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Abstract The first part of this paper is a general approach towards chaotic dynamics for a
continuous map f : X ⊃ M → X which employs the fixed point index and continuation.
The second part deals with the differential equation

x ′(t) = −α x(t − dΔ(xt )).

with state-dependent delay. For a suitable parameter α close to 5π/2 we construct a delay
functional dΔ, constant near the origin, so that the previous equation has a homoclinic solu-
tion, h(t) → 0 as t → ±∞, with certain regularity properties of the linearization of the
semiflow along the flowline t �→ ht . The third part applies the method from the beginning
to a return map which describes solution behaviour close to the homoclinic loop, and yields
the existence of chaotic motion.
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1 Overview

The present paper consists of three different parts. The first part in Sect. 2 below is a general
approach towards chaotic dynamics for a continuous map f : X ⊃ M → X which employs
the fixed point index and continuation.

The second and third parts deal with the differential equation

x ′(t) = −α x (t − dΔ(xt )) (1.1)
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with state-dependent delay which for small solutions coincides with the basic linear differ-
ential equation

x ′(t) = −α x(t − 1)

modelling negative feedback with a constant time lag. The underlying motivation is to under-
stand better what a variable, state-dependent delay can do to the dynamics in an otherwise
simple system. This may be seen in contrast to, say, ordinary differential equations, where
solutions follow the vectorfield, or to delay differential equations like

x ′(t) = −μ + f (x(t − 1))

with a constant time lag. For the latter results obtained since the 1950ies provide some insight
into how the shape of the real function f and the parameterμ > 0 are related to the behaviour
of solution curves t �→ xt in the space of initial data [−1, 0] → R.

In Sects. 3–9, which constitute the second part of the paper, we construct a delay functional
dΔ, of constant value 1 near the origin, so that Eq. (1.1) has a homoclinic solution, h(t) → 0
as t → ±∞, with certain regularity properties of the linearization of the semiflow along the
flowline t �→ ht . Section 3 contains a detailed introduction into this part of the paper. The
main result of Sects. 4–9 is stated in Theorem 9.2.

The third part in Sects. 10–15 applies the method from Sect. 2 to a map which describes
the behaviour of solutions close to the homoclinic loop, and yields the existence of chaotic
motion. This final result is stated as Theorem 15.3.

Notation For r > 0 and t ∈ R the segment xt : [t − r, t] → M of a map x : R ⊃ J → M
with [t − r, t] ⊂ J is defined by xt (s) = x(t + s).

For given maps f,m and for x in the domain of m, m(x) in the domain of f , we write
f (m(x)) as f ◦m(x) also in cases where the full image of m is not contained in the domain
of f .

The j-th component of (x1, . . . , xn) ∈ M1 × · · · × Mn is written x j .
The closure, the interior, and the boundary of a subsetM of a topological space are denoted

by M , int(M), and ∂ M , respectively. The norm on a Banach space B is written | · |, except
for the norms | · |0,n and | · |1,n, | · |1 introduced in Sect. 3 below; Ur (x) is the open ball of
radius r and center x in B, and Br := Ur (0). The Lipschitz constant of a map m : M → E ,
M ⊂ B, B and E Banach spaces, is defined by

Lip(m) = sup
x 
=y

|m(y) − m(x)|
|y − x | (≤ ∞).

The support of a map φ : B ⊃ U → R is the set supp (φ) = φ−1(0).
A curve is a continuous map from an interval I ⊂ R into a Banach space. The tangent

cone TxM of a subset M ⊂ B of a Banach space B, at x ∈ M , is the set of all tangent vectors
v = c′(0) of differentiable curves c : I → B with 0 ∈ I , c(I ) ⊂ M , c(0) = x .

The Banach space of linear continuous operators from B into another Banach E is denoted
by Lc(B, E).

On products B1 × · · · × Bn of normed spaces we use the norm given by |(b1, . . . , bn)| =
max j=1,...,n |b j | unless stated otherwise.

The canonical unit vectors of Rn are denoted by e1, . . . , en . The unit sphere in R
n+1 is

denoted by Sn .
On Euclidean spaces we always use the Euclidean norm.
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Derivatives and partial derivatives as continuous linear maps are written Df (x) and
Dj f (x, y), j ∈ {1, 2}. For derivatives of maps x on domains J ⊂ R as elements of the
target space, at t ∈ J , we have x ′(t) = Dx(t)1.

In the sequel the prefix C1- and formulations like C1-smooth or of class C1 mean that
maps or submanifolds are continuously differentiable.

2 A Framework for the Detection of Symbolic Dynamics

We describe a very simple general approach to the description of the dynamics of a map f ,
restricted to some invariant subset of its domain, by the index shift on a space of symbol
sequences. The main tool we use is the Leray–Schauder fixed point index in the following
context: If U is an open subset of the Banach space E and f : U → E is continuous and
compact, and the fixed point set Fix( f ) is compact, then the index ind( f,U ) is defined.
(See [3], §12, in particular, Sect. 3, p. 311, or [22], Chapter 12, pp. 527–529. In the latter
reference, it is assumed in addition thatU is bounded and f is defined on the closureU , with
no fixed points on the boundary ∂U .) If M ⊂ E is closed and such that M = int(M) and f
has no fixed points on the boundary ∂M , then we use the notation ind( f, M) with the same
meaning as ind( f, int(M)), if the latter index is defined.

Themethod described here is much inspired by [23], but different in the following aspects:

(1) Our conditions on homotopies which leave the relevant fixed point indices invariant are
free of assumptions related to the computation of the fixed point index, and are therefore
simpler. The actual calculation of fixed point indices (for the map on the ‘simpler’ end
of the homotopy) remains as a specific task in each application.

(2) We do not assume finite dimension, as it is for example the case in [15,23] or [2], and
also in the paper [21] on delay equations.

Definition 2.1 Let a topological space X and a closed subset M ⊂ X be given.

(1) A continuous map f : M → X is called M-admissible if

∀m ∈ N : Fix
(
f m
) ∩ ∂M = ∅. (2.1)

(2) Two continuous maps f0, f1 : M → X are called M − homotopic (to each other) if
there exists a homotopy f : [0, 1] × M → X, (λ, x) �→ fλ(x) (which is then called an
M-homotopy) such that all maps fλ are M-admissible, i.e.,

∀m ∈ N ∀ λ ∈ [0, 1] : Fix
(
f mλ
) ∩ ∂M = ∅. (2.2)

We provide a simple criterion for maps to be M-admissible, respectively M-homotopic.

Proposition 2.2 Let X be a topological space and M ⊂ X closed.

(1) If g : M → X is continuous and

∂M ∩ g(M) ∩ g−1(M) = ∅ (2.3)

then g is M-admissible.
(2) This is true, in particular, if ∂M = ∂1M ∪ ∂2M and these two subsets satisfy

g(∂1M) ∩ M = ∅ = ∂2M ∩ g(M). (2.4)

123



630 J Dyn Diff Equat (2016) 28:627–688

(3) If f : [0, 1] × M → X, (λ, x) �→ fλ(x) is continuous, and ∂M is the union of two
subsets ∂1M, ∂2M of ∂M such that condition (2.4) holds for all λ ∈ [0, 1], then f is an
M-homotopy.

Proof Obviously, form ∈ N one has Fix(gm)∩ ∂M ⊂ g(M)∩ g−1(M)∩ ∂M , so condition
(2.3) implies (2.1) for g.

If (2.4) holds then ∂1M ∩ g−1(M) = ∅ and

∂M ∩ g(M) ∩ g−1(M) = { [∂1M ∩ g−1(M)]
︸ ︷︷ ︸

=∅
∩M

}

∪ { [∂2M) ∩ g(M)]
︸ ︷︷ ︸

=∅
∩g−1(M)

}

= ∅,

so (2.3) is satisfied. Assertion (3) is clear.

Remark Condition (2.1) (which demands that f has no periodic points on the bound-
ary of M) is, of course, satisfied if the invariant set of f within M (i.e., the set{
x ∈ M

∣∣ ∃(xn)n∈Z ∈ MZ : xn = f (xn−1) (n ∈ Z), x0 = x
}
) does not intersect ∂M .

We shall use the homotopy invariance of the fixed point index in the following version:
Assume that E is a Banach space, Ω ⊂ [0, 1] × E is open, and f : Ω → E, (λ, x) �→

fλ(x) is continuous, the set Σ :=
{
(λ, x) ∈ Ω

∣∣ x = fλ(x)
}
is compact, and f is compact

on an open neighbourhood Γ of Σ . Setting Ωλ :=
{
x ∈ E

∣∣ (λ, x) ∈ Ω
}
for λ ∈ [0, 1], the

fixed point index ind( fλ,Ωλ) is then defined for all λ ∈ [0, 1] and independent of λ.
(See [14], noting that ind( f, M) = deg( id − f, M), where deg denotes the Leray–

Schauder degree; see also [9], p. 198, Theorem 2.2., part iii). The version from [14] is more
general than the one from [9], but easy to obtain from the latter by restricting f to a bounded
open neighbourhood of Σ . A slightly weaker formulation than ours, assuming that Ω is
bounded and that f is compact on all of Ω , is called ‘generalized homotopy invariance’ in
[22], Chapter 13, p. 572.)

The following statement is a version of Theorem 2.2 from [23], suitable for our context.

Lemma 2.3 Letm ∈ N and let M0, . . . , Mm be closed subsets of a Banach space E with non-

empty interior, and such that with M := M0 ∪ . . .∪Mm one has ∂M =
⋃m

j=0
∂Mj . Assume

that f : [0, 1] × M → E is an M-homotopy, and compact (i.e., the closure f ([0, 1] × M)

of the image of f is compact). Define Ωλ :=
⋂m

j=0
f − j
λ ( int(Mj )) for λ ∈ [0, 1]. Then the

fixed point index ind( f mλ ,Ωλ) is defined for all λ ∈ [0, 1], and independent of λ.

Proof Set Ω :=
⋃

λ∈[0,1]{λ}×Ωλ. If (λ, x) ∈ Ω then f j
λ (x) ∈ int(Mj ) for j = 0, . . . ,m.

Continuity of f implies existence of δ > 0 such that for (μ, y) ∈ [0, 1]× E with |μ−λ| < δ

and |y − x | < δ, one has f j
μ(y) ∈ int(Mj ), j = 0, . . . ,m, so ((λ − δ, λ + δ) ∩ [0, 1]) ×

Uδ(x) ⊂ Ω. Hence Ω is open in [0, 1] × E , and the assertion of the lemma follows from
compactness of f and from the homotopy invariance of the fixed point index, if we prove
the following property:

F :=
{
(λ, x) ∈ Ω

∣∣ f mλ (x) = x
}
is compact. (2.5)
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Note that

F =
{
(λ, x) ∈ [0, 1] × M0

∣
∣ x ∈

m⋂

j=0

f − j
λ ( int(Mj )), f mλ (x) = x

}
. (2.6)

Now the set F̃ :=
{
(λ, x) ∈ [0, 1] × M0

∣
∣ x ∈

⋂m

j=0
f − j
λ (Mj ), f mλ (x) = x

}
is compact,

since it is closed and contained in the compact set [0, 1]× f ([0, 1] × Mm−1). Clearly F ⊂ F̃ ,
so to prove (2.5) it suffices to show

F̃ \ F = ∅. (2.7)

We have

F̃ \ F = {
(λ, x) ∈ [0, 1] × M0

∣
∣
∣x = f mλ (x),

x ∈
m⋂

j=0

f − j
λ (Mj ) \

m⋂

j=0

f − j
λ ( int(Mj ))

}

= {
(λ, x) ∈ [0, 1] × M0

∣
∣∣ x = f mλ (x), x ∈

m⋂

j=0

f − j
λ (Mj ),

∃ l ∈ {0, . . . ,m} : x /∈ f −l
λ ( int(Ml))

}

= {
(λ, x) ∈ [0, 1] × M0

} ∣∣∣ x = f mλ (x), x ∈
m⋂

j=0

f − j
λ (Mj ),

∃ l ∈ {0, . . . ,m} : f lλ(x) ∈ ∂Ml
}
.

Thus, if (λ, x) ∈ F̃ \ F then there exists l ∈ {0, . . . ,m} such that f lλ(x) ∈ ∂Ml ⊂ ∂M ,
which contradicts the fact that f is an M-homotopy. Hence (2.7) is proved, which implies
(2.5) and concludes the proof.

We turn towards symbolic dynamics now, and we restrict considerations to the simplest
case of two symbols. For a map f and a subset M of its domain, we define

traj ( f, M) :=
{
(x j ) j∈Z ∈ MZ

∣∣ ∀ j ∈ Z : x j = f (x j−1)
}
.

Let N0, N1 be disjoint, closed, nonempty subsets of a Banach space E with N j =
int(N j ), j = 0, 1, and set N := N0 ∪ N1. (Then int(N ) = int(N0) ∪ int(N1), from
which one sees that automatically ∂N = ∂N0 ∪ ∂N1.) For s = (s0, s1, . . . , sm) ∈ {0, 1}m+1

and a map f : N → E we use the notation

Ns, f :=
m⋂

j=0

f − j ( int(Ns j ))

=
{
x ∈ int(Ns0)

∣∣ f j (x) ∈ int(Ns j ), j = 1, . . . ,m
}
.

If f is continuous, compact and Fix( f j ) ∩ ∂N = ∅ for all j ∈ N then Lemma 2.3 (applied
to the special case of a homotopy independent of λ) shows that ind( f m, Ns, f ) is defined for
all m ∈ N.
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Corollary 2.4 Let N0, N1 and N = N0 ∪ N1 be as above, and assume that f : [0, 1] ×
N → E is compact and an N-homotopy. Further, assume that for all m ∈ N and all
s = (s0, . . . , sm) ∈ {0, 1}m+1 with s0 = sm, one has

ind
(
f m1 , Ns, f1

) 
= 0. (2.8)

Then f0 has symbolic dynamics in the following sense: With the ‘position map’ p : N →
{0, 1}, p = 0 on N0 and p = 1 on N1, the map

σ : traj ( f0, N ) � (x j ) j∈Z �→ (
p(x j )

)
j∈Z ∈ {0, 1}Z

is surjective. For a periodic sequence s ∈ {0, 1}Z, there exists a periodic orbit (x j ) j∈Z
∈ traj ( f0, N ) with σ((x j )) = s, with the same minimal period.

Proof The set f (N )∩ N is compact, so ( f (N )∩ N )Z is compact with the product topology.
Now

traj ( f, N ) =
⋂

k∈Z

{
(x j ) ∈ ( f (N ) ∩ N )Z

∣
∣ xk = f (xk−1)

}

is a closed subset of ( f (N ) ∩ N )Z in this topology (as follows from continuity of f and
of the evaluation maps (x j ) �→ xk), and hence traj ( f, N ) is also compact. The map σ is
continuous with respect to the product topologies on traj ( f, N ) and on {0, 1}Z, since N0 and
N1 are closed and disjoint (the position map p is locally constant). It follows that the image
of σ is compact, and hence closed in {0, 1}Z. Since f is an N -homotopy, Lemma 2.3 shows
that property (2.8) also holds with f0 instead of f1. We conclude from the existence property
of the fixed point index that for every m ∈ N and every m-periodic sequence (s j ) ∈ {0, 1}Z,
there exists anm-periodic point x ∈ N with f j (x) ∈ Ns j ( j ∈ N). (The assertion on periodic
orbits is proved.) It follows that the image of σ contains all periodic sequences (of all periods)
in {0, 1}Z. Since these are dense in {0, 1}Z with the product topology, and the image of σ is
closed, it must be all of {0, 1}Z.
Remark The idea of employing the fixed point index to obtain periodic orbits obeying peri-
odic symbol sequences, and then to use a density argument to conclude that for every symbol
sequence there exists a corresponding trajectory, is well-known. It was used, e.g., in [15], see
Remark 1, p. 71 there.

The last part of this section is less general than the results so far, but more specific for
our application later, namely for the computation of the fixed point index for the map on the
‘simpler’ end of an M-homotopy.

Proposition 2.5 Let n ∈ N and let B1 ⊂ R
n be homeomorphic to the closed unit ball in R

n

(w.r. to some norm || ||), and assume g : B1 → g(B1) ⊂ R
n is a homeomorphism such that

B1 ⊂ int(g(B1)).

Then the fixed point index ind(g, int(B1)) is defined and equals +1 or −1.

Proof Note first the following consequence of the open mapping theorem ([22], Theorem
16C, p. 705):

A homeomorphism between two closed subsets A1, A2 of R
n

maps int(A1) to int(A2) and ∂A1 to ∂A2.
(2.9)
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Set B2 := g(B1), so both sets B1 and B2 are homeomorphic to the closed unit ball
K1 := U1(0). We have g(∂B1) = ∂B2, and, since B1 ⊂ int(B2), the map g has no fixed
points on ∂B1, and ind(g, B1) is defined.

Choose now a homeomorphism ϕ : K1 → B2. We set B̃1 := ϕ−1(B1) and
g̃ := ϕ−1 ◦ g ◦ ϕ

B̃1 . The commutativity property of the fixed point index ([22], formula
(36), p. 573) together with (2.9) implies that

ind(g, int(B1)) = ind[ϕ ◦ (ϕ−1 ◦ g), int(B1)] =

= ind[(ϕ−1 ◦ g) ◦ ϕ
B̃1

, ϕ−1( int(B1))]

= ind(g̃, int(B̃1)).

Under g̃, the set B̃1 is mapped homeomorphically to the unit ball K1, and B̃1 ⊂ int(K1), so
|x | < 1 for x ∈ B̃1, in particular, for x ∈ ∂ B̃1. With h(t, x) := (1 − t)x − g̃(x) for x ∈ B̃1

and t ∈ [0, 1], we thus have
∀ x ∈ ∂ B̃1 : |h(t, x)| ≥ |g̃(x)|

︸ ︷︷ ︸
=1

−|x | > 0.

It follows (writing ‘deg’ for the Brouwer or Leray-Schauder degree) that

ind
(
g̃, int(B̃1)

)
= deg

(
id − g̃, int(B̃1), 0

)
= deg

(
h(0, ·), int(B̃1), 0

)

= deg
(
h(1, ·), int(B̃1), 0

)
= deg

(
−g̃, int(B̃1), 0

)
.

Now since g̃ is a homeomorphism (and, clearly, assumes the value 0 in B̃1), the degree
deg(−g̃, int(B̃1), 0) equals +1 or −1 (see [22], Chapter 13, property (HD), p. 578).

Lemma 2.6 Let n ∈ N and let N0, N1 be disjoint sets, each homeomorphic to the closed
unit ball in R

n. Let f : N0 ∪ N1 → R
n map each N j homeomorphically to its image and

such that
int( f (N0)) ⊃ N0 ∪ N1 and int( f (N1)) ⊃ N0 ∪ N1 (Fig. 1). (2.10)

Then, for every m ∈ N and every s = (s0, . . . , sm) ∈ {0, 1}m+1 with s0 = sm, the index
ind( f m, Ns, f ) is defined and equals +1 or −1.

Proof In the proof, we use the expressions closed ball and open ball (in italics) for sets which
are homeomorphic to the closed respectively open unit ball in Rn . Further, we write A �

f
B,

if f maps the set A homeomorphically to B. Recall also property (2.9) from the proof of
Proposition 2.5.

Claim 1 For m ∈ N0 and s = (s0, . . . , sm) ∈ {0, 1}m+1 (not necessarily with s0 = sm), the
following is true:

(a) Ns, f =
⋂m

j=0
f − j ( int(Ns j )) is an open ball, and Ns, f �

f m
int(Nsm ).

(b) Ns, f is a closed ball with Ns, f = int(Ns, f ). Ns, f =
⋂m

j=0
f − j (Ns j ), and Ns, f �

f m
Nsm .

(c) In case m ≥ 1, one has Ns, f ⊂ int(Ns0).
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Fig. 1 The sets N0, N1, and their images

Proof (Induction on m.)
m = 0 : If s = (s0) then Ns, f = f 0( int(Ns0)) = int(Ns0) is an open ball, and Ns, f =

int(Ns0) = Ns0 , as follows from (2.9), since Ns0 is a closed ball.

The remaining assertions of the claim are trivial in case m = 0.
m → m + 1: Assume s = (s0, . . . , sm+1), and set s̃ := (s1, . . . , sm+1). We have

Ns, f =
m+1⋂

j=0

f − j ( int(Ns j )
) = int(Ns0) ∩

m+1⋂

j=1

f − j ( int(Ns j )
)

= int(Ns0) ∩ f −1

⎡

⎣
m+1⋂

j=1

f −( j−1)( int(Ns j ))

⎤

⎦

= int(Ns0) ∩ f −1

⎡

⎣
m⋂

j=0

f − j ( int(Ns j+1))

⎤

⎦

= int(Ns0) ∩ f −1 (Ns̃, f
)
.

(2.11)

From the induction hypothesis, Ns̃, f is an open ball, which by definition is contained in
int(Ns1)). From (2.10) and (2.9), we have

Ns̃, f ⊂ Ns1 ⊂ int( f (Ns0)) = f ( int(Ns0)).

Now since f
Ns0

is homeomorphic onto its image, the same is true for f
int(Ns0)

, and we

conclude that the set

int(Ns0) ∩ f−1(Ns̃,f ) = [f
int(Ns0)

]−1(Ns̃,f )
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is an open ball, so in view of (2.11) the same is true for Ns, f . Further, f Ns0

maps Ns, f home-

omorphically to Ns̃, f , and, from the induction hypothesis, Ns̃, f �
f m

int(Nsm+1). Together,

we have

Ns, f �
f

Ns̃, f �
f m

int(Nsm+1),

and it follows that Ns, f �
f m+1

int(Nsm+1). (The assertions of (a) are proved.)

Since Ns̃, f ⊂ Ns1 = Ns1 , and since Ns1 is contained the set int( f (Ns0)), which (compare
(2.9)) equals f ( int(Ns0)), we have that

B := Ns0 ∩ f−1(Ns̃,f ) = [f
int(Ns0)

]−1(Ns̃,f ),

in particular,
B ⊂ int(Ns0). (2.12)

From the induction hypothesis, Ns̃, f is a closed ball, so the set B is also a closed ball (since
f

int(Ns0)
is homeomorphic onto its image). Using the property int(Ns̃, f ) = Ns̃, f from

the induction hypothesis and the definition of Ns, f , we see that the interior of this closed ball
equals

int(B) = [f
int(Ns0)

]−1( int(Ns̃,f )) = [f
int(Ns0)

]−1(Ns̃,f ) = Ns,f

(see (2.11)). It follows that Ns, f = int(B) = B (here we used (2.9), hence int(Ns, f ) =
int(B) = Ns, f . Further, the induction hypothesis gives Ns̃, f =

⋂m

j=0
f − j (Ns j+1), so with

the definition of B we conclude

Ns, f = B = Ns0 ∩ f −1

⎛

⎝
m⋂

j=0

f − j (Ns j+1)

⎞

⎠ =
m+1⋂

j=0

f − j (Ns j

)
.

Finally, f
Ns0

maps Ns, f = B homeomorphically to Ns̃, f , and (from the induction hypoth-

esis) Ns̃, f �
f m

Nsm+1 , so we have Ns, f �
f m+1

Nsm+1 . The assertions of (b) are also proved,

and assertion (c) follows from Ns, f = B and (2.12). (The claim is proved.)
Let nowm ∈ N and s as in the lemmawith s0 = sm begiven. From the above claimweknow

that Ns, f �
f m

Nsm = Ns0 , both sets are closed balls, and sincem ≥ 1, have Ns, f ⊂ int(Ns0).

The statement on the fixed point index thus follows directly from Proposition 2.5, applied
with g := fm

Ns,f
.

3 Introduction to the Construction of a Delay Functional

The linear equation
x ′(t) = −α x(t − 1) (3.1)

with parameter α > 0 defines a strongly continuous semigroup Tα of bounded linear oper-
ators Tα(t) on the Banach space C = C([−2, 0],R) of continuous functions [−2, 0] → R,

123



636 J Dyn Diff Equat (2016) 28:627–688

Fig. 2 The spectrum of the
(complexified) infinitesimal
generator Gα , with the subspaces
Cu,α,Ci,α and Cs,α indicated at
the corresponding subsets of the
spectrum

with the norm given by |φ| = max−2≤t≤0 |φ(t)|. This is easily seen as in the more famil-
iar case of the space C([−1, 0],R). For π

2 < α < 5π
2 the semigroup is hyperbolic with

2-dimensional unstable space Cu,α ⊂ C . There is a complex conjugate pair λ0(α), λ0(α) of
simple eigenvalues of the generatorGα of Tα in the open right half-plane, with Re(λ0(α)) =
u0(α) > 0 and π

2 < Im(λ0(α)) = v0(α) < π , and there is a leading complex conjugate
pair λ(α), λ(α) of simple eigenvalues with maximal real part in the open left half-plane, with
Re(λ(α)) = u(α) < 0 and 2π < Im(λ(α)) = v(α) < 5π

2 ; all other eigenvalues have real
parts strictly less than u(α). The leading pair in the left half-plane defines a 2-dimensional
leading stable space Ci,α ⊂ Cs,α of the stable subspace Cs,α ⊂ C of the semigroup (Fig. 2).

In [18] we obtained a continuously differentiable delay functional dU : C ⊃ U → (0, 2),
U open, with dU (φ) = 1 on a neighbourhood of 0 ∈ U , so that the equation

x ′(t) = −α x (t − dU (xt )) (3.2)

with state-dependent delay has a twice continuously differentiable solution h : R → Rwhich
is homoclinic to the zero solution,

ht 
= 0 for all t ∈ R and h(t) → 0 as |t | → ∞.

Here and in the sequel we use the notation xt for the solution segment in C given by xt (s) =
x(t+s). The construction in [18] was done for α ∈ ( π

2 , 5π
2 ) sufficiently close to 5π

2 , in which
case we also have

u0(α) + u(α) > 0. (3.3)

Amajor part of this construction concerns a regularity property of dU , which is that along the
homoclinic curve t �→ ht the intersection of the stable and unstablemanifolds at the stationary
point 0 is one-dimensional, thus minimal. In order to make the preceding statement precise
we need to recall basic facts about well-posedness for initial value problems of the form

x ′(t) = f (xt ) for t ≥ 0, (3.4)

x0 = φ, (3.5)
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which apply to differential equations with state-dependent delay. Proofs are found in [16,17],
also see [5]. For r > 0 and n ∈ N let Cn denote the Banach space of continuous functions
[−r, 0] → R

n , with the norm given by |φ|n,0 = max−r≤t≤0 |φ(t)|, so C = C1 and |φ| =
|φ|1,0 for φ ∈ C . Similarly let C1

n denote the Banach space of continuously differentiable
functions [−r, 0] → R

n , with the norm given by |φ|n,1 = |φ|n,0 + |φ′|n,0, and abbreviate
C1 = C1

1 , | · |1 = |·|1,1. Let a continuously differentiable map f : C1
n ⊃ U1 → R

n ,U1 ⊂ C1
n

open, be given. Assume in addition that
(e) each derivative Df (φ) : C1

n → R
n , φ ∈ U1, has a linear extension De f (φ) : Cn →

R
n , and the map

U1 × Cn � (φ, χ) �→ De f (φ)χ ∈ R
n

is continuous.
Then the set

X = X f = {
φ ∈ U1 : φ′(0) = f (φ)

}
,

if non-empty, is a continuously differentiable submanifold of C1
n , with codimension n, and

every φ ∈ X determines a maximal continuously differentiable map xφ : [−r, te(φ)) → R
n ,

0 < te(φ) ≤ ∞, which satisfies the initial value problem (3.4)–(3.5) and is unique in
the sense that any other continuously differentiable solution x : [−r, s) → R

n , 0 < s,
of the same initial value problem is a restriction of xφ . These maximal solutions define a
continuous semiflow F = Ff on X , given by F(t, φ) = xφ

t for arguments in the domain
Ω = Ω f = {(t, φ) ∈ [0,∞) × X : t < te(φ)}. All solution operators Ft , t ≥ 0, with
nonempty domain Ωt = {φ ∈ X : t < te(φ)} and Ft (φ) = F(t, φ) are continuously
differentiable. For t ≥ 0, φ ∈ Ωt , and χ ∈ TφX we have

DFt (φ)χ = v
φ,χ
t

with the continuously differentiable map vφ,χ : [−r, te(φ)) → R
n satisfying

v′(t) = Df (F(t, φ)) vt for t ≥ 0,

v0 = χ.

Moreover the restriction of F to the set {(t, φ) ∈ Ω : r < t} is continuously differentiable,
with

D1F (t, φ) 1 =
(
xφ
t

)′ = (
(xφ)′

)
t ∈ C1

n .

It follows that for every continuously differentiable function x : R → R
n which satisfies

Eq. (3.4) for all t ∈ R the flowline ξ : R � t �→ xt ∈ C1
n is continuously differentiable with

Dξ(t)1 = (x ′)t = (xt )′ ∈ C1
n for all t ∈ R.

At a stationary point φ0 ∈ X the linearization of F , namely, the strongly continuous
semigroup of the operators

D2F(t, φ0) : Tφ0 X → Tφ0 X, t ≥ 0,

is given by restricting the semigroup (S(t))t≥0 on Cn ⊃ C1
n ⊃ Tφ0 X which is defined by the

solutions v = vχ of the initial value problems

v′(t) = De f (φ0)vt ,

v0 = χ ∈ Cn .
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(These solutions v : [−r,∞) → R
n are continuous, v|[0,∞) is differentiable and satisfies

the differential equation, and S(t)χ = v
χ
t [1,4].) The spectra of the generators of both

semigroups coincide, and for each pair of complex conjugate eigenvalues the associated
realified generalized eigenspaces are the same (so belong to Tφ0 X ).

We return to Eq. (3.2) with the delay functional dU from [18]. Recall that the evaluation
map ev : C × [−2, 0] � (φ, t) �→ φ(t) ∈ R is continuous (but not locally Lipschitz),
and that the restricted map ev1 : C1 × (−2, 0) � (φ, t) �→ ev(φ, t) ∈ R is continuously
differentiable with

Dev1(φ, t)(η, s) = D1ev1(φ, t)η + D2ev1(φ, t)s = η(t) + s φ′(t).

It follows that the map f : C1 ⊃ U1 → R given by U1 = U ∩ C1 and

f (φ) = −α φ(−dU (φ)) = −α ev1 (φ, dU (φ))

is continuously differentiable with

Df (φ)η = −α
{
η(−dU (φ)) − φ′(−dU (φ))D(dU |U1)(φ)η

}

= −α
{
η(−dU (φ)) − φ′(−dU (φ))DdU (φ)η

}

for all φ ∈ U1 and η ∈ C1. We easily deduce that condition (e) is satisfied, and obtain a
semiflow F on the manifold

X = {
φ ∈ C1 : φ′(0) = −α φ(−dU (φ))

}

as described above. The segments φ ∈ X in a neighbourhood of 0 ∈ X belong to the closed
subspace

Y = {
φ ∈ C1 : φ′(0) = −α φ(−1)

} = T0X,

and the local stable and unstable manifolds of the stationary point 0 ∈ X of the semiflow
F are simply open neighbourhoods of 0 in Ys,α = Y ∩ Cs,α and in Yu,α = Cu,α ⊂ Y , with
tangent spaces Ys,α and Cu,α , respectively.

We drop the index and argument α from now on whenever convenient.
The precise statement of the minimal intersection property mentioned above is that for

τ < 0 with hτ ∈ Y and t > 0, −τ and t sufficiently large, we have

(D2F(t − τ, hτ )Cu) ∩ Ys = R h′
t ; (3.6)

h′
t ∈ Tht X ⊂ C1 is tangent to the flowline H1 : R � t̃ �→ ht̃ ∈ C1 at t̃ = t .
What has been described so far is an infinite-dimensional analogue of Shilnikov’s vector

fields on R
4 with a flowline homoclinic to 0, with complex conjugate pairs of eigenvalues of

the linearized vector field in each open half-plane, at unequal distances from the imaginary
axis, and with minimal intersection of stable and unstable manifolds along the homoclinic
curve. Shilnikov’s well-known result is that under these conditions there are infinitely many
periodic orbits close to the homoclinic loop [11], compare also [6,13].What can be said about
the flowlines of F close to the homoclinic loop H1(R) ∪ {0} ⊂ X ? A difference between
our scenario and Shilnikov’s in addition to dimensionality is, of course, that the solution
operators Ft , t > 0, are not diffeomorphisms, and their derivatives not isomorphisms.

A natural question at this point is perhaps whether there also exist a parameter α and a
delay functional dU so that Eq. (3.2), with the linearization of the semiflow at zero given by
Eq. (3.1), generates a homoclinic solution as in Shilnikov’s earlier result [10] on complicated
dynamics for a smooth vectorfield v on R

3, with one positive eigenvalue of Dv(0) and the
others complex conjugate with negative real part. Let us briefly explain why this is not the
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case. The desired spectral properties require for the linearization at zero Eq. (3.1) with α < 0
(which models positive feedback); for suitable α < 0 there is one positive eigenvalue of the
associated generator while all others form complex conjugate pairs with negative real parts.
The one-dimensional unstable eigenspace of the positive eigenvalue sits in the wedge of data
without sign change, and the complementary stable space intersects with the wedge only at
the origin. Notice that the wedge is positively invariant under any equation of the form (3.2)
with α < 0 ! Knowing this it is not hard to exclude for the latter the possibility of solutions
homoclinic to zero.

Another question which may be asked is whether a homoclinic solution of Eq. (3.2), with
the linearized semiflow given by Eq. (3.1), can be achieved by a delay functional of the simple
form

dU (φ) = δ (φ(0))

with a function δ : R → (0, 2). Again, this is not the case: From dU (φ) = 1 for small φ

we would have δ(ξ) = 1 in some interval (−ε, ε) 
= ∅. The elements φ 
= 0 of the unstable
space Cu have at most one sign change, and one can show that each element of the stable
space Cs has at least 2 zeros spaced at a distance less than 1. It follows that any homoclinic
solution of Eq. (3.2) would have zeros z < z′ ≤ z + 1 with h(t) 
= 0 for z − 1 ≤ t < z. In
case h(t) > 0 on [z − 1, z) this yields

h′(t) = −α h
(
t − δ(h(t))

) = −α h(t − 1) < 0

for all t ∈ [z, z + 1) with −ε < h(t) ≤ 0, which in turn yields a contradiction to h(z′) = 0.
The argument in case h(t) < 0 on [z − 1, z) is analogous.

In [19] we obtained a set of flowlines R � t �→ xt ∈ C1 of F close to the homoclinic
loop which have complicated histories in the sense that their behaviour for t ≤ 0 is encoded
by the backward symbol sequences −N0 � j �→ s j ∈ {−,+}; there is a pair of disjoint sets
H± so that xt j ∈ Hsj for all integers j ≤ 0, and t j ↘ −∞ as j → −∞. Also,

0 
= puxt j → 0 as j → −∞
for the projection pu : Y → Y , Y = Ys ⊕ Cu , along Ys onto Cu ; none of these flowlines is
periodic.

It is perhaps interesting that the proof in [19] does not make use of property (3.3).
In any case, a proof that close to the homoclinic loop a set of flowlines exists whose

behaviour is encoded by the entire symbol sequences Z → {−,+} seems to require further
properties of F . In the present paper we keep the parameter α as chosen in Section 2 of [18]
and consider the function h and the delay function d : R → R found in Sections 3 and 4 of
[18], so that

h′(t) = −α h
(
t − d(t)

)
(3.7)

for all t ∈ R. Starting from α, d , and h we construct a new delay functional dΔ : C ⊃ Δ →
(0, 2),Δ open, with dΔ(φ) = 1 on a neighbourhood of 0 ∈ Δ and dΔ(ht ) = d(t) for all
t ∈ R, so that h solves the equation

x ′(t) = −α x
(
t − dΔ(xt )

)
(3.8)

for all t ∈ R and has the minimal intersection property (3.6), and in addition the semiflow F
on

X = {
φ ∈ Δ ∩ C1 : φ′(0) = −α φ(−dΔ(φ))

}
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given by Eq. (3.8) satisfies

D2F(t − τ, hτ )(Ci ⊕ Cu) = Ci ⊕ Cu (3.9)

for −τ > 0 and t > 0 sufficiently large. In other words, for such τ < 0 and t > 0, with
hτ and ht close to 0, the linearization DFt−τ (hτ ) defines an automorphism of the leading
4-dimensional invariant subspace of the semigroup T , which also is the leading invariant
subspace for the linearization of F at 0 ∈ X . Equation (3.9) in combination with (3.3) and
the minimal intersection property (3.6) will enable us to obtain the desired result on symbolic
dynamics close to the homoclinic loop.

We shall obtain the delay functional dΔ as a special case of a more general construction
whose result is stated as Theorem 9.2 below. Loosely speaking it says that for every integer
k ≥ 2 there exist continuously differentiable delay functionals dΔk on open subsets of the
space C , with dΔk (φ) = 1 close to 0, so that the equation

x ′(t) = −α x
(
t − dΔk (xt )

)

has a solution homoclinic to 0 and the associated solution operators have linearizations along
the homoclinic orbit with prescribed behaviour on certain spaces of dimension k + 1.

4 Preliminaries: A Delay Function

Consider a > 0 and α ∈ ( π
2 , 5π

2 ) chosen in Section 2 of [18]. It will be convenient to write
ah instead of a in the sequel. Recall the solution

w : R � t �→ eu0t sin(v0t) ∈ R

of Eq. (3.1), which has all segments wt in Cu , and the solution

y : R � t �→ eut sin(vt) ∈ R

of Eq. (3.1), which has all segments yt in Ci . The segments w′
t and y′

t also belong to Cu and
Ci , respectively. The largest negative zero of w is at t = − π

v0
, and Eq. (3.1) implies that the

largest negative extremum of w is m = − π
v0

+ 1. Set β = 5π
2 as in Section 2 of [18]. As

α < β we have v0 = v0(α) < v0(β), see for example [20]. Hence

m < − π

v0(β)
+ 1 (= mβ) (4.1)

< z < 0,

by the choice of z in Section 2 of [18]. Using v0 > π
2 we also get

− 1 < m. (4.2)

We turn to the strictly increasing sequences of zeros z j , j ∈ Z, and local extrema m j =
z j−3 + 1 of y, with z0 = 0. We have

z0 < m1 < z1 < m2 < z2 < m3 = 1. (4.3)

The construction of the delay function d : R → R begins in Section 3 of [18] with the choice
of d|(−∞, t∗] where t∗ > 0 had been fixed earlier with

0 < t∗ <
1

β
= 2

5π
< m1,
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Fig. 3 d for t ≤ t∗

see (2.6) in [18]. The only restrictions on the C1-function d|(−∞, t∗] are that for a number
tz ∈ (0, t∗) chosen in Section 3 of [18] we have

d(t) = 1 on

(
−∞,

tz
2

]
, (4.4)

−1 < t − d(t) < z on

(
tz
2

, tz

)
, (4.5)

t − d(t) = z on [tz, t∗]. (4.6)

A look at Fig. 3 (which is a reproduction of Figure 6 in [18]) reveals that in addition we
may assume

d ′(t) < 1 on [0, tz). (4.7)

Now consider d : R → R and h : R → R as constructed in Sections 3 and 4 of [18] with
the additional property that (4.7) holds. It is convenient to list further properties of d and h
which are stated in Sections 3 and 4 of [18]:

h(t) = w(t) on

(
−∞,

tz
2

]
, (4.8)

h(t) = ah y(t) on [t ′′y ,∞) (4.9)

with z1 < t ′′y < m2,

h′(t) > 0 on [0,m1), h
′(t) < 0 on (m1,m2). (4.10)

There are ε > 0 and δ ∈ (0, m2−m1
2 ) with

d(t) = 1 on

(
−∞,

tz
2

]
∪ [m1 + 1 − ε,m1 + 1 + δ] ∪ [m2 + 1 − δ,∞). (4.11)

We have

t − d(t) ≤ 0 on [0,m1] and z ≤ t − d(t) < m1 for tz < t < m1 + 1 (4.12)
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and
m1 < t − d(t) < m2 for m1 + 1 < t < m2 + 1. (4.13)

Proposition 4.1 There is a unique zero t̃ of the function

R � t �→ t − d(t) − m ∈ R

in [0, tz], and 0 < t̃ < tz . The zeros of the function

R � t �→ h′(t − d(t)) ∈ R

in (0,∞) are t̃ and the numbers m j + 1, j ∈ N.

Proof 1. By (4.1) and (4.2), −1 < m < z < 0. Due to (4.7) the function [0, tz] � t �→
t − d(t) − m ∈ R is strictly increasing with values −1 − m < 0 at t = 0 and z − m > 0 at
t = tz . Therefore it has a unique zero t̃ in [0, tz], and 0 < t̃ < tz .

2. On [0, tz] we have −1 ≤ t − d(t) ≤ z, see (4.4) and (4.5), and m is the only zero of
w′ in [−1, z]. Using (4.8) we obtain that t̃ is the only zero of R � t �→ h′(t − d(t)) ∈ R in
[0, tz]. Using (4.12), (4.8), and (4.10) we see that h′(t − d(t)) > 0 on (tz,m1 + 1). From
(4.11) and (4.9), (4.10) we infer

h′(m j + 1 − d(m j + 1)) = h′(m j ) = 0 for j ∈ {1, 2}.
From (4.13) and (4.10) combined we get h′(t−d(t)) < 0 in (m1+1,m2+1). For t > m2+1
we use (4.9) and (4.11) and find h′(t − d(t)) = ah y′(t − 1), hence h′(t − d(t)) = 0 and
t > m2 + 1 if and only if t − 1 = m j with 3 ≤ j ∈ N.

In view of (4.11) and 0 < t̃ < tz ≤ t∗ < m1 we choose ρ > 0 with ρ < min{ε, δ} such
that

d(t) = 1 on (−∞, ρ] ∪ [m1 + 1 − ρ,m1 + 1 + ρ] ∪ [m2 + 1 − ρ,∞) (4.14)

and
ρ < t̃ − ρ and t̃ + ρ < m1 − δ. (4.15)

From ρ < δ we have

m1 + ρ < m2 − ρ.

5 Nonautonomous Differential Equations with Parametrized Variable Delay and an
Associated Autonomous System

Let n ∈ N, n ≥ 2, be given. The construction of the desired delay functional relies on
solutions to a n-parameter-family of nonautonomous differential equations with variable
delay. For each parameter we shall consider the solution of the corresponding initial value
problem at t0 = 0 for a particular initial function, which also depends on the parameter. All
of these solutions extend to the whole real line. Segments of the extensions will form a set
on which we shall later begin with the definition of the delay functional. The present section
provides facts about nonautonomous equations and initial values of the form we need.

Let C1-functions d j : R → R, j ∈ {1, . . . , n}, be given so that for every j ∈ {1, . . . , n}
the function d∗ = d j satisfies

d∗(t) = 0 on (−∞, 0] ∪ [m2 + 1,∞). (5.1)
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Using (4.10), (5.1), continuity, and compactness of [0,m2 + 1] we infer that the set

Vn :=
{

c ∈ R
n : 0 < d(t) +

n∑

1

c j d j (t) < 2 for all t ∈ R

}

is open. Notice 0 ∈ Vn . The n-parameter family of differential equations with variable delay
addressed above are the equations

x ′(t) = −α x

(

t −
[

d(t) +
n∑

1

c j d j (t)

])

(5.2)

with parameter c ∈ Vn . It is easy to see by integrations on successive intervals of length

min

{

d(t) +
n∑

1

c j d j (t) : t ∈ R

}

that each initial function φ ∈ C1 with φ′(0) = −α φ(−1) uniquely determines aC1-function
x = xφ , x : [−2,∞) → R, which satisfies Eq. (5.2) for all t ≥ 0 and x0 = φ.

In addition to the functions d j let C1-solutions w j : R → R, j ∈ {1, . . . , n}, of Eq. (3.1)
be given and set

φ j := w j,0 ∈ C1 for j ∈ {1, . . . , n}.
The particular initial functions mentioned above are given by

φc = h0 +
n∑

1

c jφ j

for c ∈ Vn . It is convenient to introduce the restricted affine linear map

E : Vn � c �→ φc ∈ C1.

Because of (4.10), (5.1), h(t) = w(t) on (−∞, 0], and φ j = w j,0 we obtain that the
continuously differentiable functions xc : R → R given by xc(t) = x E(c)(t) for t ≥ −2 and
xc(t) = h(t) +∑n

1 c jw j (t) for t < −2 solve Eq. (5.2) for all t ∈ R. Notice that

x0(t) = h(t) for all t ∈ R. (5.3)

The remainder of this section prepares a proof that the map

I : R × Vn � (t, c) �→ xct ∈ C1

is C1-smooth, and the computation of DI . This will be done by means of a natural auxiliary
system

x ′(t) = g(xt ) ∈ R
n+2 (5.4)

of autonomous differential equations with state-dependent delay.We now introduce the func-
tional g. Consider the spaces Cn+2 and C1

n+2. The set

Un+2 := {
φ ∈ C1

n+2 : (φ2(0), . . . , φn+1(0)) ∈ Vn
}

is open, and the delay functional

d̂ : C1
n+2 ⊃ Un+2 → (0, 2)
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given by

d̂(φ) = d
(
φn+2(0)

)+
n+1∑

j=2

φ j (0)d j−1
(
φn+2(0)

)

is C1-smooth with

Dd̂(φ)η = d ′(φn+2(0)
)
ηn+2(0) +

n+1∑

j=2

{
η j (0)d j−1(φn+2(0))

+φ j (0)d
′
j−1(φn+2(0))ηn+2(0)

}
.

Consider the functional g : C1
n+2 ⊃ Un+2 → R

n+2 given by

g1(φ) = −α φ1
(− d̂(φ)

)
,

g j (φ) = 0 for j ∈ {2, . . . , n + 1},
gn+2(φ) = 1.

The next result is obvious.

Corollary 5.1 For every c ∈ Vn the map xc,n+2 : R → R
n+2 given by

xc,n+2
1 (t) = xc(t),

xc,n+2
j (t) = c j−1 for j ∈ {2, . . . , n + 1},

xc,n+2
n+2 (t) = t

is C1-smooth, x := xc,n+2 satisfies Eq. (5.4) for all t ∈ R, and

x(t) =

⎛

⎜⎜⎜⎜⎜
⎝

h(t) +∑n
1 c jφ j (t)

c1
...

cn
t

⎞

⎟⎟⎟⎟⎟
⎠

on [−2, 0].

We need smoothness properties of g. The components g j , j ∈ {2, . . . , n + 2}, are C1-
smooth with all derivatives Dgj (φ) : C1

n+2 → R, φ ∈ Un+2, zero. For the first component
we have

g1(φ) = −α ev1
(
φ1,−d̂(φ)

)
.

As in Sect. 3 we obtain that g1 is C1-smooth with

Dg1(φ)η = −α
{
η1(−d̂(φ)) − φ′

1(−d̂(φ))Dd̂(φ)η
}

(5.5)

= −α
{
η1(−d̂(φ)) − φ′

1(−d̂(φ))
[
d ′(φn+2(0))ηn+2(0)

+
n+1∑

j=2

{η j (0)d j−1(φn+2(0)) + φ j (0)d
′
j−1(φn+2(0))ηn+2(0)}

]}
.

The preceding expression does not contain derivatives of η and can be used to extend Dg1(φ)

to a linear map Deg1(φ) : Cn+2 → R. Using the continuity of ev : C × [−2, 0] → R we
easily obtain that the map

123



J Dyn Diff Equat (2016) 28:627–688 645

Un+2 × C � (φ, η) �→ Deg1(φ)η ∈ R

is continuous. It follows that the functional g has the extension property (e) from Sect. 3. Con-
sequently the maximal C1-solutions xφ : [−2, te(φ)) → R

n+2 of the initial value problem
given by Eq. (5.4) for t ≥ 0 and x0 = φ in the C1-submanifold

Xg := {
φ ∈ Un+2 : φ′(0) = g(φ)

}

define a continuous semiflow G : Ωg → Xg on Xg , by

Ωg = {
(t, φ) ∈ [0,∞) × Xg : t < te(φ)

}
and G(t, φ) = xφ

t .

For the C1-maps DGt : Ωg,t → Xg , t ≥ 0, with nonempty domain

Ωg,t := {φ ∈ Xg : t < te(φ)}
we have

DGt (φ)η = v
φ,η
t

with the C1-solution v = vφ,η, v : [−2, te(φ)) → R
n+2, of the initial value problem

v′(t) = Dg
(
G(t, φ)

)
vt for t ≥ 0,

v0 = η ∈ TφXg.

The restriction of G to the set {(t, φ) ∈ Ωg : t > 2} is C1-smooth, with

D1G(t, φ)1 = (
(xφ)′

)
t = (

xφ
t
)′
.

We return to the solutions xc : R → R, c ∈ Vn , of Eq. (5.2). It is convenient to introduce
the restricted affine linear map Ê : Vn → C1

n+2 given by

Ê1 = E,

Ê j (c)(t) = c j−1 for all j ∈ {2, . . . , n + 1} and t ∈ [−2, 0],
Ên+2(c)(t) = t for all t ∈ [−2, 0].

Then

Ê(c) = xc,n+2
0 for all c ∈ Vn,

see Corollary 5.1. In particular,

Ê(0)(t) =

⎛

⎜⎜⎜⎜⎜
⎝

h(t)
0
...

0
t

⎞

⎟⎟⎟⎟⎟
⎠

on [−2, 0].

Equation (5.4) at t = 0 yields

Ê(Vn) ⊂ Xg.

Observe that Corollary 5.1 also yields

Ê(Vn) ⊂ Ωg,t for every t ≥ 0,
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and
I (t, c) = xct = pr1Gt

(
Ê(c)

)
for all t ≥ 0 and c ∈ Vn,

with the projection

pr1 : C1
n+2 � φ �→ φ1 ∈ C1.

Corollary 5.2 Let j ∈ {1, . . . , n} and d∗ = d j . For every t ≥ 0 we have

D
(
pr1 ◦ Gt ◦ Ê

)
(0)e j = pr1v

Ê(0),DÊ(0)e j
t ,

and b = (v Ê(0),DÊ(0)e j )1 satisfies

b′(t) = −α
{
b(t − d(t)) − h′(t − d(t))d∗(t)

}
for all t ≥ 0, (5.6)

b0 = φ j . (5.7)

Proof We have

D
(
pr1 ◦ Gt ◦ Ê

)
(0)e j = pr1DGt

(
Ê(0)

)
DÊ(0)e j = pr1v

Ê(0),DÊ(0)e j
t

for all t ≥ 0 and

DÊ(0)e j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

φ j

0
...

0
1
0
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ C1
n+2

with 1 : [−2, 0] � t �→ 1 ∈ R as the ( j + 1)-th component. As

ĥ : R � t �→

⎛

⎜⎜⎜⎜⎜
⎝

h(t)
0
...

0
t

⎞

⎟⎟⎟⎟⎟
⎠

∈ R
n+2

is a continuously differentiable solution of Eq. (5.4) (see Corollary 5.1) and Ê(0) = ĥ0 we

obtain that v = v Ê(0),DÊ(0)e j satisfies

v′(t) = Dg
(
G(t, Ê(0))

)
vt = Dg

(
ĥt
)
vt for all t ≥ 0.

According to (5.5),
(
Dg(ĥt )vt

)
1 = −α

{
v1(t − d(t)) − h′(t − d(t))[d ′(t)vn+2(t)

+
n+1∑

k=2

{vk(t)dk−1(t) + 0 · d ′
k−1(t)vn+2(t)}]

}
,
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and (Dg(ĥt )vt ) j = 0 for all j ∈ {2, . . . , n + 2}. Using the initial condition v0 = DÊ(0)e j
and the preceding equations we find v j+1(t) = 1 for all t ≥ −2 and vk(t) = 0 for all
k ∈ {2, . . . , n + 2} \ { j + 1} and all t ≥ −2. Consequently,

b′(t) = v′
1(t) = −α

{
v1(t − d(t)) − h′(t − d(t))[d ′(t) · 0 + 1 · d j (t)]

}

= −α
{
b(t − d(t)) − h′(t − d(t))d j (t)

}
for all t ≥ 0.

Also, b0 = v1,0 = (DÊ(0)e j )1 = φ j .

Proposition 5.3 (Uniqueness) For every j ∈ {1, . . . , n} there is at most one C1-function
b : [−2,∞) → R satisfying (5.6) for all t ≥ 0 and (5.7).

Proof Let j ∈ {1, . . . , n} and suppose b : [−2,∞) → R and B : [−2,∞) → R are
C1-smooth and satisfy Eq. (5.6) for all t ≥ 0, and b0 = B0, and b(t) 
= B(t) for some
t > 0. For t0 = inf{t > 0 : b(t) 
= B(t)} we get t0 ≥ 0 and b(t) = B(t) on [−2, t0]. Using
d(t0) > 0 we find ε′ > 0 with t − d(t) < t0 for t0 ≤ t < t0 + ε′. Then Eq. (5.6) yields
b′(t) = B ′(t) on [t0, t0 + ε′]. It follows that b(t) = B(t) on [−2, t0] ∪ [t0, t0 + ε′], hence
t0 = inf{t > 0 : b(t) 
= B(t)} ≥ t0 + ε′, which contradicts ε′ > 0.

6 Prescribed Solution Behaviour

The first result of this section shows that we can obtain solutions b : R → R of Eq. (5.6)
with prescribed ends b|(−∞, 0] and b|[m2+1,∞) by a suitable choice of the delay function
d∗ : R → R.

Proposition 6.1 For each pair of C1-solutions w∗ : R → R and q : R → R of Eq. (3.1)
there exist C1-functions b : R → R and d∗ : R → R with the following properties: Eq. (5.6)
is satisfied for all t ∈ R, (5.1) holds, and

b(t) = w∗(t) on (−∞, 0],
b(t) = q(t) on [m2,∞).

Proof 1. The functions w∗ and q have derivatives of arbitrary order. By (4.15), [t̃ −ρ, t̃ +ρ]
⊂ [0,m1], hence t − d(t) ≤ 0 on [t̃ − ρ, t̃ + ρ] because of (4.12). From m2 < m1 + 1 we
infer

[m2 − ρ,∞) ⊃ [m1 + 1 − ρ,m1 + 1 + ρ].
In particular,

t + 1 ∈ [m2 − ρ,∞) for all t ∈ [m1 − ρ,m1 + ρ].
There exists a twice continuously differentiable function b : R → R such that

b(t) = w∗(t) on (−∞, 0],
b′(t) = −α w∗(t − d(t)) on [t̃ − ρ, t̃ + ρ],
b(t) = −q ′(t + 1)

α
on [m1 − ρ,m1 + ρ],

b(t) = q(t) on [m2 − ρ,∞).
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We define d∗ : R → R by

d∗(t) = 0 on (−∞, ρ] ∪ [m2 + 1 − ρ,∞),

d∗(t̃) = 0,

d∗(m1 + 1) = 0,

d∗(t) = b′(t) + α b(t − d(t))

α h′(t − d(t))
on (ρ,m2 + 1 − ρ) \ {t̃,m1 + 1}.

2. Proof that d∗ is C1-smooth. The restriction of d∗ to the open set R \ {ρ, t̃,m1 + 1,m2

+ 1 − ρ} is C1-smooth. The C1-function

d̃ : (0,m2 + 1) \ {t̃,m1 + 1} � t �→ b′(t) + α b(t − d(t))

α h′(t − d(t))
∈ R

satisfies d̃ = 0 on (0, ρ], because of d(t) = 1 and b(t) = w∗(t) on [0, ρ] and Eq. (3.1) for
w∗. Hence d∗(t) = 0 = d̃(t) on [0, ρ]. It follows that d∗ and d̃ coincide on [0, t̃), which
yields that d∗|(−∞, t̃) is C1-smooth.

On (t̃ − ρ, t̃ + ρ) \ {t̃} we have d∗(t) = 0, because of

b′(t) = −α w∗(t − d(t)) = −α b(t − d(t)) (since t − d(t) ≤ 0).

As d∗(t̃) = 0 we see that d∗|(t̃ − ρ, t̃ + ρ) is C1-smooth.
On

[m1 + 1 − ρ,m1 + 1 + ρ] \ {m1 + 1} ⊂ (ρ,m2 + 1 − ρ) \ {t̃,m1 + 1}
we have

−α b(t − d(t)) = −α b(t − 1) (see 4.14)

= q ′(t) = b′(t) (since m2 − ρ < m1 + 1 − ρ)

and consequently d∗(t) = 0. As d∗(m1 + 1) = 0 we see that d∗|(m1 + 1 − ρ,m1 + 1 + ρ)

is C1-smooth.
Finally, consider (m1 + 1,m2 + 1) � m2 + 1 − ρ. On the subinterval

(m1 + 1,m2 + 1 − ρ) ⊂ (ρ,m2 + 1 − ρ) \ {t̃,m1 + 1}
we have d∗(t) = d̃(t). On the subinterval [m2 + 1 − ρ,m2 + 1) we have d(t) = 1 and
b(t) = q(t), hence

b′(t) = q ′(t) = −α q(t − 1) = −α b(t − 1) (since t − 1 ≥ m2 − ρ)

= −α b(t − d(t)),

and thereby d̃(t) = 0 = d∗(t). So d̃ and d∗ coincide on (m1 + 1,m2 + 1), which shows that
d∗|(m1 + 1,m2 + 1) is C1-smooth. Now the assertion is obvious.

3. Verification of Eq. (5.6). The definition of d∗ shows that b satisfies Eq. (5.6) on

(ρ,m2 + 1 − δ) \ {t̃,m1 + 1}.
At t = t̃ we have d∗(t̃) = 0 and

b′(t̃) = −α w∗(t̃ − d(t̃)) = −α b(t̃ − d(t̃)) (since t̃ − d(t̃) = 0)

= −α{b(t̃ − d(t̃)) − h′(t̃ − d(t̃))d∗(t̃)}.
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At t = m1 + 1 we have d∗(m1 + 1) = 0 and d(m1 + 1) = 1 and

b(m1) = −q ′(m1 + 1)

α
= −b′(m1 + 1)

α

(since m1 + 1 > m2), hence

b′(m1 + 1) = −α b(m1)

= −α
{
b(m1 + 1 − d(m1 + 1))

− h′(m1 + 1 − d(m1 + 1))d∗(m1 + 1)
}
.

On (−∞, ρ] we have d(t) = 1 and d∗(t) = 0 and t − 1 < 0, hence

b′(t) = w′∗(t) = −α w∗(t − 1) = −α b(t − d(t))

= −α
{
b(t − d(t)) − h′(t − d(t))d∗(t)

}
.

On [m2 + 1 − ρ,∞) we have d(t) = 1 and d∗(t) = 0 and t − 1 ≥ m2 − ρ, hence

b′(t) = q ′(t) = −α q(t − 1) = −α b(t − d(t))

= −α
{
b(t − d(t)) − h′(t − d(t))d∗(t)

}
.

Proposition 6.2 Let n ∈ N and let analytic solutions w j : R → R and q j : R → R,
j ∈ {1, . . . , n}, of Eq. (3.1) be given with w′

0, w1,0, . . . , wn,0 linearly independent and
a y′

m2+2, q1,m2+2, . . . , qn,m2+2 linearly independent. For every j ∈ {1, . . . , n} let a C1-

function d j : R → R and a C1-solution b j : R → R of Eq. (5.6) with d∗ = d j be given as
in Proposition 6.1, with b j (t) = w j (t) on (−∞, 0] and b j (t) = q j (t) on [m2,∞). Then the
segments h′

t , b1,t , . . . , bn,t are linearly independent for each t ∈ R.

Proof Analyticity and the hypothesis on linear independence combined imply that for every
open interval J ⊂ R the restrictions of w′, w1, . . . , wn to J are linearly independent, as
well as the restrictions of a y′, q1, . . . , qn to J . This implies the assertion for all t < 2 since
for such t the interval [t − 2, t] contains an open subinterval J on which h′(t) = w′(t)
and b j (t) = w j (t) for all j ∈ {1, . . . , n}. Analogously we have for t ≥ 2 > m2 that
[t − 2, t] contains an open subinterval J on which h′(t) = ah y′(t) and b j (t) = q j (t) for all
j ∈ {1, . . . , n}.

7 Delay Functionals on Finite-Dimensional Manifolds

Let analytic solutions w j : R → R and q j : R → R, j ∈ {1, . . . , n}, of Eq. (3.1) be given
as in the hypothesis of Proposition 6.2, and C1-functions d j : R → R and b j : R → R,
j ∈ {1, . . . , n}, as guaranteed by Proposition 6.1, so that for each j ∈ {1, . . . , n} we have

d j (t) = 0 on (−∞, 0] ∪ [m2 + 1,∞),

b′
j (t) = −α{b j (t − d(t)) − h′(t − d(t))d j (t)} for all t ∈ R,

b j (t) = w j (t) on (−∞, 0],
b j (t) = q j (t) on [m2,∞).

All of these functions will be kept fixed from here on until Proposition 9.1 and its proof. Set
φ j := w j,0 ∈ C1 for j ∈ {1, . . . , n}. Notice that all results from Sect. 5 apply. We proceed
accordingly and obtain the map

I : R × Vn � (t, c) �→ xct ∈ C1
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Recall 0 ∈ Vn . From (5.3) we have

I (t, 0) = ht for all t ∈ R. (7.1)

Proposition 7.1 The map I is C1-smooth with

D1 I (t, 0)1 = h′
t

and

D j+1 I (t, 0)1 = b j,t for all j ∈ {1, . . . , n} and t ∈ R.

Proof 1. (Smoothness) According to Corollary 5.1 each map x = xc,n+2, c ∈ Vn , is C1-
smooth and satisfies Eq. (5.4) for all t ∈ R, and xc,n+2

0 = Ê(c). Hence

I (t, c) = xct = pr1x
c,n+2
t for all t ∈ R and c ∈ Vn .

For t ≥ 0 and c ∈ Vn this yields

I (t, c) = pr1G
(
t, Ê(c)

)
. (7.2)

It follows that the restriction of I to (2,∞) × Vn is C1-smooth.
Next, let t0 ≤ 2 and c0 ∈ Vn be given. Choose t1 < t0 − 3. For every (t, c) ∈ (t0 − 1,

t0 + 1) × Vn we then have t = s + t1 with

s = t − t1 ∈ (t0 − t1 − 1, t0 − t1 + 1) ⊂ (2,∞).

Also, xc,n+2
t = G(t − t1, x

c,n+2
t1 ), hence

I (t, c) = xct = pr1x
c,n+2
t = pr1G

(
t − t1, x

c,n+2
t1

)
.

In view of the chain rule and t − t1 > 2 we obtain that I |(t0 − 1, t0 + 1) × Vn is C1-smooth
provided the map

Vn � c �→ xc,n+2
t1 ∈ C1

n+2

is C1-smooth, which is obvious from

xc,n+2
t1 =

⎛

⎜⎜⎜⎜⎜
⎝

wt1 +∑n
1 c jw j,t1

c1 · 1
...

cn · 1
idt1

⎞

⎟⎟⎟⎟⎟
⎠

for all c ∈ Vn .
2. (Computation of derivatives) Using (7.1) and the fact that h is twice continuously

differentiable we get

D1 I (t, 0)1 = d

ds
(R � s �→ hs ∈ C1)(t)1 = h′

t for all t ∈ R.

Then let j ∈ {1, . . . , n} be given. For each t < 0 and c ∈ Vn we have

I (t, c) = wt +
n∑

1

c jw j,t ,
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hence Dj+1 I (t, c) = w j,t = b j,t . For every t ≥ 0 and c ∈ Vn we obtain from (7.2) the
equation

I (t, c) = (
pr1 ◦ Gt ◦ Ê

)
(c),

and thereby

Dj+1 I (t, 0)1 = Dj
(
pr1 ◦ Gt ◦ Ê

)
(0)1 = D

(
pr1 ◦ Gt ◦ Ê

)
(0)e j .

Corollary 5.2 yields D(pr1 ◦ Gt ◦ Ê)(0)e j = bt with a C1-function b : [−2,∞) → R

satisfying Eq. (5.6) for all t ≥ 0 and (5.7). As b j |[−2,∞) satisfies the same initial value
problem we obtain from Proposition 5.3 (uniqueness) that

Dj+1 I (t, 0)1 = bt = b j,t .

Corollary 7.2 Let J ⊂ R be a compact interval. Then there exists s = sJ > 0 with
(−s, s)n ⊂ Vn so that the restriction I |J × (−s, s)n itself and all its derivatives DI (t, c),
(t, c) ∈ J × (−s, s)n, are injective.

Proof 1. Let J ⊂ R be a compact interval. As Vn � 0 is open there exists s0 > 0 with
(−s0, s0)n ⊂ Vn . Suppose the assertion concerning I is false. Then there are sequences
of reals t j ∈ J � t̂ j and c j ∈ (−s0, s0)n � ĉ j , j ∈ N, with c j → 0 and ĉ j → 0
for j → ∞, and for all j ∈ N, (t j , c j ) 
= (t̂ j , ĉ j ) and I (t j , c j ) = I (t̂ j , ĉ j ). Passing to
subsequences we may assume t j → t ∈ J and t̂ j → t̂ ∈ J as j → ∞. In case t 
= t̂
we get ht = I (t, 0) = I (t̂, 0) = ht̂ , which contradicts injectivity of the flowline t �→ ht
(Proposition 3.2 of [18]).

In case t = t̂ the mean value theorem yields

0 = I
(
t̂ j , ĉ j

)− I (t j , c j )

=
∫ 1

0
DI

(
(t j , c j ) + θ [(t̂ j , ĉ j ) − (t j , c j )]

)[. . .]dθ

= (t̂ j − t j )
∫ 1

0
D1 I (. . .)1dθ +

n∑

k=1

(
ĉ j,k − c j,k

) ∫ 1

0
Dk+1 I (. . .)1dθ

for every j ∈ N. Setting r j = |(t̂ j , ĉ j ) − (t j , c j )| (
= 0) for j ∈ N we have
∣∣∣∣
1

r j

(
(t̂ j , ĉ j ) − (t j , c j )

)
∣∣∣∣ = 1

for all j ∈ N. Passing to subsequences we may assume

1

r j

(
(t̂ j , ĉ j ) − (t j , c j )

) → (t, c) ∈ Sn ⊂ R
n+1 for j → ∞.

As
∫ 1

0
D1 I (. . .)1dθ → D1 I (t, 0)1 = h′

t

and
∫ 1

0
Dk+1 I (. . .)1dθ → Dk+1 I (t, 0)1 = bk,t
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for j → ∞ we arrive at

0 = t h′
t +

n+1∑

k=2

ck−1bk−1,t

which is a contradiction to linear independence (Proposition 6.2).
It follows that for some ŝJ ∈ (0, s0) the restriction I

J × (−ŝJ , ŝJ)n
is injective.

2. Suppose the assertion concerning DI is false. Then there are sequences of reals t j ∈ J
and c j ∈ (−s0, s0)n , j ∈ N, with c j → 0 and DI (t j , c j ) not injective. It follows that for
each j ∈ N the vectors

Dk I (t j , c j )1 = DI (t j , c j )ek, k ∈ {1, . . . , n + 1},
are linearly dependent, and there exist r j ∈ Sn ⊂ R

n+1 with

0 =
n+1∑

k=1

r j,k Dk I (t j , c j )1 for all j ∈ N.

Passing to subsequences we may assume r j → r0 ∈ Sn and t j → t ∈ J for j → ∞. Passing
to limits we arrive at

0 =
n+1∑

k=1

r0,k Dk I (t, 0)1 = r0,1h
′
t +

n+1∑

k=2

r0,kbk−1,t

which is a contradiction as in part 1 of the proof.
It follows that for some sJ ∈ (0, ŝJ ) all derivatives DI (t, c), (t, c) ∈ J × (−sJ , sJ )n , are

injective.

We fix t1 < 0 and t2 > m2 + 2, set J := [t1, t2], and choose s = sJ according to
Corollary 7.2.

Corollary 7.3 The set M := I ((t1, t2)×(−s, s)n) ⊂ C1 ⊂ C is an (n+1)-dimensional C1-
submanifold of the space C, and the map IC : (t1, t2) × (−s, s)n → M given by IC (t, c) =
I (t, c) is a C1-diffeomorphism.

Proof Use Corollary 7.2, employ the inclusion map C1 → C , and apply Proposition 10.5
from [18].

The C1-map

d : R × R
n � (t, c) �→ d(t) +

n∑

1

c j d j (t) ∈ R

satisfies

d(R × Vn) ⊂ (0, 2),

d(t, c) = d(t) on
(
(−∞, 0] ∪ [m2 + 1,∞)

)× R
n,

d(t, 0) = d(t) on R.

It follows that the delay functional dM : C ⊃ M → (0, 2) given by

dM (φ) = d
(
I−1
C (φ)

)
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is C1-smooth. For each (t, c) ∈ (t1, t2) × (−s, s)n we have

dM (xct ) = dM
(
IC (t, c)

) = d(t, c) = d(t) +
n∑

1

c j d j (t). (7.3)

Using this and Eq. (5.2) we obtain that for each c ∈ (−s, s)n the function x = xc satisfies
the autonomous equation

x ′(t) = −α x
(
t − dM (xt )

)
(7.4)

with state-dependent delay for all t ∈ (t1, t2). In particular,

h′(t) = −α h
(
t − dM (ht )

)
on (t1, t2),

because of (5.3). Notice that for t ∈ (t1, 0) ∪ (m2 + 2, t2) and c ∈ (−s, s)n we have

dM (xct ) = d(t).

8 Delay Functionals on Neighbourhoods of the Homoclinic Loop

This section follows almost verbatim Sections 7 and 8 from [18]. In the first part, which
corresponds to Section 7 from [18], we extend a restriction of dM to a compact neighbourhood
of the orbit piece {ht : 0 ≤ t ≤ m2 +2} in M to an open neighbourhood of M in the ambient
space C .

Fix t10 ∈ (t1, 0) and t20 ∈ (m2 + 2, t2). For every t ∈ [t10, t20] there are an open
neighbourhood Ut of ht ∈ M in C , a radius r(t) > 0, a closed subspace Qt of codimension
n + 1 in C , and a C1-diffeomorphism Rt from Ut onto R

n+1
r(t) × Qr(t), with

Rt (Ut ∩ M) = R
n+1
r(t) × {0}.

As H : R � t �→ ht ∈ C is injective (Proposition 3.2 from [18]) we can choose the
neigbourhoods Ut in such a way that

ht10 /∈ Ut for all t ∈ (t10, t20] and ht20 /∈ Ut for all t ∈ [t10, t20). (8.1)

By compactness of the orbit piece {ht : t10 ≤ t ≤ t20} there exist s1 < . . . < sm in [t10, t20]
so that the sets Uμ = Usμ , μ ∈ {1, . . . ,m}, cover the orbit piece H([t10, t20]). Observe that
(8.1) implies s1 = t10 and sm = t20.

Using compactness once again we find r ∈ (0, sJ ) so that

K := IC
([t10, t20] × [−r, r ]n) ⊂ ∪m

μ=1Uμ.

For the open covering (Uμ)mμ=1 of the compact subset K of the manifold M there exists a

subordinate continuously differentiable partition of unity (ηι)
j
ι=1, that is, each ηι : M →

[0, 1] is continuously differentiable and has compact support, for every ι ∈ {1, . . . , j} there
exists μ ∈ {1, . . . ,m} with supp (ηι) ⊂ Uμ ∩ M , and for every φ ∈ K ,

j∑

ι=1

ηι(φ) = 1.
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There exists a map {1, . . . , j} � ι �→ μ(ι) ∈ {1, . . . ,m} with
supp (ηι) ⊂ Uμ(ι),

μ(ι) = 1 for all ι ∈
J1 = {

ι′ ∈ {1, . . . , j} : supp (ηι′) ⊂ U1
}
,

μ(ι) = m for all ι ∈
Jm = {

ι′ ∈ {1, . . . , j} : supp (ηι′) ⊂ Um
}
.

As in the first part of the proof of Proposition 8.1 of [18] we get

J1 
= ∅ 
= Jm .

Now let ι ∈ {1, . . . , j} be given. The next objective is the construction of a C1-function

d ι : Δι → R, Δι ⊂ C open,

with M ⊂ Δι and

d ι(φ) = ηι(φ)dM (φ) for all φ ∈ M.

We abbreviate

U∗ := Uμ(ι), R∗ := Rsμ(ι)
, r∗ := r(sμ(ι)), Q∗ := Qsμ(ι)

.

Then

R∗(U∗ ∩ M) = R
n+1
r∗ × {0} ⊂ R

n+1
r∗ × Qr∗/4.

Set

Vμ(ι) := R−1
r∗ (Rn+1

r∗ × Qr∗/4) ⊃ U∗ ∩ M.

Obviously,

Vμ(ι) ⊂ U∗, supp (ηι) ⊂ U∗ ∩ M ⊂ Vμ(ι),

and

R∗( supp (ηι)) = pr1R∗( supp (ηι)) × {0},
with the projection

pr1 : Rn+1 × Q∗ → R
n+1

onto the first factor. The map d̂ = d ι, d̂ : Vμ(ι) → R, given by

d̂(φ) = ηι

(
R−1∗ (pr1R∗(φ), 0)

)
dM

(
R−1∗ (pr1R∗(φ), 0)

)

is C1-smooth (Fig. 4).

Proposition 8.1 Let ι ∈ {1, . . . , j} be given. Every φ ∈ M \ supp (ηι) has an open neigh-
bourhood Vφ,ι in C with

Vφ,ι ∩ R−1∗
(
pr1R∗( supp (ηι)) × Qr∗/2

) = ∅.

In particular, Vφ,ι ∩ supp (ηι) = ∅.
Proof See the proof of Proposition 7.1 in [18].
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Fig. 4 The argument of ηι and dM in the formula defining d̂(φ), φ ∈ Vμ(ι)

For ι ∈ {1, . . . , j} given we continue as in Section 7 of [18], choose neighbourhoods Vφ,ι

according to Proposition 8.1, and consider the set

V̂ι := ∪φ∈M\ supp (ηι)Vφ,ι,

which is open in C . We have

V̂ι ∩ R−1∗
(
pr1R∗( supp (ηι)) × Qr∗/2

) = ∅,

and the open set

Δι := V̂ι ∪ Vμ(ι)

contains
(
M \ supp (ηι)

) ∪ supp (ηι) = M.

Proposition 8.2 Let ι ∈ {1, . . . , j} be given. For every ψ ∈ V̂ι ∩ Vμ(ι) we have d ι(ψ) = 0.

Proof See the proof of Proposition 7.2 in [18].

For each ι ∈ {1, . . . , j} we extend d ι : Vμ(ι) → R to a map on Δι by d ι(ψ) = 0 on V̂ι.
The extended map d ι : Δι → R is C1-smooth.

Corollary 8.3 Let ι ∈ {1, . . . , j} be given. For all ψ ∈ M we have d ι(ψ) = ηι(ψ)dM (ψ).

Proof See the proof of Corollary 7.3 in [18].

The set Δ∗ := ∩ j
ι=1Δι (⊃ M) is open in C , and the map

d∗ : Δ∗ → R

given by d∗(φ) = ∑ j
ι=1 d ι(φ) is C1-smooth.
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Corollary 8.4 For every φ ∈ K ⊂ M we have d∗(φ) = dM (φ).

Proof Use Corollary 8.3 and

d∗(φ) =
j∑

ι=1

d ι(φ) =
j∑

ι=1

ηι(φ)dM (φ) = dM (φ)

for φ ∈ K ⊂ M .

The construction of the desired delay functional on a neighbourhood of the homoclinic
loop H(R) ∪ {0} ⊂ C requires a modification of d∗. This is done as in Section 8 of [18].

The next intermediate step is to find t11 ∈ (t10, 0) and an open neighbourhood V11 ⊂ Δ∗
of ht11 in C so that

d∗(φ) = 1 on V11.

Observe that for all ι ∈ J1 and φ ∈ V1 we have

d ι(φ) = ηι(R
−1
1

(
pr1R1(φ), 0)

)
dM (R−1

1

(
pr1R1(φ), 0)

)
. (8.2)

Proposition 8.5 For every ι ∈ J ′
1 = {1, . . . , j} \ J1 we have μ(ι) ∈ {2, . . . , j}, and for all

φ ∈ (U1 \ ∪m
μ=2Uμ) ∩ Δι we have

d ι(φ) = 0.

Proof See the proof of Proposition 8.1 (ii) in [18].

By (8.1) the open set U1 \ ∪m
μ=2Uμ contains ht10 . As H is continuous there exists t11 ∈

(t10, 0) with

ht11 ∈ U1 \ ∪m
μ=2Uμ.

Recall U1 = Us1 . Then

Rs1(ht11) ∈ R
n+1
r(s1)

× {0}.
As IC is a C1-diffeomorphism the set IC ((t10, 0) × (−r, r)n) is an open subset of M which
contains ht11 . By continuity there exists ρ1 ∈ (0, r(s1)

4 ) so that

R
n+1
ρ1

+ pr1Rs1(ht11) ⊂ R
n+1
r(s1)

, (8.3)

R−1
s1

(
(Rn+1

ρ1
+ pr1Rs1(ht11)) × Q1,ρ1

) ⊂ U1 \ ∪m
μ=2Uμ,

and

R−1
s1

(
(Rn+1

ρ1
+ pr1Rs1(ht11)) × {0}) ⊂ IC

(
(t10, 0) × (−r, r)n

) ⊂ K . (8.4)

For every φ ∈ R−1
s1 ((Rn+1

ρ1
+ pr1Rs1(ht11)) × {0}) we infer from (8.4) that

dM (φ) = dM
(
IC (t, c)

) (
with t10 < t < 0, c ∈ (−r, r)n

)

= d(t) +
n∑

1

cνdν(t) (see 7.3)

= d(t) (since t < 0)

= 1 (since t < 0).
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The set

V11 := R−1
s1

(
(Rn+1

ρ1
+ pr1Rs1(ht11)

)× Q1,ρ1

) ∩ Δ∗

is open in C and contains ht11 . Using ρ1 <
r(s1)
4 and (8.3) we get

V11 ⊂ V1.

Proposition 8.6 For every φ ∈ V11, d∗(φ) = 1.

Proof See the proof of Proposition 8.2 in [18].

In the sameway as abovewefind t21 ∈ (m2+2, t20) and an open neighbourhood V21 ⊂ Δ∗
of ht21 in C so that

d∗(φ) = 1 on V21.

Now we can complete the construction of the delay functional on a neighbourhood of
H(R) ∪ {0} in C . We choose t ′11 ∈ (t10, t11) and t ′′11 ∈ (t11, 0) so that

H
([t ′11, t ′′11]

) ⊂ V11

and similarly t ′21 ∈ (m2 + 2, t21) and t ′′21 ∈ (t21, t20) so that

H
([t ′21, t ′′21]

) ⊂ V21.

The sets {0} ∪ H((−∞, t ′11]) ∪ H([t ′′21,∞)) and H([t ′′11, t ′21]) ⊂ M ⊂ Δ∗ are compact and
disjoint since H is injective, see Proposition 3.2 in [18]. Consequently there are disjoint open
neighbourhoods N0 of {0} ∪ H((−∞, t ′11]) ∪ H([t ′′21,∞)) in C and N of H([t ′′11, t ′21]) in C .
We may assume N ⊂ Δ∗. Since dM (M) ⊂ (0, 2) and d∗(φ) = dM (φ) on K ⊃ H([t ′′11, t ′21])
(see Corollary 8.4) we may also assume d∗(φ) ∈ (0, 2) on N . The open subset

Δ := N0 ∪ V11 ∪ N ∪ V21

of C contains H(R) ∪ {0}. On N ∩ (V11 ∪ V21) we have d∗(φ) = 1. It follows that the
equations

dΔ(φ) = 1 for φ ∈ N0 ∪ V11 ∪ V21,

dΔ(φ) = d∗(φ) for φ ∈ N ,

define a C1-map dΔ : Δ → (0, 2). The continuity of IC and the compactness of
H([t ′′11, t ′21]) ⊂ N imply that there exists rΔ ∈ (0, r) so that

KΔ := IC
([t ′′11, t ′21] × (−rΔ, rΔ)n

)

is contained in N .

Proposition 8.7 For every t ∈ R we have dΔ(ht ) = d(t), and for all t ∈ [t ′′11, t ′21] and
c ∈ (−rΔ, rΔ)n,

IC (t, c) ∈ Δ and dΔ

(
IC (t, c)

) = d(t) +
n∑

1

cνdν(t).
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Proof (Compare the proof ofProposition8.3 in [18]) For t ≤ t ′′11 wehaveht ∈ N0∪V11, hence
dΔ(ht ) = 1. As t < 0 we also have d(t) = 1. Analogously one finds dΔ(ht ) = 1 = d(t) for
t ≥ t ′21.

For t ′′11 ≤ t ≤ t ′21 and c ∈ (−rΔ, rΔ)n we have IC (t, c) ∈ KΔ ⊂ N (⊂ Δ), hence
dΔ(IC (t, c)) = d∗(IC (t, c)).

As t10 < t11 < t ′′11 < 0 and m2 + 2 < t ′21 < t21 < t ′′21 < t20 and c ∈ (−rΔ, rΔ)n we also
have IC (t, c) ∈ K . Hence

dΔ

(
IC (t, c)

) = d∗(IC (t, c)
) = dM

(
IC (t, c)

)
(see Corollary 8.4)

= d(t) +
n∑

1

cνdν(t) (see 7.3).

For c = 0, obviously

dΔ(ht ) = dΔ

(
I (t, 0)

) = d(t)

also for t ′′11 ≤ t ≤ t ′′21.

It follows that the solution x = h of Eq. (3.7) also satisfies Eq. (3.8),

x ′(t) = −α x
(
t − dΔ(xt )

)

for all t ∈ R, and that the solutions xc of Eq. (5.2), c ∈ (−rΔ, rΔ)n , satisfy Eq. (3.8) for all
t ∈ [t ′′11, t ′21].

For the next section we also need the following result.

Corollary 8.8 Let reals t− ≤ t+ be given. There exists r ∈ (0, rΔ) with IC ([t−, t+]
× (−r , r)n) ∈ Δ and

dΔ

(
IC (t, c)

) = d(t) +
n∑

1

cνdν(t) on [t−, t+] × (−r , r)n .

Proof (See the proof of Corollary 8.4 in [18]) In case t− < t ′′11 we have H([t−, t ′′11])⊂ N0 ∪ V11. Using compactness and continuity we find r ∈ (0, rΔ) with

IC
([t−, t ′′11] × (−r , r)n

) ⊂ N0 ∪ V11.

On [t−, t ′′11] × [−r , r ]n we get
dΔ

(
IC (t, c)

) = 1 = d(t) + 0 (since t ≤ t ′′11 < 0)

= d(t) +
n∑

1

cνdν(t) (since dν(t) = 0 on (−∞, 0]).

Proposition 8.7 contains the desired equation on [t ′′11, t ′21]×[−r , r ]n . Now it becomes obvious
how to complete the proof using Proposition 8.7 and d(t) = 1 for t ≥ t ′21 and dΔ(φ) = 1 on
N0 ∪ V21.

9 Linearization Along the Homoclinic Curve

As in Sect. 3 we obtain from C1-smoothness of the map dΔ : C ⊃ Δ → (0, 2) that the
maximal C1-solutions x = xφ , x : [−r, te(φ)) → R

n , 0 < te(φ) ≤ ∞, of the initial value
problem given by Eq. (3.8) and the initial condition

123



J Dyn Diff Equat (2016) 28:627–688 659

x0 = φ ∈
{
ψ ∈ Δ ∩ C1 : ψ ′(0) = −α ψ

(− dΔ(φ)
)} =: XΔ

define a continuous semiflow F : Ω → X on the C1-submanifold X := XΔ of C1, with
domain Ω := {(t, φ) ∈ [0,∞) × X : t < te(φ)} and F(t, φ) = xφ

t . Let

f : Δ ∩ C1 → R

be given by f (φ) = −α φ(−dΔ(φ)). The C1-maps Ft , t ≥ 0, with nonempty domain
Ωt := {φ ∈ X : t < te(φ)} and Ft (φ) = F(t, φ), satisfy

DFt (φ)χ = v
φ,χ
t

with the C1-solution v = vφ,χ , v : [−r, te(φ)) → R
n , of the initial value problem

v′(t) = Df
(
F(t, φ)

)
vt for t ≥ 0,

v0 = χ ∈ TφX.

The restriction of F to the set {(t, φ) ∈ Ω : 2 < t} is C1-smooth, with

D1F(t, φ)1 = (
xφ
t
)′ = (

(xφ)′
)
t ∈ C1.

From Eq. (3.8) for x = h we infer

F(t − s, hs) = ht for all t ≥ s.

It follows that
D2F(t − s, hs)h

′
s = h′

t for all t ≥ s. (9.1)

Proposition 9.1 For every j ∈ {1, . . . , n}, for all reals s ≤ t ′11 and for all reals t ≥ t ′′21
we have

D2F(t − s, hs)w j,s = q j,t .

Proof Let j ∈ {1, . . . , n} be given, and let dΔ,1 denote the C1-map C1 ⊃ Δ ∩ C1 � φ �→
dΔ(φ) ∈ (0, 2). For each t ∈ R we get

DdΔ,1(ht )b j,t = DdΔ,1
(
IC (t, 0)

)
Dj+1 I (t, 0)1 (Proposition 7.1)

= Dj+1
(
dΔ,1 ◦ I

)
(t, 0)1 (the chain rule)

= Dj+1
(
(s, c) �→ d(s) +

n∑

1

c j d j (s)
)
(t, 0)1 (Corollary 8.8)

= d j (t).

A computation as in Sect. 3 shows that for every φ ∈ Δ ∩ C1 and for all χ ∈ C1 we have

Df (φ)χ = −α
{
χ(−dΔ(φ)) − φ′(−dΔ(φ))DdΔ,1(φ)χ

}
.

It follows that for every t ∈ R,

Df (ht )b j,t = −α
{
b j (t − dΔ,1(ht )) − h′(t − dΔ,1(ht ))DdΔ,1(ht )b j,t

}

= −α
{
b j (t − dΔ,1(ht )) − h′(t − dΔ,1(ht ))d j (t)

}

(by the computation above)

= (b j )
′(t) (by the choice of b j in Sect. 5)
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The preceding equation implies that for all reals s and τ ≥ 0 we have

D2F(τ, hs)b j,s = b j,τ+s .

Finally, use b j (t) = w j (t) on (−∞, 0] and b j (t) = q j (t) on [m2,∞).

Before we state what has been achieved in a theorem it may be convenient to recall that

for α ∈
(

π
2 , 5π

2

)
we defined w : R → R by w(t) = eu0t sin(v0t) and y : R → R by

y(t) = eut sin(vt), with λ0 = u0 + iv0 the eigenvalue of the generator of the semigroup Tα

in (0,∞) + i(0,∞) and λ = u + iv the eigenvalue in (−∞, 0) + i(0,∞) with largest real
part.

Theorem 9.2 There exist α0 ∈
(

π
2 , 5π

2

)
so that for every α ∈

(
α0,

5π
2

)
there is a real

ah > 0 with the following properties. For every n ∈ N, and for all families of analytic
solutionsw j : R → R and q j : R → R, j ∈ {1, . . . , n}, of Eq. (3.1) withw′

0, w1,0, . . . , wn,0

linearly independent and y′
m2+2, q1,m2+2, . . . , qn,m2+2 linearly independent there are an

open neighbourhood Δ of 0 in C and a C1-functional dΔ : C ⊃ Δ → (0, 2) so that

(i) dΔ(φ) = 1 on a neigbourhood of 0 in C,
(ii) Eq. (3.8),

x ′(t) = −α x (t − dΔ(xt )) ,

has a C1-solution h : R → R with h(t) = w(t) on (−∞, 0] and h(t) = ah y(t) on
[1,∞); in particular, h(t) → 0 for |t | → ∞,

(iii) The maximal C1-solutions [−2, te) → R of Eq. (3.8) define a semiflow F on the C1

-submanifold

X := {φ ∈ Δ ∩ C1 : φ′(0) = −α φ(−dΔ(φ))}.
There exist s0 ≤ 0 and t0 ≥ 3 so that for all s ≤ s0 and all t ≥ t0 we have

D2F(t − s, hs)h
′
s = h′

t ,

and for every j ∈ {1, . . . , n},
w j,s ∈ Ths X, q j,t ∈ Tht X, and D2F(t − s, hs)w j,s = q j,t .

Corollary 9.3 There exist α0 ∈
(

π
2 , 5π

2

)
so that for every α ∈

(
α0,

5π
2

)
there is a real

ah > 0 with the following properties. There are an open neighbourhood Δ of 0 in C and a
C1-functional dΔ : C ⊃ Δ → (0, 2) so that

(i) dΔ(φ) = 1 on a neigbourhood of 0 in C,
(ii) and Eq. (3.8), namely,

x ′(t) = −α x (t − dΔ(xt ))

has a C1-solution h : R → R with h(t) = w(t) on (−∞, 0] and h(t) = ah y(t) on
[1,∞); in particular, h(t) → 0 for |t | → ∞,

(iii) The maximal C1-solutions [−2, te) → R of Eq. (3.8) define a semiflow F on the C1

-submanifold

X := {
φ ∈ Δ ∩ C1 : φ′(0) = −α φ(−dΔ(φ))

}
.
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There exist s0 ≤ 0 and t0 ≥ 3 so that for all s ≤ s0 and all t ≥ t0, with

Y := T0X = {
χ ∈ C1 : χ ′(0) = −αχ(−1)

}
and Ys := Cs ∩ Y ⊃ Ci ,

we have

Ths X = Tht X = Y = Ys ⊕ Cu,

and

h′
s ∈ Cu,

h′
t ∈ Ci ,

D2F(t − s, hs)h
′
s = h′

t ,

D2F(t − s, hs)(Ci ⊕ Cu) = (Ci ⊕ Cu) (this is 3.9),

(D2F(t − s, hs)Cu) ∩ Ys = Rh′
t (this is 3.6).

Proof Recall 0 
= w′
t ∈ Cu and 0 
= y′

t ∈ Ci for all t ∈ R. There are analytic solutions
w j : R → R and q j : R → R of Eq. (3.1), j ∈ {1, 2, 3}, so that for all t ∈ R w′

t , w1,t

form a basis of Cu and w2,t , w3,t form a basis of Ci , y′
t , q1,t form a basis of Ci , and q2,t , q3,t

form a basis of Cu . Theorem 9.2 with n = 3 yields that for s ≤ s0 and t ≥ t0 the derivative
D2F(t − s, hs) : Ths X → Tht X maps a basis of Ci ⊕ Cu onto a basis of the same space.

In particular we can arrange that D2F(t − s, hs)w1,s = q2,t (∈ Cu) which yields the
minimal intersection property

(
D2F(t − s, hs)Cu

) ∩ Ys = Rh′
t

for all s ≤ s0 and t ≥ t0.

10 The Inner Map

From here on we consider the delay functional dΔ : C ⊃ Δ → (0, 2) from Corollary 9.3.
Then there exists θ > m2 + 2 so that for all s ≤ −θ and for all t ≥ θ we have (3.9) and the
minimal intersection property (3.6).

Let W ⊂ Δ ⊂ C denote a neighbourhood of 0 ∈ C on which d(φ) = 1. Then

X ∩ W = {φ ∈ W ∩ C1 : φ′(0) = −α φ(−1)} = Y ∩ W

and for every t ≥ 0 and φ ∈ X ∩ W with F([0, t] × {φ}) ⊂ W ,

F(t, φ) = T (t)φ.

In the sequel we introduce hypersurfaces Hi and Hu which will be solid tori in Y ∩ W
with central circles Si ⊂ Ci and Su ⊂ Cu , respectively. Upon that we define the inner
map as the shift along phase curves from Hi \ Ys to Hu \ Su = Hu \ Cu . This requires
some preparation concerning the semigroups T on C and (D2F(t, 0))t≥0 on Y . Recall that
D2F(t, 0)χ = T (t)χ for all χ ∈ Y .

Recall λ0 = u0 + iv0, λ = u+ iv from Sects. 3 and 4 and let C< ⊂ C denote the realified
generalized eigenspace associated with the subset of the spectrum of the generator of the
semigroup T given by Re(ζ ) < u < 0. From the invariant decompositionC = C<⊕Ci ⊕Cu

we obtain the decomposition
Y = Y< ⊕ Ci ⊕ Cu (10.1)
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with Y< = C< ∩ Y which is positively invariant under the operators D2F(t, 0) : Y → Y ,
t ≥ 0. The projections Y → Y onto Y<,Ci ,Cu which are given by the decomposition (10.1)
are denoted by P<, Pi , Pu , respectively.

For the exponential decay of phase curves T (·)χ in Y< we have the estimate

|T (t)y<|1 ≤ c<e
−η<t |y<|1 for all y< ∈ Y<, t ≥ 0, (10.2)

with constants c< ≥ 1 and −η< < u < 0.
We turn to the action of T on Ci ⊕Cu . The complex-valued functions eλ0· : [−2, 0] → C

and eλ· : [−2, 0] → C are eigenvectors associated with the eigenvalues λ0 = u0 + iv0 and
λ = u + iv of the generator of T . The functions cu : [−2, 0] → R and su : [−2, 0] → R

given by

cu(t) = eu0t cos(v0t) = Re
(
eλ0t

)
, su(t) = eu0t sin(v0t) = Im

(
eλ0t

)
,

form a basis of Cu , and the functions ci : [−2, 0] → R and si : [−2, 0] → R} given by
ci (t) = eut cos(vt) = Re

(
eλt ) , si (t) = eut sin(vt) = Im

(
eλt)

form a basis of Ci . For reals a, b and t ≥ 0 and z = a + ib ∈ C, z = |z|eiφ with φ ∈ R, we
use the extension of the semigroup to complex-valued data [−2, 0] → C and obtain

T (t)z · eλ· = zeλt eλ·,

hence

T (t)(a · ci − b · si ) = T (t) Re
(
z · eλ·) (10.3)

= Re
(
T (t)z · eλ·)

= Re
(
zeλt eλ·)

= Re
(
|z|eiφ+ut+ivt (ci + isi )

)

= |z|eut (cos(φ + vt) · ci − sin(φ + vt) · si ) .

Analogously,

T (t)(a · cu − b · su) = |z|eu0t (cos(φ + v0t) · cu − sin(φ + v0t) · su). (10.4)

It will be convenient to introduce the isomorphism

K : Y< × C × C → Y, K (y<, z, z0) = y< + Re(z) · ci − Im(z) · si
+ Re(z0) · cu − Im(z0) · su,

with C considered as a vector space over R. A first consequence is the formula

K−1T (t)K (y<, z, z0) = T (t)y< + |z|eut ei(φ+vt) + |z0|eu0t ei(ψ+v0t) (10.5)

for y< ∈ Y<, z = |z|eiφ ∈ C, and |z0|eiψ ∈ C, with reals φ,ψ .
Now choose ε0 > 0 so that

W0 := K
(
Y<,ε0 × Cε0 × Cε0

)

is contained in W . Then choose positive reals r < Ri < R with

Ri < R e−u0θ , R < min
{
ε0, e

−u0θ
}

(< 1), c<r < ε0, r < A euθ
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and such that for all y< ∈ Y< and for all positive reals q ≤ Ri we have
∣
∣
∣
∣T
(

1

u0
log

(
R

q

))
y<

∣
∣
∣
∣
1

≤ |y<|1. (10.6)

Consider the hypersurfaces

Hi := {K (y<, z, z0) : |y<|1 ≤ r, |z| = r, |z0| ≤ Ri },
Hu := {K (y<, z, z0) : |y<|1 ≤ r, |z| ≤ r, |z0| = R}

in Y ∩ W = X ∩ W .
The central circles in these solid tori are the sets

Si := {K (0, z, 0) : |z| = r}
and

Su := {K (0, 0, z0) : |z0| = R},
respectively (Fig. 5).

For every t ≤ 0 the homoclinic solution h satisfies ht ∈ Cu , and for all a ∈ [−2, 0],
ht (a) = eu0(t+a) sin

(
v0(t + a)

) = eu0t
(
sin(v0t)c0(a) + cos(v0t)s0(a)

)
,

hence

ht = K (0, 0, eu0t
(
sin(v0t) − i cos(v0t)

)
,

and thereby,

|K−1ht | = eu0t

for all t ≤ 0. Analogously we have for all t ≥ m2 + 2 that ht ∈ Ci and

|K−1ht | = ah e
ut .

The choice of R < e−u0θ and r < A euθ above implies that there exist tu ≤ −θ and ti ≥ θ

with htu ∈ Hu and hti ∈ Hi .
Using (10.5) we see that a phase curve [0,∞) � t �→ T (t)χ ∈ C1 of the semigroup T

which starts from χ = K (y<, z, z0) ∈ Hi \ Ys , that is, with 0 < |z0| ≤ Ri < R, reaches the
level set

{
χ̃ ∈ Y : |K−1Pu χ̃ | = R

}

at

t = 1

u0
log

(
R

|z0|
)

.

Let σ0 : Hi \ Ys → (0,∞) be the stopping time map given by

σ0(χ) = 1

u0
log

(
R

|z0|
)

for χ = K (y<, z, z0) ∈ Hi \ Ys . It will be convenient to introduce also the map

τ : (0,∞) → R, τ (q) = 1

u0
log

(
R

q

)
,
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Fig. 5 The sets Hi and Hu with central circles Si and Su . The Y<-components are omitted

which permits us to write

σ0(χ) = τ(|z0|)
for χ = K (y<, z, z0) ∈ Hi \ Ys .

The estimate (10.2), the choice c<r < ε0, and the representations (10.3) and (10.4) of the
semigroup on Ci and on Cu combined show that all T (t)χ with 0 ≤ t ≤ σ0(χ), χ ∈ Hi \Ys ,
belong to a bounded set Wb ⊂ W , hence T (t)χ = F(t, χ) for these t and χ . Using this fact
and (10.5) we see that the inner map

Σ0 : Hi \ Ys � χ �→ F(σ0(χ), χ) ∈ X

is given as follows (Fig. 6).
For χ = K (y<, z, z0), |y<|1 ≤ r, z = reiφ, z0 = |z0|eiψ with 0 < |z0| ≤ Ri < R and

reals φ,ψ , we have Σ0(χ) = K (ŷ<, ẑ, ẑ0) with

ŷ< = T
(
τ(|z0|)

)
y< ∈ Y<, (10.7)

ẑ = r

(
R

|z0|
) u

u0
ei
(
φ+vτ(|z0|)

)
∈ C, (10.8)

ẑ0 = R ei
(
ψ+v0τ(|z0|)

)
∈ C. (10.9)

Using (10.6)–(10.9) we infer

Σ0(Hi \ Ys) ⊂ Hu \ Cu .

Proposition 10.1 Σ0(Hi \ Ys) has compact closure in Y .

Proof The inequality

|z0| ≤ Ri ≤ R e−u0θ ≤ R e−2u0
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Fig. 6 The inner map, with Y<-components and one dimension in each of Ci and Cu omitted

yields σ0(χ) ≥ 2 on Hi \Ys . The fact that the set of all T (t)χ , 0 ≤ t ≤ σ0(χ) andχ ∈ Hi \Ys ,
is bounded means that the solutions yχ : [−2,∞) → R of the initial value problem

y′(t) = −α y(t − 1), y0 = χ ∈ Hi \ Ys,

and their derivatives are uniformly bounded on [−2, σ0(χ)]. It follows that there is a constant
L ≥ 0 such that

Lip
(
yχ |[−2, σ0(χ)]) ≤ L for all χ ∈ Hi \ Ys .

Using the preceding equation we infer that Lip((yχ )′|[0, σ0(χ)]) ≤ α L for all χ ∈ Hi \Ys .
As 2 ≤ σ0(χ) this yields Lip((yχ

σ0(χ))
′) ≤ αL for all χ ∈ Hi \ Ys . Altogether,

sup
χ∈Hi\Ys

|Σ0(χ)|1 + sup
χ∈Hi\Ys

Lip
(
Σ0(χ

)
) + sup

χ∈Hi\Ys
Lip

(
(Σ0(χ))′

)
< ∞.

Now a twofold application of the Arzelà–Ascoli theorem leads to the assertion.

11 The Outer Map

In this section we define an outer map following phase curves from a neighbourhood of htu in
Hu to their intersection with Hi . The first step towards the outer map prepares the existence
of a suitable stopping time map.

For every tangent vector z ∈ Thti Hi there is a differentiable curve ζ in Hi ⊂ Y< + S1i +Cu

with ζ(0) = hti and z = ζ ′(0). The function cr ◦ ζ , with cr : Y � χ �→ |K−1
i Piχ | ∈ R, is

constant. This implies

Dcr (hti )z = D(cr ◦ ζ )(0) = 0.
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Fig. 7 The outer map, with Y<-components and one dimension in each of Ci and Cu omitted

For the phase curve H1 : R � t �→ ht ∈ C1 with range in X and for t ≥ m2 + 2 we obtain
cr (H1(t)) = |K−1Pi (H1(t))| = A eut , hence

Dcr (hti )H
′
1(ti ) 
= 0,

which yields
h′
ti = H ′

1(ti ) /∈ TH1(ti )Hi . (11.1)

See [18] for the equation. The transversality condition (11.1), the fact that the semiflow F
is continuously differentiable on the part of its domain given by t > 2, and the inequality
ti − tu > 2 combined yield a continuously differentiable stopping time map

σ1 : Vσ1 → (2,∞)

on an open neighbourhood Vσ1 ⊂ W0 of htu in Y , with

σ1(htu ) = ti − tu and |K−1Pi F(σ1(χ), χ)| = r for all χ ∈ Vσ1 .

As hti = F(σ1(htu ), htu ) is in Ci the components of hti in Y< and in Cu vanish. It follows
that there is an open neighbourhood V ⊂ Vσ1 of htu in Y so that each F(σ1(χ), χ) ∈ Hi ,
χ ∈ V , belongs to the C1-submanifold

◦
Hi := {K (y<, z, z0) : |y<|1 < r, |z| = r, |z0| < Ri } ⊂ Hi

of the space Y , and we obtain the continuously differentiable outer map

Σ1 : V � χ �→ F(σ1(χ), χ) ∈ ◦
Hi

with

Σ1(htu ) = hti (see Fig.7).
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Recall that for any χ ∈ Y ,

DΣ1(htu )χ = PhD2F
(
ti − tu, htu

)
χ

with the projection Ph : Y → Y along Rh′
ti onto Thti Hi , because of the relations

Thti Hi � DΣ1(htu )χ = D1F
(
ti − tu, htu

)
Dσ1(htu )χ + D2F

(
ti − tu, htu

)
χ

= Dσ1(htu )χ · h′
ti + PhD2F

(
ti − tu, htu

)
χ

+ (idY − Ph) D2F
(
ti − tu, htu

)
χ.

We have
Thtu Hu = Y< + Ci + Rτu

with τu = ω′(0) 
= 0 for the curve

ω : R → S1u ⊂ Hu ∩ Cu, ω(ψ) = K
(
0, 0, R ei(ψ+ψu)

)

where ψu ∈ [−π, π) and

htu = K
(
0, 0, R eiψu

)
.

Similarly,
Thti Hi = Y< + Rτi + Cu

with τi = ρ′(0) 
= 0 for the curve

ρ : R → S1i ⊂ Hi ∩ Ci , ρ(φ) = K
(
0, r ei(φ+φi ), 0

)

where φi ∈ [−π, π) and

hti = K
(
0, r eiφi , 0

)
.

Because of (11.1) the vectors τi ∈ Ci and h′
ti ∈ Ci are linearly independent, and because of

the relation

h′
tu /∈ Thtu Hu

analogous to (11.1) the vectors τu ∈ Cu and h′
tu ∈ Cu are linearly independent. For all

y< ∈ Y<, a ∈ R, b ∈ R, χu ∈ Cu we have

Ph
(
y< + aτi + bh′

ti + χu
) = y< + aτi + χu . (11.2)

It is convenient to recall here that

D2F
(
ti − tu, htu

)
(Ci ⊕ Cu) = Ci ⊕ Cu . (11.3)

Proposition 11.1

DΣ1
(
htu
)
(Ci ⊕ Rτu) = Rτi ⊕ Cu .

Proof Using (11.3) and (11.2) we infer

DΣ1(htu )(Ci ⊕ Rτu) ⊂ Ph(Ci ⊕ Cu) = Rτi ⊕ Cu .
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Fig. 8 The transversality condition

It remains to show that the restriction of DΣ1(htu ) toCi⊕Rτu is injective. So letχ ∈ Ci⊕Rτu
with 0 = DΣ1(htu )χ = PhD2F(ti − tu, htu )χ be given. Then D2F(ti − tu, htu )χ ∈ Rh′

ti .
Using D2F(ti − tu, htu )h

′
tu = h′

ti (see Theorem 9.2), h′
tu ∈ Cu and (11.3) we obtain

χ ∈ Rh′
tu ,

and it follows that χ ∈ Rh′
tu ∩ (Ci ⊕ Rτu) = {0}.

We proceed to a transversality condition for the outer map.

Proposition 11.2
PuDΣ1(htu )τu 
= 0 (see Fig. 8).

Proof 1. From (11.3) we get D2F(ti − tu, htu )τu ∈ Ci ⊕Cu . Suppose D2F(ti − tu, htu )τu ∈
Ci . As τu and h′

tu form a basis of Cu and

D2F
(
ti − tu, htu

)
h′
tu = h′

ti ∈ Ci

we obtain D2F(ti − tu, htu )Cu ⊂ Ci ⊂ Ys which in view of (11.3) yields

dim
(
D2F(ti − tu, htu )Cu

) ∩ Ys = 2,

in contradiction to the minimal intersection property (3.6) with tu ≤ −θ, ti ≥ θ .
2. We just showed D2F(ti − tu, htu )τu ∈ (Ci ⊕ Cu) \ Ci . The decompositions

Y = Y< ⊕ Rτi ⊕ Rh′
ti ⊕ Cu

and

Thti Hi = Y< ⊕ Rτi ⊕ Cu

in combination with

D2F(ti − tu, htu )τu = aτi + bh′
ti + χu
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for some a, b in R and 0 
= χu ∈ Cu , the latter because of part 1, yield

PuDΣ1(htu )τu = Pu PhD2F(ti − tu, htu )τu

= Pu Ph(aτi + bh′
ti + χu) = Pu(aτi + χu) (see 11.2)

= χu 
= 0.

For later use we translate the previous results into statements about global coordinates on
Hu and Hi , respectively. Consider the injective maps

Cu : Y<,r × Cr × [−π, π) → Y, Cu(y<, z, ψ) = K
(
y<, z, R ei(ψ+ψu)

)

and

Ci : Y<,r × [−π, π) × Cr → Y, Ci (y<, φ, z0) = K
(
y<, r ei(φ+φi ), z0

)
.

We have

Cu
(
Y<,r × Cr × [−π, π)

) = Hu and Ci
(
Y<,r × [−π, π) × Cr

) = Hi .

ThemapCu defines aC1-diffeomorphism fromY<,r×Cr×(−π, π) into theC1-submanifold

◦
Hu := {K (y<, z, z0) : |y<|1 < r, |z| < r, |z0| = R} ⊂ Hu

of the space Y , with

Cu ({0<} × Cr × (−π, π)) ⊂ {0<} + Ci + Su,

and the map Ci defines a C1-diffeomorphism from Y<,r × (−π, π) × Cr into the C1-

submanifold
◦
Hi⊂ Hi of the space Y , with

Ci ({0<} × (−π, π) × Cr ) ⊂ {0<} + Si + Cu .

Let us distinguish the null elements of the spaces Y<,C,R by writing 0<, 0C, 0R, respec-
tively, and define

0u := (
0<, 0C, 0R

) ∈ Y<,r × Cr × [−π, π), 0i := (
0<, 0R, 0C

) ∈ Y<,r × [−π, π) × Cr .

Then

Cu
(
0u
) = htu , (11.4)

DCu(0u)
({0<} × C × R

) = {0<} + Ci + Thtu Su

= {0<} + Ci + Rτu, (11.5)

DCu(0u)
(
0<, 0C, 1

) = τu, (11.6)

Ci (0i ) = hti , (11.7)

DCi (0i )
({0<} × R × C

) = {0<} + Thti Si + Cu

= {0<} + Rτi + Cu, (11.8)

DCi (0i )
(
0<, 1, 0C

) = τi . (11.9)

Now consider the outer map Σ1 in terms of coordinates, namely, the map

P1 : (Cu)
−1(V ) → Y< × R × C

given by

P1(η, z, ψ) = (Ci )
−1(Σ1

(
Cu(η, z, ψ))

)
.
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The map P1 is defined on a neighbourhood of the origin in Y< × C × R, has its range in
Y<,r × [−π, π) × Cr , satisfies

P1(0u) = 0i ,

and is continuously differentiable on

(Cu)
−1(V ) ∩ (Y<,r × Cr × (−π, π)).

Proposition 11.1 in combination with (11.4)–(11.19) yields

DP1(0u)({0<} × C × R) = {0<} × R × C.

It follows that

(T1) the induced map D1 : {0<} × C × R → {0<} × R × C is an isomorphism

(of three-dimensional vector spaces over R). Observe that the inverse of the derivative of the
C1-diffeomorphism

Y<,r × (−π, π) × Cr
Ci→ Ci (Y<,r × (−π, π) × Cr ) ⊂ ◦

Hi

at hti is the linear map [DCi (0i )]−1. Using this we infer from Proposition 11.2 that the vector

ξ := DP1
(
0u
)(
0<, 0C, 1

) = D1
(
0<, 0C, 1

)

= [
DCi (0i )

]−1
DΣ1(htu )DCu(0u)

(
0<, 0C, 1

)

= [
DCi (0i )

]−1
DΣ1(htu )τu

and the projection

pr2 : {0<} × R × C → {0<} × R × C, pr2(0<, φ, z0) = (
0<, 0R, z0

)
,

satisfy

(T2) pr2ξ 
= (0<, 0R, 0C).

Clearly the nullspace of pr2 is

{0<} × R × {0C} = R eφ with eφ := (
0<, 1, 0C

)
.

We end this section with further technical preparations concerning the isomorphism D1.
As a consequence of (T1), the vector ξ = D1(0<, 0C, 1) ∈ D1({0<} × {0C} × R) does not
belong to the two-dimensional space (Fig. 9)

U1 := D1
({0<} × C × {0R}).

Therefore the range of D1 satisfies

D1({0<} × C × R) = {0<} × R × C = U1 ⊕ Rξ. (11.10)

Notice that (T2) yields
ξ /∈ R eφ. (11.11)

From (11.10) and (11.11) we see that there are uniquely determined μ ∈ R and f1 ∈
U1 \ {(0i } such that

eφ = f1 + μξ. (11.12)
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Fig. 9 The vectors f1, f2, ξ, e1, and e⊥1 . (The direction of f1 is geometrically obtained by intersecting the
plane spanned by ξ and eφ with the space U1.)

Set e1 := D−1
1 f1 ∈ {0<} × C × {0R}. Then e1 = (0<, p1eiφ1 , 0R) with p1 > 0 and

0 ≤ φ1 < 2π uniquely determined. Define

e⊥
1 := (0<, p1e

i(φ1+ π
2 ), 0R).

Then

{0<} × C × {0R} = R e1 ⊕ R e⊥
1 .

Setting f2 := D1e⊥
1 we arrive at

U1 = D1
(
R e1 ⊕ R e⊥

1

) = R f1 ⊕ R f2, (11.13)

which in combination with (11.10) yields

{0<} × R × C = R f1 ⊕ R f2 ⊕ R ξ (11.14)

for the range of D1.
Next we consider the plane H := R f2 ⊕R ξ ⊂ {0<}×R×C. Using (11.12) and (11.14)

we see that the vector eφ spanning the nullspace of pr2 does not belong to H . Consequently
the restriction pr2 H

defines an isomorphism onto the space {0<}× {0R}×C. Therefore the

vectors pr2ξ and pr2 f2 form a basis of the space {0<} × {0R} × C, which in turn guarantees
a constant γ2 > 0 such that for all reals a, b we have

∣∣pr2(a f2 + b ξ)
∣∣ ≥ γ2

(|a| + |b|). (11.15)

In Sect. 13 we will approximate the map P by a map with values in the space H ⊕ R · eφ ,
and then consider a simplifying homotopy which eliminates the components in eφ-direction,
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and replaces the values in H by their projection to {0<} × {0R} × C (there property (11.15)
is important). The geometric idea of finding disjoint subsets N0, N1 in the domain of P ,
to which the methods from Sect. 2 can be applied, is to define subsets which (ignoring the
Y<-part) get mapped to ‘different sides’ of the plane H . This means that the components of
P(x) in eφ-direction will be positive for x ∈ N0 and negative for x ∈ N1. In order to control
these values, we need to control the values of P0(x) in the direction of e1 and e⊥

1 , and we
prepare this now.

Let < ·, · >: C × C → R denote the euclidean scalar product, i.e.,
〈
a + bi, c + di

〉 = ac + bd for all a, b, c, d,∈ R.

Obviously, eiφ1 and ei(φ1+ π
2 ) are orthogonal unit vectors with respect to < ·, · >. From the

definitions of e1 and e⊥
1 we obtain for every z ∈ C

(
0<, z, 0R

) = L(z)e1 + L⊥(z)e⊥
1 , (11.16)

with the R−linear functionals L : C → R and L⊥ : C → R given by

L(z) = 1

p1
< z, eiφ1 >, L⊥(z) = 1

p1
< z, ei(φ1+π/2) > . (11.17)

For 0C 
= z = |z| · eiφ we get

L(z) = |z|
p1

cos(φ − φ1), L⊥(z) = |z|
p1

sin(φ − φ1). (11.18)

In view of (11.8), we can find d1 ∈ (0, π/2) (close to π/2) and ε1 > 0 such that

0 < d1 − ε1 < d1 + ε1 < π/2, (11.19)

and such that if 0C 
= z = |z|eiφ then with μ from (11.12) one has the implication

|φ−φ1| ∈ [d1−ε1, d1+ε1]+Zπ �⇒ |L⊥(z)| ≥ 2|μ||L(z)|, |L⊥(z)| ≥ 1

2

|z|
p1

. (11.20)

12 Composition

This section begins with neighbourhoods of the point htu in the domain V of the outer map
which are given by small components in Y< and in Ci and small arcs on Su � htu . We find
preimages of these neighbourhoods under the inner map on which the composition of the
inner and outer maps is defined.

Recall that V is a neighbourhood of htu = K (0, 0, R eiψu ) in Y . There exist γV ∈ (0, π)

and rV ∈ (0, r ] with
R
(rV
r

)− u0
u ≤ Ri (12.1)

such that for every γ ∈ (0, γV ], r̃ ∈ (0, rV ], and r̂ ∈ (0, rV ] the closed set

V (γ, r̃ , r̂) := {K (y<, z, z0) ∈ Y : |y<|1 ≤ r̂ , |z| ≤ r̃ , z0 = R eiψ

with ψu − γ ≤ ψ ≤ ψu + γ }
is a subset of V which contains htu (Fig. 10).
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Fig. 10 The set V (γ, r̃ , r̂), with Y<-components omitted

Fig. 11 The inequalities (12.2) and (12.3), and the set Hi (γ, r̃ , r̂), with Y<-components omitted

For the same γ, r̃ , r̂ define (Fig. 11)

Hi (γ, r̃ , r̂) := {
χ = K (y<, z, z0) ∈ Y : |y<|1 ≤ r, |z| = r,

z0 = |z0| eiψ with ψ ∈ R satisfies

0 < |z0| ≤ R

(
r̃

r

)− u0
u

(12.2)

and

R e
u0
v0

(ψ−ψu−γ ) ≤ |z0| ≤ R e
u0
v0

(ψ−ψu+γ )
,

and

|P<Σ0(χ)|1 ≤ r̂
}
. (12.3)

123



674 J Dyn Diff Equat (2016) 28:627–688

Then

Hi (γ, r̃ , r̂) ⊂ Hi \ Ys

(and hti /∈ Hi (γ, r̃ , r̂)).

Proposition 12.1 For every γ ∈ (0, γV ], r̃ ∈ (0, rV ], and r̂ ∈ (0, rV ] we have
Σ0
(
Hi (γ, r̃ , r̂)

) ⊂ V
(
γ, r̃ , r̂

)
.

Proof Let χ = K (y<, z, z0) ∈ Hi (γ, r̃ , r̂) ⊂ Hi \ Ys be given, with |y<|1 ≤ r , |z| = r ,
z0 = |z0|eiψ with ψ ∈ R satisfying (12.2) and (12.3), and

|P<Σ0(χ)|1 ≤ r̂ .

Using (10.7)–(10.9) we obtain Σ0(χ) = K (ŷ<, ẑ, ẑ0) with

|ŷ<|1 = |T (τ (|z0|))y<|1 = |T (σ0(χ))y<|1 = |T (σ0(χ))P<χ |1
= |P<T (σ0(χ))χ |1 = |P<Σ0(χ)|1 ≤ r̂

and

|ẑ| = r

(
R

|z0|
) u

u0

which is not larger than r̃ because of (12.2). Finally,

ẑ0 = R eiψ̂

with

ψ̂ = ψ + v0τ(|z0|) = ψ + v0

u0
log

(
R

|z0|
)

,

and (12.3) yields ψu − γ ≤ ψ̂ ≤ ψu + γ . Altogether,

Σ0(χ) = K (ŷ<, ẑ, ẑ0) ∈ V (γ, r̃ , r̂).

Remark It is not hard to show that we actually have

Σ0(Hi (γ, r̃ , r̂)) = V (γ, r̃ , r̂),

see Proposition 4.1 in [19]. Notice that the sets Hi (γ, r̃ , r̂) are not closed as Si ⊂ Hi (γ, r̃ , r̂)\
Hi (γ, r̃ , r̂).

Corollary 12.2 Σ1 ◦ Σ0(Hi (γ, r̃ , r̂)) is compact and contained in the set Σ1(V (γ, r̃ , r̂)).

Proof As V (γ, r̃ , r̂) is closedwe haveΣ0(Hi (γ, r̃ , r̂)) ⊂ V (γ, r̃ , r̂). Proposition 10.1 yields
that Σ0(Hi (γ, r̃ , r̂)) ⊂ Σ0(Hi \ Ys) is compact. It follows that Σ1 ◦ Σ0(Hi (γ, r̃ , r̂)) ⊂
Σ1(Σ0(Hi (γ, r̃ , r̂))) is compact and contained in Σ1(V (γ, r̃ , r̂)).

We express the return map

Hi (γ, r̃ , r̂) � χ �→ Σ1(Σ0(χ)) ∈ Hi

in terms of coordinates as follows. The inner map in terms of coordinates, namely, the map

P0 : C−1
i

(
Hi (γ, r̃ , r̂)

) → Y<,r × Cr × [−π, π),

P0(y<, φ, z0) = C−1
u

(
Σ0(Ci (y<, φ, z0))

)
,
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has its values in C−1
u (V (γ, r̃ , r̂)) ⊂ C−1

u (V ), which is the domain of P1, the outer map in
terms of coordinates, and

P : C−1
i

(
Hi (γ, r̃ , r̂)

) → Y< × R × C

given by P(x) = P1(P0(x)) is the return map in terms of coordinates.
Using the definitions of the maps Ci ,Cu and (10.7)–(10.9) we infer P0(y<, φ, z0) =

(ỹ<, z̃, ψ̃) with

ỹ< = T (τ (|z0|))y<, (12.4)

z̃ = r

(
R

|z0|
) u

u0
ei
(
φ+vτ(|z0|)+φi

)
, (12.5)

ψ̃ = ψ + v0τ
(|z0|

)− ψu . (12.6)

Corollary 12.2 implies that P maps its domain into a compact subset of Y< ×R×Cwhich
is contained in the domain Y<,r × [−π, π) × Cr of Ci .

13 Definition of Suitable Subsets N0, N1

In this section we define disjoint closed subsets N0, N1 of the domain of P1 ◦ P0 for which
we can prove that P = P1 ◦ P0 has symbolic dynamics in the sense of Corollary 2.4.

Choose first δ̄2 ∈ (0,min{γV , rV }] such that P1 is defined on the setY<,δ̄2
×Cδ̄2

×(−δ̄2, δ̄2)

and that with constants L1, c > 0, with ξ from (T2), and γ2 from (11.15), the following
estimates hold for y and ỹ in Y<,δ̄2

× Cδ̄2
× (−δ̄2, δ̄2):

|P1(y) − P1(ỹ)| ≤ L1|y − ỹ| (13.1)

P1(y) = P1(0u)︸ ︷︷ ︸
=0i

+DP1(0u)(y − 0u) + ν(y), where (13.2)

|ν(y)| ≤ c|y − 0u | and c ≤ min

{ |pr2ξ |
16

,
γ2

16p1
, γ2

}
. (13.3)

Choose δ1 ∈ (0, 1] such that with ε1 from (11.19) and p1 from the definition of e1 in Sect. 11,
one has

2δ1L1 ≤ min

{
γ2

16p1
, c

}
, δ1 < ε1/2. (13.4)

We set r< := r/c< (see (10.2)), so that for t ≥ 0 one has r<c< exp(−η<t) ≤ r . Next we
choose δ2 ∈ (0, δ̄2] satisfying the following conditions (with I2 := [−δ2, δ2]; recall also that
d1 < π/2, and the eigenvalues u + iv and u0 + iv0):

v

v0
δ2 < ε1/2, (13.5)

L1δ2 < min{r<, δ1}, (13.6)

|u|
(
I2
v0

+ [−d1, d1]
v

)
⊂
[
−|u|π

v
,
|u|π
v

]
. (13.7)

For ψ < ψu − δ2 we define the interval

R(ψ) := R · exp
[
u0
v0

(I2 + ψ − ψu)

]
(compare formula (12.3)) (13.8)
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Fig. 12 A part of the set Dϑ∗,δ1 , without components in Y<

which is contained in (0, R), and for ϑ > 0 we define the following subset of Y< × R × C:

Dϑ,δ1 :=
{(

y<, φ, |z0|eiψ
) ∣∣

|y<|1 ≤ r<, |φ| ≤ δ1, −∞ < ψ ≤ −δ2 − |ψu | − ϑ, |z0| ∈ R(ψ)
}
.

Note that maxR(ψ) → 0 and min
{
τ(|z0|)

∣∣ |z0| ∈ R(ψ)
}

→ ∞ as ψ → −∞. It is clear

from Proposition 12.1 and the definition of the sets Hi (. . .) that there exists ϑ̄ > δ2 such that
for ϑ ≥ ϑ̄ one has Dϑ,δ1 ⊂ C−1

i (Hi (δ2, δ2, δ2)), which implies that

for all ϑ ≥ ϑ̄, the maps P0 and P1 ◦ P0 are defined on Dϑ,δ1 , and

P0
(
Dϑ,δ1

) ⊂ C−1
u

(
V (δ2, δ2, δ2)

) = Y<,δ2 × Cδ2 × I2.
(13.9)

Recall that −η< < u < 0 and that u0 > |u| (see (3.3)), and set q := exp[3π |u|/v]. Choose
ϑ∗ > ϑ̄ such that for x = (y<, φ, z0) ∈ Dϑ∗,δ1 one has

|z0| ≤ |pr2ξ |δ2
8

, (13.10)

e−η<τ(|z0|) ≤ δ1e
uτ
(
|z0|
)
, (13.11)

R

r
q exp

[− (u + u0)ϑ
∗/v0

]
<

1

16p1
min{γ2, 1}, (13.12)

and consider the set Dϑ∗,δ1 from now on (Fig. 12).
The projection of Dϑ∗,δ1 to the z0-plane is the area bounded by the two logarithmic spirals

given by |z0| = maxR(ψ) and |z0| = minR(ψ), ψ ∈ (−∞,−δ2 − |ψu | − ϑ∗].
The relative positions of Dϑ∗,δ1 and its image under P are qualitatively as shown in Fig. 13.

This is not obvious at this point, but will be shown in Sects. 13 and 14. In particular, the fact
that P(Dϑ∗,δ1) extends further in the directions of ξ and f2 than Dϑ∗,δ1 is contained in the
proof of Lemma 14.1.

Note that for ϑ, ϑ ′ ∈ (−∞,−δ2 − |ψu | − ϑ∗] one has the implication

ϑ ′ = ϑ − 2kπ for some k ∈ N �⇒ maxR(ϑ ′) < minR(ϑ), (13.13)
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Fig. 13 The set Dϑ∗ and its image under P (qualitatively)

since 2δ2 < 2kπ . Thus, for (y<, φ, |z0|eiψ) ∈ Dϑ∗,δ1 , the numberψ ∈ (−∞,−δ2−ψu−ϑ∗]
is uniquely determined by |z0| (not only modulo 2π ). Recall the numbers φ1 and d1 from

Sect. 11.We now choose k∗ ∈ N such thatψu + v0

v
(φi −φ1−2k∗π +d1) < −δ2−|ψu |−ϑ∗,

and such that with

rmin := r exp

[ |u|
v

(φi − φ1 − π − 2k∗π)

]
exp

[
−|u|

v
π

]
,

rmax := r exp

[ |u|
v

(φi − φ1 − 2k∗π)

]
exp

[ |u|
v

π

] (13.14)

one has

μrmax

p1
≤ δ2/2,

rmax

p1
≤ δ2|pr2ξ |min

{
1,

1

8|pr2 f2|
}

, 2rmax ≤ δ2. (13.15)

Then the intervals

J0 := ψu + v0

v

(
φi − φ1 − 2k∗π + [−d1, d1]

)
,

J1 := ψu + v0

v

(
φi − (φ1 + π) − 2k∗π + [−d1, d1]

)

satisfy max J1 < min J0 < max J0 < −δ2 − |ψu | − ϑ∗ (for the first inequality, recall that
d1 < π/2).
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Fig. 14 The sets N0 and N1, their images under P , and the hyperplane 0i + H (qualitatively, with only the
three-dimensional part shown)

Finally we define

N0 :=
{(

y<, φ, |z0|eiψ
) ∣∣ |y<|1 ≤ r<, |φ| ≤ δ1,

ψ ∈ J0, |z0| ∈ R(ψ)
}
,

N1 :=
{(

y<, φ, |z0|eiψ
) ∣∣ |y<|1 ≤ r<, |φ| ≤ δ1,

ψ ∈ J1, |z0| ∈ R(ψ)
}
,

and N := N0 ∪ N1.

These sets are closed subsets of Dϑ∗,δ1 , and disjointness of J0 and J1 together with property
(13.13) imply that N0 ∩ N1 = ∅. Note also that q = rmax/rmin (independently of the choice
of k∗).

The intersection properties of N0, N1 and their images under P are as indicated in Fig. 14.
This is proved partially in Proposition 13.1 (in particular, how the boundaries of N0 and N1

are mapped under P), and partially in the proof of Lemma 14.1, where we a construct a
homotopy to a simplermodelmap. Parts (c) and (d) of Proposition 13.1 describe, in geometric
interpretation, that N0 and N1 get mapped to different sides of the plane H .
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Proposition 13.1 Assume x = (y<, φ, |z0|eiψ) ∈ N (withψ ∈ J0 ∪ J1, and φ ∈ [−δ1, δ1]),
and set

τ := τ(|z0|), ỹ< := T (τ )y<, r ′ := reuτ , φ̃ := φi + φ + vτ, ψ̃ := ψ + v0τ − ψu .

Then
P0(x) = (

ỹ<, r ′ei φ̃ , ψ̃
)
. (13.16)

The following properties (in particular, ‘boundary correspondences’) hold:

(a) τ ≥ ϑ∗/v0.
(b) ψ̃ ∈ [−δ2, δ2], and

|z0| = minR(ψ) �⇒ ψ̃ = δ2, |z0| = maxR(ψ) �⇒ ψ̃ = −δ2.

(c)

ψ ∈ J0 �⇒ φ̃ ∈ φ1 + [−d1 − ε1, d1 + ε1] + 2k∗π, and

ψ = min J0 �⇒ φ̃ − φ1 ∈ d1 + [−ε1, ε1] + 2k∗π,

ψ = max J0 �⇒ φ̃ − φ1 ∈ −d1 + [−ε1, ε1] + 2k∗π.

(d)

ψ ∈ J1 �⇒ φ̃ ∈ φ1 + π + [−d1 − ε1, d1 + ε1] + 2k∗π, and

ψ = min J1 �⇒ φ̃ − (φ1 + π) ∈ d1 + [−ε1, ε1] + 2k∗π,

ψ = max J1 �⇒ φ̃ − (φ1 + π) ∈ −d1 + [−ε1, ε1] + 2k∗π.

(e) r ′ ∈ [rmin, rmax].
(f) |z0| ≤ rmin

16p1
min{γ2, 1}.

Proof Equality (13.16) is clear from (12.4)–(12.6).
Ad (a) and (b): From the definition of R(ψ),

τ(R(ψ)) = 1

u0
log(

R

R(ψ)
) = 1

u0
log

(
exp

[
−u0

v0
(I2 + ψ − ψu)

])

= − (I2 + ψ − ψu)

v0
,

which shows that ψ̃ = ψ + v0τ − ψu ∈ ψ − (I2 + ψ − ψu) − ψu = −I2 = I2 = [−δ2, δ2],
and also the boundary relations in (b). (The inclusion ψ̃ ∈ I2 can also be seen from (13.9)).
Further, ψ ≤ −δ2 − |ψu | − ϑ∗ implies τ ≥ (−δ2 + δ2 + |ψu | + ϑ∗ + ψu)/v0 ≥ ϑ∗/v0,
which proves (a).

Ad (c): φ̃ = φi + φ + vτ ∈ φi + φ − v

v0
(I2 + ψ − ψu), so ψ ∈ J0 implies

φ̃ ∈ φi + φ − v

v0

(
I2 + J0 − ψu

)

= φi + φ − v

v0

[
I2 + v0

v
(φi − φ1 − 2k∗π + [−d1, d1])

]

⊂ φi + [−δ1, δ1] + v

v0
I2 − φi + φ1 + 2k∗π − [−d1, d1]

= [−δ1, δ1] + v

v0
I2 + φ1 + 2k∗π − [−d1, d1].
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Using (13.4) and (13.5), we obtain

φ̃ ∈ [−ε1/2, ε1/2] + [−ε1/2, ε1/2] + φ1 + 2k∗π − [−d1, d1]
= φ1 + [−d1 − ε1, d1 + ε1] + 2k∗π.

If ψ = min J0 = ψu + v0

v
(φi − φ1 − 2k∗π − d1) then φ̃ ∈ [−ε1, ε1] + φ1 + 2k∗π + d1,

and if ψ = max J0, the same is true with d1 replaced by −d1.
Ad (d): The proof is analogous to the proof of b), with φ1 replaced by φ1 + π (compare

the definitions of J0 and J1).
Ad (e): If x ∈ N0 then (recall that |u| = −u, and formula 12.5)

r ′ = r

(
R

|z0|
)u/u0

∈ r

[
1

exp[ u0
v0

(I2 + ψ − ψu)]

]u/u0

= r exp

[ |u|
v0

(I2 + ψ − ψu)

]

∈ r exp

[ |u|
v0

(I2 + J0 − ψu)

]

= r exp

[ |u|
v0

I2

]
· exp

{ |u|
v0

· v0

v
[φi − φ1 − 2k∗π + [−d1, d1]]

}

= r exp

[ |u|
v0

I2

]
· exp

{ |u|
v

[φi − φ1 − 2k∗π ]
}

· exp
{ |u|

v
[−d1, d1]

}

= r exp

[ |u|
v

(φi − φ1 − 2k∗π)

]
· exp

[
|u|

(
I2
v0

+ [−d1, d1]
v

)]
.

Using (13.7),we see that this set is contained in r exp[ |u|
v

(φi−φ1−2k∗π)]·exp([− |u|
v

π,
|u|
v

π]).
A similar estimate, with J0 replaced by J1 and (φ1 + π) in place of φ1 shows that if x ∈ N1

then r ′ ∈ r exp[ |u|
v

(φi − φ1 − π − 2k∗π)] · exp[− |u|
v

π,
|u|
v

π]. Together with the definitions
of rmin and rmax one sees that rmin ≤ r ′ ≤ rmax.

Ad (f): Recall that rmax/rmin = exp[3π |u|/v] = q . We have |z0| = Re−u0τ and

q rmin = rmax ≥ r ′ = reuτ = r

R
Re−u0τ
︸ ︷︷ ︸

=|z0|
e(u0+u)τ ,

so |z0| ≤ R

r
q rmine

−(u0+u)τ . Using part a) and (13.12), we conclude

|z0| ≤ R

r
q rmine

−(u0+u)ϑ∗/v0 ≤ rmin

16p1
min{γ2, 1}.

Recall the functionals L and L⊥ from Sect. 11. We use the notation of Proposition 13.1,
and the abbreviations

a := L
(
ei(φi+vτ)

)
, b := L⊥ (ei(φi+vτ)

)
.

(Note that, compared to the formula for φ̃ in Proposition 13.1, the variable φ does not appear
in the definitions of a and b.)

Proposition 13.2 For x ∈ N, we have

P(x) = r ′[a f1 + b f2
]+ ψ̃ξ + R1 + R2

= [
ψ̃ − μr ′a

]
ξ + r ′b f2 + r ′aeφ + R1 + R2, (13.17)
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where

|R1| ≤ 2L1r
′δ1, (13.18)

|R2| ≤ c[r ′ + |ψ̃ |], (13.19)

|R1| + |R2| ≤ δ2|pr2ξ |
8

. (13.20)

Proof We use the notation of (13.16). For x ∈ N ,

P(x) = P1
(
ỹ<, r ′ei(φi+φ+vτ), ψ̃

) = P1
(
0<, r ′ei(φi+vτ), ψ̃

)+ R1, (13.21)

where (according to (13.1) and the definition of r< = r
c<
)

|R1| ≤ L1[r ′|φ| + |ỹ<|1] ≤ L1[r ′δ1 + c<e
−η<τ r<]

= L1[r ′δ1 + re−η<τ ] (see 13.11)

≤ L1(r
′δ1 + δ1 re

uτ
︸︷︷︸
=r ′

] = 2L1r
′δ1.

Further,

P1
(
0<, r ′ei(φi+vτ), ψ̃

) = P1
(
0<, r ′ei(φi+vτ), ψ̃

)− P1
(
0<, 0C, 0R

)

︸ ︷︷ ︸
=0u

= DP1(0u)
[
0<, r ′ei(φi+vτ), ψ̃

]+ R2,

(13.22)

where according to (13.3) one has |R2| ≤ c(r ′ + |ψ̃ |).
We see that properties (13.18)–(13.19) hold (but (13.17) is still to be proved). Recall from

Sect. 11 that the projection of DP1(0u)[0<, r ′ei(φi+vτ), ψ̃] onto Y< × {0} × {0C} is zero in
our situation. From the definitions of D1, f1, f2 and ξ we see that

DP1(0u)
[
0<, r ′ei(φi+vτ), ψ̃

] = D1
[
r ′a · e1 + r ′b · e⊥

1 + ψ̃ · (0<, 0C, 1)
]

= r ′[a f1 + b f2
]+ ψ̃ξ.

(13.23)

Combination of (13.21)–(13.23) proves the first equation in (13.17), and the second is
obtained from (11.12), replacing f1 by eφ − μξ .

Proof of (13.20):

|R1| + |R2| ≤ r ′[2L1δ1 + c] + c|ψ̃ | (see Proposition 13.1, (e) and (b) )

≤ rmax[2L1δ1 + c] + cδ2 (see 13.4)

≤ rmax2c + cδ2 (see 13.3)

≤ |pr2ξ |
16

[2rmax + δ2] (see 13.15)

≤ |pr2ξ |
16

[δ2 + δ2] = |pr2ξ |
8

δ2.

(13.24)

14 Homotopy to a Simpler Map

Motivated by (13.17), we introduce a simplified model map Q : N → Y< ×R×C for P|N
by

Q(x) := pr2[ψ̃ · ξ + rmaxL
⊥(ei(φi+vτ)) f2] (x ∈ N = N0 ∪ N1). (14.1)
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(Here, as above, τ = τ(|z0|), ψ̃ = ψ+v0τ−ψu , if x = (y<, φ, |z0|eiψ), ψ ∈ J0∪J1, z0 ∈
R(ψ)). The homotopy from P

N
to Q in the lemma below is the main step in the proof

of the symbolic dynamics result. Comparing (14.1) and (13.17), we see that it achieves the
following simplifications:

(1) The dependence of the mapping P on the coordinates y< and φ is eliminated, and the
dimension of the image is reduced to two;

(2) The component of Q(x) in the direction of ξ depends only on ψ̃ ;
(3) In the component in f2-direction, the x-dependent value of r ′ is replaced by the constant

rmax.
(4) The remainder terms R1, R2 are omitted.

Recall the notion ‘N -homotopic’ from Sect. 2.

Lemma 14.1 P
N

and Q are N-homotopic, with a compact homotopy.

Proof We define f : [0, 1] × N → Y< × R × C, (λ, x) �→ fλ(x) by fλ(x) :=
(1 − λ)P(x) + λQ(x). Clearly, f is continuous and compact (since P is compact, and
Q is finite-dimensional).
Using (13.17) and (14.1), and writing again τ for τ(|z0|) and a, b instead of L(ei(φi+vτ)) and
L⊥(ei(φi+vτ)), we see that for x = (y<, φ, z0) ∈ N

fλ(x) = (1−λ)
{
[ψ̃ − μr ′a]ξ + r ′b f2 + r ′aeφ + R1 + R2

}
+λpr2

[
ψ̃ξ+rmaxb f2

]
. (14.2)

Note that with φ̃ := φi + vτ

max{|a|, |b|} = max
{
|L(ei φ̃ )|, |L⊥(ei φ̃ )|

}
≤
∣∣∣ei φ̃

∣∣∣ /p1 = 1/p1. (14.3)

With the projection pr3 : Y< × R × C → {0<} × R × C defined by pr3(y<, φ, z0)
:= (0<, φ, z0) and pr2eφ = 0, we have

pr2pr3 fλ(x) = [
ψ̃ − (1 − λ)μr ′a

]
pr2ξ + [

(1 − λ)r ′ + λrmax
] · b · pr2 f2

+ (1 − λ)pr2pr3(R1 + R2).
(14.4)

In order to prove that f is an N -homotopy, we use part (3) of Proposition 2.2. For j ∈ {0, 1}
we define

∂1N j := {
(y<, φ, |z0|eiψ) ∈ N j

∣∣ |z0| ∈ {minR(ψ),maxR(ψ)} or
ψ ∈ {min J j ,max J j }

}
,

and

∂2N j :=
{
(y<, φ, z0) ∈ N j

∣∣ |φ| = δ1 or |y<|1 = r<
}
.

Then ∂N j = ∂1N j ∪ ∂2N j , and the assertion of the lemma is proved if we show

∀ λ ∈ [0, 1] : fλ(∂1N j ) ∩ N = ∅ = ∂2N j ∩ fλ(N ), j = 0, 1, (14.5)

since then part (3) of Proposition 2.2 applies with ∂k N := ∂k N0 ∪ ∂k N1, k = 1, 2. Let now
j ∈ {0, 1}, λ ∈ [0, 1], and x = (y<, φ, |z0|eiψ) ∈ N j (with ψ ∈ J j ) be given.

1. Assume first x ∈ ∂1N j . Then

(i) |z0| ∈ {minR(ψ),maxR(ψ)} or
(ii) ψ ∈ {min J j ,max J j }.
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In case (i), we see from Proposition 13.1, (b) that |ψ̃ | = δ2. From (14.4) we conclude,
using that r ′ ≤ rmax (see Proposition 13.1, e) and (14.3), that

|pr2pr3 fλ(x)| ≥ |ψ̃ − (1 − λ)μr ′a| · |pr2ξ | − rmax|b| · |pr2 f2| − (|R1| + |R2|)
≥ (

δ2 − μrmax

p1

)|pr2ξ | − rmax

p1
|pr2 f2| − (|R1| + |R2|).

Using also (13.15) and (13.20) we get

|pr2pr3 fλ(x)| ≥ (
δ2 − δ2

2

)|pr2ξ | − δ2|pr2ξ |
8

− δ2|pr2ξ |
8

= δ2|pr2ξ |
4

. (14.6)

On the other hand, for x̂ = (ŷ<, φ̂, w0) ∈ N , we have from Proposition 13.1, (f) and from
(13.15)

|pr2pr3 x̂ | = |w0| ≤ rmin

16p1
≤ rmax

16p1
≤ δ2|pr2ξ |

16
.

Thus we see that in case (i) fλ(x) /∈ N .
In case (ii), we apply Proposition 13.1 with φ = 0 and obtain from parts c) and d)

that (φ̃ − φ1) ∈ {±d1} + [−ε1, ε1] + Zπ . Then (11.20) shows that |μ||a| ≤ |b|/2 and
|b| ≥ 1/(2p1). From (11.15) and (14.4) we now derive, using also (13.18) and (13.19), that

|pr2pr3 fλ(x)| ≥ γ2{|ψ̃ − (1 − λ)μr ′a| + [(1 − λ)r ′ + λrmax]︸ ︷︷ ︸
≥r ′

|b|}

− (|R1| + |R2|)
≥ γ2{|ψ̃ | − |μ|r ′|a| + r ′|b|} − (|R1| + |R2|)
≥ γ2r

′(|b| − |μ||a|) + γ2|ψ̃ | − (|R1| + |R2|)
≥ γ2r

′ |b|
2

+ γ2|ψ̃ | − 2L1r
′δ1 − cr ′ − c|ψ̃ |

= (
γ2|b|
2

− 2L1δ1 − c)r ′ + (γ2 − c)|ψ̃ |.

In view of (13.3) and (13.4) we obtain (since γ2 ≥ c and |b| ≥ 1/(2p1))

|pr2pr3 fλ(x)| ≥
(

γ2

4p1
− γ2

16p1
− γ2

16p1

)
r ′ = γ2

8p1
r ′ ≥ γ2

8p1
rmin. (14.7)

But, for x̂ = (ŷ<, φ̂, w0) ∈ N , we have from Proposition 13.1, (f):

|pr2pr3 x̂ | = |w0| ≤ γ2

16p1
rmin.

Hence, also in case (ii) fλ(x) /∈ N . Together, we have shown

fλ(∂1N j ) ∩ N = ∅. (14.8)

2. Now we assume that x = (y<, φ, |z0|eiψ) ∈ ∂2N j , which means that

(i) |φ| = δ1 or (ii) |y<|1 = r<.
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Consider x̃ = (ỹ<, φ̃, w0) ∈ N , and define ŷ< ∈ Y<, φ̂ ∈ R, and ẑ0 ∈ C by fλ(x̃) =
(ŷ<, φ̂, ẑ0). With the projection pr< : Y< × R × C → Y< we have pr<Q(x̃) = 0 and

|ŷ<|1 = |pr< fλ(x̃)|1 = |(1 − λ)pr<P1P0(x̃)|1
= |(1 − λ)pr<[P1P0(x̃) − P1(0u)]|1
≤ |P1P0(x̃) − P1(0u)| (see (13.1))

≤ L1|P0(x̃) − 0u | ≤ L1δ2 (see (13.9))

< r< (see (13.6)).

It follows that ŷ< 
= y< in case (ii), so x /∈ fλ(N ) in case (ii). Further, with the projection
pr1 : {0<}×R×C → R, we have pr1pr3Q(x) = pr1pr30i = 0, and thus an argument similar
to the one above shows

|φ̂| = |pr1pr3 fλ(x̃)| = |(1 − λ)pr1pr3[(P1 ◦ P0)(x̃) − 0i ]|
≤ |(P1 ◦ P0)(x̃) − P1(0u)| ≤ L1δ2 < δ1 (see (13.6)).

We see that also in case (i), where |pr1pr3x | = |φ| = δ1, one has x /∈ fλ(N ), and thus

fλ(N ) ∩ ∂2N j = ∅. (14.9)

Now (14.9) and (14.8) together give (14.5), which proves the lemma.

15 Computation of the Fixed Point Index and Symbolic Dynamics Theorem

In order to apply Corollary 2.4 to the N -homotopy from Lemma 14.1, it is necessary to show
that

for all m ∈ N and all s = (s0, . . . sm) ∈ {0, 1}m+1 with s0 = sm we have

ind(Qm, Ns,Q) 
= 0.
(15.1)

From the definition of Q in (14.1) it is obvious that Q (and hence also Qm for m ∈ N) maps
into the plane E := {0<}× {0R}×C. We write

E
Qm for the restriction of Qm in the image

space. The map

ι : C → E, ι(z0) := (0<, 0R, z0) ∈ E

is a homeomorphism. We set

Ñ j :=
{
|z0|eiψ ∈ C

∣∣ ψ ∈ J j , |z0| ∈ R(ψ)
}

( j = 0, 1),

and Ñ := Ñ0 ∪ Ñ1. Further, we define Q̃ : Ñ → C by

Q(0<, 0R, z0) = (0<, 0R, Q̃(z0)).

For ξ̃ , f̃2 ∈ C defined by pr2ξ = (0<, 0R, ξ̃ ), pr2 f2 = (0<, 0R, f̃2), we see from (11.15)
that ξ̃ and f̃2 are R−linearly independent, and the definitions of Q and Q̃ show that for
z0 = |z0|eiψ ∈ Ñ (ψ ∈ J0 ∪ J1) we have

Q̃(z0) = [ψ + v0τ(|z0|) − ψu] · ξ̃ + rmaxL
⊥(ei(φi+vτ(|z0|))) · f̃2. (15.2)

Proposition 15.1 For m and s as in (15.1), one has

ind(Qm, Ns,Q) = ind(Q̃m, Ñs,Q̃). (15.3)
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Proof We first show that

for all m ∈ and all x ∈ Ñ in the domain of Q̃m we have

Q̃m(x) = ι−1 ◦
E

Qm ◦ ι(x). (15.4)

For z0 ∈ Ñ , we have ι(Q̃(z0)) = (0<, 0R, Q̃(z0)), and from the definitions of Q and Q̃,

Q(ι(z0)) = (0<, 0R, Q̃(z0)) = ι(Q̃(z0)).

We have shown
E

Q◦ι = ι◦Q̃ on Ñ , from which (15.4) follows. Using the reduction or

contraction property of the fixed point index (see [3], §12, p. 316, property VIII), and the
fact that Qm maps into E , we obtain

ind(Qm, Ns,Q) = ind(
E

Qm

E
, Ns,Q ∩ E). (15.5)

From the commutativity property of the fixed point index (see [3], §12, p. 308, prop-
erty VII), or alternatively from the invariance of the Leray–Schauder-degree under home-
omorphisms (see [22], §13.7, p. 578, formula (41)), we see that the last index equals

ind(ι−1◦
E

Qm◦ι, ι−1(Ns,Q∩E))
, which in view of (15.4) equals ind(Q̃m, ι−1(Ns,Q ∩

E)), so we have
ind(Qm, Ns,Q) = ind(Q̃m, ι−1(Ns,Q ∩ E)). (15.6)

Now

Ns,Q ∩ E = (Ns0 ∩ E) ∩
m⋂

j=1

Q− j (Ns j ) = (since Q maps into E)

= (Ns0 ∩ E) ∩
m⋂

j=1

Q− j (Ns j ∩ E).

Since N j ∩ E = ι(Ñ j ), j = 0, 1, we obtain Ns,Q ∩ E =
m⋂

j=0

Q− j (ι(Ñs j )). It follows from

(15.4) that

ι−1(Ns,Q ∩ E) =
m⋂

j=0

ι−1(Q− j (ι(Ñs j ))) =
m⋂

j=0

Q̃− j (Ñs j ) = Ñs,Q̃ . (15.7)

Now (15.3) is obtained by inserting (15.7) into (15.6).

Proposition 15.2 For j = 0, 1, the function Q̃
Ñj

maps Ñ j homeomorphically to its image,

and Ñ0 ∪ Ñ1 ⊂ int(Q̃(Ñ j )).

Proof Claim 1. Q̃
Ñj

is injective for j = 0, 1.
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Proof Assume z0 = |z0|eiψ and z̃0 = |z̃0|eiψ̃ ∈ Ñ0 first, with {ψ, ψ̃} ⊂ J0. Then Proposi-
tion 13.1, (c) (applied with φ := 0) shows

φi + {vτ(|z0|), vτ(|z̃0|)} ⊂ φ1 + 2k∗π + [− d1 − ε1, d1 + ε1
]
. (15.8)

From (11.19) we know [d1 − ε1, d1 + ε1] ⊂ (0, π/2), and for s ∈ [−d1 − ε1, d1 + ε1] ⊂
(−π/2, π/2) we see from (11.18) that

L⊥(ei(φ1+2k∗π+s)) = L⊥(ei(φ1+s)) = 1

p1
sin(s).

Hence,

the map [−d1 − ε1, d1 + ε1] � s �→ L⊥(ei(φ1+2k∗π+s)) ∈ R is injective. (15.9)

Now assume Q̃(z0) = Q̃(z̃0). Then linear independence of ξ̃ and f̃2 in formula (15.2) for Q̃
gives

L⊥(ei(φi+vτ(|z0|))) = L⊥(ei(φi+vτ(|z̃0|))), and

ψ + v0τ(|z0|) − ψu = ψ̃ + v0τ(|z̃0|) − ψu .
(15.10)

It follows from (15.8), (15.9) and the first equality in (15.10) that τ(|z0|) = τ(|z̃0|), and
hence |z0| = |z̃0|. The second equality in (15.10) then shows ψ = ψ̃ , so z0 = z̃0.

The proof for the case z0, z̃0 ∈ Ñ1 is analogous.

Since Ñ j is compact, we obtain from Claim 1 that Q̃
Ñj

: Ñj → Q̃(Ñj) is a homeo-

morphism ( j = 0, 1), which is the first part of the proposition.

Claim 2 Ñ0 ∪ Ñ1 ⊂ int(Q̃(Ñ j )).

Proof We set R0 := rmin

16p1
min{γ2, 1}; then Proposition 13.1, (f) and (13.15) show

Ñ0 ∪ Ñ1 ⊂ UR0(0), and R0 ≤ rmax

16p1
≤ δ2|pr2ξ |

16
. (15.11)

Further, we set R1 := min{ γ2

8p1
rmin,

δ2|pr2ξ |
4

}, so R1 > R0.

Now if z0 ∈ ∂ Ñ j (the boundary of Ñ j inC) for j = 0 or j = 1, then (0<, 0R, z0) ∈ ∂1N j ,
with ∂1N j as in the proof of Lemma 14.1. We then see from (14.6) and (14.7) (for the special
case λ = 1) that

|Q̃(z0)| ≥ R1, (15.12)

which shows that Q̃(∂ Ñ j )∩UR1(0) = ∅, and from (2.9) we know that Q̃(∂ Ñ j ) = ∂(Q̃(Ñ j )),
so we obtain ∂(Q̃(Ñ j )) ∩ B(0; R1) = ∅ ( j = 0, 1), and hence, in order to prove

Q̃(Ñ j ) ⊃ B(0; R1) ⊃ B(0; R0) ⊃ Ñ0 ∪ Ñ1, (15.13)

it suffices to show
0 ∈ Q̃(Ñ j ), j = 0, 1. (15.14)

Proof of (15.14) for j = 0. The number ψ̄ := ψu + v0

v
(φi − φ1 − 2k∗π) lies in J0, and

the number r̄2 := R exp[ u0
v0

(ψ̄ − ψu)] lies in R(ψ̄) (see 13.8), so the complex number
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z̄0 := r̄2eiψ̄ lies in Ñ0. One has

τ(|z̄0|) = 1

u0
log(R/r̄2) = 1

u0

u0
v0

(ψu − ψ̄) = 1

v
(φ1 + 2k∗π − φi ),

so φi + vτ(|z̄0|) = φ1 + 2k∗π , and hence (compare 11.18)

L⊥(ei(φi+vτ(|z̄0|))) = L⊥(ei(φ1+2k∗π)
) = L⊥(eiφ1

) = 0.

Further, ψ̄ + v0τ(|z0|)−ψu = ψ̄ +ψu − ψ̄ −ψu = 0, so formula (15.2) shows Q̃(z̄0) = 0.
The proof of (15.14) for the case j = 1 is analogous.
Now (15.13), and hence Claim 2 (the remaining part of the proposition) are proved.
We are now ready to prove a symbolic dynamics result for the map P , with the obvious

consequences for the dynamics of the map Σ1 ◦ Σ0, and thus for the state-dependent delay
equation (3.8) from Theorem 9.2.

Theorem 15.3 (a) The map P = P1 ◦ P0 has symbolic dynamics w.r. to the two sets N0, N1

in the sense of Corollary 2.4.
(b) The same is true for the map Σ1 ◦ Σ0 and the sets Ci (N0),Ci (N1).
(c) In particular, to every periodic symbol sequence in {0, 1}Z there exists a corresponding

periodic solution of equation (3.8) (see Corollary 9.3) with phase curve orbitally close

to the image of the homoclinic phase curve (i.e., to
{
ht
∣∣ t ∈ R

}
), and passing through

Ci (N0),Ci (N1) according to the periodic pattern.

Proof Ad (a): Clearly, Ñ j is homeomorphic to a closed two-dimensional ball, j = 0, 1. From
Proposition 15.2 and Lemma 2.6 we obtain that form and s as above, ind(Q̃m, Ñs,Q̃) = ±1.
Using Proposition 15.1, we obtain property (15.1). NowCorollary 2.4 and Lemma 14.1 show
the symbolic dynamics result for the map P .

Parts (b) and (c) are obvious from the relation between P0 andΣ0, respectively P1 andΣ1,
and from the constructions of Σ1 and Σ0 via stopping times and the semiflow F generated
by equation (3.8) in Sects. 10 and 11.

Remark (a) One sees from the construction of the sets N0 and N1, in particular from the
choice of the number k∗ ∈ N, that a whole sequence of such sets Nk

0 , Nk
1 can be found,

corresponding to all k ≥ k∗. Thus, in the homoclinic situation, a countable sequence of
such subsets containing symbolic dynamics as described in the above theorem exists. One
could then also study trajectories of P moving between different Nk

j , j = 0, 1, k ≥ k∗,
analogous to considerations in [12]. We do not pursue this.

(b) It is essentially clear that nearby equations will give rise to nearby return maps P̃ (at least
C0−close to P). Thus, given particular sets N0, N1 as above, it follows from robustness of
the fixed point index that P̃ will also have symbolic dynamics on N0∪N1. Note, however,
that the perturbation arguments for Poincaré maps as given in [8] in a C1-setting do not
apply to the case of state-dependent delay equations.

(c) It would probably be possible to replace the use of the topological method for the con-
struction of a semi-conjugacy to a symbol shift by purely analytical techniques - but at
the expense of considerable technical effort. We also feel that the topological approach
captures the essential reasons for the presence of the chaotic motion more clearly. For
similar reasons, a mixed topological-analytical technique was chosen in [7], in a situa-
tion analogous to the classical Shilnikov result in dimension three. (Intermediate value
theorem and implicit function theorem for forward symbol sequences,then compactness
arguments for backward symbol sequences.) The use of the intermediate value theorem
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was possible because the unstable direction was one-dimensional. In the situation of the
present paper, the gain of proof economy by the topological method is more significant,
due to the higher dimension (two) of the unstable manifold.

It is true that analytical methods may yield a complete description of the whole invariant
set of P in suitable subsets of its domain, which cannot be achieved via fixed-point index
methods.
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