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Abstract In this paper we consider the impact that full spatial–temporal discretizations of
reaction–diffusion systems have on the existence and uniqueness of travelling waves. In
particular, we consider a standard second-difference spatial discretization of the Laplacian
together with the six numerically stable backward differentiation formula methods for the
temporal discretization. For small temporal time-steps and a fixed spatial grid-size, we estab-
lish some useful Fredholm properties for the operator that arises after linearizing the system
around a travelling wave. In particular, we perform a singular perturbation argument to lift
these properties from the natural limiting operator. This limiting operator is associated to a
lattice differential equation, where space has been discretized but time remains continuous.
For the backward-Euler temporal discretization, we also obtain travelling waves for arbitrary
time-steps. In addition, we show that in the anti-continuum limit, in which the temporal time-
step and the spatial grid-size are both very large, wave speeds are no longer unique. This is in
contrast to the situation for the original continuous system and its spatial semi-discretization.
This non-uniqueness is also explored numerically and discussed extensively away from the
anti-continuum limit.

Keywords Travelling waves · Singular perturbations · Finite difference methods ·
BDF methods · Spatial–temporal discretizations

Mathematics Subject Classification 34K31 · 37L15

Dedicated to Professor John Mallet-Paret on the occasion of his 60th birthday.

H. J. Hupkes (B)
Mathematisch Instituut, Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands
e-mail: hhupkes@math.leidenuniv.nl

E. S. Van Vleck
Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd, Lawrence, KS 66045, USA
e-mail: erikvv@ku.edu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-014-9423-9&domain=pdf


956 J Dyn Diff Equat (2016) 28:955–1006

1 Introduction

In this paperwe study spatial–temporal discretizations of a class of bistable reaction–diffusion
equations that includes the Nagumo PDE

ut = uxx + gcub(u; a), 0 < a < 1, (1.1)

which is also commonly referred to as the Allen–Cahn equation. The cubic nonlinearity is
given by

gcub(u; a) = u(1 − u)(u − a), 0 < a < 1. (1.2)

Our goal is to understand the impact that such discretizations have on travelling front solutions
of these systems. Such solutions have the form

u(x, t) = �(x + ct), �(−∞) = 0, �(+∞) = 1 (1.3)

and play a fundamental role in the analysis of (1.1). Indeed, they are stablewith a large domain
of attraction, provide a mechanism by which the energetically favourable background state
can invade the domain and serve as building-blocks for the construction of more complex
patterns. Although explicit expressions for these fronts are available for (1.1), this is not the
case in general and one frequently uses numerical approximations. It is hence rather desirable
to understand the effects of the employed discretization scheme.

1.1 Discretization Schemes

The simplest spatial–temporal discretization scheme for (1.1) uses the forward-Euler method
with time-step�t > 0 for the temporal component, together with a second-difference stencil
on a spatial grid with spacing h > 0. This provides approximants

u(hj, n�t) ∼ Uj (n�t), ( j, n) ∈ Z
2 (1.4)

that evolve as

1

�t

[
Uj

(
(n + 1)�t

) −Uj (n�t)
] = Fh

(
Uj−1(n�t),Uj (n�t),Uj+1(n�t); a)

, (1.5)

in which we have defined

Fh
(
Uj−1,Uj ,Uj+1; a

) = 1

h2
[
Uj−1 +Uj+1 − 2Uj ] + gcub

(
Uj ; a

)
. (1.6)

Throughout most of the present paper we treat the spatial discretization as fixed. In this sense,
one could alternatively state that we are interested in temporal discretizations of a class of
bistable lattice differential equations (LDEs) that includes the Nagumo LDE

u̇ j (t) = h−2[u j−1(t) + u j−1(t) − 2u j (t)
] + gcub

(
u j (t); a

)
, 0 < a < 1. (1.7)

Such LDEs arise naturally when modelling physical, chemical or biological systems that
have an inherent discrete spatial structure, such as crystals [36], coupled chemical reactors
[27] or myelinated nerve fibres [2]. The LDE (1.7) is by no means as well-studied as the PDE
(1.1), but the literature concerning the former has expanded rapidly in recent decades.

Although intuitively appealing, the forward-Euler temporal discretization employed in
(1.5) has a number of serious drawbacks. This can be seen by applying it to the test-problem
v̇ = λv with λ < 0, which gives

vn+1 = vn + λ�tvn = (1 + λ�t)vn . (1.8)
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In order to enforce vn → 0 we must hence demand 0 < �t < 2 |λ|−1, a restriction on the
step-size that becomes increasingly severe as λ → −∞. This can be easily overcome by
employing the backward-Euler discretization, which demands

vn+1 = vn + λ�tvn+1 (1.9)

and hence yields
vn+1 = (1 − λ�t)−1vn . (1.10)

In this case we see vn → 0 for any time-step �t > 0. We remark that a numerical scheme
is called A(α)-stable if this latter property holds for the entire wedge

λ ∈ {z ∈ C \ {0} : | arg(−z)| < α}. (1.11)

In particular, the backward-Euler discretization is A( π
2 )-stable, since

|1 − λ�t | ≥ |Re 1 − λ�t | ≥ 1 − (�t)Re λ > 1 (1.12)

holds whenever Re λ < 0 and �t > 0.
Replacing the forward-Euler temporal discretization in (1.5) by its backward-Euler coun-

terpart, we obtain the evolution

1

�t

[
Uj

(
n�t

) −Uj
(
(n − 1)�t

)] = Fh

(
Uj−1(n�t),Uj (n�t),Uj+1(n�t); a

)
, (1.13)

which plays a primary role in this paper. In fact, the backward-Euler discretization is the
first member of a family of six discretization schemes commonly referred to as backward
differentiation formula (BDF) methods. These methods are all A(α)-stable with various
coefficients 0 < α ≤ π

2 . The nature of their construction ensures that these schemes can be
conveniently analyzed and they are commonly used in codes to solve parabolic problems.
For these reasons, we have singled out this family of temporal discretization schemes for our
analysis in this paper. We note however that there are other stiffly stable numerical methods,
see for example [14].

In our case, the second BDF method takes the form

1

2�t

[
3Uj

(
n�t

) − 4Uj
(
(n − 1)�t

) +Uj
(
(n − 1)�t

)]

= Fh

(
Uj−1(n�t),Uj (n�t),Uj+1(n�t); a

)
. (1.14)

We take the opportunity here to point out an important difference between the backward-
Euler evolution (1.13) and the two other fully-discretized systems (1.5) and (1.14) discussed
above. In the former system, all terms that do not involve Uj (n�t) occur with coefficients
of the same sign (after moving them to the same side of the equation). This is not the case
for (1.5), (1.14) and the other four BDF methods considered in this paper. This powerful
property allows us to embed (1.13) into a larger system that admits a comparison principle.
In particular, we will be able to obtain results for (1.13) with arbitrary �t > 0, while having
to demand �t ≈ 0 for the other BDF discretizations.

1.2 Existence of Travelling Fronts

1.2.1 Continuous Setting

The front solutions (1.3) to the PDE (1.1) can be found explicitly by solving the planar ODE

c�′(ξ) = �′′(ξ) + gcub
(
�(ξ); a)

. (1.15)
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In particular, for each a ∈ (0, 1) there is a unique wave speed c(a) for which a travelling
front exists. The front profile itself is also unique up to translations. By symmetry, we have
c( 12 ) = 0. In addition, we have ∂ac(a) < 0, which for some c0 > 0 allows us to define a
single-valued function a(c) with c ∈ (−c0, c0).

1.2.2 Semi-discrete Setting

By contrast, substitution of the travelling wave Ansatz

u j (t) = �( j + ct), �(−∞) = 0, �(+∞) = 1 (1.16)

into the LDE (1.7) with h = 1 leads to the mixed type functional differential equation
(MFDE)

c�′(ξ) = �(ξ + 1) + �(ξ − 1) − 2�(ξ) + gcub
(
�(ξ); a)

. (1.17)

A number of powerful tools have been developed in the past decades to analyze MFDEs,
which present significant mathematical challenges [16,28,31,34,35].

As in the continuous case, there is a unique wave speed c(a) that allows fronts to exists for
each a ∈ (0, 1) [29]. However, the inverse function a(c) is typically multi-valued for c = 0,
in which case wave profiles may become step-like and lose their uniqueness [11,20]. This
can be seen as a consequence of the broken translational invariance, which is manifested by
the fact that the wave speed c appears in (1.17) in a singular fashion.

1.2.3 Fully Discrete Setting

Our primary concern in this paper is to establish the existence of travelling fronts

Uj (n�t) = �( j + nc�t), �(−∞) = 0, �(+∞) = 1, (1.18)

after temporally discretizing (1.7) using theBDFmethods discussed above. For the backward-
Euler discretization, such fronts must satisfy the system

1

�t
[�(ξ) − �(ξ − c�t)] = Fh

(
�(ξ − 1),�(ξ),�(ξ + 1); a)

= h−2[�(ξ − 1) + �(ξ + 1) − 2�(ξ)
] + gcub

(
�(ξ); a)

.

(1.19)

This is a difference equation for all c ∈ R. In particular, it is natural to ask whether the a(c)
relation can be be multi-valued even for c 
= 0. We note that related phenomena have been
observed in monostable KPP systems [32] in the presence of inhomogeneities. Investigating
the a(c) relationship is therefore our secondary concern in this paper. Our results cover three
distinct regimes for the time-step �t > 0, which we now briefly discuss.

1.2.4 The Small Time-Step Limit

For �t ↓ 0, we set up a perturbation argument to construct solutions to (1.19) and its higher
order counterparts that are close to solutions (c,�) to (1.17). Fixing h = 1, the key technical
ingredient here is the understanding of the fully discrete operator

[Lfdv](ξ) = − 1

�t
[v(ξ)− v(ξ − c�t)]+ v(ξ −1)+ v(ξ +1)−2v(ξ)+ g′

cub(�(ξ); a)v(ξ),

(1.20)
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for ξ in an appropriate subset of R. This operator is associated to the linearization of (1.19)
around a solution of (1.17). Themain question is inwhat sense this operator inherits properties
from its semi-discrete counterpart

[Lsdv](ξ) = −cv′(ξ) + v(ξ − 1) + v(ξ + 1) − 2v(ξ) + g′
cub(�(ξ); a)v(ξ), (1.21)

which by now is well-understood [21,29]. The transition between Lsd and Lfd is highly
singular, since an (unbounded) derivative is replaced by a (bounded) finite difference and the
natural domain for ξ varies from the whole line to a subset of the line.

A related situation was encountered by Bates and coworkers when studying spatial dis-
cretizations of (1.1), although here the singular transition was between two differential equa-
tions of order two and one [1]. Nevertheless, we are able to mimic the spirit of their approach
in our situation to obtain a Fredholm-type result for Lfd in Sect. 3. This allows us to use a
standard Liapunov–Schmidt perturbation argument to study the nonlinear problem (1.19).

At present our approach is limited to rational values of the combination c�t . In such
cases, we find that the natural domain for (1.19) is a discrete subset of the line. Since one can
choose on which such subset the unperturbed wave� is sampled, we in fact get a continuous
branch of solutions to the perturbed problem (1.19). We believe that this is the mechanism by
which the non-uniqueness of the a(c) relation arises and we discuss this issue in considerable
detail in Sect. 5.

When studying problems involving MFDEs, the need to distinguish between rationally
and irrationally related shifts frequently arises. Indeed, when studying planar travelling wave
solutions to LDEs posed on Z2, the rationality of the (tangent of the) direction of propagation
has played an important role in the analysis of phenomena such as crystallographic pinning
[4,7,20,23,30] and nonlinear wave stability [18,19]. In Sect. 5 we discuss some potential
connections between the results in [20] and the issues encountered here.

1.2.5 Fixed Time-Step

Upon fixing the time-step �t > 0, it is possible to analyze the backward-Euler travelling
wave equation (1.19) (but not the other BDF methods) by embedding it into the MFDE

ν�′(ξ) = 1

�t
[�(ξ − c�t)−�(ξ)]+h−2[�(ξ −1)+�(ξ +1)−2�(ξ)

]+ gcub
(
�(ξ); a)

(1.22)
and looking for solutions with ν = 0. This allows us to directly apply some important results
obtained by Mallet–Paret in his landmark paper [29]. In particular, the (possibly) multi-
valued a(c) relation is non-empty for small |c| and the non-uniqueness of this relation can
be directly related to the phenomenon of propagation failure for solutions to bistable LDEs.
Our results in this setting also work for c�t /∈ Q since we are able to exploit some powerful
monotonicity properties of the auxiliary variable ν.

1.2.6 Anti-continuum Limit

Finally, for �t → ∞ and h → ∞, which can be seen as the anti-continuum limit for (1.1),
we can study (1.19) by adapting an elegant construction devised by Keener in his pioneering
paper [25] for the Nagumo LDE (1.7). This allows us to show that the a(c) relation is indeed
multi-valued for all c ∈ R, for choices of�t and h that can be made explicit. The argument is
essentially that a blocking region for � in (1.22) exists that prevents either of the two stable
background states � ≡ 0 and � ≡ 1 from invading the domain. This forces ν = 0 to hold
for our auxiliary speed-like variable.
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1.3 Motivation

Our primary motivation for this work is to contribute to the on-going systematic approach
to understand the impact of discretization schemes on the dynamics that they are designed
to capture. Of course, there is a tremendous amount of literature concerning the accuracy of
numerical schemes, but these studies typically focus on finite time error bounds. Our concern
is more related to the persistence of structures that exist for all time. An interesting discussion
on this topic can be found in [13], which studies the impact of discretization on attractors for
ODEs.

In some sense this work can be seen as a follow-up to the series [8–10], where ad-hoc
techniques are developed to provide insight on the impact of spatial-, temporal- and spatial–
temporal discetizations on the dynamics of travelling waves. These works include rigorous,
formal, and first order results for smooth and piecewise linear bistable nonlinearities. Roughly
speaking, it was found that spatial discretization schemes have a relatively high impact on
slow waves, while temporal discretizations have more effect on fast waves. In addition, the
non-uniqueness of the a(c) relationship was established for fully discretized systems with a
piecewise-linear nonlinearity; see [8, Fig. 3].

Wenote that complete discretizations have been analyzed byChow,Mallet-Paret, and Shen
[5] in their work on the stability of bistable lattice traveling waves. These authors obtain the
existence of fully discretized travelling waves by looking directly at Poincaré return-maps
for the dynamics of (1.7), in contrast to our approach which focusses on the travelling wave
equations (1.19) and the linear operator Lfd. The benefits of our linear analysis are that we
are able to (partially) address questions concerning uniqueness and parameter dependence
of these waves. In addition, based on our prior experience in [18,19,21], we believe that the
full power of understanding Lfd will come into play when addressing the stability of these
waves under the fully discretized dynamics. Indeed, addressing this issue appears to be the
natural next step in the broader program outlined above.

By now, there are many well-established codes such as DASSL [33], LSODE [17], and
VODE [3] that are used by practitioners to solve parabolic problems such as those considered
here. At their heart, these codes typically employ BDF discretizations to solve the underlying
stiff problems. However, in order to increase accuracy and efficiency, non-uniform adaptive
spatial discretizations are often considered together with temporal methods that involve vari-
able orders and time-steps. Our hope is that the present work can be used as a starting point
for rigorously understanding these more complicated algorithms.

1.4 Organization

This paper is organized as follows. InSect. 2we formulate the standardbistability assumptions
we need to impose on our system and recall the k-step BDF methods for k ∈ {1, . . . , 6}.
We also state our main results for the three time-step regimes that were discussed above.
Section 3 is focused on the analysis of the linearized operators Lfd and their relation with a
multi-component version of Lsd, inspired by the analysis of Bates and coworkers in [1]. We
prove ourmain results in Sect. 4, exploiting the linear theory developed inSect. 3 togetherwith
the work of Mallet-Paret [29] and Keener [25]. Finally, in Sect. 5 we discuss the significance
of the results obtained, the complications arising in the case of irrational c�t and potential
connections with work by other authors on asymptotic analysis [26] and crystallographic
pinning [20].
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2 Main Results

Our main results concern the well-known Nagumo LDE

u̇ j (t) = κ
[
u j+1 + u j−1 − 2u j (t)

] + g
(
u j (t); a

)
, (2.1)

with κ > 0, j ∈ Z, t ∈ R and u j (t) ∈ R. We impose the following standard bistability
conditions on the nonlinearity g, which in the terminology of [29] imply that (2.1) is a
normal family.

(Hg) Thenonlinearity g : R×R → R isCr -smooth for some integer r ≥ 2,with ∂ag(u; a) <

0 for all a ∈ (0, 1) and u ∈ (0, 1). In addition, we have the identities g(0; a) =
g(1; a) = g(a; a) = 0 for all a ∈ (0, 1) together with the inequalities g(u; a) < 0 for
u ∈ (0, a) ∪ (1,∞) and g(u; a) > 0 for u ∈ (−∞, 0) ∪ (a, 1). Finally, the derivatives
of g with respect to u satisfy the inequalities

∂ug(0; a) < 0, ∂ug(a; a) > 0, ∂ug(1; a) < 0 (2.2)

together with
∂aug(0; a) < 0, ∂aug(1; a) > 0, (2.3)

again for all a ∈ (0, 1).
The reader may wish to keep in mind the prototype cubic nonlinearity g(u; a) = u(u −

1)(a − u), which may easily be verified to satisfy (Hg).
In many situations one is unable or unwilling to solve (2.1) exactly for all time t ≥ 0.

Instead, the desire is to approximate the solution at discrete time intervals t = n�t by

u j (n�t) ∼ Uj (n�t), n ∈ Z≥0, j ∈ Z. (2.4)

In order to formulate an equation for the evolution of the approximantU , one needs to replace
the temporal derivative appearing in (2.1) by an appropriate discretized version.

The BDF discretizations are a collection of six different methods to accomplish this
task, utilizing interpolation polynomials of varying degree. In particular, the BDF method of
order k ∈ {1, 2, . . . 6} approximates u̇ in (2.1) at t = n�t by constructing an interpolating
polynomial of degree k through the k + 1 values {U(

(n − n′)�t
)}kn′=0 and computing the

derivative of this polynomial at U (n�t).
In particular, for the BDF method of order k, the evolution of U is governed by

β−1
k

1

�t

∑k

n′=0
αn′;kU j

(
n�t − (k − n′)�t

) = κ
[
Uj+1(n�t) +Uj−1(n�t) − 2Uj (n�t)

]

+ g
(
Uj (n�t); a)

, (2.5)

in which the coefficients βk and {αn′;k} are determined implicitly by the identities

k∑

n′=0

αn′;kU ((n′ − k)�t) =
k∑

n′′=1

[∂n′′
U ](0), βk =

k∑

n′=0

αn′;k(n′ − k), (2.6)

where we have introduced the notation

[∂U ](n′�t) = U (n′�t) −U
(
(n′ − 1)�t

)
. (2.7)

This definition implies that
∑k

n′=0 αn′;k = 0, which allows us to write

βk =
k∑

n′=0

αn′;k(n′ − k) =
k∑

n′=1

αn′;kn′. (2.8)
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Table 1 The coefficients αn;k
and βk associated to the six BDF
schemes as introduced in (2.5)

αn;k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

n = 0 −1 1
3

−2
11

3
25

−12
137

10
147

n = 1 1 −4
3

9
11

−16
25

75
137

−72
147

n = 2 1 −18
11

36
25

−200
137

225
147

n = 3 1 −48
25

300
137

−400
147

n = 4 1 −300
137

450
147

n = 5 1 −360
147

n = 6 1

βk 1 2
3

6
11

12
25

60
137

60
147

We remark here that the BDF method of order k = 1 is more commonly known as the
backward Euler method. For convenience, the values of these coefficients can be found in
Table 1. Naturally, the construction above can be repeated for arbitrary orders k ≥ 7, but the
resulting schemes are numerically unstable.

Our goal in this paper is to study travelling wave solutions to the fully discrete system
(2.5). Such solutions have the special form

Uj (n�t) = �( j + nc�t), (2.9)

for somewave speed c and profile� that connects the two stable equilibria of the nonlinearity
g. In particular, we demand

�(−∞) = 0, �(+∞) = 1, (2.10)

in a sense that we make precise below.

2.1 The Small Time-Step Limit �t → 0

For notational convenience, we introduce the quantity M = (c�t)−1. Inserting the Ansatz
(2.9) into (2.5), we find that the pair (c,�) must satisfy the system

c[Dk,M�](ξ) = κ
[
�(ξ + 1) + �(ξ − 1) − 2�(ξ)

] + g
(
�(ξ); a)

(2.11)

for all ξ that can be written as ξ = n + jM−1 for ( j, n) ∈ Z
2. Here we have introduced the

expressions

[Dk,M�](ξ) = β−1
k M

k∑

n′=0

αn′;k�
(
ξ − (k − n′)M−1), (2.12)

for k ∈ {1, 2, . . . 6}. For instance, for k = 1 and k = 2 we have

[D1,M�](ξ) = M
[
�

(
ξ
) − �

(
ξ − M−1)],

[D2,M�](ξ) = 3

2
M

[
�

(
ξ
) − 4

3
�

(
ξ − M−1) + 1

3
�

(
ξ − 2M−1)

]
. (2.13)

The expressions Dk,M� can be thought of as order k approximations of the derivative
�′. Indeed, let us consider any function � ∈ Ck+1(R,R) and suppose for concreteness that
M > 0. For fixed ξ , one can then approximate the shifted terms in (2.12) by the k-th order
Taylor polynomial centered at ξ , up to an error of order M−(k+1)�(k+1)(ξ + ϑ) for some
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ϑ ∈ [−kM−1, 0]. The uniqueness of interpolating polynomials together with the defining
property of the k-th order BDF method now imply the estimate

∣
∣[Dk,M�](ξ) − �′(ξ)

∣
∣ ≤ CkM

−k sup
−kM−1≤ϑ≤0

∥
∥
∥�(k+1)(ξ + ϑ)

∥
∥
∥, (2.14)

in which the constant Ck ≥ 1 is independent of � and M .
Some of our results require a restriction on the values of M that are allowed. In particular,

upon fixing an integer q ≥ 1, we need to introduce the set

Mq =
{
p

q
: p ∈ N has gcd(p, q) = 1 and p ≥ q

}
, (2.15)

which contains all irreducible fractions larger than one that have q as their denominator. We
often use the notation M = p

q ∈ Mq , as an implicit definition for an integer p = p(M) =
qM . We note that for M = p

q ∈ Mq , the natural domain of definition for ξ in the discretized

travelling wave equation (2.11) is the set p−1
Z.

The fully discretized travelling wave system (2.11) should be contrasted to the travelling
wave MFDE

c�′(ξ) = κ
[
�(ξ + 1) + �(ξ − 1) − 2�(ξ)

] + g
(
�(ξ); a)

, (2.16)

which arises after substitutingu j (t) = �( j+ct) into theLDE (2.1).Our first result constructs
a branch of solutions to (2.11) for large M that bifurcates from a solution to (2.16) with non-
zerowave speed. In particular,weneed to impose the following condition,which is guaranteed
[29] to hold for an open set of a ∈ (0, 1).

(H�)a The travelling wave MFDE (2.16) with a = a admits a solution (c,�) = (c,�) for
which the wave speed has c 
= 0 while the wave profile satisfies the limits

lim
ξ→−∞ �(ξ) = 0, lim

ξ→+∞ �(ξ) = 1. (2.17)

The linearization of the MFDE (2.16) around a solution (c,�) covered by (H�)a can be
described by the operator L : H1(R,R) → L2(R,R) that acts as

[Lv](ξ) = −cv′(ξ) + κ
[
v(ξ + 1) + v(ξ − 1) − 2v(ξ)

] + g′(�(ξ); a)
v(ξ). (2.18)

In [29, Thm. 4.1] itwas established thatL is Fredholmwith index zero,with a one dimensional
kernel spanned by �

′
> 0. In addition, there is a strictly positive function 
, normalized to

have ∫

(ξ)�

′
(ξ) = 1, (2.19)

so that the range of L is given by

Range (L) = {w ∈ L2(R,R) :
∫


(ξ)w(ξ) dξ = 0}. (2.20)

Theorem 2.1 Fix κ > 0 and pick a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. Consider the LDE
(2.1) and suppose that (Hg) is satisfied. Pick a in such a way that also (H�)a is satisfied.
Then there exist constants M∗ � 1 and δa > 0 so that for any M = p

q ∈ Mq with M ≥ M∗,
there are Cr−1-smooth functions

cM : R × [a − δa, a + δ] → R, �M : R × [a − δa, a + δa] → �∞(p−1
Z;R) (2.21)

that satisfy the following properties.
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(i) For any (ϑ, a) ∈ R × [a − δa, a + δa], the pair c = cM (ϑ, a) and � = �M (ϑ, a)

satisfies the system

c[Dk,M�](ξ) = κ
[
�(ξ +1)+�(ξ −1)−2�(ξ)

]+g
(
�(ξ); a)

, ξ ∈ p−1
Z, (2.22)

together with the boundary conditions

lim
ξ→−∞; ξ∈p−1Z

�(ξ) = 0, lim
ξ→+∞; ξ∈p−1Z

�(ξ) = 1. (2.23)

(ii) For any (ϑ, a) ∈ R × [a − δa, a + δa], the function � = �M (ϑ, a) admits the normal-
ization ∑

ξ∈p−1Z


(ξ + ϑ)
[
�(ξ) − �(ξ + ϑ)

] = 0. (2.24)

(iii) For any (ϑ, a) ∈ R × [a − δa, a + δa], we have the shift-periodicity
cM (ϑ + p−1, a) = cM (ϑ, a), �M (ϑ + p−1, a)(ξ) = �M (ϑ, a)(ξ + p−1). (2.25)

(iv) For any (ϑ, a) ∈ R × [a − δa, a + δa], we have the inequality
∂acM (ϑ, a) < 0. (2.26)

In addition, there exists δ > 0 such that the following holds true. Any triplet (c,�, ϑ) ∈
R × �∞(p−1

Z,R) × R that satisfies (2.22) for some pair (a, M) ∈ R × Mq with

|a − a| < δ, M = p

q
> δ−1 ≥ M∗ (2.27)

and enjoys the estimate

p−1
∑

ξ∈p−1Z

[∣∣�(ξ) − �(ξ + ϑ)
∣∣2 + ∣∣[Dk,M�](ξ) − [Dk,M�](ξ + ϑ)

∣∣2
]

< δ2, (2.28)

must actually satisfy � = �M (ϑ̃, a) and c = cM (ϑ̃, a) for some ϑ̃ ∈ R.

Thenormalization factor p−1 appearing in (2.28) is required to compensate for the growing
number of terms in the sum as p → ∞, as we discuss more fully in Sect. 3. The final claim
can hence be interpreted as a local uniqueness with respect to a �2-type norm.We also expect
this uniqueness to hold for the supremum norm, but this would require some modifications
to our arguments along the lines of [24, §4]. Notice however that there is no restriction of the
type c ≈ c on the wave speed appearing in this uniqueness claim.

SinceM = (c�t)−1 remains fixed for the branches (cM ,�M )obtained above, fluctuations
in c automatically lead to fluctuations in �t . Our main goal however is to understand the
behaviour of (2.11) for fixed �t > 0. To this end, we note that the inequality (2.26) implies
that for each fixed (ϑ0, a0) ∈ R × (0, 1) with |a0 − a| < δa , one can find a small constant
δ0 > 0 together with a Cr−1-smooth function

a∗ : (ϑ0 − δ0, ϑ0 + δ0) → (0, 1), (2.29)

with a∗(ϑ0) = a0, so that

c0 := cM (ϑ0, a0) = cM
(
ϑ, a∗(ϑ)

)
(2.30)

holds for all ϑ with |ϑ − ϑ0| < δ0. This gives us a local one-parameter family of solutions
to (2.11) that all share the same wave speed c0 and time-step �t = (�t)0, but with detuning
parameters a∗(ϑ) that could potentially fluctuate.
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Indeed, the implicit function theorem gives

∂ϑa∗(ϑ0) = −∂ϑcM (ϑ0, a0)/∂acM (ϑ0, a0). (2.31)

Unfortunately, the result above provides no information on ∂ϑcM , as we discuss in detail in
Sect. 5. Nevertheless, if this quantity is non-zero, then there is a δ∗ > 0 so that the travelling
wave problem (2.22) with boundary conditions 2.23 admits solutions with �t = (�t)0 and
c = c0 for all detuning parameters a ∈ (a0 − δ∗, a0 + δ∗). Stated more informally, the a(c)
relation is multi-valued at c = c0.

2.2 The Backward-Euler Discretization

Let us now restrict ourselves to the BDF-method of order k = 1, also known as the backward-
Euler discretization. In this case, substitution of the Ansatz (2.9) into the fully discretized
system (2.5) yields the travelling wave equation

− 1

�t
[�(ξ − c�t) − �(ξ)] = κ

[
�(ξ + 1) + �(ξ − 1) − 2�(ξ)

] + g
(
�(ξ); a)

. (2.32)

Our goal is to study (2.32) by embedding it into the MFDE

ν�′(ξ) = 1

�t
[�(ξ−c�t)−�(ξ)]+κ

[
�(ξ+1)+�(ξ−1)−2�(ξ)

]+g
(
�(ξ); a)

. (2.33)

This equation fits into the framework developed by Mallet-Paret in [29], since all terms
with shifted arguments come with positive coefficients. As before, we impose the limiting
behaviour

lim
ξ→−∞ �(ξ) = 0, lim

ξ→+∞ �(ξ) = 1. (2.34)

The idea here is to fix �t > 0 and κ ≥ 0, consider c ∈ R and a ∈ (0, 1) as parameters and
look for solutions (ν,�) to (2.33–2.34). We note that the limiting case κ = 0 is included
here for technical reasons that will become apparent below.

The next result shows that ν is uniquely defined as a function of (c, a). We are specially
interested in solutions for which ν(c, a) = 0, since these are also solutions to the fully
discrete travelling wave problem (2.32).

Theorem 2.2 Consider the equation (2.33) with κ ≥ 0, suppose that (Hg) is satisfied and
fix a time step �t > 0. Then there exists a continuous function ν : R × (0, 1) → R that
satisfies the following properties.

(i) For every c ∈ R and a ∈ (0, 1), there exists a non-decreasing function � : R → R that
satisfies (2.33) with ν = ν(c, a) together with the limits (2.34).

(ii) Suppose that (2.33) with ν = 0 admits a non-decreasing solution � that satisfies the
limits (2.34). Then we must have ν(c, a) = 0.

(iii) Suppose that (2.33) with ν 
= 0 admits a solution � that satisfies the limits (2.34) (but
is not necessarily non-decreasing). Then ν = ν(c, a) and � must be a translate of the
solution described in (i).

(iv) The function ν depends Cr -smoothly on (c, a) wherever ν(c, a) 
= 0, with the inequali-
ties

∂cν(c, a) < 0, ∂aν(c, a) < 0. (2.35)
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For explicitness, we write ν(c, a) = ν(c, a; κ,�t) for the function defined in the result
above for (2.33). This allows us to introduce the quantities

a−(c; κ,�t) = sup{a ∈ (0, 1) : ν(c, a; κ,�t) > 0} ∈ (0, 1] ∪ {−∞},
a+(c; κ,�t) = inf{a ∈ (0, 1) : ν(c, a; κ,�t) < 0} ∈ [0, 1) ∪ {∞}. (2.36)

Exploiting the inequalities (2.35), we see that for any detuning parameter a ∈ (0, 1) that
satisfies the inequalities

a−(c; κ,�t) ≤ a ≤ a+(c; κ,�t), (2.37)

a solution exists for (2.32) with (2.34). We first state some basic properties of these functions
a±.

Corollary 2.3 Consider (2.33) and suppose that (Hg) is satisfied. Fix κ ≥ 0 and �t > 0.
Then the maps c �→ a±(c; κ,�t) satisfy the following properties.

(i) Both c �→ a±(c; κ,�t) are non-increasing, while c �→ a+(c; κ,�t) is left-continuous
and c �→ a−(c; κ,�t) is right-continuous.

(ii) There exists δc > 0 so that for all c ≥ −δc we have a+(c; κ,�t) < 1, while for all
c ≤ δc we have a−(c; κ,�t) > 0. In particular, for |c| ≤ δc we have0 < a−(c; κ,�t) ≤
a+(c; κ,�t) < 1.

Whenever the strict inequality

a−(c; κ,�t) < a+(c; κ,�t) (2.38)

is satisfied, the discretized travelling wave problem (2.32) with (2.34) admits waves with the
same wave speed c at multiple values of the detuning parameter a. The next result shows that
in the anti-continuum limit, which can be thought of as a full discretization of the Nagumo
PDE (1.1) with a large time-step �t � 1 and a large spatial grid-spacing h � 1, this
non-uniqueness of a indeed holds. In Sect. 5 we further discuss this question for different
parameter regimes.

Corollary 2.4 Consider (2.33) and suppose that (Hg) is satisfied. Fix a ∈ (0, 1). Then there
exists δ > 0 so that for all (κ,�t) that have

�t > δ−1, 0 ≤ κ < δ, (2.39)

the strict inequalities
a−(c; κ,�t) < a < a+(c; κ,�t) (2.40)

hold for all c ∈ R.

In order to state our final result, we introduce the quantities

a±−∞(�t) = a±(−1; 0,�t), a±+∞(�t) = a±(+1; 0,�t). (2.41)

We note that the quantities a±−∞(�t) are associated to the system

ν�′(ξ) = 1

�t
[�(ξ + �t) − �(ξ)] + g

(
�(ξ); a)

, (2.42)

while the quantities a±+∞(�t) are associated to

ν�′(ξ) = 1

�t
[�(ξ − �t) − �(ξ)] + g

(
�(ξ); a)

. (2.43)
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These systems can be interpreted in a suitable sense as the (rescaled) c → ±∞ limits of
(2.33), which no longer depend on the coefficient κ ≥ 0. Our final result relates the quantities
(2.41) to the c → ±∞ limits of (2.36).

Corollary 2.5 Consider (2.33) and suppose that (Hg) is satisfied. Fix �t > 0 and κ ≥ 0.
We then have the identities

a−+∞(�t) = −∞, a+−∞(�t) = +∞, (2.44)

together with the limiting inequalities

lim
c→∞ a+(c; κ,�t) ≤ a++∞(�t) < 1, lim

c→−∞ a−(c; κ,�t) ≥ a−−∞(�t) > 0. (2.45)

2.3 Numerical Examples

In Fig. 1 plots can be found illustrating the functions a±(c) for the problems

− 1

�t
[�(ξ − c�t) − �(ξ)] = �(ξ + 1) + �(ξ − 1) − 2�(ξ) + g

(
�(ξ); a)

, (2.46)

and

− 1

2�t
[−�(ξ−2c�t)+4�(ξ−c�t)−3�(ξ)] = �(ξ+1)+�(ξ−1)−2�(ξ)+g

(
�(ξ); a)

,

(2.47)
both with �t = 2 and nonlinearity

g(u; a) = 121

12
u(u − 1)(a − u). (2.48)

These two discretizations correspond to the BDF methods with order k = 1 and k = 2.
The plots were computed by repeatedly attempting to solve (2.46) and (2.47) on the finite

interval [−10, 10] for different values of (c, a) ∈ 1
40Z× (0, 1), recording at which parameter

values solutions were successfully found. The accompanying boundary conditions are

�(ξ) = 0 for ξ ≤ −10, �(ξ) = 1 for ξ ≥ 10. (2.49)

Although we have not defined the quantities a± for k = 2 in our discussion above, we simply
define them here as the edges of the interval for a for which this recipe yields results.

These computations are rather delicate, since the success of the numerical solver depends
heavily on the quality of the supplied initial conditions. Usually, a standard continuation
approach can be applied to supply such high-quality initial conditions. In the current setup
there however are two problems with such an approach that need to be addressed. The first
problem is that the set of ξ ∈ R for which �(ξ) needs to be defined does not remain
constant when varying the parameter c. For example, when c = 1

2 one only requires �(ξ)

for ξ ∈ {−10, 9, . . . , 9, 10}, while for c = 1
40 many additional values are needed. The

second problem is that, even for fixed (c, a), solutions to (2.46) and (2.47) are not unique. In
particular, when keeping c fixed andmodifying a, one could be tracking a branch of solutions
that terminates at some value of a that need not be a+ or a−.

In order to tackle these problems, we repeated the computations above for a large set of
different initial conditions. In addition, to generate more data a second numerical procedure
was followed to search directly for the branch termination points discussed above. In partic-
ular, after fixing c ∈ 1

40Z but treating a as an unknown, we numerically solved the combined
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Fig. 1 Numerical computation of the edges a−(c) and a+(c) of the interval of detuning parameters at which
solutions to the fully discretized wave equations (2.46) (i) and (2.47) (ii) exist. Both plots also contain the
function a0(c), which gives a as a function of c for the semi-discrete travelling wave MFDE (2.16), again
with nonlinearity (2.48). The strict inequalities a−(c) < a+(c) clearly hold in these examples. In panel (i) the
temporal discretization causes a strict speed-up of the waves, while in panel (ii) this breaks down for c ≈ 1

2

system that arises by supplementing (2.46) and (2.49) with the auxiliary problem

− 1

�t
[v(ξ − c�t) − v(ξ)] = v(ξ + 1) + v(ξ − 1) − 2v(ξ) + g′(�(ξ); a)

v(ξ), (2.50)

accompanied by the boundary conditions

v(−10) = 0 for ξ ≤ −10, v(0) = 1, v(10) = 0 for ξ ≥ 10. (2.51)
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As a final verification step, we found numerical solutions to the augmented system

−10−5�′′(ξ)+ν�′(ξ)= 1

�t
[�(ξ−c�t)−�(ξ)]+�(ξ+1)+�(ξ−1)−2�(ξ)+g

(
�(ξ); a)

,

(2.52)
using the techniques developed in [7,23].

This last step gives us a numerical approximation for the ν(c, a) relationship described
in Theorem 2.2. As explained in detail in [7,23], the small term involving �′′ is required
to handle the transition c → 0, which in the absence of this smoothening term would be
highly singular and thus hard to handle numerically. Although this extra small term prevents
us from solving ν(c, a) = 0 exactly, it does provide us with a visual means to reasonably
verify that the data generated by our first two methods indeed finds the edges of the entire
interval [a−(c), a+(c)] at which solutions exist to (2.46). Naturally, an analogous approach
was used to analyze (2.47).

3 Linear Theory for �t → 0

Throughout this section, we fix κ = 1 for notational convenience. Our goal is to study the
linear operators that arise when linearizing the fully discrete travelling wave equation (2.11)
around the semi-discrete travelling wave (c,�) defined in (H�)a . In particular, we define
the linear expressions

[Lk,Mv](ξ) = −c[Dk,Mv](ξ) + v(ξ + 1) + v(ξ − 1) − 2v(ξ) + g′(�(ξ); a)
v(ξ) (3.1)

and set out to study in what sense Lk,M inherits properties from the operator L defined in
(2.18).

In order to state our results, we need to introduce a number of function spaces. First of
all, for any α ∈ R we write

BCα(R,R) = {p ∈ C(R,R) | supξ∈R e−α|ξ | |p(ξ)| < ∞},
BC1

α(R,R) = {p ∈ C1(R,R) | supξ∈R e−α|ξ |[|p(ξ)| + ∣∣p′(ξ)
∣∣] < ∞}. (3.2)

In addition, for any μ > 0 and Hilbert space H , we introduce the sequence space

�2μ(H) = {
v : μ−1

Z → H with ‖v‖�2μ(H) := 〈v, v〉1/2
�2μ(H)

< ∞}
, (3.3)

in which the inner product is given by

〈v,w〉�2μ(H) = μ−1
∑

ξ∈μ−1Z

〈v(ξ), w(ξ)〉H . (3.4)

The role of the normalization factor μ−1 will become apparent in Lemma 3.1 below.
Let us now fix two integers q ≥ 1 and 1 ≤ k ≤ 6, together with a fraction M = p

q ∈ Mq .

In order to streamline our notation, we write YM to refer to the sequence space �2p(R), i.e.,

YM = �2p(R), 〈v,w〉YM = 〈v,w〉�2p(R). (3.5)

We also introduce the sequence space Y1
k,M , which differs from �2p(R) only by the structure

of its inner product. In particular, we write

Y1
k,M = �2p(R), 〈v,w〉Y1

k,M
= 〈v,w〉�2p(R) + 〈Dk,Mv,Dk,Mw〉�2p(R). (3.6)
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In addition, for any f ∈ BC−η(R,R)with η > 0, we write πYM f ∈ YM for the sequence

[πYM f ](ξ) = f (ξ), ξ ∈ p−1
Z. (3.7)

If also f ∈ BC1−η(R,R), we sometimes use the notation πY1
k,M

f to refer to the same function

(3.7) if we wish to be explicit.

Lemma 3.1 Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1, together with a constant η > 0.
Then there exists C ≥ 1 so that for all M ∈ Mq , all functions f ∈ BC−η(R,R) and all
functions g ∈ BC1−η(R,R), we have the bounds

∥
∥πYM f

∥
∥YM

≤ C ‖ f ‖BC−η
,

∥
∥
∥πY1

k,M
g
∥
∥
∥
Y1
k,M

≤ C ‖g‖BC1−η
. (3.8)

Proof Observe first that for M = p
q ∈ Mq we have p−1 ≤ M−1 ≤ 1. We may hence

compute

∥
∥
∥e−η|·|

∥
∥
∥
2

�2p(R)
= p−1[1 +

∑

j>0
e−2ηp−1 j +

∑

j<0
e2ηp

−1 j ]

= p−1 1 + e−2ηp−1

1 − e−2ηp−1

≤ C ′
1(1 + p−1)

≤ 2C ′
1, (3.9)

for some constant C ′
1 ≥ 1 that depends only on η > 0. The desired bounds (3.8) follow

directly from this computation together with the estimate
∣∣[Dk,M f ](ξ)

∣∣ ≤ sup
−k≤−kM−1≤ϑ≤0

∥∥ f ′(ξ + ϑ)
∥∥ . (3.10)

��

These preparations in hand, we can now consider the operators Lk,M appearing in (3.1)
as bounded linear maps

Lk,M : Y1
k,M → YM . (3.11)

The remainder of this section is devoted to the proof of the following result, which shows in
what sense the Fredholm structure of the operator L described in Sect. 2 can be maintained
under the transition from a continuous to a discrete setting. Indeed, for any f ∈ L2(R,R)

one can find v ∈ H1(R,R) for which we have

Lv = f − �
′
∫ ∞

−∞

(ξ) f (ξ) dξ. (3.12)

In view of the normalization (2.19), one can subsequently arrange for the normalization
condition ∫ ∞

−∞

(ξ)v(ξ) dξ = 0 (3.13)

to hold by subtracting an appropriate multiple of �
′
from v. Since L�

′ = 0, this does not
affect the identity (3.12).
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Proposition 3.2 Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1, together with a constant η > 0.
Consider the LDE (2.1) and suppose that (Hg) is satisfied. Pick a in such a way that also
(H�)a is satisfied. Then there exists M∗ ≥ 1 together with a constant C > 1 so that for all
M = p

q ∈ Mq with M ≥ M∗, there exist linear maps

γ ∗
k,M : YM → R, V∗

k,M : YM → Y1
k,M (3.14)

that satisfy the following properties for all such M.

(i) For all f ∈ YM, we have the bounds
∣
∣γ ∗

k,M f
∣
∣ + ∥

∥V∗
k,M f

∥
∥
Y1
k,M

≤ C ‖ f ‖YM
. (3.15)

(ii) For all f ∈ YM, the pair

(γ, v) = (
γ ∗
k,M f,V∗

k,M f
) ∈ R × Y1

k,M (3.16)

is the unique solution to the problem

Lk,Mv = f + γDk,M� (3.17)

that satisfies the normalization condition

〈πYM
, v〉YM = 0. (3.18)

(iii) For all f ∈ BC1−η(R,R), we have the bound

∣∣γ + 〈πYM
,πYM f 〉YM

∣∣ ≤ CM−1 ‖ f ‖BC1−η(R,R). (3.19)

3.1 Reformulation

In this subsection we formulate our strategy towards proving Proposition 3.2, which is rather
indirect. Indeed, with the exception of Sect. 3.3, our efforts will be focused on establishing
the following technical result.

Proposition 3.3 Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. Consider the LDE (2.1) and
suppose that (Hg) is satisfied. Pick a in such a way that also (H�)a is satisfied. Then there
exists C0 > 0 together with a map M0 : (0, 1) → [1,∞) so that the following holds true.
For any 0 < δ < 1 and any M ∈ Mq for which M ≥ M0(δ), the operator Lk,M − δ is
invertible as a map from Y1

k,M onto YM, with the bound

∥∥(Lk,M − δ)−1w
∥∥Y1

k,M
≤ C0

[
‖w‖YM

+ δ−1
∣∣〈πYM
,w〉YM

∣∣
]
. (3.20)

This result can be seen as the analogue of [1, Thm. 4]. As a consequence, our strategy
here will follow the same broad ideas as those developed in [1], but we will need to make
significant modifications. We first state a preliminary result to aid the reader in interpreting
the inner products appearing in (3.19) and (3.20).

Lemma 3.4 Fix an integer q ≥ 1. There exists C > 1 so that for all M ∈ Mq and all
functions f, g ∈ BC1−η(R,R), we have the bound

∣∣〈 f, g〉L2(R,R) − 〈πYM f, πYM g〉YM

∣∣ ≤ CM−1 ‖ f ‖BC1−η
‖g‖BC1−η

. (3.21)
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Proof Upon introducing the quantity

I∗ =
∑

ξ∈p−1Z

∫ ξ+p−1

ξ

[ f (ξ ′)g(ξ ′) − f (ξ)g(ξ)] dξ ′, (3.22)

we may compute

〈 f, g〉L2(R,R) =
∫

R

f (ξ ′)g(ξ ′) dξ ′

=
∑

ξ∈p−1Z

∫ ξ+p−1

ξ

f (ξ ′)g(ξ ′) dξ ′

=
∑

ξ∈p−1Z

∫ ξ+p−1

ξ

f (ξ)g(ξ) dξ ′ + I∗

= p−1
∑

ξ∈p−1Z
[πYM f ](ξ)[πYM g](ξ) + I∗

= 〈πYM f, πYM g〉YM + I∗. (3.23)

Whenever the pair (ξ, ξ ′) satisfies the inequality

ξ ≤ ξ ′ ≤ ξ + p−1, (3.24)

we may estimate
∣∣ f (ξ ′)

∣∣ + ∣∣ f ′(ξ ′)
∣∣ ≤ ‖ f ‖BC1−η

e−η|ξ ′| ≤ eηp−1 ‖ f ‖BC1−η
e−η|ξ | (3.25)

with the analogous estimate for g. In particular, assuming (3.24) and exploiting the product
rule ( f g)′ = f ′g + f g′, we have

∣∣ f (ξ ′)g(ξ ′) − f (ξ)g(ξ)
∣∣ ≤ 2p−1e2ηp

−1[ ‖ f ‖BC1−η
‖g‖BC1−η

]
e−2η|ξ |. (3.26)

This allows us to estimate

|I∗| ≤ 2p−1e2ηp
−1 ‖ f ‖BC1−η

‖g‖BC1−η
p−1

∑

ξ∈p−1Z
e−2η|ξ |

= 2p−1e2ηp
−1 ‖ f ‖BC1−η

‖g‖BC1−η

∥∥∥e−η|·|
∥∥∥
2

�2p(R)
. (3.27)

The estimate (3.9) can now be used to complete the proof. ��
Our next task is to set up a series of additional sequence spaces that will allow us to pass to

the M → ∞ limit in a controlled fashion. The main idea is to construct H1 interpolants for
functions in Y1

k,M and L2 interpolants for functions in YM , so that sequences in these spaces
can be compared regardless of the precise value of M . The main issue is that for M = p

q

with q > 1, understanding Dk,Mv for v ∈ Y1
k,M gives insufficient control over differences

of the form v(ξ + p−1) − v(ξ).
To compensate for this, we need to perform q separate interpolations, each bridging gaps

of size M−1 = q
p . In particular, fixing an integer q ≥ 1 and writing

Zq = {0, 1, 2, . . . , q}, Z
◦
q = {1, 2, . . . , q − 1}, (3.28)

we introduce the space
�2q,⊥ = {v : q−1

Zq → R}, (3.29)
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equipped with the inner product

〈v,w〉�2q,⊥
= q−1

[
1

2
v(0)w(0) + 1

2
v(1)w(1) +

∑

ζ∈q−1Z◦
q
v(ζ )w(ζ )

]
. (3.30)

This allows us to define the space

HM = {
v ∈ �2M (�2q,⊥) : v(1, ξ) = v(0, ξ + M−1) for all ξ ∈ M−1

Z
}
, (3.31)

equipped with the inner product

〈v,w〉HM = M−1
∑

ξ∈M−1Z

〈v(·, ξ), w(·, ξ)〉�2q,⊥
. (3.32)

Here we have introduced the notation v(ζ, ξ) = [v(ξ)](ζ ) for v ∈ HM , with ζ ∈ q−1
Zq and

ξ ∈ M−1
Z.

We extend the operators Dk,M defined in (2.12) to HM by writing

[Dk,Mv](ζ, ξ) = [Dk,Mv(ζ, ·)](ξ), (3.33)

which implies that these operators act only on the second component of v. This allows us to
define our final space

H1
k,M = HM , (3.34)

but now equipped with the inner product

〈v,w〉H1
k,M

= 〈v,w〉HM + 〈Dk,Mv,Dk,Mw〉HM . (3.35)

In order to relate these new spaces back to the spaces defined earlier, we introduce for
M = p

q ∈ Mq the operators

JM : YM → HM , J 1
k,M : Y1

k,M → H1
k,M (3.36)

that both act as

[JMv](ζ, ξ) = v(ξ + M−1ζ ), [J 1
k,Mv](ζ, ξ) = v(ξ + M−1ζ ), (3.37)

for ζ ∈ q−1
Zq and ξ ∈ M−1

Z.

Lemma 3.5 Fix an integer q ≥ 1. For any M = p
q ∈ Mq , the operators JM and J 1

k,M
defined in (3.36) are isometries.

Proof Since JMDk,M = Dk,MJM , we only have to consider the statement for JM . The
invertibility of JM follows directly from the construction of the space HM . In addition, for
any v ∈ YM we may write w = JMv and compute

‖w‖2HM
= q

p

∑

ξ∈M−1Z
|w(·, ξ)|2

�2q,⊥

= q

p

∑

ξ∈M−1Z

1

q

[1
2
w(0, ξ)2 + 1

2
w(1, ξ)2 +

∑

ζ∈q−1Z◦
q
w(ζ, ξ)2

]

= 1

p

∑

ξ∈M−1Z

[1
2
v(ξ)2 + 1

2
v(ξ + M−1)2 +

∑

ζ∈q−1Z◦
q
v(ξ + q

p
ζ )2

]

= 1

p

∑

ξ∈p−1Z
v(ξ)2

= ‖v‖2YM
. (3.38)

��
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Let us again fix η > 0. For any f ∈ BC−η(R,R), we now write πHM f ∈ HM for the
function

[πHM f ](ζ, ξ) = f (ξ + ζM−1), ζ ∈ q−1
Zq , ξ ∈ M−1

Z, (3.39)

so that πHM = JMπYM .
Our task now is to understand the action of Lk,M interpreted as a map from H1

k,M into
HM . To this end, we pick m ∈ Z such that

1 = (m + �)M−1, 0 < � ≤ 1, (3.40)

which with M = p
q ∈ Mq gives � = p−mq

q and so

mM−1 = 1 − �M−1, � ∈ q−1
Zq \ {0}. (3.41)

In fact, because gcd(p, q) = 1 we also have gcd(q�, q) = 1.
We now write Kk,M : H1

k,M → HM for the linear operator that acts as

[Kk,Mv](ζ, ξ) = −c[Dk,Mv](ζ, ξ) + v(ζ + �, ξ + 1 − �M−1)

+ v(ζ − �, ξ − 1 + �M−1) − 2v(ζ, ξ)

+ g′(�(ξ + ζM−1); a)
v(ζ, ξ), (3.42)

for ζ ∈ q−1
Zq and ξ ∈ M−1

Z, where we introduce the convention

v(ζ ± 1, ξ) = v(ζ, ξ ± M−1). (3.43)

The shift � hence acts as a rotation number, connecting the different components of v in the
ζ -direction.

For notational convenience, we introduce the twist operator TM : HM → HM that acts as

[TMv](ζ, ξ) = v(ζ + �, ξ + mM−1), (3.44)

again with the convention (3.43). In addition, we introduce the notation

g′(πHM�; a) : HM → HM (3.45)

to refer to the multiplication operator

[g′(πHM�; a)
v](ζ, ξ) = g′(�(ξ + ζM−1); a)

v(ζ, ξ). (3.46)

These conventions allow us to write

Kk,Mv = −cDk,Mv + TMv + T−1
M v − 2v + g′(πHM�; a)

v (3.47)

and one may easily verify that in fact

Kk,MJ 1
k,Mv = JMLk,Mv, (3.48)

showing that Kk,M and Lk,M are equivalent.
In order to study the formal adjoint of Kk,M , we need to introduce the operator D∗

k,M that
acts as

[D∗
k,Mv](ζ, ξ) = β−1

k M
k∑

n′=0

αn′;kv
(
ξ + (k − n′)M−1). (3.49)

This allows us to define K∗
k,M : H1

k,M → HM by writing

K∗
k,Mv = −cD∗

k,Mv + TMv + T−1
M v − 2v + g′(πHM�; a)

v. (3.50)
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As a final preparation, we introduce the subspace

�2q,⊥;∞ = {
v ∈ �2q,⊥ : v(1) = v(0)

}
, (3.51)

together with the notation

[π⊥ f ](ζ, ξ) = f (ξ), ζ ∈ q−1
Zq , ξ ∈ R, (3.52)

which constructs a function π⊥ f ∈ L2(R, �2q,⊥;∞) from a function f ∈ L2(R,R).
Taking the limit M → ∞ while keeping � and q fixed as in (3.40), we find thatKk,M and

K∗
k,M formally approach the limiting operators

Kq,� : H1(R, �2q,⊥;∞) → L2(R, �2q,⊥;∞), K∗
q,ρ : H1(R, �2q,⊥;∞) → L2(R, �2q,⊥;∞)

(3.53)
that act as

[Kq,�V ](ζ, ξ) = −c∂ξV (ζ, ξ) + V (ζ + ρ, ξ + 1) + V (ζ − ρ, ξ − 1) − 2V (ζ, ξ)

+ g′(�(ξ); a)V (ζ, ξ),

[K∗
q,�V ](ζ, ξ) = +c∂ξV (ζ, ξ) + V (ζ − ρ, ξ − 1) + V (ζ + ρ, ξ + 1) − 2V (ζ, ξ)

+ g′(�(ξ); a)V (ζ, ξ), (3.54)

bothwith ζ ∈ q−1
Zq and ξ ∈ R. Herewe havemade the identificationV (ζ+1, ξ) = V (ζ, ξ).

The result below states some basic properties of these limiting operators Kq,� and K∗
q,�.

The key ingredient for the proof is [22, Prop 8.2], which generalizes the important scalar
result [29, Thm. 4.1] to the multi-component setting considered here. Indeed, the latter result
states that L is Fredholm with index zero and a one-dimensional kernel, while the former
establishes this for Kq,ρ .

Lemma 3.6 Fix an integer q ≥ 1 together with a constant � ∈ q−1
Zq that has gcd(q�, q) =

1. Consider the LDE (2.1) and suppose that (Hg) is satisfied. Pick a in such a way that also
(H�)a is satisfied. Then the operators Kq,� and K∗

q,� are both Fredholm with index zero,
with

KerKq,� = span{π⊥�
′}, KerK∗

q,� = span{π⊥
}. (3.55)

In addition, for any δ > 0 the operator Kq,� − δ is invertible and there exists C > 1 so that
∥∥∥∥[Kq,� − δ]−1 f − 1

δ
π⊥�

′〈π⊥
, f 〉L2(R,�2q,⊥;∞)

∥∥∥∥
H1(R,�2q,⊥;∞)

≤ C ‖ f ‖L2(R,�2q,⊥;∞)

(3.56)
holds for any δ > 0 and f ∈ L2(R, �2q,⊥;∞).

Proof Consider the problem

− c∂ξ P(ζ, ξ) = P(ζ + ρ, ξ + 1) + P(ζ − ρ, ξ − 1) − 2P(ζ, ξ) + g
(
P(ζ, ξ); a)

, (3.57)

for ζ ∈ q−1
Zq and ξ ∈ R, with the identification P(ζ + 1, ξ) = P(ζ, ξ). This problem

clearly has a solution P(ζ, ξ) = �(ξ). In addition, the condition on � ensures that (3.57)
satisfies the conditions (HA), (HS1)–(HS2) and (Hf1)–(Hf3) formulated in [22, §2]. This
allows us to apply [22, Prop 8.2], which directly gives the Fredholm properties stated above.

To see that Kq,� − δ is invertible for δ > 0 and that the conditions (S1)–(S3) in [21, §2]
hold, one can use a comparison principle argument analogous to [19, Lem. 6.2] and [5, Lem.
8.3]. The bound (3.56) now follows from [21, Eq. (2.44)]. ��
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We now introduce the quantities

Ek,M (δ) = inf‖v‖H1
k,M

=1

{ ∥
∥Kk,Mv − δv

∥
∥HM

+ δ−1
∣
∣〈πHM
,Kk,Mv − δv〉HM

∣
∣
}
,

E∗
k,M (δ) = inf‖v‖H1

k,M
=1

{ ∥
∥K∗

k,Mv − δv
∥
∥
HM

+δ−1
∣
∣
∣〈πHM�

′
,K∗

k,Mv − δv〉HM

∣
∣
∣
}
. (3.58)

Our next result provides a lower bound on these quantities, analogous to [1, Lem. 6]. The
proof is postponed to Sect. 3.2, but we already use it here to establish Proposition 3.3 by
making some minor adjustments to the proof of [1, Thm. 4].

Proposition 3.7 Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. Consider the LDE (2.1) and
suppose that (Hg) is satisfied. Pick a in such a way that also (H�)a is satisfied. Then there
exists κ > 0 such that for every 0 < δ < 1 we have

κ(δ) := liminfM→∞, M∈Mq Ek,M (δ) ≥ κ,

κ∗(δ) := liminfM→∞, M∈Mq E∗
k,M (δ) ≥ κ. (3.59)

Proof of Proposition 3.3 Fix 0 < δ < 1 and M ∈ Mq sufficiently large. By Proposition 3.7
and the equivalence (3.48), Lk,M − δ is an homeomorphism from Y1

k,M onto its range

R = (Lk,M − δ)
(Y1

k,M

) ⊂ YM , (3.60)

with a bounded inverse I : R → Y1
k,M . The latter fact shows that R is a closed subset of

YM . If R 
= YM , there exists a non-zero w ∈ YM so that 〈w,R〉YM = 0, i.e.,
〈
w, (Lk,M − δ)v

〉
YM

= 0 for all v ∈ Y1
k,M . (3.61)

Since also w ∈ Y1
k,M , this implies

〈
(L∗

k,M − δ)w, v
〉
YM

= 0 for all v ∈ Y1
k,M . (3.62)

Since Y1
k,M and YM are equal as sets, this shows that in fact (L∗

k,M − δ)w = 0. Applying
Proposition 3.7 once more and possibly increasing the lower bound for M , this gives the
contradiction w = 0 and establishes thatR = YM . The bound (3.20) with the δ-independent
constant C0 > 1 now follows directly from the definition (3.58) of the quantities Ek,M (δ)

and the uniform lower bound (3.59). ��
3.2 Proof of Proposition 3.7

Our first task is to understand some basic properties concerning the discrete derivativesDk,M .
Recalling the coefficients (2.6) appearing in the definition (2.12) for Dk,M , we implicitly
define the polynomial �k by writing

�k(z)(z − 1) =
k∑

j=0

α j;k z j . (3.63)

Introducing the operator SM : HM → HM that acts as

[SMv](ζ, ξ) = v
(
ζ, ξ + M−1), (3.64)
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we may compute

Dk,M = β−1
k M

∑k

j=0
α j;k S j−k

M

= β−1
k MS−k

M

∑k

j=0
α j;k S j

M

= β−1
k MS−k

M �k(SM )(SM − I )

= β−1
k MS−k

M �k(SM )SM (I − S−1
M )

= β−1
k S−k

M �k(SM )SMD1,M

= β−1
k S−(k−1)

M �k(SM )D1,M . (3.65)

In view of this factorization, the following result allow us to recover information concerning
D1,Mv from Dk,Mv for k 
= 1.

Lemma 3.8 For all integers 1 ≤ k ≤ 6, the k − 1 roots of the equation �k(z) = 0 all lie
inside the unit circle.

Proof See [15, Ex 4; Sec III.3]. ��

Corollary 3.9 Fix two integers q ≥ 1 and 1 ≤ k ≤ 6. Then there exists constants κmin > 0
and κmax > 0 such that for any M ∈ Mq and any v ∈ H1

k,M, we have the inequalities

κmin
∥∥Dk,Mv

∥∥HM
≤ ∥∥D1,Mv

∥∥HM
≤ κmax

∥∥Dk,Mv
∥∥HM

. (3.66)

Proof On account of Lemma 3.8, the operator �k(SM ) is invertible, which in view of the
factorization (3.65) shows that Dk,M and D1,M are equivalent. ��

We are now ready to turn to our interpolation procedure. For any ξ ∈ R, we define two
quantities ξ±

M (ξ) ∈ M−1
Z in such a way that

ξ−
M (ξ) ≤ ξ < ξ+

M (ξ), ξ+
M (ξ) − ξ−

M (ξ) = M−1. (3.67)

This allows to introduce two interpolation operators

I0
M : HM → L2(

R, �2q,⊥
)
,

I1
k,M : H1

k,M → H1(
R, �2q,⊥

)
(3.68)

that act as

[I0
Mv](ζ, ξ) = v

(
ζ, ξ−

M (ξ)
)
,

[I1
k,Mv](ζ, ξ) = M

[
(ξ − ξ−

M (ξ))v(ζ, ξ+
M (ξ)) + (ξ+

M (ξ) − ξ)v
(
ζ, ξ−

M (ξ)
)]

, (3.69)

for all ζ ∈ q−1
Zq and ξ ∈ R. These can be seen as interpolations of order zero respectively

one, acting on the second coordinate of v. The next three results show that these operators
are well-defined and establish some useful bounds.

Lemma 3.10 Fix a pair of integers q ≥ 1 and 1 ≤ k ≤ 6. For any M ∈ Mq and v ∈ HM

we have ∥∥I0
Mv

∥∥
L2(R,�2q,⊥)

= ‖v‖HM
. (3.70)
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In addition, there exist constants κmin > 0 and κmax > 0 so that for any M ∈ Mq and
v ∈ H1

k,M we have

κmin ‖v‖HM
≤ ∥

∥I1
k,Mv

∥
∥
L2(R,�2q,⊥)

≤ κmax ‖v‖HM
,

κmin ‖v‖H1
k,M

≤ ∥
∥I1

k,Mv
∥
∥
H1(R,�2q,⊥)

≤ κmax ‖v‖H1
k,M

. (3.71)

Proof Picking v ∈ HM , we write V0 = I0
Mv and compute

‖V0‖2L2(R,�2q,⊥)
=

∫ ∞

−∞
∣
∣V0(·, ξ ′)

∣
∣2
�2q,⊥

dξ ′

=
∑

ξ∈M−1Z

∫ ξ+M−1

ξ

|v(·, ξ)|2
�2q,⊥

dξ ′

= M−1
∑

ξ∈M−1Z
|v(·, ξ)|2

�2q,⊥

= ‖v‖2HM
. (3.72)

In addition, picking v ∈ H1
k,M and writing V1 = I1

k,Mv, we compute

‖V1‖2L2(R,�2q,⊥)
=

∫ ∞

−∞
∣∣V1(·, ξ ′)

∣∣2
�2q,⊥

dξ ′

=
∑

ξ∈M−1Z

∫ ξ+M−1

ξ

M2
∣∣(ξ ′ − ξ)v(·, ξ + M−1)

+ (ξ + M−1 − ξ ′)v
(·, ξ)∣∣2

�2q,⊥
dξ ′

= 1

3
M−1

∑

ξ∈M−1Z

[ ∣∣v(·, ξ + M−1)
∣∣2
�2q,⊥

+ ∣∣v
(·, ξ)∣∣2

�2q,⊥

+ 〈v(·, ξ + M−1), v
(·, ξ)〉�2q,⊥

]

= 1

3

[
2 ‖v‖2HM

+ 〈v, SMv〉HM

]
. (3.73)

The first line in (3.71) now follows from the bound
∣∣〈v, SMv〉HM

∣∣ ≤ ‖v‖2HM
. (3.74)

On the other hand, we can compute

∥∥V ′
1

∥∥2
L2(R,�2q,⊥)

=
∑

ξ∈M−1Z

∫ ξ+M−1

ξ

∣∣V ′
1(·, ξ ′)

∣∣2
�2q,⊥

dξ ′

=
∑

ξ∈M−1Z

∫ ξ+M−1

ξ

M2
∣∣v(·, ξ + M−1) − v(·, ξ)

∣∣2
�2q,⊥

dξ ′

=
∑

ξ∈M−1Z

∫ ξ+M−1

ξ

M2 |(SM − I )v](·, ξ)|2
�2q,⊥

dξ ′

= M−1
∑

ξ∈M−1Z
M2

∣∣∣[SM (I − S−1
M )v](·, ξ)

∣∣∣
2

�2q,⊥

= M−1
∑

ξ∈M−1Z

∣∣[SMD1,Mv](·, ξ)
∣∣2
�2q,⊥
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= ∥
∥SMD1,Mv

∥
∥HM

= ∥
∥D1,Mv

∥
∥HM

. (3.75)

The second line of (3.71) now follows from the inequalities (3.66). ��

Lemma 3.11 Fix a pair of integers q ≥ 1 and 1 ≤ k ≤ 6. For any M ∈ Mq and v ∈ H1
k,M,

we have the identity

∥
∥I0

Mv − I1
k,Mv

∥
∥
L2(R,�2q,⊥)

= 1

3

√
3M−1

∥
∥D1,Mv

∥
∥HM

. (3.76)

Proof Writing V0 = I0
Mv and V1 = I1

k,Mv, we compute

‖V0 − V1‖2L2(R,�2q,⊥)
=

∫ ∞

−∞
∣
∣V0(·, ξ ′) − V1(·, ξ ′)

∣
∣2
�2q,⊥

dξ ′

=
∑

ξ∈M−1Z

∫ ξ+M−1

ξ

∣∣V1(·, ξ ′) − V0(·, ξ ′)
∣∣2
�2q,⊥

dξ ′

=
∑

ξ∈M−1Z

∫ ξ+M−1

ξ

M2(ξ ′−ξ)2
∣∣v(·, ξ + M−1) − v(·, ξ)

∣∣2
�2q,⊥

dξ ′

= 1

3
M−1

∑

ξ∈M−1Z

∣∣v(·, ξ + M−1) − v(·, ξ)
∣∣2
�2q,⊥

= 1

3
M−1

∑

ξ∈M−1Z
|[(SM − I )v](·, ξ)|2

�2q,⊥

= 1

3
M−3

∑

ξ∈M−1Z

∣∣∣[MSM (I − S−1
M )v](·, ξ)

∣∣∣
2

�2q,⊥

= 1

3
M−2

∥∥SMD1,Mv
∥∥2HM

= 1

3
M−2

∥∥D1,Mv
∥∥2HM

. (3.77)

��

Lemma 3.12 Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1, together with a constant η > 0.
Then there exists a constantC > 1 such that for any function f ∈ BC1−η(R,R), any M ∈ Mq

and any v ∈ HM, we have

∣∣〈π⊥ f, I0
Mv〉L2(R,�2q,⊥) − 〈πHM f, v〉HM

∣∣ ≤ CM−1 ‖ f ‖BC1−η
‖v‖HM

. (3.78)

Proof Upon introducing the quantity

I∗ =
∑

ξ∈M−1Z

∫ ξ+M−1

ξ

〈[π⊥ f ](·, ξ ′) − [πHM f ](·, ξ), v(·, ξ)
〉
�2q,⊥

dξ ′, (3.79)
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we may compute

〈π⊥ f, I0
Mv〉L2(R,�2q,⊥) =

∫ ∞

−∞
〈[π⊥ f⊥](·, ξ ′), [I0

Mv](·, ξ ′)〉�2q,⊥
dξ ′

=
∑

ξ∈M−1Z

∫ ξ+M−1

ξ

〈[π⊥ f ](·, ξ ′), v(·, ξ)〉�2q,⊥
dξ ′

=
∑

ξ∈M−1Z

∫ ξ+M−1

ξ

〈[πHM f ](·, ξ), v(·, ξ)〉�2q,⊥
dξ ′ + I∗

= M−1
∑

ξ∈M−1Z
〈[πHM f ](·, ξ), v(·, ξ)〉�2q,⊥

+ I∗
= 〈πHM f, v〉HM + I∗. (3.80)

Whenever the pair (ξ, ξ ′) satisfies the inequality

ξ ≤ ξ ′ ≤ ξ + M−1, (3.81)

we may estimate
∥∥Df (ξ ′)

∥∥ ≤ ‖ f ‖BC1−η
e−η|ξ ′| ≤ eηM−1 ‖ f ‖BC1−η

e−η|ξ |. (3.82)

In particular, assuming (3.81) we have
∣∣ f (ξ ′) − f (ξ)

∣∣ ≤ M−1eηM−1 ‖ f ‖BC1−η
e−η|ξ |, (3.83)

which under the additional assumption ξ ∈ M−1
Z gives

q
∣∣∣[π⊥ f ](·, ξ ′) − [πHM f ](·, ξ)

∣∣∣
2

�2q,⊥
= 1

2

∣∣[π⊥ f ](0, ξ ′) − [πHM f ](0, ξ)
∣∣2

+ 1

2

∣∣[π⊥ f ](1, ξ ′) − [πHM f ](1, ξ)
∣∣2

+
∑

ζ∈q−1Z◦
q

∣∣[π⊥ f ](ζ, ξ ′) − [πHM f ](ζ, ξ)
∣∣2

= 1

2

∣∣ f (ξ ′) − f (ξ)
∣∣2 + 1

2

∣∣ f (ξ ′) − f (ξ + M−1)
∣∣2

+
∑

ζ∈q−1Z◦
q

∣∣ f (ξ ′) − f (ξ + ζM−1)
∣∣2

≤ qM−2e2ηM
−1 ‖ f ‖2

BC1−η
e−2η|ξ |. (3.84)

This allows us to estimate

|I∗| ≤
∑

ξ∈M−1Z

∫ ξ+M−1

ξ

∣∣[π⊥ f ](·, ξ ′) − [πHM f ](·, ξ)
∣∣
�2q,⊥

∣∣v(·, ξ)
∣∣
�2q,⊥

dξ ′

≤
∑

ξ∈M−1Z

∫ ξ+M−1

ξ

M−1eηM−1 ‖ f ‖BC1−η
e−η|ξ |∣∣v(·, ξ)

∣∣
�2q,⊥

dξ ′

= M−1eηM−1 ‖ f ‖BC1−η
M−1

∑

ξ∈M−1Z
e−η|ξ |∣∣v(·, ξ)

∣∣
�2q,⊥

≤ M−1eηM−1 ‖ f ‖BC1−η

∥∥∥e−η|·|
∥∥∥

�2M (R)
‖v‖�2M (�2q,⊥) . (3.85)

The proof can now be completed exactly as in the final part of the proof of Lemma 3.4. ��
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A key ingredient in the proof of Proposition 3.7 is that certain inner products involving
terms appearing in Kk,M have a well-defined sign or vanish in the limit M → ∞. This issue
is explored in the following set of results.

Lemma 3.13 Fix an integer q ≥ 1. For any M ∈ Mq and v ∈ HM we have the inequality

〈v, [TM + T−1
M − 2]v〉HM ≤ 0. (3.86)

Proof In view of the fact that TM is an isometry, the inequality follows directly fromCauchy-
Schwartz. ��

Fix an integer q ≥ 1 and pick M ∈ Mq . For v ∈ HM ⊂ �2M (�2q,⊥), we define the Fourier
transform

v̂(ζ, ω) = M−1
∑

ξ∈M−1Z

e−iξωv(ζ, ξ), ω ∈ [−Mπ, Mπ], ζ ∈ q−1
Zq (3.87)

and recall the accompanying inversion formula

v(ζ, ξ) = 1

2π

∫ Mπ

−Mπ

eiξωv̂(ζ, ω)dω. (3.88)

For v ∈ HM and wHM , Parseval’s identity can be written as

〈v,w〉HM = M−1
∑

ξ∈M−1Z

〈v(·, ξ), w(·, ξ)〉�2q,⊥
= 1

2π

∫ Mπ

−Mπ

〈̂v(·, ω), ŵ(·, ω)〉�2q,⊥
dω.

(3.89)
For any v ∈ H1

k,M , computing the Fourier transform of w = Dk,Mv ∈ HM yields

ŵ(ζ, ω) = β−1
k M

k∑

j=0

α j;keiω( j ′−k)M−1
v̂(ζ, ω). (3.90)

This motivates the definition

D̂k,M (ω) = β−1
k M

k∑

j=0

α j;keiω( j ′−k)M−1 ∈ C (3.91)

for ω ∈ [−Mπ, Mπ] and k ∈ {1, . . . , 6}.
Lemma 3.14 There exists a constant K > 1 so that we have the bound

∣∣Re D̂k,M (ω)
∣∣ ≤ KM−1

∣∣D̂k,M (ω)
∣∣2 (3.92)

for all k ∈ {1, . . . , 6}, all M > 0 and all ω ∈ [−Mπ, Mπ].
Proof In view of the scaling

D̂k,M (ω) = MD̂k,1(ωM−1), (3.93)

it suffices to show that for some K > 1 we have
∣∣Re D̂k,1(ω)

∣∣ ≤ K
∣∣D̂k,1(ω)

∣∣2 , ω ∈ [−π, π], k ∈ {1, . . . , 6}. (3.94)

The identity
D̂k,1(ω) = β−1

k e−iωk�k(e
iω)(eiω − 1) (3.95)
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together with Lemma 3.8 implies that Dk,1(ω) 
= 0 for all ω /∈ 2πZ. In particular, it suffices
to establish (3.94) for ω in some small neighbourhood of ω = 0. To this end, we note that

Re D̂k,1(ω) = β−1
k

∑k−1

j=0
α j;k[cos

(
ω( j − k)

) − 1],

Im D̂k,1(ω) = β−1
k

∑k−1

j=0
α j;k sin

(
ω( j − k)

)
, (3.96)

which using (2.8) gives
[

d

dω
Re D̂k,1(ω)

]

ω=0
= 0,

[
d

dω
Im D̂k,1(ω)

]

ω=0
= β−1

k

∑k−1

j=0
α j;k( j − k)

= 1. (3.97)

We hence see that
∣
∣Re D̂k,1(ω)

∣
∣ = O(ω2),

∣∣D̂k,1(ω)
∣∣2 = ω2 + O(ω4), (3.98)

as ω → 0, which completes the proof. ��
Corollary 3.15 Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. There exists a constant K > 1
so that for all M ∈ Mq and all v ∈ H1

k,M we have the bound

∣∣〈v,Dk,Mv〉HM

∣∣ ≤ KM−1
∥∥Dk,Mv

∥∥2HM
. (3.99)

Proof Using Parseval’s identity (3.89) and applying Lemma 3.14, we may estimate

∣∣〈v,Dk,Mv〉HM

∣∣ =
∣∣∣∣
1

2π
Re

∫ Mπ

−Mπ

D̂k,M (ω) |̂v(·, ω)|2
�2q,⊥

dω

∣∣∣∣

≤ 1

2π

∫ Mπ

−Mπ

∣∣Re D̂k,M (ω)
∣∣ |̂v(·, ω)|2

�2q,⊥
dω

≤ KM−1 1

2π

∫ Mπ

−Mπ

∣∣D̂k,M (ω)
∣∣2 |̂v(·, ω)|2

�2q,⊥
dω

= KM−1〈Dk,Mv,Dk,Mv〉HM . (3.100)

��
We are now ready to establish a lower bound for the quantities Ek,M (δ) defined in (3.58),

noting that E∗
k,M (δ) can be treated in a similar fashion. As a first step, we show that the

limiting value κ(δ) can be approached via a sequence of realizations that allow us to take
weak and strong limits in suitable function spaces. It is here that our need to work in the
Hilbert spaces L2(R, �2q,⊥) and H1(R, �2q,⊥) becomes apparent, as we exploit the fact that
bounded subsets of these spaces are weakly compact.

Lemma 3.16 Consider the setting of Proposition 3.7 and fix 0 < δ < 1. Then there exist
two functions

V∗ ∈ H1(R, �2q,⊥;∞) ⊂ H1(R, �2q,⊥), W∗ ∈ L2(R, �2q,⊥;∞) ⊂ L2(R, �2q,⊥), (3.101)
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together with three sequences

{Mj } j∈N ⊂ Mq , {v j } j∈N ⊂ H1
k,Mj

, {w j } j∈N ⊂ HMj (3.102)

that satisfy the following properties.

(i) We have lim j→∞ Mj = ∞.
(ii) For any j ∈ N, we have

∥
∥v j

∥
∥H1

k,M j

= 1 together with

w j = Kk,Mj v j − δv j . (3.103)

(iii) Recalling the constant κ(δ) defined in (3.59), we have the limit

κ(δ) = lim
j→∞

{ ∥
∥w j

∥
∥HM j

+ δ−1
∣
∣〈πHM j


,w j 〉HM j

∣
∣}. (3.104)

(iv) As j → ∞, we have the weak convergences

I1
k,Mj

v j ⇀ V∗ ∈ H1(R, �2q,⊥), I0
Mj

w j ⇀ W∗ ∈ L2(R, �2q,⊥). (3.105)

(v) For any compact interval I ⊂ R, we have the strong convergences

I0
Mj

v j → V∗ ∈ L2(I, �2q,⊥), I1
k,Mj

v j → V∗ ∈ L2(I, �2q,⊥) (3.106)

as j → ∞.

Proof The existence of the sequences (3.102) that satisfy (i) through (iii) followsdirectly from
the definition of κ(δ). Notice that (3.104) implies that

∥∥w j
∥∥HM j

can be bounded uniformly

for j ∈ N. Upon introducing the functions

Vj = I1
k,Mj

v j ∈ H1(R, �2q,⊥), Wj = I0
Mj

w j ∈ L2(R, �2q,⊥), (3.107)

Lemma 3.10 hence yields the bounds
∥∥Vj

∥∥
H1(R,�2q,⊥)

+ ∥∥Wj
∥∥
L2(R,�2q,⊥)

≤ C ′
1 (3.108)

for some C ′
1 > 0.

Since L2(R, �2q,⊥) and H1(R, �2q,⊥) are weakly compact, we can take a subsequence to
obtain the weak convergence

Vj ⇀ V∗ ∈ H1(R, �2q,⊥), Wj ⇀ W∗ ∈ L2(R, �2q,⊥). (3.109)

In addition, for any compact interval I ⊂ R, the compact embedding H1(I, �2q,⊥) ⊂
L2(I, �2q,⊥) yields the strong convergence Vj → V∗ ∈ L2(I, �2q,⊥) by a standard diago-
nalization argument. On account of Lemma 3.11 we also have the strong convergence

I0
Mj

v j → V∗ ∈ L2(I, �2q,⊥). (3.110)

Finally, on account of the strong continuity of the shift-semigroup [12, Example I.5.4], we
may in fact conclude

V∗ ∈ H1(
R, �2q,⊥;∞

)
, W∗ ∈ L2(

R, �2q,⊥;∞
)
. (3.111)

��
In the next step we study the relation between the limiting functions V∗ and W∗. By

integrating against smooth test functions ζ , which naturally satisfy Dk,Mj ζ → ζ ′, we are
able to show that W∗ = (Kq,ρ − δ)V∗ for some appropriate ρ. This allows us to obtain an
upper bound on the H1 norm of V∗.
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Lemma 3.17 There exists a constant K1 > 1 so that for any 0 < δ < 1, the function V∗
defined in Lemma 3.16 satisfies the bound

‖V∗‖H1(R,�2q,⊥;∞) ≤ K1κ(δ). (3.112)

Proof Again writing Wj = I0
Mj

w j , the weak lower semi-continuity of the L2 norm implies
that

‖W∗‖L2(R,�2q,⊥;∞) ≤ lim inf
j→∞

∥
∥Wj

∥
∥
L2(R,�2q,⊥)

= lim inf
j→∞

∥
∥w j

∥
∥HM j

, (3.113)

where the last identity follows from (3.70). In addition, we have the identities

〈π⊥
,W∗〉L2(R,�2q,⊥;∞) = 〈π⊥
,W∗〉L2(R,�2q,⊥) = lim
j→∞〈π⊥
,Wj 〉L2(R,�2q,⊥)

= lim
j→∞〈πHM
,w j 〉HM j

, (3.114)

in which the second equality follows from the weak converge Wj ⇀ W∗ and the third
equality follows from Lemma 3.12, using the fact that 
 ∈ BC1−η(R,R) for all sufficiently
small η > 0. In particular, we see that

‖W∗‖L2(R,�2q,⊥;∞) + δ−1
∣
∣〈π⊥
,W∗〉L2(R,�2q,⊥;∞)

∣
∣ ≤ κ(δ). (3.115)

Let us fix M ∈ Mq for the moment. Observe that we have the commutation relations

I0
MTM = TMI0

M , I0
MSM = SMI0

M (3.116)

for the twist operator TM defined in (3.44) and the shift operator SM defined in (3.64), both
naturally extended to L2(R, �2q,⊥). This immediately also gives

I0
MDk,M = Dk,MI0

M , (3.117)

again extending Dk,M to act on L2(R, �2q,⊥). In addition, for any v ∈ HM we have

I0
M

[
g′(πHM�; a)

v
]

=
[
I0
Mg′(πHM�; a)]I0

Mv, (3.118)

where the right hand part is a multiplication of functions in L2(R, �2q,⊥).
In view of these considerations, we introduce the operators

Kk,M;I0 : L2(R, �2q,⊥) → L2(R, �2q,⊥), K∗
k,M;I0 : L2(R, �2q,⊥) → L2(R, �2q,⊥)

(3.119)
that act as

Kk,M;I0V = −cDk,MV + TMV + T−1
M V − 2V + [I0

Mg′(πHM�; a)]V,

K∗
k,M;I0V = +cD∗

k,MV + TMV + T−1
M V − 2V + [I0

Mg′(πHM�; a)]V . (3.120)

For any v ∈ H1
k,M , we now have

I0
MKk,Mv = Kk,M;I0I0

Mv. (3.121)

For any test-function ζ ∈ C∞
0 (R; �2q,⊥;∞) ⊂ C∞

0 (R, �2q,⊥), we may compute

〈ζ, I0
Mj

w j 〉L2(R,�2q,⊥) = 〈ζ, I0
Mj

[Kk,Mj − δ]v j 〉L2(R,�2q,⊥)

= 〈ζ, [Kk,Mj ;I0 − δ]I0
Mj

v j 〉L2(R,�2q,⊥)

= 〈[K∗
k,Mj ;I0 − δ]ζ, I0

Mj
v j 〉L2(R,�2q,⊥). (3.122)
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Since ζ has compact support, we can pick m > 0 so that supp(ζ ) ⊂ [−m + 1,m − 1] and
hence

supp
[K∗

k,Mj ;I0 − δ
]
ζ ∈ [−m,m]. (3.123)

Without loss of generality, we assume that we can pick ρ from the finite set q−1
Zq \ {0}

in such a way that gcd(qρ, q) = 1 and ρ(Mj ) = ρ holds for all j ∈ N. Here we use the
notation ρ(Mj ) to refer to the value of � in (3.40) with M = Mj .

The smoothness of ζ now implies that
[K∗

k,Mj ;I0 − δ
]
ζ → [K∗

q,ρ − δ
]
ζ ∈ L2([−m,m], �2q,⊥;∞). (3.124)

Together with the strong limit

I0
Mj

v j → V∗ ∈ L2([−m,m], �2q,⊥) (3.125)

and (3.111), this allows us to conclude

〈ζ,W∗〉L2(R,�2q,⊥;∞) = 〈[K∗
q,ρ − δ]ζ, V∗〉L2(R,�2q,⊥;∞). (3.126)

Since ζ was arbitrary, we see that W∗ = (Kq,ρ − δ)V∗ in the sense of distributions, which in
view of Lemma 3.6 and (3.111) implies that

‖V∗‖H1(R,�2q,⊥) = ‖V∗‖H1(R,�2q,⊥;∞)

≤ K1

[
‖W∗‖L2(R,�2q,⊥;∞) + δ−1

∣∣∣〈π⊥
,W∗〉L2(R,�2q,⊥;∞)

∣∣∣
]

≤ K1κ(δ) (3.127)

for some K1 > 1. ��

In the final step we obtain a lower bound on the H1 norm of V∗. It is here that we exploit
the specific structure of the terms in Kk,Mj and the bistable nature of the nonlinearity g. In
particular, the expression g′(�(ξ); a) is only positive on a bounded set for ξ , allowing us to
exploit the strong convergence of I0

Mj
v j to V∗ on such sets.

Lemma 3.18 There exist constants K2 > 1 and K3 > 1 so that for any 0 < δ < 1, the
function V∗ defined in Lemma 3.16 satisfies the bound

‖V∗‖2H1(R,�2q,⊥;∞)
≥ K2 − K3κ(δ)2. (3.128)

Proof For definiteness, we will assume c > 0. In view of the identity

w j = Kk,Mj v j − δv j

= −cDk,Mj v j + [TMj + T−1
Mj

− 2]v j + g′(πHM j
�; a)v j − δv j , (3.129)

we may write

〈w j ,Dk,Mj v j 〉HM + c
∥∥Dk,Mj v j

∥∥2
HM j

= 〈g′(πHM j
�; a)v j ,Dk,Mj v j 〉HM j

+〈[TMj + T−1
Mj

− 2]v j ,Dk,Mj v j 〉HM j

− δ〈v j ,Dk,Mj v j 〉HM j
. (3.130)

123



986 J Dyn Diff Equat (2016) 28:955–1006

WritingC ′
1 = ∥

∥g′∥∥∞ +6 > 0, remembering that 0 < δ < 1 and invoking Cauchy-Schwartz,
we obtain

C ′
1

∥
∥v j

∥
∥HM j

∥
∥Dk,Mj v j

∥
∥
HM j

≥ 〈g′(πHM j
�; a)v j ,Dk,Mj v j 〉HM j

+〈[TMj + T−1
Mj

− 2]v j ,Dk,Mj v j 〉HM j

− δ〈v j ,Dk,Mj v j 〉HM j

= 〈w j ,Dk,Mj v j 〉HM j
+ c

∥
∥Dk,Mj v j

∥
∥2
HM j

≥ c
∥
∥Dk,Mj v j

∥
∥2
HM j

− ∥
∥Dk,Mj v j

∥
∥
HM j

∥
∥w j

∥
∥HM j

.(3.131)

This yields ∥
∥w j

∥
∥HM j

+ C ′
1

∥
∥v j

∥
∥HM j

≥ c
∥
∥Dk,Mv j

∥
∥HM j

, (3.132)

which can be squared to give

2
∥∥w j

∥∥2HM j
+ 2C ′2

1

∥∥v j
∥∥2HM j

≥ ∥∥w j
∥∥2HM j

+ C ′2
1

∥∥v j
∥∥2HM j

+ 2C ′
1

∥∥w j
∥∥HM j

∥∥v j
∥∥HM j

≥ c2
∥∥Dk,Mj v j

∥∥2
HM j

, (3.133)

which is reminiscent of [1, Eq. (3.9)].
Let us now pick a constant m > 1 in such a way that

0 < α := 1

2
min{−g′(0; a),−g′(1; a)} = min|ξ |≥m−1

{−g′(�(ξ); a)}. (3.134)

This allows us to estimate

〈w j , v j 〉HM j
= 〈[Kk,Mj − δ]v j , v j

〉
HM j

= −c〈Dk,Mv j , v j 〉HM j

+ 〈[TMj + T−1
Mj

− 2]v j , v j
〉
HM j

+ 〈
g′(πHM j

�; a)v j , v j
〉
HM j

− δ〈v j , v j 〉HM j

≤ 〈
g′(πHM j

�; a)v j , v j
〉
HM j

− c〈Dk,Mv j , v j 〉HM j

≤ −α
∥∥v j

∥∥2HM j
+ ( ∥∥g′∥∥∞ + α

)
M−1

j

∑

ξ∈M−1
j Z:|ξ |≤m

∣∣v j (·, ξ)
∣∣2
�2q,⊥

+C ′
2M

−1
j

∥∥Dk,Mj v j
∥∥2
HM j

, (3.135)

for some C ′
2 > 1, where we used (3.134) and Corollary 3.15 for the last bound. Using the

basic inequality

xy = (
√

αx)(y/
√

α) ≤ α

2
x2 + 1

2α
y2, (3.136)
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we find
( ∥
∥g′∥∥∞ + α

)
M−1

j

∑

ξ∈M−1
j Z:|ξ |≤m

∣
∣v j (·, ξ)

∣
∣2
�2q,⊥

≥ α
∥
∥v j

∥
∥2HM j

+ 〈w j , v j 〉HM j

−C ′
2M

−1
j

∥
∥Dk,Mj v j

∥
∥2
HM j

≥ α
∥
∥v j

∥
∥2HM j

− ∥
∥w j

∥
∥HM j

∥
∥v j

∥
∥HM j

−C ′
2M

−1
j

∥
∥Dk,Mj v j

∥
∥2
HM j

≥ α

2

∥
∥v j

∥
∥2HM j

− 1

2α

∥
∥w j

∥
∥2HM j

−C ′
2M

−1
j

∥
∥Dk,Mj v j

∥
∥2
HM j

. (3.137)

Rescaling (3.133) yields

0 ≥ α

2(c2 + 2C ′2
1 )

[
c2

∥
∥Dk,Mv j

∥
∥2HM j

− 2C ′2
1

∥
∥v j

∥
∥2HM j

− 2
∥
∥w j

∥
∥2HM j

]
, (3.138)

which can be added to (3.137) to obtain
( ∥∥g′∥∥∞ + α

)
M−1

j

∑

ξ∈M−1
j Z:|ξ |≤m

∣∣v j (·, ξ)
∣∣2
�2q,⊥

≥ c2α

2(c2 + 2C ′2
1 )

[ ∥∥Dk,Mj v j
∥∥2
HM j

+ ∥∥v j
∥∥2HM j

]

−
[
1

2α
+ α

c2 + 2C ′2
1

] ∥∥w j
∥∥2HM j

−C ′
2M

−1
j

∥∥Dk,Mj v j
∥∥2
HM j

. (3.139)

Remembering that
∥∥v j

∥∥H1
k,M j

= 1, we find that there exist constants K2 > 0 and K3 > 0,

which both are independent of 0 < δ < 1, such that

M−1
j

∑

ξ∈M−1
j Z:|ξ |≤m

∣∣v j (·, ξ)
∣∣2
�2q,⊥

≥ K2 − K3
∥∥w j

∥∥2HM j
− C ′

2M
−1
j . (3.140)

The strong convergence I0
Mj

v j → V∗ ∈ L2([−m − 1,m + 1], �2q,⊥) now implies that

M−1
j

∑

ξ∈M−1
j Z:|ξ |≤m

∣∣v j (·, ξ)
∣∣2
�2q,⊥

=
∫ m+M−1

j

−m

∣∣∣[I0
Mj

v j ](·, ξ)

∣∣∣
2

�2q,⊥
dξ

≤
∫ m+1

−m

∣∣∣[I0
Mj

v j ](·, ξ)

∣∣∣
2

�2q,⊥
dξ

→
∫ m+1

−m
|V∗(·, ξ)|2

�2q,⊥
dξ, (3.141)

which in view of the bound lim sup j→∞
∥∥w j

∥∥2HM j
≤ κ(δ)2 gives

‖V∗‖2H1(R,�2q,⊥)
≥

∫ m+1

−m
|V∗(·, ξ)|2

�2q,⊥
dξ ≥ K2 − K3κ(δ)2. (3.142)

��
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Proof of Proposition 3.7 For any 0 < δ < 1, Lemma’s 3.17 and 3.18 show that the function
V∗ defined in Lemma 3.16 satisfies

K 2
1κ(δ)2 ≥ ‖V∗‖2H1(R,�2q,⊥)

≥ K2 − K3κ(δ)2, (3.143)

which gives
(
K 2
1 + K3

)
κ(δ)2 ≥ K2 > 0, as desired. ��

3.3 Proof of Proposition 3.2

We are now ready to turn to the proof of this section’s main result. The basic strategy is
to exploit the fact that we already know that Lk,M − δ is invertible to study the difference
between (Lk,M − δ)−1 and (L − δ)−1.

Lemma 3.19 Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1, together with a sufficiently small
constant η > 0. Recall the function δ �→ M0(δ) defined in the statement of Proposition 3.3.
Then there exists a constant K > 1 so that for any 0 < δ < 1, any f ∈ BC1−η(R,R) and
any M ∈ Mq with M ≥ M0(δ), we have the bound

∥
∥∥(Lk,M − δ)−1πYM f − πY1

k,M
(L − δ)−1 f

∥
∥∥
Y1
k,M

≤ K δ−2M−1 ‖ f ‖BC1−η
. (3.144)

Proof Consider the functions vk,M ∈ Y1
k,M and v ∈ BC2−η(R,R) defined by

vk,M = (Lk,M − δ)−1πYM f,

v = (L − δ)−1 f. (3.145)

Again applying [21, Eq. (2.44)], we find the bound

‖v‖BC2−η
≤ C ′

1δ
−1 ‖ f ‖BC1−η

, (3.146)

for some C ′
1 > 1 that does not depend on δ and f .

Writing x = vk,M − πY1
k,M

v ∈ Y1
k,M , we may compute

(Lk,M − δ)x = cπYM

[Dk,Mv − v′]. (3.147)

The estimate (2.14) now implies that the YM norm of the right-hand side can be bounded
by C ′

2M
−1 ‖v‖BC2−η

for some C ′
2 > 1 that does not depend on v. The desired bound now

follows from an application of Proposition 3.3. ��
Proof of Proposition 3.2 All constants introduced below are independent of 0 < δ < 1
and M ∈ Mq with M ≥ max{δ−2, M0(δ)}, together with f and v where applicable. For
convenience, we introduce the set

Z1
k,M = {v ∈ Y1

k,M : 〈πYM
, v〉YM = 0}. (3.148)

Our goal is to find, for any f ∈ YM , a solution (γ, v) ∈ R × Z1
k,M to the problem

v = Vk,M;δ( f, v, γ ) := (Lk,M − δ)−1[ f + γπYMDk,M� − δv
]
. (3.149)

In order to ensure that the linear operator Vk,M;δ indeed maps intoZ1
k,M , it suffices to choose

γ in such a way that

γ 〈πYM
, (Lk,M − δ)−1πYMDk,M�〉YM = −〈πYM
, (Lk,M − δ)−1( f − δv)〉YM . (3.150)
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It is easy to verify that
(L − δ)−1�

′ = −δ−1�
′
, (3.151)

which using Lemma 3.19 together with (2.14) and remembering δ−2 > δ−1 gives
∥
∥
∥(Lk,M − δ)−1πYMDk,M� + δ−1πY1

k,M
�

′∥∥
∥
Y1
k,M

≤ C ′
1δ

−2M−1 (3.152)

for some C ′
1 > 1. Applying Lemma 3.4, we hence see that
∣
∣
∣〈πYM
, (Lk,M − δ)−1πYMDk,M�〉YM + δ−1

∣
∣
∣ ≤ C ′

2δ
−2M−1 (3.153)

for some C ′
2 > 1. In particular, using 1

x + 1
α

= α+x
αx and |x | ≥ α − |x + α|, we see that there

exists C ′
3 > 1 for which

∣
∣
∣〈πYM
, (Lk,M − δ)−1πYMDk,M�〉−1

YM
+ δ

∣
∣
∣ ≤ C ′

3M
−1 (3.154)

holds for all sufficiently large M � δ−2. For such pairs (δ, M), one can hence find a unique
solution γ = γk,M;δ( f, v) to (3.150) for every v ∈ Z1

k,M and f ∈ YM . Sincewemay estimate

∣∣〈πYM
, (Lk,M − δ)−1( f − δv)〉YM

∣∣ ≤ C ′
4[δ−1 ‖ f ‖YM

+ δ ‖v‖YM
], (3.155)

we see that ∣∣γk,M;δ( f, v)
∣∣ ≤ C ′

5

[ ‖ f ‖YM
+ δ2 ‖v‖YM

]
(3.156)

for some C ′
4 > 1 and C ′

5 > 1. We emphasize that it is a consequence of v ∈ Z1
k,M that we

have gained an extra factor δ in front of v here.
We now find

∥∥Vk,M;δ( f, v, γk,M;δ( f, v))
∥∥Y1

k,M
≤ C ′

6

[
δ−1 ‖ f ‖HM

+ δ ‖v‖YM

]
(3.157)

for some C ′
6 > 1. By choosing δ > 0 to be sufficiently small, we hence see that the linear

fixed point problem
v = Vk,M;δ

(
f, v, γk,M;δ( f, v)

)
(3.158)

posed on Z1
k,M has a unique solution for all f ∈ YM . Writing v = V∗

k,M;δ f for this solution
together with

γ ∗
k,M;δ f = γk,M;δ

(
f,V∗

k,M;δ f
)
, (3.159)

we obtain the estimates
∥∥V∗

k,M;δ f
∥∥
Y1
k,M

≤ C ′
7δ

−1 ‖ f ‖YM
,

∣∣γ ∗
k,M;δ f

∣∣ ≤ C ′
7 ‖ f ‖YM

(3.160)

for someC ′
7 ≥ 1. Inspection of (3.149) shows thatV∗

k,M;δ and γ ∗
k,M;δ are actually independent

of δ, which allows us to fix a suitably small δ > 0 and obtain the desired bounds (3.15).
Now turning to the bound (3.19), we note that for every sufficiently large M and every

f ∈ BC1−η(R,R), we can find vM ∈ BC2−η(R,R) so that

L vM = f − �
′〈
, f 〉L2 , 〈πYM
,πYM vM 〉YM = 0, (3.161)

with the estimate
‖vM‖BC2−η

≤ C ′
8 ‖ f ‖BC1−η

(3.162)
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for some C ′
8 > 1. In particular, upon writing

V∗
k,M f = vM + vk,M , γ ∗

k,M f = −〈
, f 〉L2 + γk,M , (3.163)

we find that
Lk,Mvk,M = gk,M + γk,MDk,M�. (3.164)

Here we have introduced the sequence

gk,M = cπYk,M [Dk,MvM − v′
M ] − 〈
, f 〉L2πYk,M [Dk,M� − �

′], (3.165)

which implies
vk,M = V∗

k,Mgk,M , γk,M = γ ∗
k,Mgk,M . (3.166)

Using (2.14), we obtain the estimate
∥
∥gk,M

∥
∥YM

≤ C ′
9M

−1 ‖ f ‖BC1−η
, (3.167)

which in view of Lemma 3.4 gives the desired bound (3.19). ��

4 Proof of Main Results

In this section we set out to prove the results stated in Sect. 2. In Sect. 4.1 we study the limit
�t → 0, exploiting the linear theory developed in Sect. 3 to set up a fixed point argument
and prove Theorem 2.1. The backward-Euler discretization is analyzed in Sect. 4.2, where
we primarily exploit the work of Mallet-Paret [29] to prove Theorem 2.2 and Corollaries
2.3 and 2.5. Finally, in Sect. 4.3 we prove Corollary 2.4, which concerns the anti-continuum
limit of the PDE (1.1). This part is heavily based on the pioneering work of Keener [25].

4.1 The Small Time-Step Limit �t → 0

Let us fix an integer q ≥ 1 and a constant M = p
q ∈ Mq . We seek a solution to the nonlinear

problem

c[Dk,M�](ξ) = �(ξ + 1) + �(ξ − 1) − 2�(ξ) + g
(
�(ξ); a)

, ξ ∈ p−1
Z (4.1)

that has the form
�(ξ) = �(ξ + ϑ) + v(ξ), ξ ∈ p−1

Z, (4.2)

for some ϑ ∈ R and v ∈ YM . Note that this automatically ensures that � satisfies the
boundary conditions

lim
ξ→−∞; ξ∈p−1Z

�(ξ) = 0, lim
ξ→+∞; ξ∈p−1Z

�(ξ) = 1. (4.3)

In addition, the normalization condition (2.24) is satisfied provided that

〈
(· + ϑ), v〉YM = 0. (4.4)

For convenience, we introduce the shorthands

�ϑ(ξ) = �(ξ + ϑ), 
ϑ(ξ) = 
(ξ + ϑ). (4.5)

In addition, we introduce the linear operators

Lk,M;ϑ : Y1
k,M → YM (4.6)
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that act as

[Lk,M;ϑv](ξ) = −c[Dk,Mv](ξ)+v(ξ+1)+v(ξ−1)−2v(ξ)+g′(�ϑ(ξ); a)
v(ξ), ξ ∈ p−1

Z.

(4.7)
Naturally, these operators satisfy the properties described in Proposition 3.2 provided all
occurrences of � and 
 are replaced by �ϑ respectively 
ϑ . We write

γ ∗
k,M;ϑ : YM → R, V∗

k,M;ϑ : YM → Y1
k,M (4.8)

for the maps appearing in that result. The properties (Hg) imply that the map

ϑ �→ Lk,M;ϑ ∈ L(Y1
k,M ,YM

)
(4.9)

is Cr−1-smooth. The same hence holds for the maps

ϑ �→ γ ∗
k,M;ϑ ∈ L(YM ,R), ϑ �→ V∗

k,M;ϑ ∈ L(YM ,Y1
k,M ), (4.10)

with derivatives that can be uniformly bounded for large M .
Plugging the Ansatz (4.2) into (4.1), we arrive at

c[Dk,M�ϑ ](ξ) + c[Dk,Mv](ξ) = �ϑ(ξ + 1) + �ϑ(ξ − 1) − 2�ϑ(ξ)

+ v(ξ + 1) + v(ξ − 1) − 2v(ξ)

+ g
(
�ϑ(ξ) + v(ξ); a

)
. (4.11)

For any v ∈ R and (ξ, ϑ, a) ∈ R
2 × (0, 1) we introduce the expression

N (v; ξ, ϑ, a) = g
(
�(ξ + ϑ) + v; a

)
− g

(
�(ξ + ϑ); a

)
− g′(�(ξ + ϑ); a

)
v, (4.12)

which allows us to rephrase as (4.11) as

c[Dk,M�ϑ ](ξ) + c[Dk,Mv](ξ) = �ϑ(ξ + 1) + �ϑ(ξ − 1) − 2�ϑ(ξ)

+ v(ξ + 1) + v(ξ − 1) − 2v(ξ) + g′(�ϑ(ξ); a
)
v(ξ)

+ g
(
�ϑ(ξ); a

)
+ N (v(ξ); ξ, ϑ, a)

+ g′(�ϑ(ξ); a
)
v(ξ) − g′(�ϑ(ξ); a

)
v(ξ). (4.13)

Exploiting the identity

c�
′
ϑ = �ϑ(ξ + 1) + �ϑ(ξ − 1) − 2�ϑ(ξ) + g

(
�ϑ(ξ); a)

, (4.14)

we find that the pair (c, v) must satisfy

− [Lk,M,ϑv](ξ) = (c − c)[Dk,M�ϑ ](ξ) + [RA(c,Dk,Mv)](ξ) + [RB(v;ϑ, a)](ξ)

+[RC (ϑ, M)](ξ), (4.15)

in which we have introduced the expressions

[RA(c,Dk,Mv)](ξ) = (c − c)[Dk,Mv](ξ)

[RB(v;ϑ, a)](ξ) = g′(�ϑ(ξ); a
)
v(ξ) − g′(�ϑ(ξ); a

)
v(ξ)

+ g
(
�ϑ(ξ); a

)
− g

(
�ϑ(ξ); a

)
+ N (v(ξ); ξ, ϑ, a)

= g
(
�ϑ(ξ) + v(ξ); a

)
− g

(
�ϑ(ξ) + v(ξ); a

)

+N
(
v(ξ); ξ, ϑ, a

)
, (4.16)
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together with

[RC (ϑ, M)](ξ) = −c[Dk,M�ϑ ](ξ) + �ϑ(ξ + 1)

+�ϑ(ξ − 1) − 2�ϑ(ξ) + g
(
�ϑ(ξ); a

)
, (4.17)

which can be simplified to

[RC (ϑ, M)](ξ) = c
[
�

′
ϑ − Dk,M�ϑ

]
(ξ). (4.18)

The motivation for this split is that the RC term incorporates the entire effect of moving
from the pure derivative to the sampled derivative, whileRB describes the effects caused by
varying the parameters in our equation.

Proposition 3.2 shows that solutions to (4.15) must satisfy the fixed point problem

c − c = γ ∗
k,M;ϑ

[RA(c,Dk,Mv) + RB(v;ϑ, a) + RC (ϑ, M)
]
,

−v = V∗
k,M;ϑ

[RA(c,Dk,Mv) + RB(v;ϑ, a) + RC (ϑ, M)
]
. (4.19)

In order to construct solutions to (4.19) that depend smoothly on the parameters (ϑ, a) ∈
R×(0, 1), we need to obtain appropriate bounds and smoothness conditions on the nonlinear
terms. This is addressed in the following series of results.

Lemma 4.1 Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. There exists C > 1 so that for all
M = p

q ∈ Mq and v ∈ Y1
k,M we have

‖v‖∞ := sup
ξ∈p−1Z

|v(ξ)| ≤ C ‖v‖Y1
k,M

. (4.20)

Proof This follows from the bounded embedding H1(R,Rq+1) ⊂ L∞(R,Rq+1), the inter-
polation estimate (3.71) and the isometries described in Lemma 3.5. ��
Lemma 4.2 Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. There exists C > 1 so that for
all M ∈ Mq , all (c, ϑ, a) ∈ R

2 × (0, 1) and all v ∈ Y1
k,M with ‖v‖Y1

k,M
≤ 1, we have the

estimates
∥∥RA(c,Dk,Mv)

∥∥YM
≤ |c − c| ∥∥Dk,Mv

∥∥YM
,

‖RB(v;ϑ, a)‖YM
≤ C |a − a| + C ‖v‖Y1

k,M
‖v‖YM

,

‖RC (ϑ, M)‖YM
≤ CM−1. (4.21)

Proof The bound forRA is immediate. The restriction on v together with Lemma 4.1 implies
that ‖v‖∞ ≤ C ′

1 for some C ′
1 > 1, which allows us to obtain
∣∣N (v(ξ); ξ, ϑ, a)

∣∣ ≤ C ′
2 |v(ξ)|2 (4.22)

for some C ′
2 > 1. This allows us to estimate

‖N (v(·); ·, ϑ, a)‖2YM
= p−1

∑

ξ∈p−1Z

∣∣N (v(ξ); ξ, ϑ, a)
∣∣2

≤ [C ′
2]2 p−1

∑

ξ∈p−1Z
v(ξ)4

≤ [C ′
2]2 ‖v‖2∞ p−1

∑

ξ∈M−1Z
v(ξ)2

≤ C ′
3 ‖v‖2Y1

k,M
‖v‖2YM

(4.23)
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for someC ′
3 > 1. Observe that ∂aug(u; a) is uniformly bounded for a ∈ (0, 1) and u ∈ [0, 1],

while also ∂ag(1; a) = ∂ag(0; a) = 0. This yields the estimate
∣
∣g(�(ξ); a) − g(�(ξ); a)

∣
∣ ≤ C ′

4 |a − a|min
{∣∣�

∣
∣ ,

∣
∣1 − �

∣
∣} (4.24)

for someC ′
4 > 1, which due to the exponential decay of� to its limiting values�(−∞) = 0

and �(∞) = 1 shows that
∥
∥g(�(·); a) − g(�(·); a)

∥
∥YM

≤ C ′
5 |a − a| (4.25)

for some C ′
5 > 1. The stated bound for RB now follows from the elementary estimate

∥
∥[
g′(�(·); a) − g′(�(·); a)

]
v(·)∥∥YM

≤ C ′
6 |a − a| ‖v‖YM

(4.26)

for some C ′
6 > 1.

Turning finally to RC , we note that the desired estimate follows from (2.14) and the
exponential decay of �

′′
, which guarantees that

ξ �→ sup
−kM−1≤τ≤0

∣
∣
∣�

′′
(ξ + τ)

∣
∣
∣ (4.27)

is an element of BC−η(R,R) and hence of YM . ��
Lemma 4.3 Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1, together with two constants δc > 0
and 0 < δv < 1. Then there exists C > 1 so that for any set

(v1, v2, c1, c2, a, ϑ) ∈ Y1
M × Y1

M × R × R × (0, 1) × R (4.28)

with
‖v1‖Y1

k,M
+ ‖v2‖Y1

k,M
≤ δv, |c1 − c| + |c2 − c| ≤ δc, (4.29)

we have the estimates
∥∥RA(c1,Dk,Mv1) − RA(c2,Dk,Mv2)

∥∥YM
≤ δv |c1 − c2| + δc

∥∥Dk,M [v1 − v2]
∥∥YM

,

‖RB(v1;ϑ, a) − RB(v2;ϑ, a)‖YM
≤ C |a − a| ‖v1 − v2‖YM

+ Cδv ‖v1 − v2‖YM
.

(4.30)

Proof The estimate forRA is immediate. Lemma 4.1 again implies ‖v1‖∞ +‖v2‖∞ ≤ C ′
1δv

for some C ′
1 > 0, which shows that

∣∣N (v1(ξ); ξ, ϑ, a) − N (v2(ξ); ξ, ϑ, a)
∣∣ ≤ C ′

2δv |v1(ξ) − v2(ξ)| (4.31)

for some C ′
2 > 1. This allows us to compute

‖N (v1(·); ·, ϑ, a) − N (v2(·); ·, ϑ, a)‖2YM
= p−1

∑

ξ∈p−1Z

∣∣N (v1(ξ); ξ, ϑ, a)

−N (v2(ξ); ξ, ϑ, a)
∣∣2

≤ [C ′
2]2δ2v p−1

∑

ξ∈p−1Z
|v1(ξ) − v2(ξ)|2

= [C ′
2]2δ2v ‖v1 − v2‖2YM

. (4.32)

Together with
∥∥[
g′(�(·); a) − g′(�(·); a)

][
v1(·) − v2(·)]

∥∥YM
≤ C ′

3 |a − a| ‖v1 − v2‖YM
(4.33)

for some C ′
3 > 1, one obtains the stated estimate for RB . ��
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Lemma 4.4 Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. For all M = p
q ∈ Mq , the function

Ñ : Y1
k,M × R × (0, 1) → Yk,M (4.34)

defined by
[Ñ (v;ϑ, a)](ξ) = N (v(ξ); ξ, ϑ, a), ξ ∈ p−1

Z (4.35)

is Cr−1-smooth. The derivatives can be bounded uniformly for M ∈ Mq , ϑ ∈ R, a ∈ (0, 1)
and v in bounded subsets of Y1

k,M.

Proof In view of the estimate ‖v‖∞ ≤ C ‖v‖Y1
k,M

and theCr -smoothness of the nonlinearity

g, the smoothness can be obtained as in the proof of item (iv) of [6, Lem. App.IV.1.1]. ��
Proof of Theorem 2.1 Without loss of generality, we fix κ = 1. On account of the estimates
in Lemma’s 4.2 and 4.3, the fixed point problem (4.19) posed on the space

Zδv,δc = {(c, v) ∈ R × Y1
k,M : |c − c| ≤ δc and ‖v‖Y1

k,M
≤ δv} (4.36)

has a unique solution c∗
M (ϑ, a), v∗

M (ϑ, a)), provided that δv > 0, δc > 0 and |a − a| are
chosen to be sufficiently small and M ∈ Mq is chosen to be sufficiently large. The solution
to this fixed point problem depends Cr−1-smoothly on the parameters (ϑ, a) on account of
Lemma 4.4 and the observations above concerning the Cr−1 smoothness of ϑ �→ V∗

k,M;ϑ
and ϑ �→ γ ∗

k,M;ϑ .
The shift-periodicity stated in (iii) follows from the uniqueness of solutions to (4.19).

The inequality (iv) can be seen by inspecting the nonlinear terms appearing in (4.19) and
observing that the leading order dependence on a arises in theRB term. In particular, applying
Proposition 3.2, we find that

∂acM (ϑ, a) = 〈πYM
ϑ, πYM ∂ag(�ϑ ; a)〉YM + O(M−1). (4.37)

Since ∂ag(u; a) < 0 for all (u, a) ∈ (0, 1) × (0, 1), the desired inequality follows from
Lemma 3.4 for all sufficiently large M ∈ Mq .

We now turn to the uniqueness claim in the statement. First, we note that any � ∈
�∞(p−1

Z;R) that satisfies (2.28) for sufficiently small δ > 0, can be decomposed as

� = �ϑ̃ + v (4.38)

for some v ∈ Y1
k,M with 〈πYM
ϑ̃, v〉 = 0. This is a consequence of the inequality

〈πYM
,πYM�
′〉 > 0, which holds for all sufficiently large M ∈ Mq .

Inspection of the first line of the fixed point problem (4.19) shows that for fixed v ∈ Y1
k,M

with ‖v‖Y1
k,M

< δ, the remaining problem for c is linear and uniquely solvable as c = c(v)

provided that δ > 0 is sufficiently small. In addition, we see that |c(v) − c| ≤ C ′
1 ‖v‖Y1

k,M

holds for the solution of this problem, for some C ′
1 > 0. In particular, possibly after further

decreasing δ > 0, we see that |c − c| ≤ δc holds for the wave speed c associated to any
profile � satisfying (2.28). The desired uniqueness hence again follows from the uniqueness
of solutions to the full fixed point problem (4.19). ��
4.2 The Backward-Euler Discretization

Fix two constants �t > 0 and κ ≥ 0. In this subsection we study the problem

ν�′(ξ) = 1

�t
[�(ξ−c�t)−�(ξ)]+κ

[
�(ξ+1)+�(ξ−1)−2�(ξ)

]+g
(
�(ξ); a)

. (4.39)
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The conditions (Hg) imply that this system satisfies the conditions (i)-(v) in [29, Sect. 2].
We may therefore directly apply [29, Thm. 2.1] to obtain the existence of a function ν :
R × (0, 1) → R so that (4.39) with c ∈ R and a ∈ (0, 1) admits a non-decreasing solution
� with the limits

lim
ξ→−∞ �(ξ) = 0, lim

ξ→+∞ �(ξ) = 1, (4.40)

if and only if ν = ν(c, a). This theorem also shows that ν depends continuously on a, but
does not cover variations in c. In addition, the conditions (vi)-(x) are also satisfied, allowing
us to apply [29, Cor. 2.5] to conclude that a �→ ν(c, a) is a non-decreasing function, with
∂aν(c, a) < 0 whenever ν(c, a) 
= 0.

The main task for our proof of Theorem 2.2 is hence to understand the dependence of ν on
c. As a first step, we establish the equivalent of [29, Prop 7.2], which shows that we only need
to be concerned about the continuity of (c, a) �→ ν(c, a) in the regime where ν(c, a) 
= 0.

Lemma 4.5 Consider the problem (4.39) and suppose that (Hg) is satisfied. Consider a
sequence {(c j , a j )} j∈N ⊂ R × (0, 1) for which we have the convergence

lim
j→∞(c j , a j ) = (c∗, a∗) ∈ R × (0, 1). (4.41)

Suppose furthermore that ν(c j , a j ) 
= 0 for all j ∈ N but ν(c∗, a∗) = 0. Then we have the
limit

lim
j→∞ ν(c j , a j ) = 0. (4.42)

Proof Without loss, we assume that ν j := ν(c j , a j ) > 0 and that ν j → ν∗ as j → ∞, with
0 ≤ ν∗ ≤ ∞. We write � j for the wave profiles associated with (c j , a j ).

Consider first the case ν∗ = ∞. Upon introducing the new functions x j (ξ) = � j (ν jξ),
one sees that

x ′
j (ξ) = 1

�t

[
x j (ξ −ν−1

j c�t)−x j (ξ)
]+x j (ξ −ν−1

j )+x j (ξ +ν−1
j )−2x j (ξ)+g

(
x j (ξ); a j

)
.

(4.43)
On account of the equicontinuity of the families x j and x ′

j , one can pass to a subsequence
for which one can take the limits x j (ξ) → x∗(ξ) and x ′

j (ξ) → x ′∗(ξ), uniformly on compact
intervals of ξ . The limiting function x∗ satisfies

x ′∗(ξ) = g
(
x∗(ξ); a∗

)
. (4.44)

One can now proceed as in [29, Prop 7.2] to obtain a contradiction.
For the remaining case 0 < ν∗ < ∞, we note that the families � j and �′

j are equicon-
tinuous. After passing to a subsequence, we obtain the convergence � j (ξ) → �∗(ξ),
�′

j (ξ) → �′∗(ξ), uniformly on compact intervals of ξ . In fact, the equicontinuity also
gives � j (ξ − c j�t) → �∗(ξ − c∗�t), which allows us to conclude

ν∗�′∗ = 1

�t

[
�∗(ξ − c∗�t) − �∗(ξ)

] + �∗(ξ − 1) + �∗(ξ + 1) − 2�∗(ξ) + g
(
�∗(ξ); a∗

)
.

(4.45)
One can now again proceed as in [29, Prop 7.2] to obtain a contradiction. ��

For ν(c, a) 
= 0, we can set up a modified implicit function argument in order to study
the impact of variations in (c, a). In particular, let us suppose that ν = ν(c, a) 
= 0 for some
(c, a) ∈ R× (0, 1). Write � for the associated wave profile and 
 for the associated strictly
positive adjoint eigenfunction; see [29, Eq. (4.6)]. We now write

Lbe : H1(R,R) → L2(R,R) (4.46)
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for the operator associated to the linearization of the backward-Euler wave equation (4.39),
which acts as

[Lbew](ξ) = −νw′(ξ) + 1

�t

[
w(ξ − c�t) − w(ξ)] + κ

[
w(ξ + 1) + w(ξ − 1) − 2w(ξ)

]

+ g′(�(ξ); a)w(ξ). (4.47)

For normalization purposes, let us write

Zs = {w ∈ Hs(R,R) : 〈
,w〉L2 = 0} (4.48)

for any integer s ≥ 1. Looking for a solution to (4.39) of the form �(ξ) = �(ξ) + w(ξ)

with w ∈ Z1 is equivalent to looking for zeroes of the function

F : Z1 × R × R × (0, 1) → L2(R,R) (4.49)

that acts as

F(w, ν, c, a) = Lbew + (ν − ν)�
′ + SA(w′, ν)

+SB(w, a) + SC (c) + SD(w, c). (4.50)

Here we have introduced the nonlinear expressions

[SA(w′, ν)](ξ) = (ν − ν)w′(ξ),

[SB(w, a)](ξ) = g(�(ξ) + w(ξ); a) − g(�(ξ) + w(ξ); a) + N (w(ξ); ξ, a),

[SC (c)](ξ) = 1

�t

[
�(ξ − c�t) − �(ξ − c�t)

]
,

[SD(w, c)](ξ) = 1

�t
[w(ξ − c�t) − w(ξ − c�t)]. (4.51)

Inspection of these definitions immediately shows thatSA andSB share the estimates obtained
in Sect. 4.1 for RA and RB , provided one makes the replacements

c �→ ν, v �→ w, Y1
k,M �→ H1, YM �→ L2. (4.52)

Lemma 4.6 For any set
(w,w1, w2, c) ∈ H1(R,R)3 × R, (4.53)

we have the estimates

‖SC (c)‖L2 ≤ |c − c|
∥∥∥�

′∥∥∥
L2

‖SD(w, c)‖L2 ≤ |c − c| ∥∥w′∥∥
L2 ,

‖SD(w1, c) − SD(w2, c)‖ ≤ |c − c| ∥∥w′
1 − w′

2

∥∥
L2 . (4.54)

Proof Using Jensen’s inequality, we compute

|SD(w, c)(ξ)|2 = 1

(�t)2

∣∣∣∣∣

∫ (c−c)�t

u=0
w′(ξ − c�t + u) du

∣∣∣∣∣

2

≤ 1

�t
|c − c|

∫ (c−c)�t

u=0

∣∣w′(ξ − c�t + u)
∣∣2 du, (4.55)
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which gives

‖SD(w, c)‖2L2 ≤ 1

�t
|c − c|

∫ ∞

−∞

∫ (c−c)�t

u=0

∣
∣w′(ξ − c�t + u)

∣
∣2 du dξ

= |c − c|2
∫ ∞

−∞
∣
∣w′(ξ)

∣
∣2 dξ. (4.56)

The other estimates follow analogously. ��
Writing

�δ = {(c, a) ∈ R × (0, 1) : |c − c| + |a − a| < δ}, (4.57)

we may proceed precisely as in Sect. 4.1 to find solutions

w = w∗(c, a) ∈ H1(R,R), ν = ν∗(c, a) ∈ R (4.58)

to the problem F(w, ν, c, a) = 0 whenever (c, a) ∈ �δ for some sufficiently small δ > 0.
However, since the nonlinear term c �→ SD(w, c) is not of class Cr , special care needs to be
taken when studying the smoothness of ν∗ and w∗.

Lemma 4.7 Fix a sufficiently small δ > 0. The map ν∗ : �δ → R is Cr -smooth. In addition,
for each integer 0 ≤ l ≤ r + 1, the map w∗ : �δ →∈ Hr+1−l is Cl -smooth.

Proof Consider F as a map from Zr ×R
2 × (0, 1) into Hr−1, which is C1-smooth. We note

that
D(w,ν)F(0, ν, c, a) = (Lbe,−�

′) ∈ L(Zr × R, Hr−1). (4.59)

Since this linear operator is invertible, the implicit function theorem gives us a C1-smooth
branch of solutionsw∗(c, a) ∈ Zr and ν∗(c, a) ∈ R for (c, a) ∈ �δ , after possibly decreasing
δ > 0. Differentiating (4.39) with respect to ξ subsequently shows that (c, a) �→ w∗(c, a) ∈
Zr+1 is C0-smooth. In addition, upon writing

S∗(w, ν, c, a) = SA(w′, ν) + SB(w, a) + SC (c) + SD(w, c) (4.60)

and introducing the operator F (c) : � × Hr × R → Hr−1 that acts as

F (c)(c, a, w̃, ν̃) = Lbew̃ − ν̃�
′ + D(w,ν)S∗(w∗(c, a), ν∗(c, a), c, a)[w̃, ν̃]

+ DcS∗(w∗(c, a), ν∗(c, a), c, a), (4.61)

we see that
F (c)(c, a, ∂cw

∗(c, a), ∂cν
∗(c, a)

) = 0 (4.62)

for all (c, a) ∈ �δ . Unfortunately, F (c) does not depend C1-smoothly on the variable c,
on account of the term g′(�(ξ) + w∗(c, a)(ξ); a) appearing in DwN (w∗(c, a)(ξ), ξ, a).
Indeed, one cannot take (r − 1) derivatives with respect to ξ followed by one derivative with
respect to c, since g is only of class Cr . However,F (c) is in fact C1-smooth when interpreted
as a map from �× Hr−1 ×R into Hr−2. Arguing as above, one may now apply the implicit
function theorem to the problem

F (c)(c, a, w̃, ν̃) = 0, (4.63)

establishing that the solution branches (c, a) �→ ∂cw
∗(c, a) ∈ Hr−1 coupled with (c, a) �→

∂cν
∗(c, a) ∈ R are C1-smooth. The desired smoothness can now be obtained by repeating

this argument a sufficient number of times. ��
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Proof of Theorem 2.2 In view of the discussion above, it only remains to establish the
inequalities (2.35). Inspecting (4.61) and exploiting the identities

w∗(c, a) = 0, ν∗(c, a) = ν (4.64)

shows that

− Lbe∂cw
∗(c, a) + ∂cν

∗(c, a)�
′ = DcSC (c) = −�′(ξ − c�t), (4.65)

which yields

∂cν
∗(c, a) = −

∫ ∞

−∞

(ξ)�

′
(ξ − c�t) dξ < 0. (4.66)

Proceeding in a similar fashion and exploiting (Hg), we also find

∂aν
∗(c, a) =

∫ ∞

−∞

(ξ)∂ag(�(ξ); a) dξ < 0, (4.67)

as desired. ��
Proof of Corollary 2.3 Item (i) is a direct consequence of the continuity of the map (c, a) �→
ν(c, a), the definitions of a±(c) and the inequalities (2.35). Item (ii) follows from [29, Thm.
2.6] and the fact that (4.39) with κ > 0 and c = 0 is weakly coercive in the terminology of
[29]. In particular, this result states that 0 < a−(0) ≤ a+(0) < 1 and the desired inequalities
now follow from continuity of the map (c, a) �→ ν(c, a). ��
Proof of Corollary 2.5 Let us first consider the inequalities

lim
c→∞ a+(c) ≤ a++∞, lim

c→−∞ a−(c) ≥ a−−∞. (4.68)

We only establish the first inequality here, as the second one follows in a similar fashion. In
order to relate the system (4.39) with κ = 1 to κ = 0, we assume c > 0 and perform the
rescaling

ζ = c−1ξ, μ = ν

c
, ε = c−1, (4.69)

which transforms (4.39) with κ = 1 to

μ�′(ζ ) = 1

�t
[�(ζ −�t)−�(ζ)]+�(ζ − ε)+�(ζ + ε)−2�(ζ)+ g(�(ζ ); a). (4.70)

We writeμ(ε, a) for the unique value ofμ for which (4.70) admits a non-decreasing solution
� with

lim
ζ→−∞ �(ζ) = 0, lim

ζ→+∞ �(ζ) = 1. (4.71)

By the same arguments as developed in this section, the map (ε, a) → μ(ε, a) is continuous
for all ε ∈ R and a ∈ (0, 1). Since μ has the same sign as ν, we obtain the first inequality of
(4.68) by taking the limit ε ↓ 0.

The statements
a++∞ < 1, a−−∞ > 0 (4.72)

again follow from [29, Thm. 2.6], as (4.39) with κ = 0 is coercive at � = +1 or � = 0
when c > 0 respectively c < 0. Finally, the identities

a−+∞ = −∞, a+−∞ = +∞ (4.73)

follow directly from [29, Thm. 2.2]. ��
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4.3 The Anti-continuum Limit

In this subsection we continue our discussion from (4.2). We first consider the special case
that (c�t)−1 = M = p

q ∈ Q, with gcd(p, q) = 1. In this case, solutions to (4.39) generate
solutions to the LDE

d

dt
u(t, ξ) = 1

�t
[u(t, ξ − M−1) − u(t, ξ)] + κ

[
u(t, ξ + 1) + u(t, ξ − 1) − 2u(t, ξ)

]

+g
(
u(t, ξ); a)

, (4.74)

posed on the lattice ξ ∈ p−1
Z, via the correspondence

u(t, ξ) = �(νt + ξ). (4.75)

We note that (4.74) can be embedded into the more general system

d

dt
u(t, ξ) =

N∑

j=1

d−
j [u(t, ξ − j p−1) − u(t, ξ)]

+
N∑

j=1

d+
j [u(t, ξ + j p−1) − u(t, ξ)] + g

(
u(t, ξ); a)

(4.76)

for some integer N ≥ 1 and coefficients d±
j ≥ 0. Following [22, Prop. 4.1], we see that

the LDE (4.76) admits a comparison principle. In particular, any two solutions u1 and u2 to
(4.76) that have

u1(t0, ξ) ≤ u2(t0, ξ), ξ ∈ p−1
Z (4.77)

for some t0 ∈ R, will in fact have

u1(t, ξ) ≤ u2(t, ξ), ξ ∈ p−1
Z (4.78)

for all t ≥ t0.
As a consequence, if a solution u to (4.76) has the weak monotonicity property

u(t0, ξ) ≤ u(t0, ξ + p−1), ξ ∈ p−1
Z (4.79)

for some t0 ∈ R, then we also have

u(t, ξ) ≤ u(t, ξ + p−1), ξ ∈ p−1
Z (4.80)

for all t ≥ t0. This is useful in conjunction with the following two results, which are closely
related to [25, Thm. 2.8].

Lemma 4.8 Consider the LDE (4.76) and suppose that (Hg) is satisfied. Fix a ∈ (0, 1) and
introduce the quantity

d+∗ =
N∑

j=1

d+
j . (4.81)

Suppose that there exist 0 ≤ ul < ur ≤ a so that for all u ∈ (ul , ur ) we have

g(u; a) < d+∗ (u − 1), (4.82)

which is the case whenever d+∗ ≥ 0 is sufficiently small. Consider any solution to (4.76) that
has the property

0 ≤ u(t0, ξ) ≤ u(t0, ξ + p−1) ≤ 1, ξ ∈ p−1
Z (4.83)
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for some t0 ∈ R. Then for all pairs (t∗, ξ∗) ∈ R × p−1
Z for which

t∗ ≥ t0, u(t∗, ξ∗) ∈ (ul , ur ), (4.84)

we have the inequality
d

dt
u(t∗, ξ∗) < 0. (4.85)

Proof The remarks above imply that also

0 ≤ u(t∗, ξ) ≤ u(t∗, ξ + p−1) ≤ 1, ξ ∈ p−1
Z. (4.86)

In particular, we may estimate

d

dt
u(t∗, ξ∗) =

∑N

j=1
d−
j [u(t∗, ξ∗ − j p−1) − u(t∗, ξ∗)]

+
∑N

j=1
d+
j [u(t∗, ξ + j p−1) − u(t∗, ξ∗)] + g

(
u(t∗, ξ∗); a

)

≤
∑N

j=1
d+
j [u(t∗, ξ + j p−1) − u(t∗, ξ∗)] + g

(
u(t∗, ξ∗); a

)

≤
∑N

j=1
d+
j [1 − u(t∗, ξ∗)] + g

(
u(t∗, ξ∗); a

)

= d+∗ [1 − u(t∗, ξ∗)] + g
(
u(t∗, ξ∗); a

)

< 0. (4.87)

��
Lemma 4.9 Consider the LDE (4.76) and suppose that (Hg) is satisfied. Fix a ∈ (0, 1) and
introduce the quantity

d−∗ =
N∑

j=1

d−
j . (4.88)

Suppose that there exist a ≤ ul < ur ≤ 1 so that for all u ∈ (ul , ur ) we have

g(u; a) > d−∗ u, (4.89)

which is the case whenever d−∗ ≥ 0 is sufficiently small. Consider any solution to (4.76) that
has the property

0 ≤ u(t0, ξ) ≤ u(t0, ξ + p−1) ≤ 1, ξ ∈ p−1
Z (4.90)

for some t0 ∈ R. Then for all pairs (t, ξ) ∈ R × p−1
Z for which

t ≥ t0, u(t, ξ) ∈ (ul , ur ), (4.91)

we have the inequality
d

dt
u(t, ξ) > 0. (4.92)

Proof Proceeding as in the proof of the Lemma above, we estimate

d

dt
u(t∗, ξ∗) =

∑N

j=1
d−
j [u(t∗, ξ∗ − j p−1) − u(t∗, ξ∗)]

+
∑N

j=1
d+
j [u(t∗, ξ + j p−1) − u(t∗, ξ∗)] + g

(
u(t∗, ξ∗); a

)

≥
∑N

j=1
d−
j [u(t∗, ξ∗ − j p−1) − u(t∗, ξ∗)] + g

(
u(t∗, ξ∗); a

)
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≥ −
∑N

j=1
d−
j u(t∗, ξ∗) + g

(
u(t∗, ξ∗); a

)

= −d−∗ u(t∗, ξ∗) + g
(
u(t∗, ξ∗); a

)

> 0. (4.93)

��
Proof of Corollary 2.4 For c > 0, we have d+∗ = κ and d−∗ = κ + 1

�t , while for c < 0, we
have d+∗ = κ + 1

�t and d
−∗ = κ . Since g depends continuously on a, it is possible to restrict

the size of d±∗ > 0 in such a way that both conditions (4.82) and (4.89) are satisfied for all a
that have |a − a| < δa for some small δa > 0. For all such a we necessarily have

ν(c, a; κ,�t) = 0, (4.94)

since (4.85) and (4.92) together preclude any non-decreasing wave profile � that satisfies
the limits (4.92) from actually travelling. We thus obtain

a−(c; κ,�t) < a − 1

2
δa < a + 1

2
δa < a+(c; κ,�t) (4.95)

for all c for which c�t ∈ Q. This last rationality restriction can be removed by using the fact
that the maps c �→ a±(c; κ,�t) are non-increasing. ��

5 Discussion

In this paper we studied the existence of travelling wave solutions to fully discretized scalar
reaction–diffusion systems in one spatial dimension. We considered a family of discretiza-
tion schemes commonly referred to as the BDF methods, which include the well-known
backward-Euler discretization. We constructed travelling waves in a variety of different lim-
its by employing several distinct techniques. In addition, we were able to prove the non-
uniqueness of the a(c) relationship in the anti-continuum regime. In this final section we
discuss various issues that we encountered during the preparation of this paper.

5.1 Irrational Values of M = (c�t)−1

At present there is still a large disconnect between the results of Theorems 2.1 and 2.2.
Indeed, the latter result is independent of the (ir)rationality of M , while this distinction plays
a major role in the former result. In addition, the existence results obtained in [5] for fully
discretized travelling waves also cover both rational and irrational M . Those results were
however obtained using completely different techniques that do not involve the operators
Lk,M and do not address questions such as uniqueness and parameter dependence.

The technical obstruction in our approach is the interpolating procedure used in Sect. 3.
In particular, one would like to perform a second interpolation procedure in the transverse
direction and build functions in H1(R, L2([0, 1])) from elements ofH1

k,M . This would allow
functions defined on different subsets of R to be compared to each other, which is a natural
first step towards taking the limit q → ∞.

The problem however is that �2q,⊥ is compact, while L2([0, 1],R) is not. In particular, one

does not have any control from below on the L2([0, 1],R) norm of the components of the
limiting functions V∗(·, ξ) and W∗(·, ξ) in the proof of Proposition 3.7. This means that the
inequalities (3.141) and (3.143) fail. The difference with respect to the first interpolation in
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the ξ -direction is that the travellingwave equations provide a natural bound on the differences
D1,Mj v j , while there is no similar control over terms of the form p−1

j [v j (ξ + p−1
j )−v j (ξ)].

5.2 Exponentially Small Effects

Arguing in the fashionof theproof ofTheorem2.1, onefinds that the leadingorder dependence
on ϑ occurs in the term RC . This suggests writing

∂ϑcM (ϑ, a) = c∂ϑ 〈πYM
ϑ, πYM [�ϑ − Dk,M�ϑ ]〉YM + O(M−1). (5.1)

Unfortunately, this expression does not appear to be very useful, as we now discuss in some
detail.

Following [37], let us consider a function f : R → R that decays as

f (ξ) = O
( |ξ |−1−ε

)
, ξ → ±∞, (5.2)

for some ε > 0. Let us also assume that f can be extended to an analytic function

f : {z ∈ C : |Im z| < 1} → C (5.3)

for which ξ �→ f (iη + ξ) ∈ L1(R,R) for each η ∈ (−1, 1). Upon writing

f̂ (ω) =
∫ ∞

−∞
f (ξ)e−iωξ dξ (5.4)

for the Fourier transform of f , our assumptions imply the decay rate

f̂ (ω) = O
(
e−α|ω|), ω → ±∞ (5.5)

for every α < 1.
Let us now introduce, for any integer p ≥ 1 and ϑ ∈ R, the quantity

Tp(ϑ) = p−1
∑

ξ∈p−1Z

f (ξ + ϑ), (5.6)

which is well-defined on account of our assumptions above. The well-known Poisson sum-
mation formula states that

Tp(ϑ) −
∫ ∞

−∞
f (ξ) dξ =

∞∑

j=1

[
f̂ (2πpj)e2π iϑpj + f̂ (−2πpj)e−2π iϑpj ], (5.7)

which gives

∂ϑTp(ϑ) =
∞∑

j=1

(2π i pj)
[
f̂ (2πpj)e2π iϑpj − f̂ (−2πpj)e−2π iϑpj ]. (5.8)

In particular, we find that for any α < 1 we have

∂ϑTp(ϑ) = O(e−2παp), p → ∞. (5.9)

As an example, for the function

f (ξ) = 1

1 + ξ2
(5.10)
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we may explicitly compute

Tp(ϑ) = p−1
∑

j∈Z
1

1 + (p−1 j + ϑ)2

= π
cosh(πp) sinh(πM)

cosh2(πp) − cos2(πpϑ)

= π tanh(πp)−1
[
1 + 1 − cos(πpϑ)2

sinh2(πp)

]−1

, (5.11)

which gives

∂ϑTp(ϑ) = − sinh−2(πp)π tanh(πp)−1
[
1 + 1 − cos(πpϑ)2

sinh2(πp)

]−2

(sin(2πpϑ)πp)

= −4π2 p sin(2πpϑ)e−2πp + o(pe−2πp) (5.12)

as p → ∞. Such terms are hence exponentially small as p → ∞, which means that they will
not show up at any order when performing a Taylor expansion in the variable p−1 near zero.
In particular, we do not expect to be able to analyze the term (5.1) and its propagation through
the fixed point argument outlined in Sect. 4 by using only standard Melnikov methods.

A way around this could be a formal asymptotics-beyond-all-orders method such as the
one outlined by King and Chapman [26], which could potentially be used to study systems
of the form

cε−2[�(ξ − ε2) − �(ξ)] = ε−2[�(ξ + ε) + �(ξ − ε) − 2�(ξ)] + g(u; a) (5.13)

for small ε > 0, again with the usual limits

lim
ξ→−∞ �(ξ) = 0, lim

ξ→+∞ �(ξ) = 1. (5.14)

If u �→ g(u, 1
2 ) is anti-symmetric around u = 1

2 , one can follow the cut-off procedure that
was developed in [26] for the spatial discretization

c�′(ξ) = ε−2[�(ξ + ε) + �(ξ − ε) − 2�(ξ)] + g(u; a), (5.15)

to formally find an interval Ia = [ 12 − 1
2 δa,

1
2 + 1

2 δa] of width δa ∼ e−α/ε for some α > 0 so
that (5.13) admits only solutions with c = 0 whenever a ∈ Ia . For a slightly outside Ia , we
believe a second cut-off procedure could be used to uncover the difference between (5.13)
and (5.15). In particular, we believe that the expected exponentially small fluctuations in c
could be uncovered by appropriately sampling the remainder equations on different subsets
of the line.

Another way could be to understand how poles of the functions � and 
 behave under
the fixed point iteration procedure described here. This would require understanding the
solutions to MFDEs of the form

− cv′(z) + v(z + 1) + v(z − 1) − 2v(z) + g′(�(z); a)
v(z) = 1

(z − β)n
(5.16)

with a complex variable z. Compared to meromorphic ODEs, the difficulty here is that one
now expects poles to occur at more locations that just z = β and the poles of�. In particular,
one can no longer perform local expansions as in [26].
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5.3 Discontinuities of a±

For the purpose of this discussion, let us fix κ > 0 and �t > 0 and introduce the shorthands
a±(c) = a±(c; κ,�t). In addition, let us fix c0 in such a way that c0�t ∈ Q. The left-
continuity of a+ and right-continuity of a− stated in Corollary 2.3 imply that

lim
c↑c0

a+(c) = a+(c0), lim
c↓c0

a−(c) = a−(c0). (5.17)

In particular, whenever the strict inequalities

lim
c↑c0

a−(c) > a−(c0), lim
c↓c0

a+(c) < a+(c0) (5.18)

hold, we may conclude that
a−(c0) < a+(c0), (5.19)

implying that solutions to (2.32) with the limits (2.34) exist with the same wave speed c = c0
at multiple values of a. The numerical results in Figure 1 indicate that the strict inequalities
(5.18) can indeed be expected to hold for c0�t ∈ Q, with the size of the jumps roughly
increasing with the strength of the resonance. This is reminiscent of the crystallographic
pinning phenomenon described in [7,20,23,30], which concerns the interval of detuning
parameters a for which planar wave solutions to the LDE

u̇i j = ui+1, j + ui, j+1 + ui−1, j + ui, j−1 − 4ui j + g
(
ui j ; a

)
, (i, j) ∈ Z

2, (5.20)

fail to propagate. Such solutions can be written as

ui j (t) = �(i cos θ + j sin θ + νt), (5.21)

again with the limits
lim

ξ→−∞ �(ξ) = 0, lim
ξ→+∞ �(ξ) = 1. (5.22)

Thewave speed ν = ν(θ, a) depends uniquely on the angle of propagation θ and the detuning
parameter a ∈ (0, 1), allowing us define the quantities

a−
tw(θ) = sup{a ∈ (0, 1) : ν(θ, a) > 0} ∈ (0, 1),

a+
tw(θ) = inf{a ∈ (0, 1) : ν(θ, a) < 0} ∈ (0, 1). (5.23)

The conjecture now is that

lim
θ→θ0

a+
tw(θ) < a+

tw(θ0), lim
θ→θ0

a−
tw(θ) > a−

tw(θ0) (5.24)

whenever tan θ0 ∈ Q. In [20], the authors provide a proof for these inequalities for the
horizontal and vertical directions θ0 ∈ π

2 Z, provided a genericMelnikov condition is satisfied.
Although the quantities a±

tw do not depend in a monotonic fashion upon the angle θ ,
we believe that the core mechanisms leading to the jumps (5.24) and (5.18) are closely
related. Indeed, we expect that the general spirit of the center manifold approach developed
in [20] should also be applicable towards establishing (5.18). However, significant hurdles
still remain to be overcome. In particular, the dimension of the systems that need to be
analyzed can become large as the height of the fraction c�t increases. In addition, in order to
prove the strictness of the inequalities (2.45), which correspond to the limiting case c0 = ∞,
one would need to overcome the lack of monotonicity of the eigenfunctions described in [20,
Prop. 1.3]. This is a consequence of the fact that the limiting system (4.70) is a pure delayed
or advanced equation.
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