ≥ 0, β̇(t) = L−1(sβ(s)) is
determined and |β̇(t)|L2(γ ) ≤ C |φ(a)|L2(γ ), γ < 0. This together with β(0) = 0 determines
β(t) for all t ≥ 0. We also find that |β(t) − β(∞)| ≤ Ceγ t |φ(a)|L2(γ ). From (4.22), the
function sβ(s) is analytic for s ∈ �(−η, θ), β(s) has an isolated pole at s = 0. Denote
ĥ = (0, sβ(s)q ′)τ . Clearly for each ξ , ĥ(ξ, ·) ∈ H0.75×0.25(γ ) and hence as a function of s,
|ĥ|L2(R) ∈ H0.75×0.25(γ ).

Express (4.20) as a first order system:

(Ŷ , Ẑ)τξ = (Ẑ , (s I − Df (q j ))Ŷ − c j Ẑ)τ + ĥ(ξ, s), [(Ŷ , Ŷξ )](a) = φ̂a . (4.23)

In Lemma 4.4, we have obtained (u, uξ ) for s ∈ �(−η, θ)\{0}. Converting the results to
(Ŷ , Ẑ), we find that (Ŷ , Ẑ) are analytic for s ∈ �(−η, θ)\{0} and satisfy

|Ŷ (·, s)|L2(ξ≤a) + |Ŷ (·, s)|L2(ξ≥a) ≤ C(ε)

1 + |s| |φ̂a |E0.75×0.25(s),

|(Ŷ , Ẑ)(ξ, s)|E0.72×0.25(s) ≤ C(ε)e−α|ξ−a||φ̂a |E0.72×0.25(s).

(4.24)
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Lemma 4.5 If for the dichotomies to the left and right of ξ = a,

Es(a+, s = 0) ∩ Eu(a−, s = 0) = span{(q ′
j (a), q ′′

j (a))},

and if β̂(s) satisfies (4.22), then in a neighborhood of s = 0, the functions (Ŷ , Ẑ) are
holomorphically extendable over s = 0. Moreover, if |s| ≤ ε,

|Ŷ (·, s)|L2(ξ≤a) + |Ŷ (·, s)|L2(ξ≥a) ≤ C |φ̂a |E0.75×0.25(s), (4.25)

|(Ŷ , Ẑ)(ξ, s)|E0.72×0.25(s) ≤ Ce−α|ξ−a||φ̂a |E0.72×0.25(s). (4.26)

Proof For each |s| ≤ ε, there exist two separate dichotomies for (4.23), one for ξ ∈ (−∞, a]
the other for ξ ∈ [a,∞). The projections are denoted by P−

s + P−
u = I d for ξ ≤ a and

P+
s + P+

u = I d for ξ ≥ a. Observe that unlike the unified dichotomy defined for all ξ ∈ R,
The two separate dichotomies satisfy the property

|P±
s (ξ, s)| + |P±

u (ξ, s)| ≤ K , for all |s| ≤ ε.

We can express the solution of (4.23) as follows:

(Ŷ (ξ, s), Ẑ(ξ, s))τ = T (ξ, a, s)P−
u (a, s)(Ŷ (a, s), Ẑ(a, s))

+
∫ ξ

−∞
T (ξ, ζ, s)P−

s (ζ, s)(ĥ(ζ, s))dζ +
∫ ξ

a
T (ξ, ζ, s)P−

u (ζ, s)(ĥ(ζ, s))dζ, for ξ ≤ a,

(Ŷ (ξ, s), Ẑ(ξ, s))τ = T (ξ, a, s)P+
s (a, s)(Ŷ (a, s), Ẑ(a, s))

+
∫ ξ

a
T (ξ, ζ, s)P+

s (ζ, s)(ĥ(ζ, s))dζ +
∫ ξ

∞
T (ξ, ζ, s)P+

u (ζ, s)(ĥ(ζ, s))dζ, for a ≤ ξ.

(4.27)
The solution is determined by a pair of vectors:

μu(a−, s) := P−
u (a, s)(Ŷ (a, s), Ẑ(a, s)), μs(a+, s) := P+

s (a, s)(Ŷ (a, s), Ẑ(a, s)).

To satisfy the jump condition at ξ = a, we need

μs(a+, s) − μu(a−, s) =
φ̂a+

∫ a

−∞
T (a, ζ, s)P−

s (ζ, s)(ĥ(ζ, s))dζ +
∫ ∞

a
T (a, ζ, s)P+

u (ζ, s)(ĥ(ζ, s))dζ.

(4.28)

Let the right hand side of (4.28) be d(a, s) which is analytic for |s| ≤ ε and satisfies

|d(a, s)|E0.75×0.25(s) ≤ C |φa |E0.75×0.25(s).

We wish to solve the equation μs(a+, s) − μu(a−, s) = d(a, s) in E0.75×0.25(s) such that
μs(a+, s) ∈ RP+

s (a+, s) and μu(a−, s) ∈ RP−
u (a−, s). Notice that

RP+
s (a+, s) = Es(a+, s), RP−

u (a−, s) = Eu(a−, s),

E+
s (a+, s) ⊕ E−

u (a−, s) = R
2n, if s ∈ �(−η, θ)\{0}.

For such s, the unique pair of solutions (μs(a+, s), μu(a−, s)) can be expressed by the unified
dichotomy that is defined on all R:

μs(a+, s) = Ps(a, s)d(a, s), μu(a−, s) = −Pu(a, s)d(a, s). (4.29)
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The analytic functions (μs(a+, s), μu(a−, s)) may have a simple pole at s = 0. We now
show that the pole is removable, that is, in E0.75×0.25(s),

|μs(a+, s)| + |μu(a−, s)| ≤ C |φ̂a |, if 0 < |s| ≤ ε. (4.30)

In the above, as well as in the rest of this section, any unmarked norms are E0.75×0.25(s)
norms.

The idea of the proof follows from that of Lemma 3.10 of [11], which also shows that the
dichotomy has a pole at s = 0. Recall that z j satisfies the adjoint equation

z′′j − c j z j + Df (q j )
∗z j = 0.

Converting this second order equation into a first order system, we can show that the adjoint
equation of (4.16) has a bounded solution� = (ψ1, ψ2) := (c j z j −z jξ , z j ), which satisfies

�(a) ⊥ Eu(a, s = 0) + Es(a, s = 0).

From (4.21), we have < �(a), d(a, s = 0) >= 0. Therefore | < �(a), d(a, s) > | ≤
C |s|. Apply the orthogonal projections to d(a, s) so that d(a, s) = dT (a, s) + d⊥(a, s)
where dT (a, s) ∈ Es(a+, s = 0) + Eu(a−, s = 0) and d⊥(a, s) ∈ span{�(a)}. From <

�(a), d(a, s = 0) >= 0, we have d⊥(a, 0) = 0, thus |d⊥(a, s)| ≤ C |s|. From Lemma 3.7,
the unified projections satisfy |Ps(a, s)| + |Pu(a, s)| ≤ C/|s|. Therefore

|Ps(a, s)d⊥(a, s)| + |Pu(a, s)d⊥(a, s)| ≤ C |φa |, if 0 < |s| ≤ ε. (4.31)

We now prove that if 0 < |s| ≤ ε for a small ε > 0, then

|Ps(a, s)dT (a, s)| + |Pu(a, s)dT (a, s)| ≤ C |φa |. (4.32)

We can write dT (a, s) = d1(a, s) + d2(a, s) where d1(a, s) ∈ Es(a+, s = 0) and
d2(a, s) ∈ Eu(a−, s = 0). We further require that d2(a, s) ⊥ span{(q ′

j (a), q ′′
j (a))} so the

decomposition is unique and satisfies:

|d1(a, s)| + |d2(a, s)| ≤ C |dT (a, s)|.
We now consider the perturbations of d1(a, s) and d2(a, s). First, a perturbation theorem

to the stable subspace, see Lemma 3.5 of [10], shows that for 0 < |s| ≤ ε, there exists
a unique d̃1(a, s) such that d̃1(a, s) ∈ Es(a+, s) and d̃1(a, s) − d1(a, s) ∈ Eu(a+, s =
0). Moreover d1(a, s) − d̃1(a, s) = O(s). A simpler proof for finite dimensional spaces
can be find in Lemma 2.3 of [13] (simply change the algebraic decay rate to exponential
decay rate). Similarly, there exists a unique d̃2(a, s) such that d̃2(a, s) ∈ Eu(a−, s) and
d2(a, s) − d̃2(a, s) ∈ Ea(a−, s = 0). Moreover d2(a, s) − d̃2(a, s) = O(s).

We can easily check the following:

Ps(a, s)dT (a, s) = Ps(a, s)(d1 + d2) = d̃1 + Ps
(
(d1 − d̃1) + (d2 − d̃2)

)
,

|Ps(a, s)dT (a, s)| ≤ |d̃1(a, s)| + |Ps |(|d̃1 − d1| + |d̃2 − d2|).
Using |d̃1(a, s)| ≤ C |d1(a, s)| ≤ C |dT (a, s)|, |Ps | = O(1/s) and |d j (a, s)− d̃ j (a, s)| =

O(s), j = 1.2, we have |Ps(a, s)dT (a, s)| ≤ C |dT (a, s)| for 0 < |s| ≤ ε.
Similarly we can prove that |Pu(a, s)dT (a, s)| ≤ C |dT (a, s)| for 0 < |s| ≤ ε. Combining

(4.29), (4.31) and (4.32), we have shown that (μs(a+, s), μu(a−, s)) are holomorphically
extendable over s = 0, and satisfies (4.30).

If s = 0 were not singular for the projections Ps, Pu , then from (4.27) we could prove
that Ŷ ∈ H2,1

0 (ξ ≤ a) and Ŷ ∈ H2,1
0 (ξ ≥ a) just like [11]. The idea of the proof still works
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under the restriction |s| ≤ ε for a small ε > 0. In particular, part (2) of Lemma 3.1 in [11]
implies that

|T (ξ, a, s)P−
u (a, s)(Ŷ (a, s), Ẑ(a, s))|L2(ξ≤a) ≤ C |φ̂a |E0.75×0.25(s).

The proof of Lemma 3.8 in [11] implies that the L2(ξ ≤ a) norms of the two terms
∫ ξ

−∞
T (ξ, ζ, s)P−

s (ζ, s)(ĥ(ζ, s))dζ and
∫ ξ

a
T (ξ, ζ, s)P−

u (ζ, s)(ĥ(ζ, s))dζ

are also bounded by C |φ̂a |E0.75×0.25(s). Therefore

|Ŷ |L2(ξ≤a) ≤ C |φ̂a |E0.75×0.25(s), |s| ≤ ε.

Similar estimates can be obtained for ξ ≥ a from the second half of (4.27). This proves
(4.25).

Now consider the three terms in (4.27) for ξ ≤ a, |s| ≤ ε again. By (4.30), we have

|(Ŷ (a−, s), Ẑ(a−, s))|E0.72×0.25(γ ) ≤ C |φ̂a |E0.72×0.25(γ ),

|T (ξ, a, s)P−
u (a, s)(Ŷ (a−, s), Ẑ(a−, s))τ |E0.72×0.25(γ ) ≤ Ce−α|ξ−a||φ̂a |E0.72×0.25(γ ).

Using the fact 0 < α < α1, it is easy to check that for |s| ≤ ε,

|ĥ(ζ, s)|E0.72×0.25(s) ≤ Ce−α1|ζ−a||φ̂a |E0.72×0.25(s),
∣
∣
∣
∣

∫ ξ

−∞
T (ξ, ζ, s)P−

s (ζ, s)(ĥ(ζ, s))dζ +
∫ ξ

a
T (ξ, ζ, s)P−

u (ζ, s)(ĥ(ζ, s))dζ

∣
∣
∣
∣
E0.72×0.25(s)

≤ Ce−α|ξ−a||φ̂a |E0.72×0.25(s).

This proves (4.26) for ξ ≤ a. The proof for ξ ≥ a is similar. �

Proof (The proof of Theorem 4.2 continued.) For |s| = ε, the functions (Ŷ , Ẑ) have been
constructed two times – converted from (û, v̂) obtained in Lemma 4.4, and directly from
Lemma 4.5. However, the solution (Ŷ , Ẑ) is unique for any given s ∈ �(−η, θ). This proves
that (Ŷ , Ẑ) is analytic in the entire region s ∈ �(−η, θ).

Combining (4.24) and (4.25), we have for ξ ≤ a,

|Ŷ |L2(ξ≤a) ≤ C

(1 + |s|) |φ̂a |E0.75×0.25(s), if s ∈ �(−η, θ).

∫ ∞

−∞
(1 + |s|)2|Ŷ |2L2(ξ≤a)

dω ≤ C
∫ ∞

−∞
|φ̂a |2E0.75×0.25(s)dω ≤ C |φ̂a |2H0.75×0.25(γ )

.

Similar results can be obtained for ξ ≥ a. The inverse Laplace transform shows that both for
ξ ≥ a and ξ ≤ a, Y ∈ H2,1

0 (γ ) for some −η < γ < 0.
By combining (4.24) and (4.26), and using the inverse Laplace transform, we have

|(Ŷ , Ẑ)|E0.75×0.25(s) ≤ Ce−α|ξ−a||φ̂a |E0.75×0.25(s), s ∈ �(−η, θ),

|(Y, Z)|H0.75×0.25
0 (γ )

≤ Ce−α|ξ−a||φa |H0.75×0.25
0

(γ ).

The distance of � j to M±
j is greater than x j − y j − N . So (Y, Yξ ) at � j is bounded

by Ce−α|x j−y j−N ||φa |. Recall that (u j , u jξ ) = (Y, Z) + (β(t)q ′
j , β(t)q ′′

j ), which is also

bounded by Ce−α|x j−y j−N ||φa | at � j .
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Using the result of Part B, we can eliminate the jump errors along M±
j , 1 ≤ j ≤ m.

The process will induce exponentially small errors along � j again. Repeating the process,
the jump error along � j and M±

j can be eliminated. We introduce a function β j (t) in each
iteration, which is added up to form the final β j (t) for each u j . �


5 Solution of the Nonlinear System

In Sect. 4, we solved the nonhomogeneous linear system (2.6), rewritten here for the reader’s
convenience:

u jt = u j,xx + Df (q j )u j + h j , u j (x, 0) = u j0(x), for (x, t) ∈ � j ,

[(u j , u jx )](� j ) = J j (� j ),

[u j0, u j0,x ] = J j (� j )|t=0.

(5.1)

whereh j ∈ L2(� j , γ ),u j0(x) ∈ H1(x j−1, x j ), and J j (� j ) ∈ H0.75×0.25(γ ) are temporarily
given functions, independent of ({u j }, {r j }).

We obtained the solution in the form u j (x, t) = u(1)
j (x, t) + u(2)

j (x, t) where u(1)
j is the

solution of a nonhomogeneous initial value problem (4.1) without jump conditions, and u(2)
j

is the solution of (4.8) with nonzero jump conditions along � j .
We now prove the main result of the paper – Theorem 1.1. To obtain the solution to

the nonlinear problem, as in (2.7), we set h j = B(r j )u j + R(r j , u j ), u j0(x) = ū j0(x) −
r j q ′

j (ξ) + g j (ξ, r j ) and J j (� j ) = J j (� j , {r j }) = J j0 + G j ({r j }) in (5.1). In the resulting

nonlinear system,we look for {r j }, so that (5.1) has a solution u j ∈ H2,1(� j , γ ), 1 ≤ j ≤ m.

The solution u(1)
j (x, t) in � j can be expressed as U = β

(1)
j (t)q ′

j (ξ j ) + Y (1)
j (ξ, t). To

simplify the notation, the inner product for L2 functions
∫

< a(ξ), b(ξ) > dξ will be

denoted by < a, b >. Before restricting to � j , the equations for β
(1)
j and Y (1)

j are

Y (1)
j t = L jY

(1)
j + Q j h̃ j ,

β̇
(1)
j (t) = 〈z j , h̃ j 〉,

β
(1)
j (0) = 〈z j , ū j0〉 − r j + 〈z j , g j (·, r j )〉.

Let K j be the integral operator as in (4.4) and (·)� j
be the restriction of a function to � j .

Then in � j ,

β
(1)
j (t) = β

(1)
j (∞) +

∫ t

∞
〈z j , h̃ j 〉dt,

Y (1)
j =

(
K j Q j (−h̃ j ) + etL j Q j (ū j0 + g j (ξ, r j ))

)

� j
,

r j = 〈z j , ū j0〉 + 〈z j , g j (·, r j )〉 − β
(1)
j (0).

We have β̇
(1)
j ∈ L2(γ ), β

(1)
j ∈ X1(γ ).

The solution u(2)(x, t) =
(
u(2)
1 , . . . , u(2)

m

)
can be expressed by operators

Fj : {J j (� j , {r j }) − ([u(1)], [u(1)
x ])(� j )}m−1

j=1 → u(2)
j , 1 ≤ j ≤ m.
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In process in Sect. 4.2 yields the solution of the jump problem in the form u(2)
j = β

(2)
j (t)q ′

j +
Y (2)
j (x, t). Define F�

j ({J j }) := β
(2)
j (t)q ′

j and F�
j ({J j }) := Y (2)

j (x, t). Then

u(2)
j = Fj ({J j }) = F�

j ({J j }) + F�
j ({J j }), J j := J j (� j , {r j }) − ([u(1)], [u(1)

x ])(� j )

We look for a solution of (5.1): u j = β j (t)q ′
j +Y j , 1 ≤ j ≤ m, with β j (∞) = 0. Notice

that β
(2)
j (0) = 0. From β j (t) = β

(1)
j (t) + β

(2)
j (t), we obtain β

(1)
j (∞) = −β

(2)
j (∞) and

β
(1)
j (0) = −β

(2)
j (∞) + ∫ 0

∞〈z j , h̃ j 〉dt . Thus

β j (t) =
∫ t

∞
〈z j , h̃ j 〉dt − β

(2)
j (∞) + β

(2)
j (t).

It is easy to check that β
(2)
j = 〈z j , F�

j ({J j })〉 ∈ X1(γ ) with J j = J j0 + G j ({r j })
− ([u(1)], [u(1)

x ])(� j ). Together, we consider a system for r j and u j = β j (t)q ′
j + Y j :

β j (t) =
∫ t

∞
〈z j , h̃ j 〉dt + β

(2)
j (t) − β

(2)
j (∞).

Y j =
(
K j Q j h̃ j + etL Q j (ū j0 + g j (ξ, r))

)

� j
+ F�

j ({J j ),

r j = 〈z j , ū j0〉 + 〈z j , g j (·, r j )〉 +
∫ ∞

0
〈z j , h̃ j 〉dt + β

(2)
j (∞).

(5.2)

System (5.2) can be expressed as

{β j , Y j , r j } = �({ū j0}, {J j0}, {β j }, {Y j }, {r j }), 1 ≤ j ≤ m. (5.3)

We shall solve this as a fixed point problem by the contraction mapping principle on the
unknown variables (β j , Y j , r j ). Let B(ε) be an ε-ball in

m∏

1

X1(γ ) ×
m∏

1

H2,1(� j , γ ) × R
m .

B(ε) :=
⎧
⎨

⎩
({β j }, {Y j }, {r j }) :

∑

1≤ j≤m

(|β j | + |Y j | + |r j |) ≤ ε

⎫
⎬

⎭
.

To ensure that � is a contraction mapping on B(ε), it suffices to have

(1) |�({ū j0}, {J j0}, 0, 0, 0)| ≤ ε/2, and
(2) the Lipschitz numbers of h j , g j and J j (r j ) with respect to (β j , Y j , r j ) are sufficiently

small on B(ε) so that

|�({ū j0}, {J j0}, {β j }, {Y j }, {r j }) − �({ū j0}, {J j0}, 0, 0, 0)| ≤ ε/2.

Condition (1) is satisfied if min{|y j+1 − y j | : 1 ≤ j ≤ m − 1} is sufficiently large and if for
1 ≤ j ≤ m, |ū j0| < ρ, |{J j0}| < Cρ are sufficiently small, that is, if min{|y j+1 − y j | : 1 ≤
j ≤ m − 1} and ρ satisfies conditions specified in Theorem 1.1.

To ensure that (2) is satisfied, and � is a contraction mapping on (β, Y j , r j ), recall

h j = B(r j )u j + R(r j , u j ), g j = q j (ξ j ) − q j (ξ j + r j ) + r j q
′
j (ξ j ),

G j ({r j }) = Wj+1(� j ) − Wj+1(� j + r j+1) + Wj (� j + r j ) − Wj (� j ).

It is straightforward to check that h j , g j are all small terms in the sense that:
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(1) |h j | + |g j | ≤ C(|u j |2 + |r j |2),
(2) the derivatives of h j and g j with respect to r j , u j are small.

It remains to verify that under the conditions of Theorem 1.1, the the jumps G j and dG j/drk
are small for all 1 ≤ j ≤ m − 1, 1 ≤ k ≤ m.

Along the line � j , G j ({r j }) = O(|{Wjx }||{r j }|). Therefore,
|G j ({r j })| ≤ C max{e−η|x j−y j | : 1 ≤ j ≤ m − 1}|{r j }| << ε

For k 
= j, j + 1, d J j/drk = 0, while for k = j or j + 1,

|dG j/drk | ≤ C max{e−η|x j−y j | : 1 ≤ j ≤ m − 1} << 1.

Therefore the Lipschitz number of {G j ({r j })} with respect to {rk} is exponentially small if
min{|y j+1 − y j | : 1 ≤ j ≤ m − 1} > � is sufficiently large. The constant � is independent
of δ0 as in Theorem 1.1 and Remark 1.1.

We have proved that system (5.2) can be solved by the contraction mapping principle
on {r j }, {Y j } and {β j }, and u j ∈ H2,1(� j , γ ). The solution u j is a continuous function
t ∈ R

+ → H1(� j ). To check estimates (2) of Definition (1.1), let the solution of the linear
problem be

({β j }, {Y j }, {r j })(0) = �({ū j0}, {J j0}, 0, 0, 0). (5.4)

From Sect. 4, |({Y j }, {β j }, {r j })(0)| ≤ Cρ. If the rate of the contraction map � is 0 < k < 1,
from (5.3) and (5.4), we have

|({Y j }, {β j }, {r j }) − ({Y j }, {β j }, {r j })(0)| ≤ k|({Y j }, {β j }, {r j })|,
|({Y j }, {β j }, {r j })| ≤ (1 − k)−1|({Y j }, {β j }, {r j })(0)| ≤ Cρ.

Thus, |Y j |H2,1(� j ,γ ) + |β j |X1(γ ) ≤ Cρ. So u j is a continuous function t ∈ R
+ → H1(� j )

and |e−γ t u j |H1(� j )
≤ C(|Y j | + |β j |) ≤ Cρ. This proves estimate (2) of Definition (1.1).

6 Generalized Fisher/KPP Equations and Final Remarks

In this section we briefly consider the concatenation of two traveling waves of the general-
ized Fisher/KPP equation where our assumptions H1 and H2 are not satisfied. We hope to
show that concatenation of waves and spatial dynamics can be useful in dealing with such
nonstandard case.

The Fisher-KPP equation ut = uxx + 2u(1 − u) has a traveling wave solution u(x − 3t)
connecting u = 1 to u = 0. The change of variable u → 1− u yields ut = uxx − 2u(1− u),
which has has a traveling wave u(x − 3t) connecting u = 0 to u = 1. We now consider
the generalized Fisher-KPP equation and the associated first order system satisfied by the
traveling wave u(ξ) = u(x − 3t):

ut = uxx − 2un(1 − u), n ∈ N,

u′ = v, v′ = −3v + 2un(1 − u).
(6.1)

Denote the traveling wave u(x − 3t) by q2(x − c2t). Let q1(x − c1t) be a traveling wave
that moves to the left with the speed c1 < 0. (One such example is to flip the axis x → −x
so that q1(x − c1t) = q2(−x − c2t) and c1 = −c2.) For each fixed t , as x increases from
−∞ to ∞, q1(x − c1t) (or q2(x − c2t)) connects u = 1 to u = 0 (or u = 0 to u = 1).

Define the concatenated wave u(x, t)con separated by � = {x = 0, t ≥ 0} as in (1.8).
Let u(ξ, t) = q j (ξ) + u j (ξ, t) be the exact solution near ucon , where j = 1 for x < 0 and
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Fig. 3 The spectrum for thewave q2 when n = 1. aWithout theweight function the spectrum is bounded to the
right by a parabola with the vertex at B = Df (1) > 0. bWith the weight function the spectrum is bounded to
the right by a parabola with the vertex at A = Df (0), plus the line segment AC , whereC = Df (1)−c22/4 < 0

j = 2 for x > 0. For n ∈ N, each single wave q1 (or q2) is stable only under some weighted
norms applied to large ξ and/or large −ξ . Let w j (ξ) ≥ 1 be a suitable weight function. The
weighted norms are designed to limit the allowed perturbations to q1 and q2 by requiring that
‖u j‖Hk

w
:= ‖w j u j‖Hk < ∞.

For n = 1, the traveling wave q1 is a node to saddle connection and q2 is a saddle to node
connection. As in [23], we can choose w1(ξ) = ec1ξ/2 for ξ < 0 and w1(ξ) = 1 for ξ ≥ 0;
and choosew2(ξ) similarly. See Fig. 3 for the spectrum before and after adding the weighted
norms. Observe that w1(ξ) → ∞ as ξ → −∞, and w2(ξ) → ∞ as ξ → ∞, those are the
left end and right end of the concatenated wave. Therefore the same weights can be applied
to u j (x, t), j = 1, 2, to put restriction on perturbations of the initial data of the concatenated
wave to ensure its stability.

For n ≥ 2, (u, v) = (0, 0) is non-hyperbolic with eigenvalues λ1 = 0,λ2 
= 0. The
traveling wave q1 connects (1, 0) to the center manifold of (0, 0) and q2 connects the center
manifold of (0, 0) to (1, 0). The system looks similar to that studied by Wu, Xing and Ye
[27], but is not the same. For the initial data of u1(x, t), x < 0 (or u2(x, t), x > 0), we
can use the same exponential weight functions w j (ξ) as when n = 1. However, if n ≥ 2,
it is known that the linear variational system around q1(ξ), ξ ≥ 0 (or q2(ξ), ξ ≤ 0) has
an algebraic dichotomy (rather than an exponential dichotomy), see [27]. To restrict the
perturbations of each traveling wave, for u1(x, t), x > 0 (or u2(x, t), x < 0), we may use
w j (ξ) = c j (1+ |ξ |)γ , γ > 0 for ξ > 0, j = 1 (or ξ < 0, j = 2), as in [13,27]. However,
for the concatenated wave, since u1 exists only for x < 0 and u2 exists only for x > 0 so
the boundedness of the weighted norms does not put any restriction on the initial values of
u1 for large x (or initial values of u2 for large −x).

In comparison, our method of eliminating jumps between the waves does not depend
on evolution operators in time. It depends on evolution operators in space x , so it is more
flexible to deal with weights or jumps in x direction. As in [14], we might be able to replace
the weighted norms by some boundary conditions to the left and right of �, which also helps
to restrict the allowed perturbations of q1 and q2.

To summarize, the main ideas of our method, as outlined in Sect. 1, should work both
for bistable, and generalized Fisher/KPP type traveling waves. In our future work, we hope
to find suitable function spaces so that the linear variational system may have exponential
dichotomies and the stability of the concatenated wave may be proved by method similar to
that used in this paper.
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