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Abstract The first part of this paper is a general approach towards chaotic dynamics for a
continuous map f : X D M — X which employs the fixed point index and continuation.
The second part deals with the differential equation

x'(1) = —ax(t —da(xp)).

with state-dependent delay. For a suitable parameter « close to 57 /2 we construct a delay
functional d 4, constant near the origin, so that the previous equation has a homoclinic solu-
tion, h(t) — 0 ast — =00, with certain regularity properties of the linearization of the
semiflow along the flowline ¢ — h;. The third part applies the method from the beginning
to a return map which describes solution behaviour close to the homoclinic loop, and yields
the existence of chaotic motion.
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1 Overview

The present paper consists of three different parts. The first part in Sect. 2 below is a general
approach towards chaotic dynamics for a continuous map f : X D M — X which employs
the fixed point index and continuation.

The second and third parts deal with the differential equation

x'(t) = —ax (1 —da(x)) (1.1)
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with state-dependent delay which for small solutions coincides with the basic linear differ-
ential equation

X)) =—axt—1)

modelling negative feedback with a constant time lag. The underlying motivation is to under-
stand better what a variable, state-dependent delay can do to the dynamics in an otherwise
simple system. This may be seen in contrast to, say, ordinary differential equations, where
solutions follow the vectorfield, or to delay differential equations like

X() = —p+ fx@—1)

with a constant time lag. For the latter results obtained since the 1950ies provide some insight
into how the shape of the real function f and the parameter ;« > 0 are related to the behaviour
of solution curves ¢ — x; in the space of initial data [—1, 0] — R.

In Sects. 3-9, which constitute the second part of the paper, we construct a delay functional
dx, of constant value 1 near the origin, so that Eq. (1.1) has a homoclinic solution, 4 (t) — 0
as t — oo, with certain regularity properties of the linearization of the semiflow along the
flowline ¢ — h,. Section 3 contains a detailed introduction into this part of the paper. The
main result of Sects. 4-9 is stated in Theorem 9.2.

The third part in Sects. 10-15 applies the method from Sect. 2 to a map which describes
the behaviour of solutions close to the homoclinic loop, and yields the existence of chaotic
motion. This final result is stated as Theorem 15.3.

Notation Forr > Oand ¢ € R the segment x; : [t —r,t] > M ofamapx :RDJ - M
with [t — r, t] C J is defined by x,(s) = x(¢ + s).

For given maps f, m and for x in the domain of m, m(x) in the domain of f, we write
f(m(x)) as f om(x) also in cases where the full image of m is not contained in the domain
of f.

The j-th component of (xq,...,x,) € M| x --- x M, is written x;.

The closure, the interior, and the boundary of a subset M of a topological space are denoted
by M, int(M), and d M, respectively. The norm on a Banach space B is written | - |, except
for the norms | - o, and | - 1,4, | - |1 introduced in Sect. 3 below; U, (x) is the open ball of
radius r and center x in B, and B, := U, (0). The Lipschitz constant of amapm : M — E,
M C B, B and E Banach spaces, is defined by

Lip(m) = sup M (5 OO)

x#y ly — x|

The support of amap ¢ : B D U — Riis the set supp (¢) = ¢~1(0).

A curve is a continuous map from an interval / C R into a Banach space. The tangent
cone Ty M of asubset M C B of a Banach space B, atx € M, is the set of all tangent vectors
v = ¢/(0) of differentiable curves ¢ : I — Bwith0O € I,c(I) C M, c(0) = x.

The Banach space of linear continuous operators from B into another Banach E is denoted

by L.(B, E).

On products By X - -- x B, of normed spaces we use the norm given by |(by, ..., b,)| =
max;—i,.., |bj| unless stated otherwise.

The canonical unit vectors of R"” are denoted by e, ..., e,. The unit sphere in R g
denoted by S".

On Euclidean spaces we always use the Euclidean norm.
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Derivatives and partial derivatives as continuous linear maps are written Df(x) and
D;f(x,y), j € {1,2}. For derivatives of maps x on domains / C R as elements of the
target space, at t € J, we have x'(t) = Dx(t)1.

In the sequel the prefix C'- and formulations like C!-smooth or of class C' mean that
maps or submanifolds are continuously differentiable.

2 A Framework for the Detection of Symbolic Dynamics

We describe a very simple general approach to the description of the dynamics of a map f,
restricted to some invariant subset of its domain, by the index shift on a space of symbol
sequences. The main tool we use is the Leray—Schauder fixed point index in the following
context: If U is an open subset of the Banach space E and f : U — E is continuous and
compact, and the fixed point set Fix(f) is compact, then the index ind(f, U) is defined.
(See [3], §12, in particular, Sect. 3, p. 311, or [22], Chapter 12, pp. 527-529. In the latter
reference, it is assumed in addition that U is bounded and f is defined on the closure U, with
no fixed points on the boundary aU.) If M C E is closed and such that M = int(M) and f
has no fixed points on the boundary d M, then we use the notation ind(f, M) with the same
meaning as ind(f, int(M)), if the latter index is defined.

The method described here is much inspired by [23], but different in the following aspects:

(1) Our conditions on homotopies which leave the relevant fixed point indices invariant are
free of assumptions related to the computation of the fixed point index, and are therefore
simpler. The actual calculation of fixed point indices (for the map on the ‘simpler’ end
of the homotopy) remains as a specific task in each application.

(2) We do not assume finite dimension, as it is for example the case in [15,23] or [2], and
also in the paper [21] on delay equations.

Definition 2.1 Let a topological space X and a closed subset M C X be given.
(1) A continuous map f : M — X is called M-admissible if
Vm e N: Fix (f™")NoM = 0. 2.1

(2) Two continuous maps fo, fi : M — X are called M — homotopic (to each other) if
there exists a homotopy f : [0, 1] x M — X, (A, x) — fi(x) (which is then called an
M -homotopy) such that all maps fj are M-admissible, i.e.,

VmeN Viel0,1]: Fix(f")NoM = 0. (2.2)
We provide a simple criterion for maps to be M-admissible, respectively M-homotopic.
Proposition 2.2 Let X be a topological space and M C X closed.
(1) If g : M — X is continuous and
IMNgM)Ng "(M) =0 (2.3)

then g is M -admissible.
(2) This is true, in particular, if IM = 01 M U 0, M and these two subsets satisfy

g@M)NM =0 =M g(M). 2.4)
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BG)Iff: 0,11 xM — X,(A, x) +— fi(x) is continuous, and oM is the union of two
subsets 01 M, 0y M of 0 M such that condition (2.4) holds for all A € [0, 1], then f is an
M -homotopy.

Proof Obviously, form € None has Fix(g™)NoM C g(M)N g_1 (M)N oM, so condition
(2.3) implies (2.1) for g.
If (2.4) holds then 9; M N g’1 (M) = and
IMNgM)Ng™ (M) = {[aM N g~ (M)] NM}
[ ——
=0
U {[2M) ngM)1ng~" (M)}
———
=0
=,

80 (2.3) is satisfied. Assertion (3) is clear.

Remark Condition (2.1) (which demands that f has no periodic points on the bound-
ary of M) is, of course, satisfied if the invariant set of f within M (i.e., the set

{x €M | Ixnez € MZ : x4 = f(xa_1) (n € Z), X0 = x}) does not intersect 9 M.

We shall use the homotopy invariance of the fixed point index in the following version:
Assume that E is a Banach space, 2 C [0, 1] x Eisopen,and f : 2 — E, (A, x) —

Jfo.(x) is continuous, the set X' := {(k, x) e | x = f,\(x)} is compact, and f is compact

on an open neighbourhood I" of X'. Setting £2, := {x ek | (A, x) € .Q} for A € [0, 1], the

fixed point index ind( f;, £2,) is then defined for all A € [0, 1] and independent of X.

(See [14], noting that ind(f, M) = deg(id — f, M), where deg denotes the Leray—
Schauder degree; see also [9], p. 198, Theorem 2.2., part iii). The version from [14] is more
general than the one from [9], but easy to obtain from the latter by restricting f to a bounded
open neighbourhood of X'. A slightly weaker formulation than ours, assuming that £2 is
bounded and that f is compact on all of £2, is called ‘generalized homotopy invariance’ in
[22], Chapter 13, p. 572.)

The following statement is a version of Theorem 2.2 from [23], suitable for our context.

Lemma 2.3 Letm € Nandlet My, ..., M, be closed subsets of a Banach space E with non-
m

empty interior, and such that with M := MyU...UM,, one has oM = U o OM . Assume
]:

that f : [0,1] x M — E is an M-homotopy, and compact (i.e., the closure f([0, 1] x M)

of the image of f is compact). Define §2) = mm 0 f;j( int(M})) for A € [0, 1]. Then the
J:

fixed point index ind(f", $2;) is defined for all ) € [0, 1], and independent of .

Proof Set 2 := Uxe[o 1]{)L} x §25.If (1, x) € §2 then f/\] (x) € int(M;) for j =0, ...,m.
Continuity of f implies existence of § > 0 such that for (u,y) €[0,1]x Ewith|u—2XA] <§
and |y — x| < §, one has f,f(y) € int(M;),j =0,...,m,s0 ((A—38,1+6) N[0, 1]) x
Us(x) C £2. Hence £2 is open in [0, 1] x E, and the assertion of the lemma follows from
compactness of f and from the homotopy invariance of the fixed point index, if we prove
the following property:

F:

[()\., x) € 2 | ) = x} is compact. (2.5)
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Note that

F= [(A,x) € [0.11x Mo | x € () £/ Cint(M;), £ () =x}. (2.6)
j=0
Now the set F := {(A,x) e [0, 1] x My | X € ﬂ?:o f)\_j(Mj), ) = x} is compact,

since it is closed and contained in the compact set [0, 1] x f ([0, 1] x M;,—1).Clearly F C F,
so to prove (2.5) it suffices to show
F\F=40. (2.7)

We have

F\F={(x el0,1]x M ‘x = (),

xe ()£ M\ () £ Ginem)))

j=0 j=0
= {0 x) €10, 1] x Mo‘x — ;. xe () 47 ),
j=0
31 €{0,....m):x ¢ f; (int(M)))}

= {(n. x) €10, 11 x Mo} ‘x = . x e () £ ),
j=0

31 €{0,....m}: fl(x) € IM;}.

Thus, if (A, x) € F \ F then there exists / € {0, ...,m} such that f/(x) € M, C aM,
which contradicts the fact that f is an M-homotopy. Hence (2.7) is proved, which implies
(2.5) and concludes the proof.

We turn towards symbolic dynamics now, and we restrict considerations to the simplest
case of two symbols. For a map f and a subset M of its domain, we define

traj (f, M) = {(xj)jeZ eMl|Vjel: x;= f(xj_l)}.

Let No, Ny be disjoint, closed, nonempty subsets of a Banach space E with N; =
int(N;),j = 0,1, and set N := Ny U N;. (Then int(N) = int(Np) U int(Ny), from
which one sees that automatically 0N = dNog U dNj.) For s = (5o, s1, ..., 8n) € {0, 1}"”’1
and amap f : N — E we use the notation

Ney =) £~/ (int(N;,))
j=0

- {x € int(Nyy) | £7(x) € int(Ny,), j = 1m}

If f is continuous, compact and Fix(f/) N 9N = @ for all j € N then Lemma 2.3 (applied
to the special case of a homotopy independent of A) shows that ind(f™, N, r) is defined for
allm e N.
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Corollary 2.4 Let Ny, N and N = No U N be as above, and assume that f : [0, 1] x
N — E is compact and an N-homotopy. Further, assume that for all m € N and all
S = (50, ..., 5m) € {0, 1)" T with sg = s,,, one has

ind (f{", Ns,5,) # 0. (2.8)

Then fy has symbolic dynamics in the following sense: With the ‘position map’ p : N —
{0,1}, p=0o0n No and p = 1 on Ny, the map

o i traj (fo,N) 3 (¥))jez = (P(x))) oy € (0,1}

is surjective. For a periodic sequence s € {0, 1}2, there exists a periodic orbit (x i)jez
€ traj (fo, N) with o ((x;)) = s, with the same minimal period.

Proof The set f(N) NN is compact, so (f (N) N N)Z is compact with the product topology.
Now

waj (£ N) = () {0 € FM NN [ = fxi)

keZ

is a closed subset of (f(N) N N)Z in this topology (as follows from continuity of f and
of the evaluation maps (x;) + x), and hence traj (f, N) is also compact. The map o is
continuous with respect to the product topologies on traj (f, N) and on {0, 1}Z, since Ny and
N are closed and disjoint (the position map p is locally constant). It follows that the image
of o is compact, and hence closed in {0, 1}%. Since f is an N-homotopy, Lemma 2.3 shows
that property (2.8) also holds with fj instead of f;. We conclude from the existence property
of the fixed point index that for every m € N and every m-periodic sequence (s;) € {0, 1}%,
there exists an m-periodic point x € N with f/(x) € N ; (j € N). (The assertion on periodic
orbits is proved.) It follows that the image of o contains all periodic sequences (of all periods)
in {0, 1}7. Since these are dense in {0, 1} with the product topology, and the image of ¢ is
closed, it must be all of {0, I}Z.

Remark The idea of employing the fixed point index to obtain periodic orbits obeying peri-
odic symbol sequences, and then to use a density argument to conclude that for every symbol
sequence there exists a corresponding trajectory, is well-known. It was used, e.g., in [15], see
Remark 1, p. 71 there.

The last part of this section is less general than the results so far, but more specific for
our application later, namely for the computation of the fixed point index for the map on the
‘simpler’ end of an M-homotopy.

Proposition 2.5 Letn € N and let By C R" be homeomorphic to the closed unit ball in R
(w.r. to some norm || ||), and assume g : By — g(B1) C R" is a homeomorphism such that

B C int(g(By)).

Then the fixed point index ind(g, int(B1)) is defined and equals +1 or —1.

Proof Note first the following consequence of the open mapping theorem ([22], Theorem
16C, p. 705):

A homeomorphism between two closed subsets Aj, Ay of R”

2.9
maps int(Aj) to int(Az) and A to 9 A,. 29)
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Set By := g(Bjy), so both sets By and B; are homeomorphic to the closed unit ball
K1 := U;(0). We have g(0B1) = 9B, and, since By C int(B;), the map g has no fixed
points on d By, and ind(g, By) is defined.

Choose now a homeomorphism ¢ : K; — By. We set f}l = <p‘1(Bl) and

gi=9!

0goYs
‘Bl. The commutativity property of the fixed point index ([22], formula
(36), p. 573) together with (2.9) implies that

ind(g, int(B1)) = ind[po (¢ ' og), int(B1)] =
=ind[(¢ "0 g)o 5y ¢~ (int(B1))]

ind(g, int(By)).

Under g, the set B; is mapped homeomorphically to the unit ball K, and B) C int(K}), so
x| < 1forx € Bl, in particular, for x € BBl With A(t, x) := (1 —t)x — g(x) forx € 31
and r € [0, 1], we thus have

Vx € 0By : |h(t,x)] = [g(x)]—|x| > 0.
-
It follows (writing ‘deg’ for the Brouwer or Leray-Schauder degree) that
ind (g, int(él)) — deg ( id— g, int(B), 0) — deg (h(o, ), int(By), o)
= deg (h(l, ), int(By), o) — deg (—g, int(By), 0) :

Now since g is a homeomorphism (and, clearly, assumes the value 0 in By), the degree
deg(—g, int(By), 0) equals +1 or —1 (see [22], Chapter 13, property (HD), p. 578).

Lemma 2.6 Let n € N and let Ny, Ny be disjoint sets, each homeomorphic to the closed
unit ball in R". Let f : No U Ny — R" map each N; homeomorphically to its image and
such that

int(f (No)) D No U Ny and int(f(N1)) D No U N (Fig. 1). (2.10)

Then, for every m € N and every s = (so,...,sn) € {0, 1Y with so = s, the index
ind(f™, Ns, ) is defined and equals +1 or —1.

Proof In the proof, we use the expressions closed ball and open ball (in italics) for sets which
are homeomorphic to the closed respectively open unit ball in R”. Further, we write A ~ B,

if f maps the set A homeomorphically to B. Recall also property (2.9) from the prdof of
Proposition 2.5.

Claim 1 Form € Ny and s = (so, ..., sm) € {0, 1}"T! (not necessarily with so = s5,), the
following is true:

(a) Ns 5= ml;;o f‘j( int(NSj )) is an open ball, and Ns ¢ ﬁz int(Ng,, ).
=7 . . =\ AT m —7 -~
(b) Ns,risaclosed ball with Ng ¢ = int(Ns f). Ns 5 = mj:o f /(st),and Ns, r };’; N,

(c) Incasem > 1, one has Ns s C int(Ny,).
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(1)

N~

&

Fig. 1 The sets Ng, N1, and their images

Proof (Induction on m.)
m =0 :1Ifs = (s0) then N5 y = fo( int(Ny,)) = int(Ny,) is an open ball, and Ns 5 =
int(Ny,) = Ny, as follows from (2.9), since Ny, is a closed ball.

The remaining assertions of the claim are trivial in case m = 0.

m — m+ 1: Assume s = (s9, ..., Su+1), and set S := (s, ..., Su+1). We have
m+1 ) m+1 )
Noy = () £77 (int(Ny)) = int(Ny) 0 (1) £~ (int(Ny)))
j=0 j=1
_m+1 )
= int(Nyy) O] £7Y70 Cnt(Vy, )
= ' (2.11)

= int(Ny) N £~ | () £/ (int(Ng,,,)
Lj=0
= int(Ny) N f =" (Vs f) -

From the induction hypothesis, Ng ¢ is an open ball, which by definition is contained in
int(Ny,)). From (2.10) and (2.9), we have

N5 p C Ny, C int(f(Nyy)) = f(int(Ny))).

Now since f | is homeomorphic onto its image, the same is true for f | ; )’ and we

N,
conclude that the set

int(Neo) N7 (Nag) = 1) ey, Var)

nt(Ns,
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is an open ball, so in view of (2.11) the same is true for N, 7. Further, f’ maps N, s home-

N,
omorphically to N5 ¢, and, from the induction hypothesis, Ng ¢ f:m int(N,,, ). Together,

we have

Ns, f ? Ns, ¢ ]’;_m int(Ng,, ),
and it follows that N ¢ :+ ] int(Ng,,,, ). (The assertions of (a) are proved.)
m

Since N3 ¢ C NiTl = Nj,, and since Ny, is contained the set int(f (Ny,)), which (compare
(2.9)) equals f(int(Ny,)), we have that

B o= Ny N7 Ne) = | vy ()

in particular,
B C int(Nyg,). (2.12)

From the induction hypothesis, N5, 7 is a closed ball, so the set B is also a closed ball (since
f | int(N, ) is homeomorphic onto its image). Using the property int(Ng ) = Nj  from
the induction hypothesis and the definition of N ¢, we see that the interior of this closed ball
equals

int(B) M int(Ng 5

,f)) = [f| int(NsO)]il(Ng’f) = Ns, ¢

=) (v,

(see (2.11)). It follows that Ns s = int(B) = B (here we used (2.9), hence int(Ng 5) =

int(B) = Ns, ¢. Further, the induction hypothesis gives N3 = ﬂ’;lzo f - (Ns;1,), s0 with
the definition of B we conclude

m m+1
Noy=B=NyNf " [V | =) £ (M)
j=0 j=0
Finally, f } . maps Ns,y = B homeomorphically to Nz ¢, and (from the induction hypoth-
S0

so we have N, ~ N .
s, f fm+1 Sm+1

and assertion (c) follows from Ng ; = B‘ and (2.12). (The claim is proved.)

Letnowm € Nandsasinthe lemma with sg = s,, be given. From the above claim we know
that Ny, ¢ f:m Ny, = Ny, both sets are closed balls, and since m > 1, have Ng y C int(Ny,).

Smal> The assertions of (b) are also proved,

esis) N r f:m N

The statement on the fixed point index thus follows directly from Proposition 2.5, applied

with g := f™ .
9= |Ne.s

3 Introduction to the Construction of a Delay Functional

The linear equation
xX'(t) =—ax(—1) 3.1

with parameter « > 0 defines a strongly continuous semigroup 7, of bounded linear oper-
ators T, (¢) on the Banach space C = C([—2, 0], R) of continuous functions [—2, 0] — R,
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Fig. 2 The spectrum of the u(a) + iv(a)
(complexified) infinitesimal

generator G, with the subspaces Im
Cu,a, Ci o and C; o indicated at )
the corresponding subsets of the uo(a) + ivo(a)

spectrum

Re
Cu Ne

Crn uo(@) > [u(a)|

Cs,oc

with the norm given by |¢| = max_2<;<¢ [¢(¢)]. This is easily seen as in the more famil-
iar case of the space C([—1,0],R). For 7 < a < 57” the semigroup is hyperbolic with
2-dimensional unstable space C, , C C. There is a complex conjugate pair Ao (c), Ag(c) of
simple eigenvalues of the generator G, of Ty, in the open right half-plane, with Re(Ag(x)) =
up(a) > 0 and % < Im(hp()) = vo(e) < 7, and there is a leading complex conjugate

pair A(«), A(«) of simple eigenvalues with maximal real part in the open left half-plane, with
Re(AM(a)) = u(e) < 0and 27 < Im(A(a)) = v() < 57”; all other eigenvalues have real
parts strictly less than u (o). The leading pair in the left half-plane defines a 2-dimensional
leading stable space C; o C Cs o Of the stable subspace C , C C of the semigroup (Fig. 2).

In [18] we obtained a continuously differentiable delay functionaldy : C > U — (0, 2),

U open, with dyy(¢) = 1 on a neighbourhood of 0 € U, so that the equation
x'(1) = —ax (t —dy(x) (3.2)

with state-dependent delay has a twice continuously differentiable solution # : R — R which
1s homoclinic to the zero solution,

hy 20 forall t e R and h(t) > 0 as |[t| — oo.

Here and in the sequel we use the notation x; for the solution segment in C given by x;(s) =
x(t+s). The construction in [18] was done for @ € (%, 57”) sufficiently close to 57” in which
case we also have

ug(a) + u(a) > 0. 3.3)

A major part of this construction concerns a regularity property of dy;, which is that along the
homoclinic curve ¢t — h; the intersection of the stable and unstable manifolds at the stationary
point O is one-dimensional, thus minimal. In order to make the preceding statement precise
we need to recall basic facts about well-posedness for initial value problems of the form

x'(t) = f(x;) for t>0, (3.4
X0 =@, (3.5)
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which apply to differential equations with state-dependent delay. Proofs are found in [16, 17],
also see [5]. For r > 0 and n € N let C,, denote the Banach space of continuous functions
[—r,0] — R”", with the norm given by |$|, 0 = max_,<,<o [¢(¢)], so C = C; and |¢p| =
|¢l1,0 for ¢ € C. Similarly let C,ll denote the Banach space of continuously differentiable
functions [—r, 0] — R”, with the norm given by |¢|,.1 = [¢|n.0 + |¢’|n.0, and abbreviate
cl = C11,|-|1 = |-|1,1. Let a continuously differentiable map f : C,% DU, - R U C Cn1
open, be given. Assume in addition that

(e) each derivative Df (¢) : C,'l — R", ¢ € Uy, has a linear extension D, f(¢) : C,, —
R”, and the map

Uy xCp3(¢,x)— Def(d)x eR"

is continuous.
Then the set

X=X;={peU :40) = f@)}.

if non-empty, is a continuously differentiable submanifold of C!, with codimension 7, and
every ¢ € X determines a maximal continuously differentiable map x? : [—r, 7,(¢)) — R”,
0 < t.(¢) < oo, which satisfies the initial value problem (3.4)—(3.5) and is unique in
the sense that any other continuously differentiable solution x : [—r,s) — R", 0 < s,
of the same initial value problem is a restriction of x?. These maximal solutions define a

continuous semiflow F = Fy on X, given by F(t, ¢) = x,¢ for arguments in the domain
2 = Q7 ={t,¢) €[0,00) x X :t < te(¢)}. All solution operators Fy, t > 0, with
nonempty domain £, = {¢ € X : t < t.,(¢)} and F;(¢p) = F(¢t, ) are continuously
differentiable. For t > 0, ¢ € £2;, and x € Ty X we have

DF (@)x = v}
with the continuously differentiable map v®% : [—r, f,(¢)) — R” satisfying
V'(t) = Df (F(t,¢))v; for t >0,
vo = X-
Moreover the restriction of F' to the set {(¢, ¢) € £2 : r < t} is continuously differentiable,
with

DIF@ 1= (xf) = ("), eC.

It follows that for every continuously differentiable function x : R — R" which satisfies
Eq. (3.4) forall r € R the flowline§ : R> ¢t > x; € Cn1 is continuously differentiable with
DE(t)l = (x); = (x,)' € C) forall t € R.

At a stationary point ¢9 € X the linearization of F, namely, the strongly continuous
semigroup of the operators

DQF(I,¢0) : T¢0X — T¢0X, t >0,

is given by restricting the semigroup (S(t));>0 on C, D C} D Ty, X which is defined by the
solutions v = vX of the initial value problems

V(1) = De f (¢o)vr,
vg = x € Cy.
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(These solutions v : [—r, c0) — R" are continuous, v|[0, c0) is differentiable and satisfies
the differential equation, and S(1)x = v} [1,4].) The spectra of the generators of both
semigroups coincide, and for each pair of complex conjugate eigenvalues the associated
realified generalized eigenspaces are the same (so belong to Ty, X).

We return to Eq. (3.2) with the delay functional dyy from [18]. Recall that the evaluation
map ev : C x [-2,0] > (¢,1) — ¢(t) € R is continuous (but not locally Lipschitz),
and that the restricted map ev; : C! x (=2,0) > (¢,1) — ev(p,t) € R is continuously
differentiable with

Devi(¢.1)(n.s) = Dievi(¢, 1)n + Daevi(¢. 1)s = n(t) +5¢'(1).
It follows that the map f : C' D U; — R givenby U; = U N C! and

[(@) = —a¢p(=dy(9)) = —aevi (¢, dy(9))

is continuously differentiable with

Df(¢)n = —a {n(—dy(¢)) — ¢'(—dy ($)) D(du|U1)(@#)n}
= —a {n(—dy (@) — ¢'(=du(¢)) Ddy (¢)n}

forall ¢ € Uy and n € C!. We easily deduce that condition (e) is satisfied, and obtain a
semiflow F on the manifold

X={peC':¢0) =—-ap(—dy(¢)}

as described above. The segments ¢ € X in a neighbourhood of 0 € X belong to the closed
subspace

Y={peC':¢'0)=-ap(-1)}=ToX,

and the local stable and unstable manifolds of the stationary point 0 € X of the semiflow
F are simply open neighbourhoods of 0in Yy, =Y NCsq andin Y, , = C, o C Y, with
tangent spaces Y o and C, o, respectively.

We drop the index and argument o from now on whenever convenient.

The precise statement of the minimal intersection property mentioned above is that for
T < Owithh; € Y andt > 0, —7 and ¢ sufficiently large, we have

(D2F(t — 1, he)Cy) N Yy = RhAy; (3.6)

h! € Ty, X C C!is tangent to the flowline H; : R 37 +> h; € Cl ati =1.

What has been described so far is an infinite-dimensional analogue of Shilnikov’s vector
fields on R* with a flowline homoclinic to 0, with complex conjugate pairs of eigenvalues of
the linearized vector field in each open half-plane, at unequal distances from the imaginary
axis, and with minimal intersection of stable and unstable manifolds along the homoclinic
curve. Shilnikov’s well-known result is that under these conditions there are infinitely many
periodic orbits close to the homoclinic loop [11], compare also [6,13]. What can be said about
the flowlines of F close to the homoclinic loop H{(R) U {0} C X ? A difference between
our scenario and Shilnikov’s in addition to dimensionality is, of course, that the solution
operators F;, t > 0, are not diffeomorphisms, and their derivatives not isomorphisms.

A natural question at this point is perhaps whether there also exist a parameter « and a
delay functional dy; so that Eq. (3.2), with the linearization of the semiflow at zero given by
Eq. (3.1), generates a homoclinic solution as in Shilnikov’s earlier result [10] on complicated
dynamics for a smooth vectorfield v on R3, with one positive eigenvalue of Dv(0) and the
others complex conjugate with negative real part. Let us briefly explain why this is not the
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case. The desired spectral properties require for the linearization at zero Eq. (3.1) witha < 0
(which models positive feedback); for suitable o < O there is one positive eigenvalue of the
associated generator while all others form complex conjugate pairs with negative real parts.
The one-dimensional unstable eigenspace of the positive eigenvalue sits in the wedge of data
without sign change, and the complementary stable space intersects with the wedge only at
the origin. Notice that the wedge is positively invariant under any equation of the form (3.2)
with o < 0 ! Knowing this it is not hard to exclude for the latter the possibility of solutions
homoclinic to zero.

Another question which may be asked is whether a homoclinic solution of Eq. (3.2), with
the linearized semiflow given by Eq. (3.1), can be achieved by a delay functional of the simple
form

dy(¢9) =68 (4(0))

with a function § : R — (0, 2). Again, this is not the case: From dy (¢) = 1 for small ¢
we would have §(£) = 1 in some interval (—e, €) # @. The elements ¢ # 0 of the unstable
space C, have at most one sign change, and one can show that each element of the stable
space C; has at least 2 zeros spaced at a distance less than 1. It follows that any homoclinic
solution of Eq. (3.2) would have zeros z < z/ < z+ 1 withh(t) #0forz—1 <t < z.In
case i(t) > Oon [z — 1, z) this yields

W (t)=—ah(t —8(h()) = —ah(t—1) <0

forallt € [z,z + 1) with —e < h(¢) < 0, which in turn yields a contradiction to i(z") = 0.
The argument in case 4 (t) < O on [z — 1, z) is analogous.

In [19] we obtained a set of flowlines R 5 ¢ > x, € C! of F close to the homoclinic
loop which have complicated histories in the sense that their behaviour for ¢+ < 0 is encoded
by the backward symbol sequences —Ng > j > s; € {—, +}; there is a pair of disjoint sets
H_ so that X € HSJ. for all integers j < 0, and ¢; \( —o0 as j — —o0. Also,

0# pux;; >0 as j— —o0

for the projection p, : ¥ — Y, Y = Y; & C,, along Y onto Cy,; none of these flowlines is
periodic.

It is perhaps interesting that the proof in [19] does not make use of property (3.3).

In any case, a proof that close to the homoclinic loop a set of flowlines exists whose
behaviour is encoded by the entire symbol sequences Z — {—, +} seems to require further
properties of F. In the present paper we keep the parameter « as chosen in Section 2 of [18]
and consider the function % and the delay function d : R — R found in Sections 3 and 4 of
[18], so that

B (1) =—ah(t —d()) (3.7

for all + € R. Starting from «, d, and h we construct a new delay functional dy : C D A —
(0, 2), A open, with do(¢) = 1 on a neighbourhood of 0 € A and da(h;) = d(t) for all
t € R, so that & solves the equation

xX'(t) = —ax(t —dalx)) (3.8)

for all # € R and has the minimal intersection property (3.6), and in addition the semiflow F
on

X={peANC':¢'(0) = —a¢p(-da(@))}
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given by Eq. (3.8) satisfies
DyF(t —1,h)(Ci®Cy) =C; @ Cy 3.9

for —t > 0 and ¢ > O sufficiently large. In other words, for such r < 0 and ¢ > 0, with
h. and h; close to 0, the linearization D F;_; (h;) defines an automorphism of the leading
4-dimensional invariant subspace of the semigroup 7', which also is the leading invariant
subspace for the linearization of F' at 0 € X. Equation (3.9) in combination with (3.3) and
the minimal intersection property (3.6) will enable us to obtain the desired result on symbolic
dynamics close to the homoclinic loop.

We shall obtain the delay functional d4 as a special case of a more general construction
whose result is stated as Theorem 9.2 below. Loosely speaking it says that for every integer
k > 2 there exist continuously differentiable delay functionals d, on open subsets of the
space C, with d, (¢) = 1 close to 0, so that the equation

X (1) = —ax(t —da, (x)))

has a solution homoclinic to 0 and the associated solution operators have linearizations along
the homoclinic orbit with prescribed behaviour on certain spaces of dimension k + 1.

4 Preliminaries: A Delay Function

Considera > Oand o € (%, 57”) chosen in Section 2 of [18]. It will be convenient to write

ay, instead of a in the sequel. Recall the solution
w:R >+ e sin(vpt) € R
of Eq. (3.1), which has all segments w; in C,, and the solution
y:R3t e"sin(vt) e R

of Eq. (3.1), which has all segments y; in C;. The segments w} and y; also belong to C,, and
C;, respectively. The largest negative zero of w is att = — ;’—0 and Eq. (3.1) implies that the
largest negative extremum of w is m = _17)17) + 1. Set B = 3Z as in Section 2 of [18]. As
o < B we have vgp = vo(o) < vo(B), see for example [20]. Hence

T

w(B)

<z <0,

m <

+ 1 (=mp) 4.1

by the choice of z in Section 2 of [18]. Using vg > 5 we also get
—1<m. 4.2)

We turn to the strictly increasing sequences of zeros zj, j € Z, and local extrema m; =
zj—3 + 1 of y, with zo = 0. We have

z()<m1<zl<m2<12<m3:1. (43)

The construction of the delay functiond : R — R begins in Section 3 of [18] with the choice
of d|(—o0, t,] where t, > 0 had been fixed earlier with
2

O<ti<—=— <my,
B 5w
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id +1

t. t* 1

Fig.3 dfort <t

see (2.6) in [18]. The only restrictions on the C I_function d|(—o0, t,] are that for a number
t. € (0, t,) chosen in Section 3 of [18] we have

d(t) =1 on (—oo, %] , 4.4)
—1l <t—d(t) <z on (%,tz), 4.5)
t—d(t) =z on [t ty]. (4.6)

A look at Fig. 3 (which is a reproduction of Figure 6 in [18]) reveals that in addition we
may assume
d'(t)y <1 on [0,1,). 4.7)

Now consider d : R — R and & : R — R as constructed in Sections 3 and 4 of [18] with
the additional property that (4.7) holds. It is convenient to list further properties of d and h
which are stated in Sections 3 and 4 of [18]:

h(t) = w(t) on (—OO, %] , 4.8)

h(t) = apy(t) on [t/, c0) 4.9)
with z; < t;/ < my,

K () >0 on [0,my),h () <0 on (my,mn). (4.10)

There are € > 0 and § € (0, “25™1) with

t
d(t)=1 on (—oo, ;]U[m1+1—e,m1+1+8]u[m2+1—8,oo). 4.11)

We have

t—d(t) <0 on [0,m;] and z <t—d(t) <my for t; <t <my+1 4.12)
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and
my <t—d@t)y<my for my+1<t<my+1. (4.13)

Proposition 4.1 There is a unique zero t of the function
Rot—>t—dit)—meR
in[0,t,], and 0 < f < t,. The zeros of the function
Rotr— h'(t—d@)eR
in (0, 00) are t and the numbers mj+1,jeN

Proof 1. By (4.1) and (4.2), —1 < m < z < 0. Due to (4.7) the function [0, #,] > ¢ —
t —d(t) —m € Ris strictly increasing with values —1 —m < Oatt =0and z —m > 0O at
t = t,. Therefore it has a unique zero 7 in [0, ¢,], and 0 < f < 1.

2.0n [0, ;] we have —1 <t —d(t) < z, see (4.4) and (4.5), and m is the only zero of
w’ in [—1, z]. Using (4.8) we obtain that 7 is the only zero of R 3 t — h'(t — d(¢)) € Rin
[0, #,]. Using (4.12), (4.8), and (4.10) we see that ' (t — d(r)) > 0 on (¢;, m; + 1). From
(4.11) and (4.9), (4.10) we infer

W (mj+1—dm;+1)=h(m;j)=0 for je{l,2}.

From (4.13) and (4.10) combined we get i’ (t —d(¢)) < Oin (m|+1,mp+1).Fort > mp+1
we use (4.9) and (4.11) and find A'(t — d(t)) = apy'(t — 1), hence h'(t — d(¢t)) = 0 and
t >my+lifandonlyifs — 1 =m; with3 < j € N.

In view of (4.11)and 0 < 7 < t, < t, < m| we choose p > 0 with p < min{e, §} such
that

dit)y=1 on (—oo,plU[mi+1—p,m+1+plU[my+1—p,o0) 4.14)

and
p<t—p and f+p<m —36. (4.15)

From p < § we have

mi+p < msy — p.

5 Nonautonomous Differential Equations with Parametrized Variable Delay and an
Associated Autonomous System

Letn € N, n > 2, be given. The construction of the desired delay functional relies on
solutions to a n-parameter-family of nonautonomous differential equations with variable
delay. For each parameter we shall consider the solution of the corresponding initial value
problem at fy = O for a particular initial function, which also depends on the parameter. All
of these solutions extend to the whole real line. Segments of the extensions will form a set
on which we shall later begin with the definition of the delay functional. The present section
provides facts about nonautonomous equations and initial values of the form we need.

Let C!-functions di :R— R, je({l,..., n}, be given so that for every j € {1,...,n}
the function d, = d; satisfies

d (1) =0 on (—00,0]U [ms+1,00). (5.1)
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Using (4.10), (5.1), continuity, and compactness of [0, m2 + 1] we infer that the set
n
V= [c ER":0<d(t)+ Y cjdj(t) <2 forall te ]R]
1

is open. Notice 0 € V,,. The n-parameter family of differential equations with variable delay
addressed above are the equations

X(t) = —ax(t - [d(t) + Zc,d,-(r)D (5.2)
1

with parameter ¢ € V,,. It is easy to see by integrations on successive intervals of length
n
min [d(r) + D cidjt) it e R]
1

that each initial function ¢ € C ! with ¢'(0) = —a ¢(—1) uniquely determines a C !_function
x =x?%, x : [=2, 00) = R, which satisfies Eq. (56.2) forall t > 0 and xo = ¢.

In addition to the functions d; let C!-solutions w;j:R—>R,je{l,...,n},of Eq. (3.1)
be given and set

¢j=wjoeC' for jell,... ,nh.

The particular initial functions mentioned above are given by
n
¢ = ho + ch%'
1

for ¢ € V,. Itis convenient to introduce the restricted affine linear map
E:V,ocr ¢ €Cl.

Because of (4.10), (5.1), h(r) = w(t) on (—00,0], and ¢; = w; o we obtain that the
continuously differentiable functions x¢ : R — R given by x¢(¢) = xE© @) fort > —2 and
x6() =h@)+ > cjw;(t) fort < —2 solve Eq. (5.2) for all € R. Notice that

%) =h(@t) forall teR. (5.3)
The remainder of this section prepares a proof that the map
I:]Rana(t,c)l—)xfeC]

is C'-smooth, and the computation of DI. This will be done by means of a natural auxiliary
system
K1) = g(x) e RTF2 (5.4)

of autonomous differential equations with state-dependent delay. We now introduce the func-

tional g. Consider the spaces Cj,42 and Cn1 4o~ The set

Upi2:={p € Chin : ($200), ..., $ur1(0) € V,,}
is open, and the delay functional

d:Cl, D Upa— (0,2)

@ Springer



644 J Dyn Diff Equat (2016) 28:627-688

given by
n+1
(@) = d($n+2(0) + > ¢;(0)dj -1 (n42(0))
j=2
is C'-smooth with
n+1
D)1 = d' ($n20)1+20) + > {1;0)dj -1 ($n42(0))
Jj=2

+ ;O (@n+2(0) M 42(0) ).

Consider the functional g : C\,, D Unq2 — R"*2 given by

g1(@) = —a¢i(—d(9)).
gi@) =0 for jef2,...,n+1},
gni2(¢) = 1.

The next result is obvious.

Corollary 5.1 For every ¢ € V,, the map x“"+% : R — R"*2 given by
c,n+2

X = x4,
x;»"“(;) =cj_y for jE{2,...,n+1},

c,n+2 _
Xn+2 ()=t

is Cl-smooth, x := x“" 2 satisfies Eq. (5.4) for all t € R, and

h(@)+ > cjp;()
C1
x(t) = on [—2,0].
Cn
t
We need smoothness properties of g. The components g;, j € {2,...,n + 2}, are cl-

smooth with all derivatives Dg;(¢) : C}l 1o = R, ¢ € Uy, zero. For the first component
we have

1@ = —aev (1. -d@)).

As in Sect. 3 we obtain that g; is C'-smooth with

Dgi(¢)n = —afni(—d(¢)) — ¢} (—d($))Dd(¢)n} (5.5
= —a{m(=d@) = 9 (=d@)[d G14200)12(0)
n+l1
+ (0, (0)dj—1($n12(0)) + ¢, (0)d; _, <¢n+z(0))nn+z<0>}]}.
j=2

The preceding expression does not contain derivatives of 1 and can be used to extend Dg1(¢)

to a linear map D,g(¢) : Ch+2 — R. Using the continuity of ev : C x [—-2,0] — R we
easily obtain that the map
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Unt2a X C 3 (¢, 1) = D.gi1(¢)n € R

is continuous. It follows that the functional g has the extension property (e) from Sect. 3. Con-
sequently the maximal C'-solutions x? : [—2, 7,(¢)) — R"*2 of the initial value problem
given by Eq. (5.4) for t > 0 and xo = ¢ in the C'-submanifold

Xy i={¢ € Ups2 : ¢'(0) = g(¢)}
define a continuous semiflow G : 2, — X, on X, by
2, ={(t,¢) €[0,00) x X :1 <1,($)} and G(t, ) =x_.
For the Cl-maps DG, : 241 — Xg,t > 0, with nonempty domain
Q¢ :={p e Xg:t <td)}
we have
DG, (¢ ="
with the C!-solution v = v®", v : [=2, £,(¢)) — R"*2, of the initial value problem

v'(t) = Dg(G(t, ¢))v; for ¢ >0,
vo=1n€ TpX,.

The restriction of G to the set {(z, ¢) € 2, : ¢ > 2} is C!-smooth, with

DG, $)1 = (x?)), = (/)"

We return to the solutions x¢ : R — R, ¢ € V,;, of Eq. (5.2). It is convenient to introduce
the restricted affine linear map E : V,, — Ci 1o given by

E| = E,
Ej()t) =cj—1 forall je{2,...,n+1} and re[-2,0],
Epia(o)(t) =t forall t e [—2,0].

Then
E(c) = x(c)’”+2 forall ¢ eV,,

see Corollary 5.1. In particular,

h(t)
0
EO@® =] on [-2,0].
0
t
Equation (5.4) at ¢ = 0 yields
E(V,) C X,.

Observe that Corollary 5.1 also yields

E(Vn) C 24, forevery t>0,
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and
I(t,¢) =x{ =pr;G,(E(c)) forall t>0 and c € V,,

with the projection
pry :C,1+29¢n—>¢>1 ecl.

Corollary 5.2 Let j € {1,...,n}and d = d;. For every t > 0 we have

D(pry 0 G, o E)(0)e; = pryvy OPF O

and b = (WEO-PEOe)y, sqrisfies

b'(t) = —a{b(t —d(1)) = h'(t — d(1)d«(1)} forall t>0, (5.6)
by = ¢;. (5.7)

Proof We have

D (prl oGy o E) (0)e; = pr DG, (I;"(O)) Dl:?(O)ej = pr, U,E(O)’DE(O)ej

forall+ > 0 and

DE(0)e; = €Chpy

Ol= o .-

0
with1:[—2,0] > ¢+ 1 € R as the (j + 1)-th component. As

h(t)
0
hiRste | @ |eRr?
0
t

is a continuously differentiable solution of Eq. (5.4) (see Corollary 5.1) and l:?(()) = Igo we
obtain that v = vEO-PEO); gatisfies

v'(t) = Dg(G(t, E(O)))v, = Dg(ﬁt)v, forall ¢ > 0.
According to (5.5),

(Dg(hi)vy), = —af{vi(t — d(®)) = I (t = d()[d' (D)vas2()
n+1
+ D (OO di—1 (1) +0 - d_ (D12 ()]},

k=2
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and (Dg(fzt)vt)j =0forall j € {2,...,n+ 2}. Using the initial condition vy = DEA(O)e.,'
and the preceding equations we find vjy1(tf) = 1 for all + > —2 and v () = O for all
ke{2,...,n+2}\{j + 1} and all r > —2. Consequently,

b'(1) = v (1) = —af{vi(t —d(®) = h'(t —dO)[d'(t) -0+ 1-d; ()]}
= —a{b(t —d(t)) — h'(t —d(1))d;(1)} forall t>0.

Also, by = v1 9 = (DE(0)e;)1 = ¢;.

Proposition 5.3 (Uniqueness) For every j € {1,...,n} there is at most one C'-function
b : [-2, 00) — R satisfying (5.6) for all t > 0 and (5.7).

Proof Let j € {1,...,n} and suppose b : [-2,00) — Rand B : [-2,00) — R are
C'-smooth and satisfy Eq. (5.6) for all t > 0, and by = By, and b(t) # B(t) for some
t > 0.Forty =inf{r > 0: b(t) # B(t)} we getto > 0 and b(t) = B(¢t) on [—2, t9]. Using
d(tg) > O we find € > O withr — d(r) < to fortog <t < 1y + €. Then Eq. (5.6) yields
b'(t) = B'(t) on [tg, ty + €']. It follows that b(t) = B(t) on [—2, tp] U [to, to + €'], hence
to = inf{t > 0 : b(t) # B(t)} > 1ty + €, which contradicts ¢’ > 0.

6 Prescribed Solution Behaviour

The first result of this section shows that we can obtain solutions » : R — R of Eq. (5.6)
with prescribed ends b|(—oo, 0] and b|[m + 1, 00) by a suitable choice of the delay function
dy : R — R.

Proposition 6.1 For each pair of C'-solutions wy : R — Rand g : R — R of Eq. (3.1)
there exist C'-functions b : R — R and d, : R — R with the following properties: Eq. (5.6)
is satisfied for all t € R, (5.1) holds, and

b(t) = wy(t) on (—o0,0],
b(t) =q() on [m2,00).

Proof 1. The functions w, and ¢ have derivatives of arbitrary order. By (4.15), [f — p, f + p]
C [0,m1], hence t — d(t) < 0on [f — p, f + p] because of (4.12). From my < m| + 1 we
infer

[my —p,00) D[my+1—p,m +1+p].
In particular,
t+1€[my—p,o00) forall re[m;—p,m+pl.
There exists a twice continuously differentiable function » : R — R such that

b(t) = w(t) on (—00,0],
b'(1) = —awy(t —d(t)) on [f—p,i+pl,

!
t+1
b(r)=—qT on [my —p.mi + pl.

b(t) = q(t) on [my — p,00).
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We define d, : R — R by

di(t) =0 on (—o0, p]U[my +1— p,00),

dulmy +1) = 0,
dyry = 2O LU dW) oy 41— p)\ (o + 1),

ah'(t —d(1))

2. Proof that d, is C!-smooth. The restriction of d, to the openset R\ {p,7,m + 1, ms
+ 1 — p} is Cl-smooth. The C!-function
b (t) +ab(t —d(t))

ah/(t —d())

d:0,my+D\{f,m +1}5¢t—

satisfies d = 0 on (0, pl, because of d(¢) = 1 and b(¢) = wy(¢) on [0, p] and Eq. (3.1) for
wy. Hence dy (1) = 0 = c?(t) on [0, p]. It follows that d, and d coincide on [0, 1), which
yields that d,|(—o0, ) is C'-smooth.

On (f — p, 1+ p) \ {f} we have d, (1) = 0, because of

b'(t) = —aw.(t —d(t)) = —ab(t —d(t)) (since t—d(t) <0).

As d,. (1) = 0 we see that d,|(f — p, f + p) is C'-smooth.
On

mi+1—p.my+14+p]\{mi+1}C (o.ma+1—p)\{t,m + 1}
we have

—ab(t —d(t)) = —ab(t—1) (see4.14)
=q'(t) =b'(1) (since my—p <mi+1—p)

and consequently dy (1) = 0. As d(m| + 1) = 0 we see that dy|(m1 + 1 — p,m; + 1 + p)
is Cl-smooth.
Finally, consider (m + 1, my + 1) > m> + 1 — p. On the subinterval

(mi+1,my+1-—p) C(p,my+1—p)\{f,m +1}

we have d,(t) = a?(t). On the subinterval [my + 1 — p,my + 1) we have d(t) = 1 and
b(t) = ¢q(t), hence

Vt)=q'(t) = —aq(t —1)=—ab(t —1) (since t—1>my—p)
=—abt—d@),

and thereby c?(t) =0=4d,.(t).So d and dy coincide on (m| + 1, my + 1), which shows that
di|my 4+ 1,my + 1) 1is C!-smooth. Now the assertion is obvious.
3. Verification of Eq. (5.6). The definition of d, shows that b satisfies Eq. (5.6) on

(p,my+1—=8)\{f,m +1}.
Att =t we have dy(f) = 0 and

b (f) = ¢ wi( —d(@) = —a b —d(?) (since 7—d(@) =0)
—a{b(f —d(0)) — h'(i — d(D)dy(D)}.
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Att =m;+ 1wehaved,(m; +1)=0andd(m; + 1) =1 and

L+ Hom+ D)
o o

b(my) =
(since m; + 1 > m>), hence
b'(my+1) = —ab(m))
= —a{b(m; +1—d(m; + 1))
—h'(mi +1—d(m; + ))dy(m; + D}
On (—oo, p] wehave d(t) = 1 and dy(t) =0andt — 1 < 0, hence

b(t) = w,(t) = —aw( — 1) = —ab(t —d(1))
= —a{b(t —d(1)) — h'(t — d(1))d.(1)}.
On [my +1— p,00) wehave d(t) = 1 and d,(t) =0 and r — 1 > my — p, hence

b'(1) =q'(t) = —aq(t — 1) = —ab(t —d(1))

= —a{b(t —d(t) —h (@t — d(t))d*(t)}.
Proposition 6.2 Let n € N and let analytic solutions w; : R — Rand q; : R — R,
j e {l,...,n}, of Eq. (3.1) be given with w6, w10, ..., Wyo linearly independent and
a y,’n2+2, Q1 ma+42; - - > Gn,my+2 linearly independent. For every j € {1,...,n} let a cl-
functiond; : R — R and a C!-solution bj : R — R of Eq. (5.6) with d,, = d; be given as
in Proposition 6.1, with bj(t) = w;(t) on (—o0, 0]l and b;(t) = q;(t) on [m2, o0). Then the

segments b, by, ..., by are linearly independent for each t € R.

Proof Analyticity and the hypothesis on linear independence combined imply that for every
open interval J C R the restrictions of w’, wy, ..., w, to J are linearly independent, as
well as the restrictions of a y’, q1, ..., g, to J. This implies the assertion for all # < 2 since
for such ¢ the interval [t — 2, f] contains an open subinterval J on which #'(r) = w'(z)
and b;(t) = w;(t) for all j € {1,...,n}. Analogously we have for t > 2 > m; that
[t — 2, ] contains an open subinterval J on which A’'(¢) = a;y’(¢) and bj(t) = q;(t) for all
jefl,...,n}

7 Delay Functionals on Finite-Dimensional Manifolds

Let analytic solutions w; : R — Randg; : R — R, j € {1, ..., n}, of Eq. (3.1) be given
as in the hypothesis of Proposition 6.2, and C!-functions d iR —> Randb; : R — R,
Jj €{l,...,n}, as guaranteed by Proposition 6.1, so that for each j € {1, ..., n} we have

dj(t) =0 on (—00,0]U[my+1,00),

b}(z) = —a{bj(t —d(1)) —h'(t —d(t))d; ()} forall r€R,
bj(t) =w;() on (—o0,0],

bj(t) = q;(t) on [my,00).

All of these functions will be kept fixed from here on until Proposition 9.1 and its proof. Set
pj=wjo € C!for j € {1,...,n}. Notice that all results from Sect. 5 apply. We proceed
accordingly and obtain the map

I:]Rana(t,c)»—)xfeCl
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Recall 0 € V,,. From (5.3) we have
I1(t,0) =h; forall teR. (7.1)
Proposition 7.1 The map I is C'-smooth with
Di1(t,0)1 = h,
and
Dj11(t,00l =bj, forall je{l,...,n} and t €R.

Proof 1. (Smoothness) According to Corollary 5.1 each map x = x“"*2, ¢ € V,,is C!-

smooth and satisfies Eq. (5.4) for all ¢ € R, and xé’”” = E(c). Hence

I(t,c)=x{ = prle"”r2 forall t€R and ce€V,.
Fort > 0 and ¢ € V,, this yields
I(t,¢) =pr,G(1, E(0)). (7.2)

It follows that the restriction of I to (2, 00) x V,, is C!-smooth.
Next, let fp < 2 and ¢y € V,, be given. Choose t; < ty — 3. For every (t,c) € (tp — 1,
to + 1) x V,, we then have t = s + t; with

s=t—t1€ty—t1 —1,t0—1t1 +1) C (2, 00).
Also, xf’"+2 =Gt —1, x,cl’”+2), hence
c,n+ c,n+2)

I(t,¢) = x¢ =prxt"t = priG(r — 1y, x;;

In view of the chain rule and t — #; > 2 we obtain that 7|(fgo — 1,9+ 1) x V}, is C!-smooth
provided the map

c,n+2 1
Vi3 x €C,»
is C'!-smooth, which is obvious from

n
wyy + 20 CjWj.n

cr-1
c.n+2
th =
cn-1
id,

forallc € V,.
2. (Computation of derivatives) Using (7.1) and the fact that 4 is twice continuously
differentiable we get

d
DOl =—(R>s > hs cYl=h, forall teR.
S

Then let j € {1, ..., n} be given. For each < 0 and ¢ € V,, we have

n
I(t,c) =w, +ZCjwj,t7
1
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hence D 11(t,c) = wj; = bj,. Forevery t > 0 and ¢ € V,, we obtain from (7.2) the
equation

I(t,c) = (prl oGy o E)(c),
and thereby
Dj411(t,001 = Dj(pr; 0 G, 0 E)(0)1 = D(pr; o G 0 E)(0)e;.

Corollary 5.2 yields D(pr; o G; o E)(O)ej = b, with a C!-function b : [-2,00) — R
satisfying Eq. (5.6) for all ¥ > 0 and (5.7). As b;|[—2, co) satisfies the same initial value
problem we obtain from Proposition 5.3 (uniqueness) that

Dj+11(t, 0)1 = b[ = bj,[.

Corollary 7.2 Let J C R be a compact interval. Then there exists s = sy > 0 with
(=s,8)" C V, so that the restriction I|J x (—s, s)" itself and all its derivatives DI (t, c),
(t,c) € J x (=s,8)", are injective.

Proof 1. Let J C R be a compact interval. As V,, > 0 is open there exists so > 0 with
(=50, 50)" C V,. Suppose the assertion concerning / is false. Then there are sequences
of reals r; € J > i and ¢; € (—s0,50)" > ¢, j € N, with¢; - Oand &; — 0
for j — oo, and forall j € N, (tj,¢;) # (t],cj) and I(t],cj) = I(tj,c]) Passing to
subsequences we may assume f; — ¢t € J and t] —~feJasj — oo Incaset # 1
we get hy = I(t,0) = I(£,0) = h;, which contradicts injectivity of the flowline t +— h;
(Proposition 3.2 of [18]).
In case ¢ = { the mean value theorem yields

0= I(fj,éj) —I(l‘j,Cj)

1
= /0 DI((tj,cj) +0[(i}, &) — (tj, e ..1do

1
= (ij — t])/ DiI(.. )1d9+z Cik — c,k)/o Dy 1(...)1d6

k=1

for every j € N. Setting r; = |(fj,6j) — (tj,cj)| (#0) for j € N we have

Lo
— (. ¢p) = @y, cp)[ =1
Tj
for all j € N. Passing to subsequences we may assume
1 AN - n n+1 .
—((@j. ¢é)) = (tj, cj)) > (A, c) € S" CR'™ for j — oo.
Ty
1
/0 DiI(..)1d0 — DyI1(t,0)1 =K,

and

1
/ Dk+11(...)1d9 — Dk+11(t,0)1 = bk,t
0
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for j — oo we arrive at

n+1
0=7h,+ ch—lbkfl,t
k=2
which is a contradiction to linear independence (Proposition 6.2).
It follows that for some §; € (0, sg) the restriction I ..
| J % (—37,57)

2. Suppose the assertion concerning D/ is false. Then there are sequences of reals ¢; € J
and c¢; € (—s0,50)", j € N, with ¢c; — 0 and DI(t}, c;) not injective. It follows that for
each j € N the vectors

» 18 injective.

Dk[(tj,Cj)l = DI(tj,cj)ek, ke{l,...,n+ 1},
are linearly dependent, and there exist r; € §" C R"*! with

n+1
0= > rjaDil(tj,cp)l forall jeN.
k=1
Passing to subsequences we may assume r; — rg € S" andt; — t € J for j — oo. Passing
to limits we arrive at

n+1 n+1
0= roaDl (1,001 = ro1hy + D roxbi—1.
k=1 k=2

which is a contradiction as in part 1 of the proof.
It follows that for some s; € (0, §;) all derivatives DI (t, c), (t,c) € J x (—sy, s;)", are
injective.

We fix t; < Oand tp > my + 2, set J := [11, 2], and choose s = s, according to
Corollary 7.2.

Corollary 7.3 The set M := I ((t1, 1) x (—s, s)") C C' C Cisan (n+1)-dimensional C'-
submanifold of the space C, and the map I¢ : (t1, ) X (—s,s)" — M given by Ic(t,c) =
I(t, ¢) is a C'-diffeomorphism.

Proof Use Corollary 7.2, employ the inclusion map C! — C, and apply Proposition 10.5
from [18].

The C'-map

n
d:RxR"3 (t,c) > dt)+ Y cjdi(t) €R
1

satisfies
dR x V,) C (0,2),
d(t,c) =d(t) on ((—o0,0]U[m;+ 1,00)) x R",
d(t,0) =d(t) on R.
It follows that the delay functional dy; : C D M — (0, 2) given by

du(p) =d(I17' ()
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is C1-smooth. For each (¢, ¢) € (1, 1) x (—s, s)" we have
. n
dy (xf) = dy (Ic(t.0)) = d(t,¢) = d(t) + Y c;d;(1). (7.3)
1

Using this and Eq. (5.2) we obtain that for each ¢ € (—s, s)" the function x = x¢ satisfies
the autonomous equation
x'(t) = —ax(r —dy(x,)) (7.4)

with state-dependent delay for all ¢ € (¢, 12). In particular,
R (1) = —ah(t —dy(h;)) on (11,10),
because of (5.3). Notice that for t € (t;,0) U (m2 + 2, ;) and ¢ € (—s, 5)" we have

dy(x)) =d(@).

8 Delay Functionals on Neighbourhoods of the Homoclinic Loop

This section follows almost verbatim Sections 7 and 8 from [18]. In the first part, which
corresponds to Section 7 from [ 18], we extend a restriction of ds to a compact neighbourhood
of the orbit piece {h; : 0 <t < my 42} in M to an open neighbourhood of M in the ambient
space C.

Fix t10 € (t1,0) and o9 € (m2 + 2,1). For every t € [t10, t20] there are an open
neighbourhood U; of h; € M in C, aradius r(¢) > 0, a closed subspace Q; of codimension
n+1inC,andaC 1—diffeomorphism R; from U, onto Rf;;)l X Qr@), with

R(U N M) =R x {0}
As H : R >t +— h; € C is injective (Proposition 3.2 from [18]) we can choose the
neigbourhoods Uy in such a way that

htm ¢ ﬁt forall r € (t10, t20] and /’l,20 ¢ Ut for all ¢ € [t19, 10). (8.1)

By compactness of the orbit piece {h; : tj9p <t < tyo} there exist s1 < ... < sy, in [t10, f20]
so that the sets U, = Uy, u € {1, ..., m}, cover the orbit piece H ([10, f20]). Observe that
(8.1) implies s; = t10 and s, = f20.

Using compactness once again we find r € (0, s;) so that

K = Ic([n0, 120] X [=r,r]") C UL, Uy
For the open covering (U, M)’;‘:l of the compact subset K of the manifold M there exists a

subordinate continuously differentiable partition of unity (Th)lj:p that is, each n, : M —

[0, 1] is continuously differentiable and has compact support, for every ¢ € {1, ..., j} there
exists u € {1, ..., m} with supp (n,) C U, N M, and for every ¢ € K,

J
D ) =1.
=1
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There exists amap {1, ..., j} 2t~ u@) € {1,...,m} with

supp (1) C Uy,
u(@) =1 forall (e

Ji={/€e{l,...,j}: supp (n,) C Ui},
uw(@) =m forall (e
Jn={€{l,....j}: supp (n,) C Un}.
As in the first part of the proof of Proposition 8.1 of [18] we get
J1 # D # Ty
Now lett € {1, ..., j} be given. The next objective is the construction of a C!-function
d, : A, —- R, A, CC open,
with M C A, and
di(¢) = n(@)du(¢) forall ¢ € M.

We abbreviate

Uy = mox Ry = RSM[), Iy 1= V(Su(t)), Qs = QsM(L)-

Then
Re(Us N M) = RIF X {0} C R x 0y, 4.
Set
Vaw = R\ (RET % 0, 04) D U N M.
Obviously,
Viiw C Uy, supp () CU,NM C V@,
and

Ry (supp (1)) = pry R« (supp (1)) x {0},
with the projection
pry SR % 0, — RO
onto the first factor. The map d= d,, d: Vi — R, given by
d(@) = n.(R, " (pri Re(®), 0))du (R, (pry R (). 0))
is C'-smooth (Fig. 4).

Proposition 8.1 Let: € {1, ..., j} be given. Every ¢ € M \ supp (n,) has an open neigh-
bourhood Vy , in C with

V. N R (pry Ru(supp ) x Oy, p2) = 0.

In particular, Vi , N supp (17,) = 0.

Proof See the proof of Proposition 7.1 in [18].
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Fig. 4 The argument of 7, and dj; in the formula defining zf(qb), ® €V

For. e {1, ..., j} given we continue as in Section 7 of [18], choose neighbourhoods V; ,
according to Proposition 8.1, and consider the set

VL = Ugem\ supp () Vo.c»

which is open in C. We have
VN Ry (pry Ri(supp (1)) % Qr,12) =0,
and the open set
A = \A/L UV
contains
(M \ supp (1)) U supp (n,) = M.
Proposition 8.2 Let 1 € {1, ..., j} be given. For every ¥ € V, N V) we have d, () = 0.
Proof See the proof of Proposition 7.2 in [18].

For eacht € {1,7.. .,j} weextend d, : Vi@ — Rtoamapon A, by d,(¥) = 0on \Z
The extended map d, : A, — Ris C!-smooth.

Corollary 8.3 Leti € (1, ..., j} be given. For all v € M we have d, () = n,(¥)dp (¥).
Proof See the proof of Corollary 7.3 in [18].
The set A* ;= ﬂ{:] A, (D M)isopenin C, and the map
d* A" >R

given by d*(¢) = ZLI d,(¢) is C'-smooth.
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Corollary 8.4 Forevery ¢ € K C M we have d*(¢) = dp ().

Proof Use Corollary 8.3 and

J J
d* (@) = D di(@) = D_n(d)du($) = du ()
=1

=1
forp e K C M.

The construction of the desired delay functional on a neighbourhood of the homoclinic
loop H(R) U {0} C C requires a modification of d*. This is done as in Section 8 of [18].

The next intermediate step is to find 711 € (19, 0) and an open neighbourhood V;; C A*
of A, in C so that

d*(¢)=1 on Vii.
Observe that for all ¢t € J; and ¢ € V| we have
d,(@) = n(R (pr R1 (), 0))dm (R, (pry R1($), 0)). (8.2)

Proposition 8.5 Foreveryi e J{ ={1,..., j}\ Ji we have u(v) € {2, ..., j}, and for all
¢ € (Ui \U;_,U,) N A, we have

d(¢)=0.
Proof See the proof of Proposition 8.1 (ii) in [18].

By (8.1) the open set U; \ U:fzzUTL contains h;,,. As H is continuous there exists f1; €
(t10, 0) with

hy, € Ut \ U, Uy
Recall Uy = Uy,. Then
Ry, (hyyy) € RIEL x {0},

AsIcisa Cl-diffeomorphism the set Ic((t10, 0) x (—r, r)") is an open subset of M which
contains h;,,. By continuity there exists p; € (0, @) so that
RAH 4 pry Ry, (hy) € RIED, (8.3)
R} ((szl +pry Ry, (hy)) X Q1) C Uit \Uj_,U,,
and
RN (REFY 4 pry Ry, (hy ) x {0}) € I ((t10.0) x (—=r.»)") C K. (8.4)

For every ¢ € Rs_ll ((RZ;"] =+ pry Ry, (hy,,)) x {0}) we infer from (8.4) that
dy(p) = dy(Ic(t,c)) (with tig <t <0,c€(=rr)")
n
=d(t)+ D cudy(t) (see.3)
1

=d(t) (since t <0)

=1 (since r < 0).
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The set

Vir == Ry, (RAF + pry Ry, (hy)) x Q1) N A*

is open in C and contains A, . Using p; < r;%) and (8.3) we get

Vii C V1.
Proposition 8.6 For every ¢ € Vi1, d*(¢) = 1.
Proof See the proof of Proposition 8.2 in [18].

In the same way as above we find 721 € (m2+2, f20) and an open neighbourhood V51 C A*
of hs,, in C so that

d*(¢)=1 on V.

Now we can complete the construction of the delay functional on a neighbourhood of
H(R) U {0} in C. We choose 1{, € (t19, t11) and 1{| € (t11, 0) so that

H([11y.111]) € Vi
and similarly 15, € (m2 + 2, 21) and 13} € (121, 120) so that
H ([t5y. 13)]) C Var.

The sets {0} U H((—oo0, 1{,]) U H([15}, 00)) and H([t],,15;]) C M C A* are compact and
disjoint since H is injective, see Proposition 3.2 in [18]. Consequently there are disjoint open
neighbourhoods Ny of {0} U H ((—oo, 11,1) U H([t};, 00)) in C and N of H ([}, #5,]) in C.
We may assume N C A*. Since dy (M) C (0, 2) and d*(¢) = dy(¢) on K D H([t{}, £, 1)
(see Corollary 8.4) we may also assume d*(¢) € (0,2) on N. The open subset

A:=NoUVii UNU Vy

of C contains H(R) U {0}. On N N (Vi1 U V,1) we have dy(¢) = 1. It follows that the
equations

da(@) =1 for ¢ € NoU Vip U Vyy,
da(¢) =d*(¢) for ¢ €N,

define a C'-map dy : A — (0,2). The continuity of Ic and the compactness of
H([t]}, 15,1 C N imply that there exists ro € (0, r) so that

Ka = Ic([1]}, 5] % (=ra,ra)")

is contained in N.

Proposition 8.7 For every t € R we have da(h;) = d(t), and for all t € [t]}, t5,] and
c € (=ra,ra)",

Ic(t.c) e A and da(lc(t.0)) =d(t) + D cvdy(1).
1
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Proof (Compare the proof of Proposition 8.3 in [18]) For¢ < t{’l wehave h; € NoUV|1,hence
da(hy) = 1. Ast < 0 we also have d(¢) = 1. Analogously one finds da(h;) = 1 = d(t) for
1=>1.

Fort{} <t <}, and ¢ € (—ra,ra)" we have Ic(t,c) € Ko C N (C A), hence

da(lc(t,c)) =d*(Ic(t, 0)).
Astig <ty <ty <Oandmy +2 < 1) <t <tfj <toandc € (—rp,ra)" wealso
have Ic(t, c) € K. Hence

da(Ic(t,0)) = d*(Ic(t, ) = du(Ic(t,c)) (see Corollary 8.4)
=d(t)+ D cdy(t) (see.3).
1

For ¢ = 0, obviously
da(hy) =da(1(1,0)) = d(1)
also for '} <t < 1J).
It follows that the solution x = & of Eq. (3.7) also satisfies Eq. (3.8),
x'(1) = —ax(t —da(x,))

for all # € R, and that the solutions x¢ of Eq. (5.2), ¢ € (—ra, ra)", satisfy Eq. (3.8) for all
t e[t} 5]
For the next section we also need the following result.

Corollary 8.8 Let reals t— < ty be given. There exists ¥ € (0,ra) with Ic([t—, t4]
x (=7, r)") € A and

da(Ic(t. ) =d() + D cudy(t) on [t—,11] x (=F, )"
1

Proof (See the proof of Corollary 8.4 in [18]) In case r— < t{| we have H([r—, 1{}])
C No U Vq1. Using compactness and continuity we find 7 € (0, r») with

Ie (=, 111 x (=7, ©)") C No U Vi1.
On [1_, t{}] x [—F, F]" we get
da(Ic(t,c)) =1 =d(t) +0 (since t <]} <0)
n
=d() + chdv(t) (since d,(t) =0 on (—o0,0]).

1

Proposition 8.7 contains the desired equation on [ti’ 1 tél] x [—7, r]". Now it becomes obvious

how to complete the proof using Proposition 8.7 and d(r) = 1 forr > 1}, and da(¢) = 1 on
No U Vo,

9 Linearization Along the Homoclinic Curve
As in Sect. 3 we obtain from C!-smoothness of the map dpy : C DO A — (0, 2) that the

maximal C'-solutions x = x?, x : [—r, f(¢)) — R", 0 < 1,(¢) < 00, of the initial value
problem given by Eq. (3.8) and the initial condition
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xo=pel{yeanc /O =—av(-ds@)] = Xa

define a continuous semiflow F : §2 — X on the C!-submanifold X := X4 of C!, with
domain £2 := {(t, ) € [0,00) X X : t < t.(¢)} and F(¢, ) = xtd’. Let

f:ANC' >R

be given by f(¢) = —ad(—da(¢)). The Cl—maps F;, t > 0, with nonempty domain
2, ={peX:t <t (p)}and F;(¢p) = F(t, @), satisty

DF(@)x = v}"*
with the Cl-solution v = v® X, v : [—r, 1,(¢)) — R", of the initial value problem

V'(t) = Df(F(t, ¢))v, for t >0,
vo = x € TpX.

The restriction of F to the set {(¢, ¢) € £2 : 2 < t} is C'-smooth, with
DiF@$)1 = (x) = (%)), e C.
From Eq. (3.8) for x = h we infer
F(t—s,hg) =h, forall r>s.

It follows that

DyF(t — s, hg)h, = h, forall > s. 9.1)
Proposition 9.1 For every j € {1,...,n}, for all reals s < t{, and for all reals t > 1},

we have

DyF(t —s,hg)wjs =qj;.
Proof Let j € {1,...,n} be given, and let d4 | denote the Cl—map c'>aAanc!s ¢ —
da(¢) € (0,2). Foreacht € R we get

Dda,(h)bj, = Dda,i(Ic(t,0))Dj11(z,0)1  (Proposition 7.1)
=Dj (dA_l o 1)(t, 0)1 (the chain rule)
= Djyi((s,0) > d(s) + chdj(s))(t, 0)1  (Corollary 8.8)

1
:dj(l‘).

A computation as in Sect. 3 shows that for every ¢ € AN C! and for all x € C' we have

Df(p)x = —a{x(—=da(¢)) — ¢'(—da($))Dd,1(d)x }-
It follows that for every ¢ € R,
Df(hi)bj: = —Ol{bj(f —da1(hy)) — h'(t— da,1 (ht))DdA,l(ht)bj,t}
= —albj(t —da,1(h)) — h'(t —da,(h)dj (D)}
(by the computation above)
(bj)'(t) (by the choice of b; in Sect.5)
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The preceding equation implies that for all reals s and t > 0 we have
Dy F(z, hs)bj,s = bj,f+s~
Finally, use b (t) = w;(¢) on (—o0,0] and b;(t) = ¢;(¢) on [m3, 00).

Before we state what has been achieved in a theorem it may be convenient to recall that
for o € (%, 57”) we defined w : R — R by w(r) = €“'sin(vgt) and y : R — R by
y() = " sin(vt), with Ay = ug + ivg the eigenvalue of the generator of the semigroup T,
in (0, 00) +i(0, 00) and A = u + iv the eigenvalue in (—o00, 0) + i (0, co) with largest real
part.

Theorem 9.2 There exist apy € (%, 57”) so that for every o € (ao, 57”) there is a real

ap > 0 with the following properties. For every n € N, and for all families of analytic
solutionsw; : R — Randgq; :R— R, j €{l,...,n}, of Eq. 3.1) with w(’), W10, W0
linearly independent and yln2+2’ q1,my+2s - - - » qn.my+2 linearly independent there are an
open neighbourhood A of 0 in C and a C'-functional ds : C > A — (0, 2) so that

(i) da(¢) = 1 on a neigbourhood of 0 in C,
(i) Egq. (3.8),

x'(1) = —ax (t —da(x)),

has a Cl-solution h : R — R with h(t) = w(t) on (—o0, 0] and h(r) = apy(t) on
[1, 00), in particular, h(t) — O for |t| — o0,

(iii) The maximal C'-solutions [-2,1,) — R of Eq. (3.8) define a semiflow F on the C'
-submanifold

X:={peAnC':¢'(0) = —ap(~da(¢)).
There exist so < 0 and ty > 3 so that for all s < so and all t > ty we have
DyF(t — s, hy)h, = b},
and for every j € {1,...,n},
wjs € Tn X, qj1 €Ty, X, and DryF(t —s,hy))wjs =q;,.
x 5w 5

Corollary 9.3 There exist ay € (7, 7) so that for every a € (a(), 7”) there is a real

ap > 0 with the following properties. There are an open neighbourhood A of 0 in C and a
Cl-functional dpa:C D A— (0,2) so that

(i) da(¢p) = 1 on a neighourhood of 0 in C,
(ii) and Eq. (3.8), namely,

x'(1) = —ax (t —da(x))

has a C'-solution h : R — R with h(t) = w(t) on (—o0,0] and h(t) = ay(t) on
[1, 00), in particular, h(t) — O for |t| — o0,

(iii) The maximal Cl-solutions [-2,1,) - R of Eq. (3.8) define a semiflow F on the C!
-submanifold

X={pecANC':¢'0)=—ap(—da(®))}.
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There exist so < 0 and ty > 3 so that for all s < so and all t > ty, with

Y=ToX={xeC': x'0)=—ax(-1)} and Y;:=C;NY D,

we have
T X=T,X=Y=Y;0Cy,
and
h, € Cy,
hy € Cj,

DyF(t — s, hy)hl, = hl,
DyF(t — s, hg)(C; & C,) = (C; & Cy,) (this is 3.9),
(D2F(t — s, hg)Cy) N Y, = RA, (this is 3.6).

Proof Recall 0 # w, € C, and 0 # y; € C; for all + € R. There are analytic solutions
wj : R — Randg; : R — Rof Eq. (3.1), j € {1,2,3}, so that forall t € R w;, w1t
form a basis of C,, and wa;, w3, form a basis of C;, y;, g1, form a basis of C;, and g2¢, g3
form a basis of C,,. Theorem 9.2 with n = 3 yields that for s < sg and # > 1 the derivative
DyF(t — s, hy) : T, X — Tp, X maps a basis of C; @ C,, onto a basis of the same space.

In particular we can arrange that Do F (¢t — s, hg)wy s = q2,; (€ C,) which yields the
minimal intersection property

(DZF(I -, hs)cu) nYs = Rh;

forall s < sgandt > 1.

10 The Inner Map

From here on we consider the delay functional d4 : C D A — (0, 2) from Corollary 9.3.
Then there exists & > mo + 2 so that for all s < —0 and for all ¢+ > 6 we have (3.9) and the
minimal intersection property (3.6).

Let W C A C C denote a neighbourhood of 0 € C on which d(¢) = 1. Then

XNW={peWnC':¢/(0)=—-adp(-D}=YNW
and forevery t > O and ¢ € X N W with F([0, ¢] x {¢}) C W,
F(t,¢)=T@)é.

In the sequel we introduce hypersurfaces H; and H, which will be solid tori in ¥ N W
with central circles S; C C; and S, C C,, respectively. Upon that we define the inner
map as the shift along phase curves from H; \ Y to H, \ S, = H, \ C,. This requires
some preparation concerning the semigroups 7 on C and (D2 F (¢, 0));>0 on Y. Recall that
DyF(t,0)x =T(t)x forall x € Y.

Recall Ay = ug+ivg, A = u—+iv from Sects. 3 and 4 and let C. C C denote the realified
generalized eigenspace associated with the subset of the spectrum of the generator of the
semigroup T givenby Re(¢) < u < 0.From the invariant decomposition C = C-®C; &C,,
we obtain the decomposition

Y=Y_.C,®C, (10.1)
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with Y. = C. NY which is positively invariant under the operators D, F'(1,0) : ¥ — Y,
t > 0. The projections Y — Y onto Y, C;, C, which are given by the decomposition (10.1)
are denoted by P—, P;, P,, respectively.

For the exponential decay of phase curves 7'(-) x in Y- we have the estimate

IT()y<li <c<e”™|y<|y forall y-eY., >0, (10.2)

with constants c. > 1 and —n- < u < 0.

We turn to the action of 7 on C; & C,,. The complex-valued functions M [=2,0] > C
and e** : [—2, 0] — C are eigenvectors associated with the eigenvalues Ao = uq + ivy and
A = u + iv of the generator of T. The functions ¢, : [-2,0] - Rands, : [-2,0] = R
given by

cu(t) = "' cos(vgt) = Re (M), s,(t) = "' sin(vr) = Im (),
form a basis of C,,, and the functions ¢; : [-2,0] — Rand s; : [-2, 0] — R} given by
¢i(t) = " cos(vt) = Re (e}") , 5i(t) = " sin(vt) = Im (e“)

form a basis of C;. Forreals a, bandt > Oand z = a + ib € C, z = |z]¢!? with ¢ € R, we
use the extension of the semigroup to complex-valued data [—2, 0] — C and obtain

T(t)z - e =z e,

hence
T(t)a-c;—b-s;)=T(t)Re(z-e") (10.3)
= Re(T(H)z-e")
= Re(zeMe")
= Re (Izlei¢+“’+i“t(ci + isi))
= |z]e"" (cos(¢p + vt) - ¢; — sin(¢ + vt) - 5;) .
Analogously,
T(t)(a-cy—b-s,) = |z]e" (cos(¢p + vot) - ¢y — sin(@ + vot) - sy). (10.4)

It will be convenient to introduce the isomorphism

K:Y_.xCxC—Y K(y-,z,20) = y= + Re(@) -¢; — Im(z) - s;
+ Re(zo) - ¢y — Im(z0) - Su,

with C considered as a vector space over R. A first consequence is the formula
KT'T(OK (v<, 2, 20) = T(0)y< + |z e/ @ 4 [zg]e ! ¢! VH00) (10.5)

for y. € Y.,z = |z|e'® € C, and |z0|e'¥ € C, with reals ¢, .
Now choose €p > 0 so that

Wo := K (Y<,qy X Cey X Cgy)
is contained in W. Then choose positive reals r < R; < R with

R; < Re ™’ R < min {eo, e_“(’e} (<1), cor<e, r< Aet?
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and such that for all y. € Y_ and for all positive reals ¢ < R; we have

(e (3) -

Consider the hypersurfaces

< ly<l. (10.6)

1

H; .= {K(y<,z,20) : ly<li =r |zl =7, |20l < Ri},
Hy = {K(y<,z,20) : ly<l1 < r |zl <71 lz0l = R}

mYNw=Xnw.
The central circles in these solid tori are the sets

S; :={K(0,z,0) : |z] =7}
and
Su = {K(0,0, z0) : |z0l = R},

respectively (Fig. 5).
For every t < 0 the homoclinic solution # satisfies h; € Cy, and for all a € [-2, 0],

hi(a) = "0+ gin (vo(t + a)) = e”ot(sin(vot)co(a) + cos(vot)so(a)),
hence
hy = K (0,0, " (sin(vor) — i cos(vot)),
and thereby,
|K~'hy| = &'
for all < 0. Analogously we have for all + > m, + 2 that h;, € C; and
|K ' hy| = ap €.

The choice of R < ¢ 0 and r < A ¢"? above implies that there exist t, < —6 and ; > 0
with h;, € H, and h;, € H;.

Using (10.5) we see that a phase curve [0,00) 5t +— T(t)x € C! of the semigroup T
which starts from x = K (y<, z,20) € H; \ Yy, thatis, with 0 < |z9| < R; < R, reaches the
level set

{# eY:IK'P,%| = R}

o+ (i)
t=—1log|{ — ).
uo |20l

Letog : H; \ Yy — (0, 00) be the stopping time map given by

1 R
oo(x) = —log | —
uo |zol

for x = K(y<, z,z0) € H; \ Ys. It will be convenient to introduce also the map

at

1 R
7:(0,00) = R, 7(q) = —log (*)
uo q
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radius R in Cy-direction

Fig. 5 The sets H; and H,, with central circles S; and S,,. The Y—-components are omitted

which permits us to write

o0(x) = t(lzol)

for x = K(y<,z,20) € Hi \ Y.

The estimate (10.2), the choice c.r < €, and the representations (10.3) and (10.4) of the
semigroup on C; and on C,, combined show that all 7 (¢) x withO <t < o9(x), x € H; \ Y5,
belong to a bounded set W;, C W, hence T (t)x = F (¢, x) for these ¢ and y. Using this fact
and (10.5) we see that the inner map

o Hi\Yy 3 x = F(oo(x), x) € X

is given as follows (Fig. 6).
For x = K(y<.2.20). [y<li < r.z =re', z0 = |zole’” with 0 < |z0| < R; < R and
reals ¢, ¥, we have Xo(x) = K(Y-, Z, Zo) with

< = T(T(lzol))y< €Y., (10.7)

PR (i) " gi(#+vedab) ¢ ¢ (10.8)
[zol

Zo=Ré (v +ur(a0d) ¢ ¢ (10.9)

Using (10.6)—(10.9) we infer
20(1-11 \ Ys) C Hu \Cu-
Proposition 10.1 Xy(H; \ Y;) has compact closure in Y.

Proof The inequality

lzo] < Ri < Re "% < Re™210
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Fig. 6 The inner map, with Y--components and one dimension in each of C; and C;, omitted

yieldsoo(x) > 2 on H;\ Y. The fact thatthe setof all 7 (1) x,0 <t < op(x) and x € H;\Yj,
is bounded means that the solutions yX : [—2, c0) — R of the initial value problem

y(@)=—ayt—1), yo=yx € H\Yj,

and their derivatives are uniformly bounded on [—2, o (x)]. It follows that there is a constant
L > 0 such that

Lip(y*|[—2, 00(x)]) < L forall x € H; \Y,.

Using the preceding equation we infer that Lip((y*)'|[0, 0o(x)]) < o L forall x € H; \ Y.
As 2 < op(x) this yields Lip((y()fo(x))’) < oL forall x € H; \ Ys. Altogether,

sup |Zo()li+ sup Lip(Zo(x))+ sup Lip((Zo(x))) < oo.
X€H\Y; XEH\Y; X€H\Ys

Now a twofold application of the Arzela—Ascoli theorem leads to the assertion.

11 The Outer Map

In this section we define an outer map following phase curves from a neighbourhood of #;, in
H, to their intersection with H;. The first step towards the outer map prepares the existence
of a suitable stopping time map.

For every tangent vector z € Tht‘_ H; there is a differentiable curve ¢ in H; C Y-+ Sil +Cy
with £(0) = hy, and z = £'(0). The function ¢, o £, with ¢, : ¥V 2 x — |Ki71Pix| eR,is
constant. This implies

De,(hy)z = D(e, 0 0)(0) = 0.

@ Springer



666 J Dyn Diff Equat (2016) 28:627-688

H, Hi(R)

Cy

C;
Hi(t:) [

Fig. 7 The outer map, with Y_-components and one dimension in each of C; and C;, omitted
For the phase curve Hy : R> t +— h; € C! with range in X and for r > m, + 2 we obtain
¢ (Hi(t)) = |K~'P;(Hi(1))| = Ae", hence

Dey (ha) H{ () # 0,

which yields
h;i = H{(t;) ¢ T Hi- (11.1)

See [18] for the equation. The transversality condition (11.1), the fact that the semiflow F
is continuously differentiable on the part of its domain given by ¢ > 2, and the inequality
t; —t, > 2 combined yield a continuously differentiable stopping time map

o1: Ve = (2,00)
on an open neighbourhood V,;; C Wy of &, in Y, with
o1(hy) =1 —t, and |K~'PiF(o1(x), x)|=r forall x € V.

As hy, = F(o1(hy,), hy,) is in C; the components of 4, in Y. and in C, vanish. It follows
that there is an open neighbourhood V' C V,;, of h;, in Y so that each F(o1(x). x) € H;,
x € V, belongs to the C I_submanifold

o

Hii={K(y<,z,z20) : ly<li <r Izl =r lz0l < Ri} C H;
of the space Y, and we obtain the continuously differentiable outer map
211V o x> Flo1(x), x) €H;
with

21 (hy,) = hy; (see Fig.7).
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Recall that for any x € Y,
DXy (hy)x = PaDyF (t; — ty, hy,) X
with the projection P, : Y — Y along Rh;i onto Th,’, H;, because of the relations
T, Hi  DZ1(hy,)x = DiF (ti — ty, hy,) Dov(hy)x + D2F (t; — tu, he,) X
= Doy (hy,)x 'h;,. + PpDyF (ti — lu, hzu) X
+ (idy — Py) Do F (t; — ty, hy,) X-

‘We have
T, H,=Y-+C;+Rzg,

with 7, = ' (0) # 0 for the curve
iR ) CHNCu o) =K (0,0, RVT)
where ¥, € [—m, ) and

h, =K (0, 0, Re"%) .

Similarly,
Th,[ Hi =Y. +Rt; +Cy

with ; = p’(0) # 0 for the curve
p:R— S,-l C HNCGCi, p(¢p) =K (O, rei(¢+¢i),0)
where ¢; € [—m, w) and
h, = K (o,rei¢f,0).

Because of (11.1) the vectors 7; € C; and h;}_ € C; are linearly independent, and because of
the relation

h;u ¢ Thzu H,

analogous to (11.1) the vectors 7, € C, and h;u € C, are linearly independent. For all
y.€Y_,aeR beR,y, €C, wehave

Py (y< +at +bhy + xu) = y< +ati + Xu. (11.2)
It is convenient to recall here that
DyF (t; — ty, hy,) (Ci ® C,) = C; @ C. (11.3)
Proposition 11.1
DX (hy,) (Ci ® Rt,) = Ry; @ C,.
Proof Using (11.3) and (11.2) we infer

DXy (h,)(C; ®Rr,) C Pr(C; ® Cy) =R1; & Cy.
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DIy (he, )o' (0) o~

Fig. 8 The transversality condition

Itremains to show that the restriction of D Xy (h;,) to C; @R, is injective. Solet x € C; PRz,
with 0 = DXy (hy,)x = PyD2F (ti — ty, hy,) x be given. Then Dy F (t; — ty, hy, ) x € Rhy,.
Using Dy F (t; — ty, hy )hy, = h;l_ (see Theorem 9.2), h; € C, and (11.3) we obtain

X € Rh;u,
and it follows that x € Rh; N (C; ® Rry,) = {0}.
We proceed to a transversality condition for the outer map.

Proposition 11.2
Py DX (hs,)tu # 0 (see Fig. 8).

Proof 1.From (11.3) we get Do F(t; —t,, hy, )ty € C; @ Cy. Suppose Dy F (t; — t,, hy )Ty €
Ci. As 1, and h;u form a basis of C,, and

D F (l‘l' — 1y, h[u)h;u = h;i e C;
we obtain Dy F(t; — t,, hy,)C,, C C; C Y, which in view of (11.3) yields
dim (D2 F (t; — ty, hy, )Cu) N Y5 =2,

in contradiction to the minimal intersection property (3.6) with ¢z, < —6,# > 6.
2. We just showed Dy F(t; — t, hy,)t, € (C; @ Cy) \ C;. The decompositions

Y =Y_.®Ry @Rh;f @ C,
and
Ty, Hi =Y. ®R7; ® Cy
in combination with

DZF(ti — ly, htu)fu =art + bh; + Xu
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for some a, b in R and 0 # x, € C,, the latter because of part 1, yield

Py DX\ (hy)ty = Py PaDaF(t; — ty, hy,) T
Py Py(at; 4+ bhy, + xu) = Pu(ati + xu) (see 11.2)
= xu #0.

For later use we translate the previous results into statements about global coordinates on
H, and H;, respectively. Consider the injective maps

C,:Y_, xC, x[-m7)— Y, Coy=.2. %) =K (y<,z, Rei(wwu)
and

Ci: Yo, x[-m7)xC, =Y, Ci(y<. .20 =K (y<,rei(¢+4’f),z()).
We have

Cu(Y<r xCp x [-m,7m)) =H, and C; (Y-, x [-7,7) x C,) = H;.

The map C,, defines a C! -diffeomorphism from Y. , xC, x (—m, ) into the C!-submanifold

Hy= (K (v, 2.20) ¢ Iy<li < 7. |zl <r.lz0l = R) C H,
of the space Y, with
Cu ({0} x Cp x (=7, 7)) C {0} + Ci + Sy,
and the map C; defines a C '—diffeomorphism from Y., x (—m,m) x C, into the cl-
submanifold ;Iic H; of the space Y, with
Ci(f0<} x (=, 1) x C;) C {0} + Si + Cu.

Let us distinguish the null elements of the spaces Y., C, R by writing 0, Oc, Og, respec-
tively, and define

0, := (0-,0¢,0r) € Yo, x C, x [-7,7), 0; := (0-,0r,0c) € Yo, X [-7,7) x C,.
Then

Cu(04) = hy,, (11.4)

DC,(0,)({0<} x C x R) = {0} + Ci + Ty, S,
={0<}+ Ci + Ry, (11.5)
DC,(0,)(0<,0¢, 1) = 7, (11.6)
Ci(0;) = hy,, (11.7)

DC;(0)({0<} x R x C) = {0} + T, Si + Cu
={0.}+ Ry + Cy, (11.8)
DC;(0)(0<,1,0¢c) = 7. (11.9)

Now consider the outer map X in terms of coordinates, namely, the map
P (C) N(V) > Y- xR xC
given by
Pi(n.z.9) = (€)™ (Z1(Culn, 2. ¥)).
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The map P is defined on a neighbourhood of the origin in Y- x C x R, has its range in
Y., x[—m, m) x C,, satisfies

P1(04) =0;,
and is continuously differentiable on
(€)' V)N A<y x C x (=7, 7).
Proposition 11.1 in combination with (11.4)—(11.19) yields
DP(0,)({0-} x CxR) ={0-} x R x C.
It follows that
(T1) the induced map Dj : {0} x C x R — {0} x R x C is an isomorphism

(of three-dimensional vector spaces over R). Observe that the inverse of the derivative of the
C'-diffeomorphism

Yoy x (—71,7) x C & Ci(Y—y x (=7, ) x C,) CH;
at iy, is the linear map [ DC; (0; )]_1 . Using this we infer from Proposition 11.2 that the vector
& :=DPi(0,)(0<,0¢c. 1) = D;(0<,0c. 1)
= [DC,- (Oi)]leZ‘l(h,u)DCu (Ou)(0<, Oc, 1)
= [DC;(0)] ' DE1 ()
and the projection
pry {0} x R x C — {0} x R x C, pry(0<, ¢, z0) = (0, Og, 20).
satisfy
(T2) pryé§ # (0<, O, Oc).
Clearly the nullspace of pr, is
{0-} x R x {Oc} = Rey with ey := (0, 1,0¢).

We end this section with further technical preparations concerning the isomorphism Dj.
As a consequence of (T1), the vector £ = D{(0-,0c, 1) € D1({0<} x {Oc} x R) does not
belong to the two-dimensional space (Fig. 9)

Uy := D ({0<} x C x {Og}).
Therefore the range of D satisfies
Di({0.} xCxR)={0.} xRx C=U; ®RE. (11.10)

Notice that (T2) yields
E¢Rey. (11.11)

From (11.10) and (11.11) we see that there are uniquely determined © € R and f; €
Ui \ {(0;} such that
ey = f1 +ué. (11.12)
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DP1(0,)

fa

\ 7/”f1
¢ 2 [

Fig. 9 The vectors f1, f2, &, e1, and elL. (The direction of f7 is geometrically obtained by intersecting the
plane spanned by & and ey with the space Uj.)

Uy = Rf1 @ Rf2 (translated)

Set e} = Dflfl € {0.} x C x {Og}. Then ¢ = (0<,plei¢1,0R) with p; > 0 and
0 < ¢1 < 27 uniquely determined. Define

e = (0-, p1ef@+3) 0p).
Then
{0.) x C x {Og) =Re; ®Rei.
Setting f> = Dlef- we arrive at
Uy =Di(Rey ®Rei) =R fi ®R fo, (11.13)
which in combination with (11.10) yields
{0} xRxC=RfidRfHLBERE (11.14)

for the range of D;.

Next we consider the plane H :=R f, @ R& C {0} x R x C. Using (11.12) and (11.14)
we see that the vector e, spanning the nullspace of pr, does not belong to H. Consequently
the restriction pr, I% defines an isomorphism onto the space {0} x {Or} x C. Therefore the

vectors pr,& and pr, f> form a basis of the space {0~} x {Or} x C, which in turn guarantees
a constant y» > 0 such that for all reals a, b we have

Iprs(a fo+b8)| = ya(lal + 1b]). (11.15)

In Sect. 13 we will approximate the map P by a map with values in the space H @ R - ey,
and then consider a simplifying homotopy which eliminates the components in ey-direction,

@ Springer



672 J Dyn Diff Equat (2016) 28:627-688

and replaces the values in H by their projection to {0} x {Or} x C (there property (11.15)
is important). The geometric idea of finding disjoint subsets Ny, Ny in the domain of P,
to which the methods from Sect. 2 can be applied, is to define subsets which (ignoring the
Y_-part) get mapped to ‘different sides’ of the plane H. This means that the components of
P (x) in ey-direction will be positive for x € Ng and negative for x € Ny. In order to control
these values, we need to control the values of Py(x) in the direction of e¢; and ef-, and we
prepare this now.
Let < -, - >: C x C — R denote the euclidean scalar product, i.e.,

(a+bi,c+di)=ac+bd forall a,b,c,d, eR.

Obviously, ¢/?! and &Nt are orthogonal unit vectors with respect to < -, - >. From the
definitions of ¢; and ef- we obtain for every z € C

(0<.z,0r) = L(2)e; + LT (2)et, (11.16)

with the R—linear functionals L : C — R and L* : C — R given by
1 . 1 .
Liz)= — <z, >, Lt =— <z,@+/2 5 (11.17)
P1 P1

For Oc # z = |z] - €!? we get
|z |z

L(z) = —cos(p — ¢1), LT(z) = — sin(¢ — ¢1). (11.18)
P1 pi

In view of (11.8), we can find d; € (0, 7 /2) (close to 7 /2) and &1 > 0 such that
0<d —e <d +¢& <7/2, (11.19)
and such that if Oc # z = |z]e!? then with  from (11.12) one has the implication

1|z]
lp—o1| € [di—e1. di+e1]+Zmr = |L7()] = 2ulILG)]. L5 ()] = 2 (11.20)

12 Composition

This section begins with neighbourhoods of the point /;, in the domain V of the outer map
which are given by small components in Y. and in C; and small arcs on S, > h;,. We find
preimages of these neighbourhoods under the inner map on which the composition of the
inner and outer maps is defined.

Recall that V is a neighbourhood of h;, = K (0, 0, R e'Vu) in Y. There exist yy € (0, m)

and ry € (0, r] with
0

R ("—‘/)_7 <R (12.1)
r

such that for every y € (0, yyv ], 7 € (0, ry], and 7 € (0, ry] the closed set

V(y, 7, 7)== {K(y<,2,20) €Y : |y<li <F, |z| <F, 20 = Re'V
with ¥, —y < ¥ <y, + v}

is a subset of V which contains A, (Fig. 10).
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T—
angle ¥y + v
Fig. 10 The set V(y, 7, F), with Y~ -components omitted
|zo]
| ()
T
Re o (A Yut)
N —
Revo (- +Yu—7)
"oy
/
e /
/
7
/
>
Si R (r) Tuo/u
T
Fig. 11 The inequalities (12.2) and (12.3), and the set H; (y, 7, 7'), with Y<-components omitted
For the same y, 7, 7 define (Fig. 11)
Hi(y.7,7) :={x =K(<.z.200 €Y : [y =r, |z] =1,
20 = |zo| €'V with ¥ € R satisfies
-
0 <zl =R\~ (12.2)
r
and
U0l —lr — 40 (o —
Re W —=vu—y) <zl < Rew W ‘//u+}’)!
and
P~ 2o <7} (12.3)
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Then
Hi(y,F,7) C Hi \ Y;
(and hy, ¢ H;i(y, 7, F)).
Proposition 12.1 Foreveryy € (0, yy], 7 € (0, ry], and 7 € (0, ry] we have
Zo(Hi(y, 7. F)) C V(y. 7. 7).

PrOOf LetX = K()’<, Z»ZO) € H:(J/,’:af) C Hi \ YS be given, Wlth |y<|1 f rv |Z| = r,
70 = |zole’¥ with ¢ € R satisfying (12.2) and (12.3), and

[P-Xo() < 7.
Using (10.7)—(10.9) we obtain Xy(x) = K (Y-, Z, Zp) with

1<li = 1T (x(zoMy<li = T (@0(X))y<li = T (00(x)) P<x|i
= |P<T (000 xl = [P<Zo(Oh =7

. R \io
lZl=r\=
|zo]

which is not larger than 7 because of (12.2). Finally,

and

ZAO — R eil//
with

b= +vot(lzol) = ¥ + :—Z log (i) :

|zol
and (12.3) yields ¢, — y < I/AI < ¥, + y. Altogether,
Zo(x) = K(¥<,2.20) € V(y, 7, 7).
Remark 1t is not hard to show that we actually have
Zo(Hi(y, F.F)) = V(y, 7. 7),

see Proposition 4.1 in [19]. Notice that the sets H; (y, 7, 7) are notclosed as S; C H; (y, 7, 7)\
H;(y,7,7).

Corollary 12.2 X o Xo(H;(y, 7, T)) is compact and contained in the set X1(V (y, T, 7)).

Proof AsV(y,F,F)isclosed we have Xo(H;(y, 7, 7)) C V(y,F,r).Proposition 10.1 yields
that Xo(H;(y,7,7)) C Xo(H; \ Ys) is compact. It follows that X o Xo(H;(y, 7, 7)) C
X1 (Xo(H;(y,F,F))) is compact and contained in X (V (y, 7, F)).

We express the return map
Hi(y,7,7) 3 x > Z1(Zo(x)) € H
in terms of coordinates as follows. The inner map in terms of coordinates, namely, the map
Py: C (Hi(y, 7, 7)) — Y=, x Gy x [-7, 1),
Po(y<. ¢.20) = C,' (Z0(Ci(y<, ¢, 20)).
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has its values in C;l (V(y,F,r)) C C;l(\/), which is the domain of Py, the outer map in
terms of coordinates, and

P:Cl._l(H,-(y,F,f))—>Y<><Rx(C

given by P(x) = Pi(Po(x)) is the return map in terms of coordinates.
Using the definitions of the maps C;, C, and (10.7)—(10.9) we infer Po(y<, ¢, z0) =
(Y<, Z, ¥) with

y< =T (zo))y<, (12.4)

5=y (i)% ei(¢+vr(\zo\)+¢i), (12.5)
[zol

¥ =¥ +vot(lz0l) — Y- (12.6)

Corollary 12.2 implies that P maps its domain into a compact subset of Y« x R x C which
is contained in the domain Y , x [—m, w) x C, of C;.

13 Definition of Suitable Subsets Ny, Ny

In this section we define disjoint closed subsets No, N of the domain of P; o Py for which

we can prove that P = P; o Py has symbolic dynamics in the sense of Corollary 2.4.
Choose first§, € (0, min{yy, ry}] suchthat Py is defined on theset ¥ _ 5, x Cz, X (=82, 62)

and that with constants Ly, ¢ > 0, with & from (T2), and y, from (11.15), the following

estimates hold for y and y in Y_ 5, x Cj, x (=82, 82):

[P1(y) — Pt = Lily — I 13.1)
Pi(y) = P1(0) +DP1(0,)(y — 04) + v(y), where (13.2)
——
=0;

(13.3)

)| §c|y—0u|andc§min['pr2$' . ]

16 ’ l6p1 ’ VZ
Choose 61 € (0, 1] such that with ¢; from (11.19) and p from the definition of e; in Sect. 11,
one has
25,0y <min | L2, ¢l 8 <62 (13.4)
16p1

We set ro = r/_c< (see (10.2)), so that for # > 0 one has r-c. exp(—n<t) < r. Next we
choose 6, € (0, 8] satisfying the following conditions (with I, := [—&;, §2]; recall also that
d; < m/2, and the eigenvalues u + iv and ug + ivg):

Ly <612, (13.5)
vo
L182 < min{r<, 81}, (136)
L [—d.d
| (—2 4 ddl 1]) c [——'”'”, —'“lﬂ] . (13.7)
v v v v

For ¢ < ¢, — §> we define the interval

R(@p) ;== R -exp [?(12 + v — wu)] (compare formula (12.3)) (13.8)
0
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zo + iyo = 20 = \zo\eiw

>

o

Fig. 12 A part of the set Dy+ s, , without components in ¥<

which is contained in (0, R), and for ¢ > 0 we define the following subset of Y. x R x C:

Dy = {(y<,¢, lzole'?) |

ly<lt =r<, |9l =81, —00 < < =82 — [Yul — 9, |20l 672(1#)]-

Note that max R(1y) — 0 and min {r(|z()|) | lzo] € R(w)} — oo as ¥ — —oo. It is clear
from Proposition 12.1 and the definition of the sets H; (. ..) that there exists & > &, such that
for ¢ > ¥ one has Dy 5, C C;l (H; (62, 82, 82)), which implies that

for all & > 9, the maps Py and Py o Py are defined on Dy s5,, and

o (13.9)
Py(Dy.s,) € C,l (V(82.82.82) = Y5, x Cs, x .

Recall_that —n< < u < 0and that ug > |u| (see (3.3)), and set g := exp[37|u|/v]. Choose
v* > ¥ such that for x = (y<, ¢, z0) € Dy* 5, one has

1,& |8
ol < 2ol 25' : (13.10)
etz < 5 pur(lo), (13.11)
R " 1 .
—q exp [ — (U + ugp)v /vo] < —— min{y», 1}, (13.12)
r 16p1

and consider the set Dy« s, from now on (Fig. 12).

The projection of Dy+ s, to the zo-plane is the area bounded by the two logarithmic spirals
given by |zo| = max R(¥) and |z9| = min R(Y¥), ¢ € (—oo, =82 — |¥,| — 0]

The relative positions of Dy 5, and its image under P are qualitatively as shownin Fig. 13.
This is not obvious at this point, but will be shown in Sects. 13 and 14. In particular, the fact
that P(Dy+s,) extends further in the directions of £ and f> than Dy+ 5, is contained in the
proof of Lemma 14.1.

Note that for ¢, ¥’ € (—o0, =83 — |, | — ¥*] one has the implication

¥ =19 — 2km for some k € N = max R(¢') < min R(%), (13.13)
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P(Dy~)

Dﬁ*

Fig. 13 The set Dy+ and its image under P (qualitatively)

since 28, < 2km. Thus, for (y-, ¢, lzole'V) e Dy+ s, ,thenumber ¢ € (—oo, —82— 1, —9*]
is uniquely determined by |zp| (not only modulo 27). Recall the numbers ¢; and d; from

Sect. 11. We now choose k* € N such that yr,, 4+ @(qﬁi — ¢ =2k*m+dy) < =8 — ¥, | =V,
v
and such that with

Fmin := I €Xp [M(@ —¢1—7m— 2k*ﬂ)] exp [_M”] ’
v v
(13.14)
_ |u| . |u|
Fmax ‘= I €Xp 7((15[ —¢1 —2k*m) | exp 771
one has
1
Blmx 552, ™ < 55 1pryé | min [1, —] 2rmax < 8. (13.15)
D1 P1 8lpry f2l

Then the intervals
vo
Jo =Y + ;(¢,~ — ¢ — 2k*m + [—dy, di]),
vo
J= k(6= @1+ 1) = 2K + [y dy])

satisfy max J; < min Jyp < max Jy < —8 — |¥,| — 9 (for the first inequality, recall that
dy < m/2).
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Fig. 14 The sets Ng and Ny, their images under P, and the hyperplane 0; + H (qualitatively, with only the
three-dimensional part shown)

Finally we define

No = {(v= 9. lz0le™) [ Iy<li <7<, I] < 81,
¥ € Jo. lzol € RO},
N i={(v< 8 lole™) | Iy<li <7<, I8l < 61,

¥ e i, lol € RGN},
and N := Ny U Nj.

These sets are closed subsets of Dy« s,, and disjointness of Jy and J; together with property
(13.13) imply that No N N1 = (. Note also that ¢ = rmax/rmin (independently of the choice
of k*).

The intersection properties of Ny, N1 and their images under P are as indicated in Fig. 14.
This is proved partially in Proposition 13.1 (in particular, how the boundaries of Ny and N
are mapped under P), and partially in the proof of Lemma 14.1, where we a construct a
homotopy to a simpler model map. Parts (c) and (d) of Proposition 13.1 describe, in geometric
interpretation, that Ny and Nj get mapped to different sides of the plane H.
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Proposition 13.1 Assume x = (y<, ¢, |z0le'¥) € N (with € JyU Jy, and ¢ € [—81, 811),
and set

t:=1(z0D), < =T (@y<, 1’ i=re"", ¢:=¢i + ¢ +vr, ¥ =9 +v07 — Y.

Then ,
Po(x) = (5<,r'e'?, ). (13.16)

The following properties (in particular, ‘boundary correspondences’) hold:

(a) T = 9%/ v.
(b) V€ [=82, 82, and

lzol = minR(Y) = ¥ =&, |z0l = maxR(Y) = ¥ = —b.

(c)
vedo = ¢ed+I[—d —er,d +e]+ 2k n, and
Vv =minJy = ¢ — ¢y €di +[—¢1, e1]+ 2k*m,
Y =maxJy = ¢ — ¢ € —d| + [—e1, &1] + 2k* 7.
(d)

Vveld = ¢ped+n+[—d —ei,d +e1]l+2k*n, and
Y =minJ; = ¢ — (¢1 +7) €di +[—e1, 1]+ 2k* 7,

Y =maxJ; = ¢ — (¢p1 +7) € —di + [—¢1, 1] + 2k* 7.
(e) r' e [7min> 'max]-
Fmin .
(f) lzol < —— min{y,, 1}.
16,

Proof Equality (13.16) is clear from (12.4)—(12.6).
Ad (a) and (b): From the definition of R(v),

A S )
7( (‘”))_foog(w)_fo og | exp ” >+ =Yy

_ (v -
vo
which shows that / = ¥ + vt — Y € ¥ — (L + ¥ —Yu) —Yu=—h =1L =[-0,é]
and also the boundary relations in (b). (The inclusion ¥ € I, can also be seen from (13.9)).
Further, Y < =8 — || — ¢* implies T > (=82 + &2 + |Yul + 2™ + ¥u)/vo > ¥ /vo,
which proves (a).
- v L
Ad@©):p=0¢i+d+vTed +¢— v*(lz-l-l/f — Yu), so ¥ € Jo implies
0

)

¢3e¢l~+¢—vio(12+10—m)
— i+ — Uio[lz + (¢ — 1 =2 + [—di. d1))]
C i +[—61, 811+ v%’z — i + ¢ + 2k — [—dy, di]

v
= [—01,61]+ vflz + ¢ + 2k*7 — [—dy, di].
0
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Using (13.4) and (13.5), we obtain

b e l—e1/2,1/21 + [—&1/2, €1/2] + ¢p1 + 2k* 7 — [—dy, d1]
=¢1 + [—di —e1,d1 +e1] + 2k* .

Ify = minJy = Yy + (¢ — ¢y — 2k*7 — dy) then ¢ € [—e1, £1] + b1 + 2k* 7 + dy,
and if ¥ = max Jp, the same is true with d; replaced by —d.

Ad (d): The proof is analogous to the proof of b), with ¢ replaced by ¢ + 7 (compare
the definitions of Jy and Ji).

Ad (e): If x € Ny then (recall that |#| = —u, and formula 12.5)

r/_r(R)u/uoer 1 ll/uo_reX I:M(I_Fl/f_w)}
~ "ol expl @+ y vl | Plw ‘

€ rexp [%(12 + Jo — 1//,,)]

= rexp 7”'12] - exp [Lul . @[(bi — ¢ —2k*m + [—dl,dl]]]
L Vo vo v

— rexp —'”'12] - exp [—'”'[qs,» _— —2k*n]] - exp [—'”'[—dl,dll]
L Vo v v

i I —dy, d
= rexp %wi - 2k*n)] - exp [|u| (v—f) + %)} .

Using (13.7), we see that this setis contained in r exp[";—| (i —p1—2k*7)]-exp([— %n, ‘%‘n]).
A similar estimate, with Jy replaced by J; and (¢ + ) in place of ¢; shows thatif x € N;
thenr’ €r exp[‘z—‘l(@- —¢1 —m —2k*m)] - exp[—%n, %n]. Together with the definitions
of rmin and rmax one sees that rmin < 7’ < rmax.

Ad (f): Recall that rmax /rmin = exp[37|u|/v] = g. We have |zg| = Re "% and
r

— s ettt — L —uot ,(uo+u)t

q "min Fmax = T re RRe e s

=lzol
R
50 |20 < —¢ rmine” 07 Using part a) and (13.12), we conclude
r

e~ otu)d* /o < lrgli min{y», 1}.

R
|zol < —¢ rmin
r P1

Recall the functionals L and L* from Sect. 11. We use the notation of Proposition 13.1,
and the abbreviations

=L (ei(¢,-+vr)) C b=Lt (ei(¢;+vr)) .

(Note that, compared to the formula for $ in Proposition 13.1, the variable ¢ does not appear
in the definitions of a and b.)

Proposition 13.2 For x € N, we have

P(x) =r'lafi +bfr] + &+ R+ Ry
= [&—Mr’a]é—l—r’bfg—i—r’a%—l—Rl + R», (13.17)
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where
|Ri| < 2Lyr'éy, (13.18)
|R2| < clr’ + P11, (13.19)
& |pr:
IRi| + |Ra| < %. (13.20)

Proof We use the notation of (13.16). Forx € N,
P(x) = P (§,r'e @0 ) = Py (0, /e 9D ) + Ry, (13.21)

where (according to (13.1) and the definition of . = é)

|Ri| < Lilr'1¢] + 13<1] < Li[r'8) + cce™"<"r]
=Li[r'8; +re”"<7] (see 13.11)
/ Uty __ i
< Li(r'§1+681re"t1 =2L1r'8y.

=r
Further,
Pi(0<, e @D ) = P(0<, r'e" @D ) — Py (0<, Oc, Og)
—
=0, (13.22)
= DP(0)[0<, 7' 9D ] + Ry,
where according to (13.3) one has |R| < c(r’ + |1,/~f|).

We see that properties (13.18)—(13.19) hold (but (13. 17) is still to be proved). Recall from
Sect. 11 that the projection of D P;(0,)[0, r'e!@*vT) 4] onto Y. x {0} x {Oc} is zero in
our situation. From the definitions of Dy, f1, f> and & we see that

DP(0,)[0<, 7" YD ] = Di[r'a-ei +7'b-ef + 9 - (0<,0c, 1]
=r'lafi +bf2] + VE.

Combination of (13.21)-(13.23) proves the first equation in (13.17), and the second is
obtained from (11.12), replacing f1 by ey — ué.
Proof of (13.20):

(13.23)

IR1| + |R2| < 7'[2L181 + ¢l +c|¥|  (see Proposition 13.1, () and (b))
< rmax[2L181 + c] + ¢é2 (see 13.4)
< rmax2¢ + cé> (see 13.3)

Iprat| (13.24)
< 126 Rrmax + 821 (see 13.15)

[proé | Ipryé |
< ——[6+ 8] = —6.
T [62 + 821 g 02

14 Homotopy to a Simpler Map
Motivated by (13.17), we introduce a simplified model map Q : N — Y. x R x C for P|N

by ‘
Q) =Py - € + rmax LE(@ YT ] (x € N = No U Ny). (14.1)
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(Here,asabove, 7 = t(|z0]), ¥ = ¥+vot—,ifx = (y<, ¢, [z0le’V), ¥ € JoUJy, 20 €
R(¥)). The homotopy from P’N to Q in the lemma below is the main step in the proof

of the symbolic dynamics result. Comparing (14.1) and (13.17), we see that it achieves the
following simplifications:

(1) The dependence of the mapping P on the coordinates y. and ¢ is eliminated, and the
dimension of the image is reduced to two;

(2) The component of Q(x) in the direction of £ depends only on 1};

(3) In the component in f>-direction, the x-dependent value of ' is replaced by the constant

Fmax-
(4) The remainder terms R, R, are omitted.

Recall the notion ‘N-homotopic’ from Sect. 2.

Lemma 14.1 P{N and Q are N-homotopic, with a compact homotopy.

Proof We define f : [0,1] x N — Yo xR x C, (A, x) — fo(x) by falx) =
(1 — A)P(x) + LQ(x). Clearly, f is continuous and compact (since P is compact, and
Q is finite-dimensional).

Using (13.17) and (14.1), and writing again 7 for 7(|zo|) and a, b instead of L(¢/® VD) and
Lt (! @+vD) we see that for x = (y<, ¢, z0) € N

f)L(X) = (1—)\.) {[l} — ’ur’a]g + r/bfz + r/a€¢ + Rl + R2}+Apr2[1ﬁ$+rmaxbf2]. (142)
Note that with ¢ := ¢; + v

max(lal, b1} = max {IL )], L+ ()]} < |¢i?

/p1=1/p1. (14.3)

With the projection pry; : Y. x R x C — {0} x R x C defined by pr3(y<, ¢, 20)
:= (0., ¢, z0) and pryey = 0, we have

proprs fo.(x) = [ — (1 — Mypr'a]pryé + [(1 — M’ + Armax] - b - pry fo (144)
+ (1 — A)pryprs(Ry + Ry). '

In order to prove that f is an N-homotopy, we use part (3) of Proposition 2.2. For j € {0, 1}
we define

WN; == {(y=, 8. 1z0le'") € N; | Iz0] € {min R(), max R(¥)} or
¥ € {min J;, max J;}},
and
0N =, d.20) € Ny [ 191 = 81 or ly<lr = r-].
Then ON; = 01N; U 32N, and the assertion of the lemma is proved if we show
VYael0,1]: fai(N)NN=0=0dN;Nfi(N), j=0,1, (14.5)

since then part (3) of Proposition 2.2 applies with 9y N := 0y No U 9k N1, k = 1, 2. Let now
je{0,1}, A €[0,1],and x = (y<, ¢, lzole'V) e N; (with ¢ € J;) be given.
1. Assume first x € 9 N;. Then

(@) lzol € {min R(y), max R(¥)} or
(ii) ¥ € {min J;, max J;}.
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In case (i), we see from Proposition 13.1, (b) that [¥| = 8. From (14.4) we conclude,
using that ' < rpax (see Proposition 13.1, e) and (14.3), that

Ipraprs £5.(0)| = | — (1 — Mpr'al - |pryé | — rmax|bl - Ipry 2] — (IR1] + | R2l)
M max
> (8 — —5) Ipryé| — Ipry 2] — (IR1| + |R2)).

max

P1

Using also (13.15) and (13.20) we get

)3
)

Salpryél  dalpragl _ Safpryé]

)Ipra&| — 2 2 1

Iproprs fu(x)] = (8 (14.6)

On the other hand, for X = (y, (]3, wo) € N, we have from Proposition 13.1, (f) and from
(13.15)

Ipryprsd] = [wo| < mn < Tmax _ O2IPraé]
o T 16p1 T 16p1 T 16

Thus we see that in case (i) fy(x) ¢ N.

In case (ii), we apply Proposition 13.1 with ¢ = 0 and obtain from parts ¢) and d)
that (¢ — ¢1) € {£di} + [—¢1, 1] + Zn. Then (11.20) shows that |u|la| < |b|/2 and
|b| > 1/(2p1). From (11.15) and (14.4) we now derive, using also (13.18) and (13.19), that

Ipraprs 1 (X)| = yafld — (1 — Mur'al + [(1 = A’ + Armax] 1b]}

>y

— (Ri| +IR2D)

> B — i lal + F'1bl) — (R + | Ra))

> yor' (bl — lullal) + 211 — (R1] + [Ra))
b - -

= o 2yl = 2Ly — e — el

v21b|

= (5 —2Lisi =o' + (- oYl

In view of (13.3) and (13.4) we obtain (since y» > c and |b| > 1/(2p1))

V2 V2 V2 , V2 V2
> (L= = 7= == > 12 14.7
|Przpr3fx(x)| = (4[71 161 16p1) r 8p1 roz 81 min ( )
But, for x = (y, (f), wp) € N, we have from Proposition 13.1, (f):
A V2

[proprax| = |wo| < ?plrmin-

Hence, also in case (ii) fi(x) ¢ N. Together, we have shown
fi@Nj))NN =0. (14.8)

2. Now we assume that x = (y_, ¢, |zole'V) € 02N, which means that

@ l¢l =dyor (i) |y<r =r<.

@ Springer



684 J Dyn Diff Equat (2016) 28:627-688

Consider X = (5.}, wp) € N, and define $. € Y., ¢ € R, and 3y € C by f,(X) =
(Y<, ¢, Z0). With the projection pr_ : Y. x R x C — Y. we have pr_Q(¥) = 0 and
|9<l1 = Ipr_ fa () = [(1 = A)pr_ Py Po(X)[1
= [(1 = M)pr_[P1 Po(X) — P1(0)]]1
< |P1Py(x) — Pi1(0y)] (see (13.1))
S Ly|Py(X) —0y] < L1862 (see (13.9))
<r< (see (13.6)).

It follows that . # y_ in case (ii), so x ¢ f3(N) in case (ii). Further, with the projection
prq; : {0<} xR x C — R, we have pripr; Q(x) = pr;pr30; = 0, and thus an argument similar
to the one above shows

16| = Iprpr3 f2.(E)] = [(1 — Mpryprs[(Py o Po)(F) — ;]|
< |(Py o Py)(F) — P(0,)] < L18 < 8 (see (13.6)).

We see that also in case (i), where |pr;pr3x| = |¢| = 81, one has x ¢ f; (INV), and thus
f(N)NN; =0 (14.9)
Now (14.9) and (14.8) together give (14.5), which proves the lemma.

15 Computation of the Fixed Point Index and Symbolic Dynamics Theorem

In order to apply Corollary 2.4 to the N-homotopy from Lemma 14.1, it is necessary to show
that

for all m € N and all s = (sg, ...s;) € {0, l}’”+1 with sg = s, we have
ind(Q", N 9) # 0.

From the definition of Q in (14.1) it is obvious that Q (and hence also Q" for m € N) maps
into the plane E := {0} x {Or} x C. We write E|Qm for the restriction of Q™ in the image

(15.1)

space. The map
t:C— E, 1(z0) := (0<,0gr,20) € E

is a homeomorphism. We set
Ny i={lzole” eC | v € Jj. ol e RO} (G =0.1),
and N := No U ]Vl. Further, we define Q N —>C by

0(0<, 0r, z0) = (0, Or, Q(z0)).

For £, fo € C defined by pryé = (0, Og. &), pryfo = (0,0, f2), we see from (11.15)
that & and' b are R—linearly independent, and the definitions of Q and Q show that for
20 = |z0le’Y € N (¥ € Jo U Ji) we have

0(z0) = [¥ + v0t(I120]) — VYul - & + rmax L (" @ T (00 L 7 (15.2)
Proposition 15.1 For m and s as in (15.1), one has

ind(Q™, N5 o) = ind(Q™, N, (15.3)

o)
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Proof We first show that

for all m € N and all z € N in the domain of Qm we have

QM(x)=1""0o E}Qm ou(z). (15.4)

For z9 € N, we have ((Q(z0)) = (0—, Og, Q(z0)), and from the definitions of Q and Q,
0(1(z0)) = (0<, O, 0(20)) = L(Q(20)).

We have shown E|QOL = LOQ on N, from which (15.4) follows. Using the reduction or

contraction property of the fixed point index (see [3], §12, p. 316, property VIII), and the
fact that Q™ maps into E, we obtain

ind(Q 7Ns,Q)=ind(E|Q ’EaNs,QmE)- (15.5)

From the commutativity property of the fixed point index (see [3], §12, p. 308, prop-
erty VII), or alternatively from the invariance of the Leray—Schauder-degree under home-
omorphisms (see [22], §13.7, p. 578, formula (41)), we see that the last index equals

ind(:"'o ’QmOL, L_l(NsQﬂE)) .
E , which in view of (15.4) equals ind(Q™, L’I(NS,Q N

E)), so we have .
ind(Q™, Ns.g) = ind(Q™, " (Ns.g N E)). (15.6)

Now

m
NsoNE = (Nyy NE)N () Q77 (Ny;) = (since Q maps into E)
j=1
m .
=(NyNE)N () Q7 (N, NE).

j=1

m

Since Nj N E =((N;), j =0, 1, weobtain N5 o N E = (] Q7 (u(N;))). It follows from
j=0

(15.4) that

C'WNsoNE) = (@@ =0V W) =Ny (5)
j=0 j=0

Now (15.3) is obtained by inserting (15.7) into (15.6).

Proposition 15.2 For j = 0, 1, the function Q| N maps N i homeomorphically to its image,
J

and No U Ny C int(Q(N;)).

Proof Claim 1. Q‘N is injective for j =0, 1.
J
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Proof Assume zg = |zole!¥ and 7o = |Zo|ei‘} € Ny first, with {v, 1;} C Jo. Then Proposi-
tion 13.1, (c) (applied with ¢ := 0) shows
¢i + {vr(|zoD). v (|20])} C 1 4+ 2k* 7 + [ — dy — 1. d1 + 1] (15.8)
From (11.19) we know [d] — €1,d + 1] C (0,7/2), and for s € [—d] — €1, d) + &1] C
(—m/2, /2) we see from (11.18) that
LJ_(ei(¢|+2k*rr+s)) — LJ_(ei(¢|+s)) _ i sin(s).
p1

Hence,
the map [—d) —¢e1,d] + €112 5 Ll(ei(¢‘+2k*”+s)) € R is injective. (15.9)

Now assume Q(Zo) = Q(Eo). Then linear independence of é and ﬁ in formula (15.2) for Q
gives
LA (1@ HvT(zoD) = [ (i @r+veioD)) ang
- (15.10)
¥+ vot(lz0l) = Yu = ¥ + vot(1Z0) — Yu-
It follows from (15.8), (15.9) and the first equality in (15.10) that 7(|zo|) = t(|Z0l), and
hence |zg9| = |Zo|. The second equality in (15.10) then shows ¢ = Iﬂ, S0 20 = Z0.

The proof for the case zg, Zp € 1\71 is analogous.

Since N j is compact, we obtain from Claim 1 that Q| N N; — Q(Nj) is a homeo-
J

morphism (j = 0, 1), which is the first part of the proposition.

Claim2 NoU Ny C int(Q(N;)).

Proof We set Ry := Jmin min{y», 1}; then Proposition 13.1, (f) and (13.15) show

16[)1
- - [ Sa|pr
NoU N1 C Upy(0), and R < -mox < %2IPrasl (15.11)
16p; 16
)
Further, we set Ry := min{sy—zrmin, 2|Ij:2£| },s0 R1 > Ryp.
P1

Now if zo € 9N (the boundary of N; in C) for j = Oor j = 1, then (0, Og, z0) € | N,,
with 91 N; as in the proof of Lemma 14.1. We then see from (14.6) and (14.7) (for the special
case A = 1) that ~

10(z0)| = R, (15.12)

which shows that Q(dN;)N Uk, (0) = @, and from (2.9) we know that Q(3N;) = d(Q(N,)),
S0 we obtain S(Q(Nj)) N B(0; Ry) =¥ (j =0, 1), and hence, in order to prove

QO(N;) D B(0; Ry) D B(0; Rg) D No U Ny, (15.13)

it suffices to show o
0e Q(Nj), j=0,1. (15.14)

Proof of (15.14) for j = 0. The number 1} =Y, + &(qbi — ¢ — 2k*m) lies in Jy, and
_ v
the number r, = Rexp['l‘)—g(w — Y] lies in R(Y) (see 13.8), so the complex number
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70 = fge“/_’ lies in ]\70. One has
_ 1 _ 1 ug - 1 N
t(I20l) = —log(R/r2) = — —(Yu — V) = —(¢1 + 2™ — @),
uo up vo v

so ¢; + vt (|Z0]) = ¢1 + 2k*m, and hence (compare 11.18)
L (S Orrvea)) — [ L (b @2k my _ (i) =,

Further, ¥ 4+ vo7(|20]) — Vu = ¥ + V¥ — ¥ — ¥, = 0, so formula (15.2) shows Q(Zg) = 0.

The proof of (15.14) for the case j = 1 is analogous.

Now (15.13), and hence Claim 2 (the remaining part of the proposition) are proved.

We are now ready to prove a symbolic dynamics result for the map P, with the obvious
consequences for the dynamics of the map X'| o Xy, and thus for the state-dependent delay
equation (3.8) from Theorem 9.2.

Theorem 15.3 (a) The map P = Py o Py has symbolic dynamics w.r. to the two sets Ny, Ny
in the sense of Corollary 2.4.

(b) The same is true for the map X1 o Xo and the sets C;(Np), C; (Ny).

(c) In particular, to every periodic symbol sequence in {0, 1}7 there exists a corresponding
periodic solution of equation (3.8) (see Corollary 9.3) with phase curve orbitally close

to the image of the homoclinic phase curve (i.e., to {h, | te R]), and passing through
Ci(Nyp), C;(Ny) according to the periodic pattern.

Proof Ad (a): Clearly, N j ishomeomorphic to a closed two-dimensional ball, j = 0, 1. From
Proposition 15.2 and Lemma 2.6 we obtain that for m and s as above, ind( Qm, N, . Q) = =+1.
Using Proposition 15.1, we obtain property (15.1). Now Corollary 2.4 and Lemma 14.1 show
the symbolic dynamics result for the map P.

Parts (b) and (c) are obvious from the relation between Py and Xy, respectively P; and Xy,
and from the constructions of X'; and Xy via stopping times and the semiflow F generated

by equation (3.8) in Sects. 10 and 11.

Remark (a) One sees from the construction of the sets Ny and Ny, in particular from the
choice of the number k* € N, that a whole sequence of such sets N(])‘, N {‘ can be found,
corresponding to all k > k*. Thus, in the homoclinic situation, a countable sequence of
such subsets containing symbolic dynamics as described in the above theorem exists. One
could then also study trajectories of P moving between different N j" , J=0,1, k> k*,
analogous to considerations in [12]. We do not pursue this.

(b) Itis essentially clear that nearby equations will give rise to nearby return maps P (at least
CO%—close to P). Thus, given particular sets No, N1 as above, it follows from robustness of
the fixed point index that P will also have symbolic dynamics on NyU N;. Note, however,
that the perturbation arguments for Poincaré maps as given in [8] in a C!-setting do not
apply to the case of state-dependent delay equations.

(c) It would probably be possible to replace the use of the topological method for the con-
struction of a semi-conjugacy to a symbol shift by purely analytical techniques - but at
the expense of considerable technical effort. We also feel that the topological approach
captures the essential reasons for the presence of the chaotic motion more clearly. For
similar reasons, a mixed topological-analytical technique was chosen in [7], in a situa-
tion analogous to the classical Shilnikov result in dimension three. (Intermediate value
theorem and implicit function theorem for forward symbol sequences,then compactness
arguments for backward symbol sequences.) The use of the intermediate value theorem
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was possible because the unstable direction was one-dimensional. In the situation of the
present paper, the gain of proof economy by the topological method is more significant,
due to the higher dimension (two) of the unstable manifold.

It is true that analytical methods may yield a complete description of the whole invariant
set of P in suitable subsets of its domain, which cannot be achieved via fixed-point index
methods.
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