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Abstract In this paper, we establish the theory of basic reproduction ratio R0 for a large class
of time-delayed compartmental population models in a periodic environment. It is proved
that R0 serves as a threshold value for the stability of the zero solution of the associated
periodic linear systems. As an illustrative example, we also apply the developed theory to a
periodic SEIR model with an incubation period and obtain a threshold result on its global
dynamics in terms of R0.
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1 Introduction

The basic reproduction number (ratio) R0 is one of the most important concepts in popu-
lation biology. In epidemiology, R0 is the expected number of secondary cases produced,
in a completely susceptible population, by a typical infective individual, and R0 is also a
commonly used measure of the effort needed to control an infectious disease. Diekmann et
al. [9] introduced the next generation operators approach to R0 for autonomous models, and
Van den Driessche and Watmough [23] developed the theory of R0 for ordinary differential
equations (ODE) models with compartmental structure. These two works have found numer-
ous applications in the study of various infectious disease models. For population models in a
periodic environment, Bacaër and Guernaoui [3] proposed a general definition of R0, that is,
R0 is the spectral radius of an integral operator on the space of continuous periodic functions.
Wang and Zhao [24] characterized R0 for periodic compartmental ODE models and proved
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that it is a threshold parameter for the local stability of the disease-free periodic solution.
Further, Thieme [22] presented the theory of spectral bound and reproduction number for
infinite-dimensional population structure and time heterogeneity. Bacaër and Ait Dads [1,2]
also found amore biological interpretation of R0 for periodic models and showed that it is the
asymptotic ratio of total infections in two successive generations of the infection tree. More
recently, Inaba [12] introduced the concept of a generation evolution operator to give a new
definition of R0 for structured populations in heterogeneous environments, which unifies two
definitions in [3,9] and has intuitively clear biological meaning.

Once R0 is introduced for an epidemic model, it is usually expected that the disease
cannot invade the disease-free state if R0 < 1 and can invade if R0 > 1. Mathematically, this
means that the sign of R0 − 1 determines the stability of the zero solution of a linear system
associated with infectious variables. In this regard, the theory developed in [22] provides a
powerful tool, see, e.g., [10,16,17,25,26]) for autonomous reaction-diffusion models with or
without time delay, and [27] for almost periodic compartmental ODE models. However, it is
much more difficult to apply abstract results of [22] to periodic and time-delayed population
models with or without spatial diffusion. For some specific periodic models, one may derive
linear periodic Volterra integral equations for infectious variables and then utilize the renewal
theory (see, e.g., [1,21] and references therein) after a careful verification of certain technical
conditions (see, e.g., [18] and references therein). The purpose of this paper is to establish the
theory of basic reproduction ratio R0 for periodic and time-delayed population models with
compartmental structure. Motivated by an eigenvalue problem associated with the renewal
theory, we introduce a one-parameter family of positive linear operators on the space of
continuous periodic functions and study the properties of their spectral radii as the parameter
varies. These preparatory results are then employed to prove the aforementioned stability
result in terms of R0. It is worthy to point out that our approach also applies to abstract delay
differential equations (and hence, periodic and time-delayed reaction-diffusion models), see
Remark 2.1 below.

The rest of this paper is organized as follows. In the next section, we first introduce the
basic reproduction ratio R0 for periodic compartmental models with time delay, then prove
the stability result (Theorem 2.1) and give a characterization of R0 (Theorem 2.2). We also
obtain an explicit formula for R0 in the autonomous case (Corollary 2.1). In Sect. 3, we apply
the theory of R0 in Sect. 2, together with the persistence theory for periodic semiflows (see,
e.g., [30]), to a periodic SEIR model of a disease transmission, and establish a threshold type
result on its global dynamics in terms of R0. It is hoped that the theory of R0 developed
in this paper will find more applications in time-delayed compartmental population models
such as those with distributed delays, spatial dispersal, or time-dependent delays.

2 Basic Reproduction Ratio

Let τ ≥ 0 be a given number, C = C([−τ, 0],Rm), and C+ = C([−τ, 0],Rm+). Then
(C,C+) is an ordered Banach space equipped with the maximum norm and the positive cone
C+. Let F : R → L(C,Rm) be a map and V (t) be a continuous m × m matrix function
on R. Assume that F(t) and V (t) are ω-periodic in t for some real number ω > 0. For a
continuous function u : [−τ, σ ) → R

m with σ > 0, define ut ∈ C by

ut (θ) = u(t + θ), ∀θ ∈ [−τ, 0]

for any t ∈ [0, σ ).
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We consider a linear and periodic functional differential system:

du(t)

dt
= F(t)ut − V (t)u(t), t ≥ 0. (2.1)

System (2.1) may come from the equations of infectious variables in the linearization of
a given ω-periodic and time-delayed compartmental epidemic model at a disease-free ω-
periodic solution. As such, m is the total number of the infectious compartments, and the
newly infected individuals at time t depend linearly on the infectious individuals over the time
interval [t −τ, t], which is described by F(t)ut . Further, the internal evolution of individuals
in the infectious compartments (e.g., natural and disease-induced deaths, and movements
among compartments) is governed by the linear ordinary differential system:

du(t)

dt
= −V (t)u(t). (2.2)

Of course, we may also obtain system (2.1) by linearizing a population growth model with
m patches (or types) at its zero solution, where the word “birth” should be used to replace
“infection”.

Throughout this section, we assume that F(t) : C → R
m is given by

F(t)φ =
∫ 0

−τ

d[η(t, θ)]φ(θ), ∀t ∈ R, φ ∈ C,

where η(t, θ) is an m × m matrix function which is measurable in (t, θ) ∈ R × R and
normalized so that η(t, θ) = 0 for all θ ≥ 0 and η(t, θ) = η(t,−τ) for all θ ≤ −τ . Further,
η(t, θ) is continuous from the left in θ on (−τ, 0) for each t , and the variation of η(t, ·)
on [−τ, 0] satisfies Var[−τ,0]η(t, ·) ≤ m(t) for some m ∈ Lloc

1 ((−∞,∞),R), the space
of functions from (−∞,∞) into R that are Lebesgue integrable on each compact set of
(−∞,∞). Since F(t) is ω-periodic in t , we have

sup
t∈R

‖F(t)‖ = sup
0≤t≤ω

‖F(t)‖ ≤ sup
0≤t≤ω

m(t).

By the general theory of linear functional differential equations in [11, Section 8.1], it follows
that for any s ∈ R and φ ∈ C , system (2.1) has a unique solution u(t, s, φ) on [s,∞) with
us = φ. We define the evolution operators U (t, s) on C associated with (2.1) as

U (t, s)φ = ut (s, φ), ∀φ ∈ C, t ≥ s, s ∈ R,

where ut (s, φ)(θ) = u(t + θ, s, φ), ∀θ ∈ [−τ, 0]. Then each operatorU (t, s) is continuous
and

U (s, s) = I, U (t, s)U (s, r) = U (t, r), U (t + ω, s + ω) = U (t, s), ∀t ≥ s ≥ r. (2.3)

Let �(t, s), t ≥ s, be the evolution matrices associated with system (2.2), that is, �(t, s)
satisfies

∂

∂t
�(t, s) = −V (t)�(t, s), ∀t ≥ s, and �(s, s) = I, ∀s ∈ R,

and ω(�) be the exponential growth bound of �(t, s), that is,

ω(�) = inf
{
ω̃ : ∃M ≥ 1 such that ‖�(t + s, s)‖ ≤ Meω̃t , ∀s ∈ R, t ≥ 0

}
.

In order to introduce the basic reproduction ratio for system (2.1), throughout this section
we always assume that
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(H1) Each operator F(t) : C → R
m is positive in the sense that F(t)C+ ⊆ R

m+.
(H2) Each matrix −V (t) is cooperative, and ω(�) < 0.

In view of the periodic environment, we supposed that v(t), ω-periodic in t , is the initial
distribution of infectious individuals. For any given s ≥ 0, F(t − s)vt−s is the distribution
of newly infected individuals at time t − s, which is produced by the infectious individuals
who were introduced over the time interval [t − s − τ, t − s]. Then �(t, t − s)F(t − s)vt−s

is the distribution of those infected individuals who were newly infected at time t − s and
remain in the infected compartments at time t . It follows that∫ ∞

0
�(t, t − s)F(t − s)vt−sds =

∫ ∞

0
�(t, t − s)F(t − s)v(t − s + ·)ds

is the distribution of accumulative new infections at time t produced by all those infectious
individuals introduced at all previous times to t .

Note that for any given s ≥ 0,�(t, t − s)v(t − s) gives the distribution of those infectious
individuals who were introduced at time t − s and remain in the infected compartments
at time t , and hence, w(t) := ∫ ∞

0 �(t, t − s)v(t − s)ds is the distribution of accumulative
infectious individualswhowere introduced at all previous times to t and remain in the infected
compartments at time t . Thus, the distribution of newly infected individuals at time t is

F(t)wt = F(t)

(∫ ∞

0
�(t + ·, t − s + ·)v(t − s + ·)ds

)
.

Let Cω be the ordered Banach space of all continuous and ω-periodic functions from R

to R
m , which is equipped with the maximum norm and the positive cone C+

ω := {v ∈ Cω :
v(t) ≥ 0, ∀t ∈ R}. Then we can define two linear operators on Cω by

[Lv](t) =
∫ ∞

0
�(t, t − s)F(t − s)v(t − s + ·)ds, ∀t ∈ R, v ∈ Cω,

and

[L̂v](t) = F(t)

(∫ ∞

0
�(t + ·, t − s + ·)v(t − s + ·)ds

)
, ∀t ∈ R, v ∈ Cω.

Let A and B be two bounded linear operators on Cω defined by

[Av](t) =
∫ ∞

0
�(t, t − s)v(t − s)ds, [Bv](t) = F(t)vt , ∀t ∈ R, v ∈ Cω.

It then follows that L = A ◦ B and L̂ = B ◦ A, and hence, L and L̂ have the same spectral
radius.

Motivated by the concept of next generation operators in [3,9,22–24], we define the
spectral radius of L and L̂ as the basic reproduction ratio

R0 := r(L) = r(L̂).

for periodic system (2.1).
For any given λ ∈ R, let Eλ be a linear operator on C defined by

[Eλφ](θ) = eλθφ(θ), ∀θ ∈ [−τ, 0], φ ∈ C.

It then easily follows that ‖Eλ‖ ≤ max{1, e−λτ }, ∀λ ∈ R. Now we introduce a family of
linear operators Lλ on Cω:

[Lλv](t) =
∫ ∞

0
e−λs�(t, t − s)F(t − s)Eλv(t − s + ·)ds, ∀t ∈ R, v ∈ Cω. (2.4)
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Clearly, L0 = L , and Lλ is well defined for all λ > ω(�). Further, we have the following
observation.

Lemma 2.1 For each λ > ω(�), the operator Lλ is positive, continuous and compact on
Cω.

Proof Let λ > ω(�) be given. Clearly, Eλ is a positive linear operator on C . By virtue of
(H1) and (H2), F(t) and �(t, s) (t ≥ s) are positive linear operators. This implies that Lλ is
positive on Cω. Since ω(�) < 0 and

‖�(t, t − s)F(t − s)Eλ‖ ≤ M0e
ω(�)s · sup

0≤r≤ω

m(r) · ‖Eλ‖, ∀t ∈ R, s ∈ [0,∞),

for some M0 > 0, we see that Lλ is bounded, and hence, continuous on Cω. In view of

[Lλv](t) =
∫ t

−∞
e−λ(t−s)�(t, s)F(s)Eλvsds, ∀t ∈ R, v ∈ Cω,

we easily obtain

d

dt
[Lλv](t) = F(t)Eλvt − (V (t) + λI )[Lλv](t), ∀t ∈ R, v ∈ Cω. (2.5)

It then follows that for any a > 0, there exists K = K (a) > 0 such that | ddt [Lλv](t)| ≤ K
for all t ∈ [0, ω] and v ∈ Cω with ‖v‖ ≤ a. Thus, the Ascoli-Arzela theorem implies that
Lλ is compact on Cω. �

LetM0 > 0 befixed such that ‖�(t, s)‖ ≤ M0eω(�)(t−s), ∀t ≥ s. For any given ε > 0,we
set Vε(t) = V (t)−εE , where E is them×m matrix with each element being 1. Let�ε(t, s)
be the evolution operators associated with the linear periodic system du(t)

dt = −Vε(t)u(t).
Then we have the following estimate.

Lemma 2.2 Let c = εM0‖E‖. Then for any ε > 0, there holds

‖�ε(t, t − s) − �(t, t − s)‖ ≤ cM0se
(ω(�)+c)s, ∀t ∈ R, s ≥ 0.

Proof By the constant-variation formula, we obtain

�ε(t, s)x = �(t, s)x +
∫ t

s
�(t, r)εE�ε(r, s)xdr, ∀t ≥ s, s ∈ R, x ∈ R

m .

This implies that �ε(t, s) satisfies the abstract Volterra integral equation:

�ε(t, s) = �(t, s) +
∫ t

s
�(t, r)εE�ε(r, s)dr, ∀t ≥ s, s ∈ R. (2.6)

Let h1(t, s) := �(t, s)εE , and define

hn(t, s) =
∫ t

s
h1(t, r)hn−1(r, s)dr, ∀n ≥ 2.

Since ‖h1(t, s)‖ ≤ ceω(�)(t−s), ∀t ≥ s, s ∈ R, it follows from an induction argument that

‖hn(t, s)‖ ≤ cn

(n − 1)!e
ω(�)(t−s)(t − s)n−1, ∀n ≥ 1, t ≥ s, s ∈ R,
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and hence,
∑∞

n=1 ‖hn(t, s)‖ ≤ ce(ω(�)+c)(t−s). Thus, the linear operator h(t, s) :=∑∞
n=1 hn(t, s) is well defined for any t ≥ s, s ∈ R, and ‖h(t, s)‖ ≤ ce(ω(�)+c)(t−s). By

the proof of [7, Theorem 9.1], �ε(t, s) can be represented as

�ε(t, s) = �(t, s) +
∫ t

s
h(t, r)�(r, s)dr, ∀t ≥ s, s ∈ R. (2.7)

It then follows that

‖�ε(t, t − s) − �(t, t − s)‖ ≤
∫ t

t−s
‖h(t, r)‖ · ‖�(r, t − s)‖dr

≤
∫ t

t−s
ce(ω(�)+c)(t−r)M0e

ω(�)(r−(t−s))dr

= M0e
ω(�)s(ecs − 1)

≤ cM0se
(ω(�)+c)s, ∀t ∈ R, s ≥ 0.

Here we have used the inequality that ecs − 1 ≤ csecs, ∀s ≥ 0. �
For any λ > ω(�), let μ(λ) be the spectral radius of Lλ, that is, μ(λ) := r(Lλ). Then we

have the following two results on properties of the function μ(λ).

Proposition 2.1 The following statements are valid:

(i) μ(λ) is continuous and nonincreasing on (ω(�),∞), and μ(∞) = 0.
(ii) μ(λ) = 1 has at most one solution in (ω(�),∞).

Proof (i) Let λ0 ∈ (ω(�),∞) be given and choose a small number δ > 0 such that [λ0 −
δ, λ0 + δ] ⊂ (ω(�),∞). It is easy to see that

‖Eλ − Eλ0‖ ≤ τ max{1, e−(λ0−δ)τ }|λ − λ0|, ∀λ ∈ [λ0 − δ, λ0 + δ].
As a result, there exist two positive numbers K1 and K2 such that for any λ ∈ [λ0−δ, λ0+δ],
we have

‖Lλ − Lλ0‖ ≤ K1

∫ ∞

0

∣∣e−λs − e−λ0s
∣∣ eω(�)sds

+K2|λ − λ0|
∫ ∞

0
e−λ0seω(�)sds

≤ K1|λ − λ0|
∫ ∞

0
se−(λ0−δ)seω(�)sds

+K2|λ − λ0|
∫ ∞

0
e−λ0seω(�)sds

= K1|λ − λ0|
(λ0 − δ − ω(�))2

+ K2|λ − λ0|
λ0 − ω(�)

.

This implies that limλ→λ0 ‖Lλ − Lλ0‖ = 0. By the continuity of spectral radius for compact
linear operators (see, e.g., [8, Theorem 2.1(a)]), we then obtain that limλ→λ0 μ(λ) = μ(λ0).
Thus, μ(λ) is continuous on (ω(�),∞). It is easy to verify that

[Lλ1v](t) ≥ [Lλ2v](t), ∀ω(�) < λ1 ≤ λ2, t ∈ R, v ∈ C+
ω .

Since each Lλ is a positive and bounded linear operator on Cω, [4, Theorem 1.1] implies
that μ(λ) = r(Lλ) is a nonincreasing function of λ on (ω(�),∞). Note that ‖�(t, s)‖ ≤
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M0eω(�)(t−s), ∀t ≥ s, and ‖Eλ‖ ≤ 1, ∀λ ≥ 0. It then follows that

‖Lλ‖ ≤ M0 sup
0≤t≤ω

‖F(t)‖
∫ ∞

0
e−λseω(�)sds = M0 sup0≤t≤ω ‖F(t)‖

λ − ω(�)
, ∀λ ≥ 0.

In view of 0 ≤ μ(λ) = r(Lλ) ≤ ‖Lλ‖, we obtain μ(∞) = limλ→∞ μ(λ) = 0.
(ii) Assume, by contradiction, that μ(λ) = 1 has two solutions λ1 < λ2 in (ω(�),∞).

Since μ(λ) is nonincreasing on (ω(�),∞), we must have μ(λ) = 1, ∀λ ∈ [λ1, λ2]. Let
λ ∈ [λ1, λ2] be given. Since Lλ is a positive and compact linear operator on Cω and r(Lλ) =
μ(λ) = 1 > 0, the Krein–Rutman theorem implies that Lλv = v for some v ∈ C+

ω \ {0}. By
virtue of (2.5), we obtain

d

dt
v(t) = F(t)Eλvt − (V (t) + λI )v(t), ∀t ∈ R.

Let u(t) := eλtv(t). Since ut = eλt Eλvt , ∀t ∈ R, it follows from a straightforward compu-
tation that

d

dt
u(t) = F(t)ut − V (t)u(t), ∀t ∈ R.

Set φ := u0 = Eλv0. Then U (t, 0)φ = ut , ∀t ≥ 0, which implies that φ ∈ C+ \ {0}
since u(·) �≡ 0 on [0,∞). Clearly, the ω-periodicity of v(t) yields vt+ω = vt , ∀t ∈ R. In
particular, we have

U (ω, 0)φ = uω = eλωEλvω = eλωEλv0 = eλωφ.

It follows that eλω is an eigenvalue of U (ω, 0), and hence, eλnω is an eigenvalue of
U (nω, 0) = (U (ω, 0))n for any integer n ≥ 1. Now we fix an integer n0 > 0 such that
n0ω ≥ τ . By [11, Theorem 3.6.1], the operator U (n0ω, 0) is compact on C . Thus, eλn0ω is
an eigenvalue of U (n0ω, 0) for all λ ∈ [λ1, λ2]. But this is impossible since the compact
linear operator U (n0ω, 0) has only countablely many eigenvalues. �
Proposition 2.2 If r(U (ω, 0)) > r(�(ω, 0)), then λ∗ := ln r(U (ω,0))

ω
satisfies μ(λ∗) = 1.

Proof For any given ε > 0, let Vε(t) and �ε(t, s) be defined as in Lemma 2.2, and define
Fε(t)φ = F(t)φ + εφ(−τ), ∀φ ∈ C . We consider small perturbations of system (2.1):

du(t)

dt
= Fε(t)ut − Vε(t)u(t), t ≥ 0. (2.8)

LetUε(t, s)be the evolution operators associatedwith the linear functional differential system
(2.8). By [22, Proposition A.2], it follows that ω(�ε) = ln r(�ε(ω,0))

ω
. Since ω(�) < 0, we

have ω(�ε) < 0 for sufficiently small ε > 0. Let Lε
λ be defined as in (2.4) with F(t)

and �(t, s) replaced by Fε(t) and �ε(t, s), respectively. By [19, Lemma 5.3.2], Uε(t, 0)
is strongly positive on C for any t ≥ (m + 1)τ . Choose an integer n0 > 0 such that
n0ω ≥ (m + 1)τ . Since (Uε(ω, 0))n0 = Uε(n0ω, 0) is compact and strongly positive, [14,
Lemma 3.1] implies that r(Uε(ω, 0)) is a simple eigenvalue of Uε(ω, 0) having a strongly
positive eigenvector, and the modulus of any other eigenvalue is less than r(Uε(ω, 0)). Let
λ∗

ε := ln r(Uε (ω,0))
ω

. By the proof of [29, Proposition 2.1], it then follows that there is positive
ω-periodic function vε(t) such that uε(t) = eλ∗

ε tvε(t) is a positive solution of (2.8) for all
t ∈ R. Thus, the constant-variation formula yields

uε(t) = �ε(t, r)u
ε(r) +

∫ t

r
�ε(t, s)Fε(s)u

ε
s ds, ∀t ≥ r, r ∈ R. (2.9)
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On substituting uε(t) = eλ∗
ε tvε(t) into (2.9), we obtain

vε(t) = e−λ∗
ε (t−r)�ε(t, r)v

ε(r) +
∫ t

r
e−λ∗

ε (t−s)�ε(t, s)Fε(s)Eλ∗
ε
vε
s ds (2.10)

for all t ≥ r, r ∈ R. Since limε→0+(r(Uε(ω, 0)) − r(�ε(ω, 0))) = r(U (ω, 0)) −
r(�(ω, 0)) > 0, it follows that r(Uε(ω, 0)) − r(�ε(ω, 0)) > 0, and hence, λ∗

ε > ω(�ε),
for sufficiently small ε > 0. Note that the positive ω-periodic function vε(t) is bounded on
R, and

‖e−λ∗
ε (t−r)�ε(t, r)‖ ≤ Mεe

(ω(�ε)−λ∗
ε )(t−r), ∀t ≥ r, r ∈ R,

for some number Mε > 0. Letting r → −∞ in (2.10), we then have

vε(t) =
∫ t

−∞
e−λ∗

ε (t−s)�ε(t, s)Fε(s)Eλ∗
ε
vε
s ds = [Lε

λ∗
ε
vε](t), ∀t ∈ R,

that is, Lε
λ∗

ε
vε = vε . Since Lε

λ∗
ε
is compact and strongly positive, the Krein–Rutman theorem

implies that r(Lε
λ∗

ε
) = 1 for sufficiently small ε > 0.

In view of λ∗ > ω(�), we can fix a small number δ > 0 such that λ∗ − δ > ω(�). Since
limε→0+ λ∗

ε = λ∗ and limε→0+ ω(�ε) = ω(�), there is a small number ε0 > 0 such that
ω(�) − λ∗ + δ + ε0M0‖E‖ < 0 and

λ∗
ε ∈ [λ∗ − δ, λ∗ + δ], λ∗ − δ > ω(�ε), ∀ε ∈ [0, ε0].

Recall that c = εM0‖E‖. Let
Aε := sup

0≤t≤ω

‖Fε(t)‖, Bε := sup
0≤t≤ω

‖Fε(t) − F(t)‖.

By virtue of Lemma 2.2 and the fact that ‖�(t, t − s)‖ ≤ M0eω(�)s , it easily follows that
for all ε ∈ [0, ε0] and λ ∈ [λ∗ − δ, λ∗ + δ], there holds

‖Lε
λ − Lλ‖ ≤

∫ ∞

0
e−λs

(
cM0se

(ω(�)+c)s Aε + M0e
ω(�)s Bε

)
‖Eλ‖ds

= ‖Eλ‖
∫ ∞

0

(
cM0se

(ω(�)−λ+c)s Aε + BεM0e
(ω(�)−λ)s

)
ds

= cM0‖Eλ‖Aε

(ω(�) − λ + c)2
+ M0‖Eλ‖Bε

ω(�) − λ

≤ εM2
0‖E‖ · ‖Eλ‖(sup0≤t≤ω ‖F(t)‖ + ε)

(ω(�) − λ + εM0‖E‖)2 + εM0‖Eλ‖
ω(�) − λ

.

This implies that limε→0+ ‖Lε
λ − Lλ‖ = 0 for each λ ∈ [λ∗ − δ, λ∗ + δ], and hence,

lim
ε→0+ r(L

ε
λ) = r(Lλ) = μ(λ), ∀λ ∈ [λ∗ − δ, λ∗ + δ].

Let εn = 1
n and μn(λ) = r(Lεn

λ ). By Proposition 2.1, μ(λ) and μn(λ) are continuous on
[λ∗ −δ, λ∗ +δ]. Since Lεn+1

λ v ≤ Lεn
λ v for all v ∈ C+

ω , it follows thatμn(λ) is a nonincreasing
sequence of functions. Thus, Dini’s theorem implies that limn→∞ μn(λ) = μ(λ) uniformly
for λ ∈ [λ∗ − δ, λ∗ + δ]. Since

|μn(λ
∗
εn

) − μ(λ∗)| ≤ |μn(λ
∗
εn

) − μ(λ∗
εn

)| + |μ(λ∗
εn

) − μ(λ∗)|,
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we obtain limn→∞ μn(λ
∗
εn

) = μ(λ∗). On the other hand, the conclusion in the last paragraph
implies that μn(λ

∗
εn

) = r(Lεn
λ∗

εn
) = 1 for sufficiently large n. Letting n → ∞ in this equality,

we then have μ(λ∗) = 1. �
Now we are are ready to prove that R0 is a threshold value for the stability of the zero

solution for periodic system (2.1). Recall thatU (ω, 0) is the Poincaré (period) map of system
(2.1) on C .

Theorem 2.1 The following statements are valid:

(i) R0 = 1 if and only if r(U (ω, 0)) = 1.
(ii) R0 > 1 if and only if r(U (ω, 0)) > 1.
(iii) R0 < 1 if and only if r(U (ω, 0)) < 1.

Thus, R0 − 1 has the same sign as r(U (ω, 0)) − 1.

Proof In view of ω(�) = ln r(�(ω,0))
ω

< 0, we have r(�(ω, 0)) < 1.
(i) (a) If R0 = 1, then μ(0) = 1. By the proof of Proposition 2.1 (ii), it follows that

e0ω = 1 is an eigenvalue of U (ω, 0), and hence, r(U (ω, 0)) ≥ 1 > r(�(ω, 0)). Thus,
Proposition 2.2 implies that μ(λ∗) = 1. By Proposition 2.1 (ii), we further obtain λ∗ = 0,
that is, r(U (ω, 0)) = 1. (b) If r(U (ω, 0)) = 1, then λ∗ = 0. Since r(�(ω, 0)) < 1,
Proposition 2.2 implies that μ(0) = 1, that is, R0 = 1.

(ii) (a) If R0 > 1, then μ(0) > 1. Since μ(λ) is continuous on (ω(�),∞) and μ(∞) =
0 (see Proposition 2.1 (i)), there exists λ0 > 0 such that μ(λ0) = 1. By the proof of
Proposition 2.1 (ii), we see that eλ0ω is an eigenvalue of U (ω, 0), and hence, r(U (ω, 0)) ≥
eλ0ω > 1. (b) If r(U (ω, 0)) > 1, then λ∗ > 0. Since r(�(ω, 0)) < 1, it follows from
Proposition 2.2 that μ(λ∗) = 1, and hence, R0 = μ(0) ≥ μ(λ∗) = 1. But Proposition 2.1
(ii) implies that R0 = μ(0) �= 1. Thus, we must have R0 > 1.

Clearly, statement (iii) is a straightforward consequence of the conclusions (i) and (ii)
above. �

For any given λ ∈ (0,∞), we consider the following linear and periodic system:

du(t)

dt
= 1

λ
F(t)ut − V (t)u(t), t ≥ 0. (2.11)

Let U (t, s, λ) (t ≥ s) be the evolution operators on C associated with system (2.11). Then
we have the following result.

Theorem 2.2 If R0 > 0, then λ = R0 is the unique solution of r(U (ω, 0, λ)) = 1.

Proof By replacing F(t) with 1
λ
F(t), we can define the basic reproduction ratio, R(λ), for

system (2.11). It then follows that R(λ) = r
( 1

λ
L
) = 1

λ
R0. By Theorem 2.1, we have

sign(R(λ) − 1) = sign(r(U (ω, 0, λ)) − 1), ∀λ ∈ (0,∞).

Letting λ = R0 > 0 in the above equation, we then obtain r(U (ω, 0, R0)) = 1.
It remains to prove that r(U (ω, 0, λ)) = 1 has at most one positive solution for λ. Since

F(t) is a positive operator and −V (t) is cooperative, the comparison theorem (see [19,
Theorem 5.1.1]) implies that

U (ω, 0, λ1)φ ≥ U (ω, 0, λ2)φ, ∀0 < λ1 ≤ λ2, φ ∈ C+.

Note that each U (ω, 0, λ) is a positive and bounded linear operator on C . It then fol-
lows from [4, Theorem 1.1] that r(U (ω, 0, λ)) is a nonincreasing function of λ on (0,∞).
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Assume, by contradiction, that r(U (ω, 0, λ) = 1 has two positive solutions λ1 < λ2. Then
r(U (ω, 0, λ)) = 1, ∀λ ∈ [λ1, λ2]. We choose an integer n0 > 0 such that n0ω ≥ τ . In view
of [11, Theorem 3.6.1], each operator U (n0ω, 0, λ) is compact on C . Let λ ∈ [λ1, λ2] be
given. Since

r(U (n0ω, 0, λ)) = r
(
(U (ω, 0, λ))n0

)
= (r(U (ω, 0, λ)))n0 = 1 > 0,

the Krein–Rutman theorem implies that 1 is an eigenvalue of U (n0ω, 0, λ) with an eigen-
vector φ∗ ∈ C+ \ {0}. SinceU (n0ω, 0, λ)φ∗ = φ∗, it follows that u(t) := [U (t, 0, λ)φ∗](0)
is an n0ω-periodic solution of system (2.11). By the constant-variation formula, we have

u(t) = �(t, r)u(r) +
∫ t

r
�(t, s)

1

λ
F(s)usds, ∀t ≥ r, r ∈ R. (2.12)

Note that ‖�(t, s)‖ ≤ M0eω(�)(t−s), ∀t ≥ s, s ∈ R, for some M0 > 0. Since ω(�) < 0
and u(t) is bounded on R, leting r → −∞ in (2.12), we further obtain

u(t) =
∫ t

−∞
�(t, s)

1

λ
F(s)usds, ∀t ∈ R,

and hence, Lu = λu. Since L also defines a compact linear operator onCn0ω (seeLemma2.1),
it follows that λ is an eigenvalue of L onCn0ω. Thus, any λ ∈ [λ1, λ2] is an eigenvalue of L on
Cn0ω, which is impossible since the compact linear operator L on Cn0ω has only countablely
many eigenvalues. �

For any given F ∈ L(C,Rm), we define F̂ ∈ L(Rm,Rm) by

F̂u = F(û), ∀u ∈ R
m,

where û(θ) = u, ∀θ ∈ [−τ, 0]. Clearly, F̂ can be regarded as an m × m matrix. Then we
have the following result.

Corollary 2.1 Let F(t) ≡ F ∈ L(C,Rm) and V (t) ≡ V . Then R0 = r(V−1 F̂) =
r(F̂V−1).

Proof Clearly, r(V−1 F̂) = r(F̂V−1). Without loss of generality, we may assume that
r(V−1 F̂) > 0 and for all λ > 0, U (t, 0, λ) is eventually strongly positive on C ( see
[19, Section 5.3]). Otherwise, we can choose appropriate small perturbations Fε and Vε

instead of F and V , respectively, and then use a limiting argument as ε → 0. In view of
V−1 = ∫ ∞

0 e−V sds and �(t, s) = e−V (t−s), it easily follows that

Lv = V−1 F̂v, ∀v ∈ R
m .

Note that r(V−1 F̂) is an eigenvalue of V−1 F̂ with an eigenvector v∗ ∈ R
m+ \ {0}. Then

r0 := r(V−1 F̂) is also an eigenvalue of L , and hence, R0 > 0. Since V−1 F̂v∗ = r0v∗, we
have 1

r0
F̂v∗ − V v∗ = 0, which implies that u(t) = v∗ is a constant solution to

du(t)

dt
= 1

r0
Fut − Vu(t).

Thus, U (t, 0, r0)v∗ = v∗, ∀t ≥ 0. We fix a large integer n0 > 0 such that
U (n0ω, 0, r0) is compact and strongly positive. By the Krein–Rutman theorem, we then
obtain r(U (n0ω, 0, r0)) = 1. Since

r(U (n0ω, 0, r0)) = r
(
(U (ω, 0, r0))

n0
)

= (r(U (ω, 0, r0)))
n0 ,

it follows that r(U (ω, 0, r0)) = 1. Now Theorem 2.2 implies that R0 = r0. �

123



J Dyn Diff Equat (2017) 29:67–82 77

In the case where τ = 0, Theorems 2.1 and 2.2 reduce to Theorems 2.2 and 2.1 (ii) of
[24], respectively, and Corollary 2.1 is consistent with the formula of R0 given in [23]. More
recently, the basic reproduction number was addressed in [28] for linear autonomous systems
with discrete delays:

d I (t)

dt
= F1 I (t − τ1) + F2 I (t − τ2) − V I (t),

where F1 and F2 are nonnegative matrices and −V is a cooperative matrix. Taking F(φ) =
F1φ(−τ1) + F2φ(−τ2) and τ = max{τ1, τ2}, we have F̂ = F1 + F2. Thus, Corollary 2.1
implies that R0 = r((F1 + F2)V−1), which is the same as the formula obtained in [28].
Clearly,Corollary 2.1 also applies tomore general linear autonomous systemswith distributed
delays.

Remark 2.1 The theory of basic reproduction ratio in this section can be extended to abstract
periodic linear systemswith time delay if we replaceRm with an ordered Banach space E and
assume that each −V (t) is a linear operator such that the linear equation du

dt = −V (t)u gen-
erates a positive evolution operator �(t, s) on E . Thus, one can apply the generalized theory
to periodic and time-delayed reaction-diffusion populationmodels. For example, letting be
a bounded domain with smooth boundary, E = C(̄,Rm) and−V (t)u = D(t)�u−W (t)u,
we can consider the following periodic linear system:

∂u

∂t
= D(t)�u + F(t)ut − W (t)u,

subject to the Neumann boundary condition. Here �u = (�u1, . . . , �um)T , [D(t)](x) =
diag(d1(t, x), . . . , dm(t, x)) with di (t, x) > 0 or di (t, x) ≡ 0, and for each t ∈ R, F(t) ∈
L(C([−τ, 0], E), E) and −[W (t)](x) is an m × m cooperative matrix function of x ∈ ̄.

3 An Application

We consider a continuous-time SEIR model of a disease transmission. Let S(t), E(t), I (t)
and R(t) be the total numbers at time t of the susceptible, exposed, infective, and recovered
(or removed) populations, respectively. For simplicity, we assume that the latent period of
the disease is τ , and the incidence rate function f (t, S, I ) depends on time t and variables
S and I . Let μ(t) be the natural death rate of the population. It then follows that the rate of
entry into the infective class from the exposed one at time t is

e− ∫ t
t−τ μ(r)dr f (t − τ, S(t − τ), I (t − τ)).

As discussed in [20], E(t) can be represented as

E(t) =
∫ t

t−τ

e− ∫ t
s μ(r)dr f (s, S(s), I (s))ds.

Thus, we obtain the following nonautonomous SEIR model:

dS(t)

dt
= �(t) − f (t, S(t), I (t)) − μ(t)S(t) + α(t)R(t),

E(t) =
∫ t

t−τ

e− ∫ t
s μ(r)dr f (s, S(s), I (s))ds,

d I (t)

dt
= e− ∫ t

t−τ μ(r)dr f (t − τ, S(t − τ), I (t − τ)) − (μ(t) + d(t) + γ (t))I (t),
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dR(t)

dt
= γ (t)I (t) − μ(t)R(t) − α(t)R(t). (3.1)

Here �(t) is the recruitment rate, d(t) is the disease-induced death rate, γ (t) is the recovery
rate, and α(t) is the loss of immunity rate.

According to [5], we need to impose the following compatibility condition:

E(0) =
∫ 0

−τ

e− ∫ 0
s μ(r)dr f (s, S(s), I (s))ds. (3.2)

It is easy to verify that

dE(t)

dt
= f (t, S(t), I (t)) − e− ∫ t

t−τ μ(r)dr f (t − τ, S(t − τ), I (t − τ)) − μ(t)E(t).

Thus, model (3.1) reduces to the following nonautonomous functional differential system:

dS(t)

dt
= �(t) − f (t, S(t), I (t)) − μ(t)S(t) + α(t)R(t),

dE(t)

dt
= f (t, S(t), I (t)) − e− ∫ t

t−τ μ(r)dr f (t − τ, S(t − τ), I (t − τ)) − μ(t)E(t),

d I (t)

dt
= e− ∫ t

t−τ μ(r)dr f (t − τ, S(t − τ), I (t − τ)) − (μ(t) + d(t) + γ (t))I (t),

dR(t)

dt
= γ (t)I (t) − μ(t)R(t) − α(t)R(t), (3.3)

subject to condition (3.2).
We assume that f (t, S, I ) and all these time-dependent coefficients are ω-periodic in t

for some real number ω > 0. It is then easy to see that the function

p(t) := e− ∫ t
t−τ μ(r)dr

is alsoω-periodic, and hence, model (3.3) is anω-periodic and time-delayed system. To study
the evolution dynamics of system (3.3), we make the following assumptions.

(A1) �(t), μ(t), α(t), d(t), and γ (t) are all non-negative and continuous functions with
�(t) > 0,

∫ ω

0 μ(t)dt > 0, and
∫ ω

0 γ (t)dt > 0.
(A2) f (t, S, I ) is a C1-function with the following properties:

(i) f (t, S, 0) ≡ 0, f (t, 0, I ) ≡ 0, and ∂ f (t,S,0)
∂ I are positive and non-decreasing for all

S > 0.
(ii) ∂ f (t,S,I )

∂S ≥ 0 and f (t, S, I ) ≤ ∂ f (t,S,0)
∂ I I for all (t, S, I ) ∈ R × R

2+.

A prototypical example for incidence function is f (t, S, I ) = β(t)SI
1+c(t)I with c(t) ≥ 0. For

more general time-independent incidence functions, we refer to [13] and references therein.
By virtue of (A1), we see that the scalar linear periodic equation

dS(t)

dt
= �(t) − μ(t)S(t) (3.4)

has a unique positive ω-periodic solution S∗(t), which is globally stable in R. Linearizing
system (3.3) at its disease-free periodic solution (S∗(t), 0, 0, 0), we then obtain the following
periodic linear equation for the infective variable I :

d I (t)

dt
= a(t)I (t − τ) − b(t)I (t), (3.5)
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where

a(t) = p(t)
∂ f (t − τ, S∗(t − τ), 0)

∂ I
, b(t) = μ(t) + d(t) + γ (t).

Following the procedure in Sect. 2, we takem = 1, F(t)φ = a(t)φ(−τ), and V (t) = b(t).
It then easily follows that

�(t, s) = e− ∫ t
s b(r)dr , ∀t ≥ s, s ∈ R,

and

[Lv](t) =
∫ ∞

0
�(t, t − s)F(t − s)v(t − s + ·)ds

=
∫ ∞

0
�(t, t − s)a(t − s)v(t − s − τ)ds

=
∫ ∞

τ

�(t, t − s + τ)a(t − s + τ)v(t − s)ds

=
∫ ∞

0
K (t, s)v(t − s)ds, ∀t ∈ R, v ∈ Cω,

where

K (t, s) =
{

�(t, t − s + τ)a(t − s + τ), if s ≥ τ

0, if s < τ.

According to the definition in Sect. 2, we have R0 = r(L).
Since the S, I and R equations in model (3.3) do not depend on variable E , it suffices to

study the following ω-periodic system with time delay:

dS(t)

dt
= �(t) − f (t, S(t), I (t)) − μ(t)S(t) + α(t)R(t),

d I (t)

dt
= p(t) f (t − τ, S(t − τ), I (t − τ)) − (μ(t) + d(t) + γ (t))I (t),

dR(t)

dt
= γ (t)I (t) − μ(t)R(t) − α(t)R(t). (3.6)

Let X = C([−τ, 0],R3+). By the standard theory of functional differential equations (see,
e.g., [11]), system (3.6) admits a unique nonnegative solution v(t, φ) = (S(t), I (t), R(t))
satisfying v0(φ) = φ ∈ X . Define

D :=
{
ψ ∈ C

(
[−τ, 0],R4+

)
: ψ2(0) =

∫ 0

−τ

e− ∫ 0
s μ(r)dr f (s, ψ1(s), ψ3(s))ds

}
.

It then easily follows that for any ψ ∈ D, system (3.3) has a unique nonnegative solution
u(t, ψ) = (S(t), E(t), I (t), R(t)) satisfying u0(ψ) = ψ . Let N (t) = S(t) + E(t) + I (t) +
R(t). Then we have

dN (t)

dt
= �(t) − μ(t)N (t) − d(t)I (t) ≤ �(t) − μ(t)N (t), t ≥ 0. (3.7)

Thus, the global stability of S∗(t) for (3.4), together with the comparison argument, implies
that solutions of system (3.3) with initial data in D, and hence (3.6) in X , exist globally on
[0,∞) and are ultimately bounded.

Let X0 = {φ = (φ1, φ2, φ3) ∈ X : φ2(0) > 0}. The subsequent result shows that R0

serves as a threshold value for the global extinction and uniform persistence of the disease.
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Theorem 3.1 Let (A1) and (A2) hold. Then the following statements are valid:

(i) If R0 < 1, then the disease-free periodic solution (S∗(t), 0, 0) is globally attractive for
system (3.6) in X.

(ii) If R0 > 1, then system (3.6) admits a positive ω-periodic solution (S̄(t), Ī (t), R̄(t)),
and there exists a real number η > 0 such that the solution u(t, φ) = (S(t), I (t), R(t))
satisfies lim inf t→∞ I (t) ≥ η for any φ ∈ X0.

Proof Let P(t)be the solutionmapsof the scalar linear equation (3.5) onY := C([−τ, 0],R),
that is, P(t)φ = wt (ψ), t ≥ 0, wherew(t, ψ) is the unique solution of (3.5) satisfyingw0 =
ψ ∈ Y . Then P := P(ω) is the Poincaré (period) map associated with system (3.5). In view
of Theorem 2.1, we have sign(R0 − 1) = sign(r(P) − 1). Since p(t) ∂ f (t−τ,S∗(t−τ),0)

∂ I > 0,
it follows from [11, Theorem 3.6.1] and [19, Lemma 5.3.2] that for each t ≥ 2τ , the linear
operator P(t) is compact and strongly positive on Y . Choose an integer n0 > 0 such that
n0ω ≥ 2τ . Since Pn0 = P(n0ω), [14, Lemma 3.1] implies that r(P) is a simple eigenvalue
of P having a strongly positive eigenvector, and the modulus of any other eigenvalue is less
than r(P). Let μ = ln r(P)

ω
. By the proof of [29, Proposition 2.1], it then follows that there is

positive ω-periodic function v(t) such that u(t) = eμtv(t) is a positive solution of (3.5).
In the case where R0 < 1, we have r(P) < 1. Let Pε be the Poincaré map of the following

perturbed linear periodic equation

d I (t)

dt
= p(t)

∂ f (t − τ, S∗(t − τ) + ε, 0)

∂ I
I (t − τ) − (μ(t) + d(t) + γ (t))I (t). (3.8)

Since limε→0 r(Pε) = r(P) < 1, we can fix a sufficiently small number ε > 0 such that
r(Pε) < 1. As discussed in the last paragraph, there is positive ω-periodic function vε(t)
such that uε(t) = eμε tvε(t) is a positive solution of (3.8), where με = ln r(Pε )

ω
< 0. For

any given φ ∈ X , let v(t, φ) = (S(t), I (t), R(t)). In view of (3.7) and the global stability
of S∗(t) for (3.4), it follows that there exists a sufficiently large integer n1 > 0 such that
n1ω ≥ τ and S(t) ≤ S∗(t) + ε, ∀t ≥ n1ω − τ . By assumption (A2), we then have

d I (t)

dt
≤ p(t)

∂ f (t − τ, S∗(t − τ) + ε, 0)

∂ I
I (t − τ) − (μ(t) + d(t) + γ (t))I (t)

for all t ≥ n1ω. Choose a sufficiently large number K > 0 such that I (t) ≤ Kuε(t), ∀t ∈
[n1ω−τ, n1ω]. Thus, the comparison theorem for delay differential equations ([19, Theorem
5.1.1]) implies that

I (t) ≤ Kuε(t) = Keμε tvε(t), ∀t ≥ n1ω,

and hence, limt→∞ I (t) = 0. By using the chain transitive sets arguments (see, e.g., [15,
Theorem 4.1(a)]), it easily follows that limt→∞ R(t) = 0 and limt→∞(S(t) − S∗(t)) = 0.

In the case where R0 > 1, we have r(P) > 1. Let Q(t)φ = vt (φ), ∀φ ∈ X , and
Q = Q(ω). Clearly, {Q(t)}t≥0 is an ω-periodic semiflow on X (see [30]), and Qn =
Q(nω), ∀n ≥ 0. Let Mδ be the Poincaré map of the following perturbed linear periodic
equation

d I (t)

dt
= p(t)

(
∂ f (t − τ, S∗(t − τ), 0)

∂ I
− δ

)
I (t − τ) − (μ(t) + d(t) + γ (t))I (t).

Since limδ→0 r(Mδ) = r(P) > 1, we can fix a small number δ > 0 such that r(Mδ) > 1. It
then follows that there is a small number η0 > 0 such that

f (t − τ, S∗(t − τ) − η0, I ) ≥
(

∂ f (t − τ, S∗(t − τ), 0)

∂ I
− δ

)
I, ∀I ∈ [0, η0].
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Note that (A2) implies that f (t, S, I ) is non-decreasing in S. Let M1 = (S∗(0), 0, 0). Then
Q(M1) = M1. By a contradiction argument similar to that in the proof of [29, Lemma 3.2],
we can further prove the following claim.
Claim. lim supn→∞ ‖Qn(φ) − M1‖ ≥ η0, ∀φ ∈ X0.
This implies that M1 is an isolated invariant set for Q in X and Ws(M1) ∩ X0 = ∅, where
Ws(M1) is the stable set of M1 for Q. Set ∂X0 = X \ X0 and

M∂ = {φ ∈ ∂X0 : Qn(φ) ∈ ∂X0, ∀n ≥ 0}.
Since

d I (t)

dt
≥ −(μ(t) + d(t) + γ (t))I (t), ∀t ≥ 0,

it is easy to see that if I (t0) > 0 for some t0 ≥ 0, then I (t) > 0 for all t ≥ t0. This property
implies that I (t) = 0, ∀t ≥ 0, whenever φ ∈ M∂ . It then follows that ω(φ) = M1 for any
φ ∈ M∂ , and M1 cannot form a cycle for Q in ∂X0. By the acyclicity theorem on uniform
persistence for maps (see, e.g., [30, Theorem 1.3.1 and Remark 1.3.1]), Q : X → X is
uniformly persistent with respect to X0. Thus, [30, Theorem 3.1.1] implies that the periodic
semiflow Q(t) : X → X is also uniformly persistent with respect to X0. Note that γ (t) �≡ 0
and f (t, 0, I ) ≡ 0. By similar arguments to those in the proof of [15, Theorem 4.1(b)], we
then obtain the existence of a positive ω-periodic solution and the desired persistence for
system (3.6). �

To finish this paper, we remark that unlike in the case of periodic ODEs, it is not easy
to use Theorem 2.2 to compute numerically R0 for periodic and time-delayed population
models. This is because the linear operators U (ω, 0, λ) are defined on the Banach space
C([−τ, 0],Rm). However, one may employ the orthogonal projection method in the com-
putation of eigenvalues for compact linear operators (see, e.g., [6, Section 3]) to compute
R0 = r(L).
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