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Abstract We quantify the effect of Gaussian white noise on fast–slow dynamical systems
with one fast and two slow variables, which display mixed-mode oscillations owing to the
presence of a folded-node singularity. The stochastic system can be described by a continuous-
space, discrete-time Markov chain, recording the returns of sample paths to a Poincaré section.
We provide estimates on the kernel of this Markov chain, depending on the system parameters
and the noise intensity. These results yield predictions on the observed random mixed-mode
oscillation patterns. Our analysis shows that there is an intricate interplay between the number
of small-amplitude oscillations and the global return mechanism. In combination with a local
saturation phenomenon near the folded node, this interplay can modify the number of small-
amplitude oscillations after a large-amplitude oscillation. Finally, sufficient conditions are
derived which determine when the noise increases the number of small-amplitude oscillations
and when it decreases this number.

Keywords Fast–slow system · Folded node ·Mixed–mode oscillation ·Random dynamical
system · Concentration of sample paths ·Markov chain

Mathematics Subject Classification Primary 37H20, 34E17 · Secondary 60H10

N. Berglund
MAPMO, CNRS – UMR 7349, Université d’Orléans and Fédération, Denis Poisson – FR 2964,
B.P. 6759, 45067 Orléans Cedex 2, France
e-mail: nils.berglund@math.cnrs.fr

B. Gentz
Faculty of Mathematics, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany

C. Kuehn (B)
Institute for Analysis and Scientific Computing, Vienna University of Technology, 1040 Vienna, Austria
e-mail: ck274@cornell.edu

123



84 J Dyn Diff Equat (2015) 27:83–136

1 Introduction

Oscillation patterns with large variations in amplitude occur frequently in dynamical sys-
tems, differential equations and their applications. A class of particular interest are mixed-
mode oscillations (MMOs) which are patterns consisting of alternating structures of small-
amplitude and large-amplitude oscillations. Typical applications arise from chemical systems
such as the Belousov–Zhabotinskii reaction [47], the peroxidase–oxidase reaction [25] and
autocatalytic reactions [71] as well as from neuroscience, e.g. stellate cells [28], Hodgkin–
Huxley-type neurons [73] and pituitary cells [80]. A remarkable number of models for these
phenomena lead to differential equations with multiple timescales see e.g. [27,40,66,84].
Frequently, it suffices to consider two timescales and study fast–slow ordinary differential
equations (ODEs) which already provide many generic mechanisms leading to MMOs. For a
detailed review of the topic we refer to the survey [26], the special issue [23], and references
therein. The basic idea is that a local mechanism induces the small-amplitude oscillations
(SAOs) while a global return mechanism leads to large-amplitude oscillations (LAOs). In
this introduction, we shall just outline the main ideas; the precise development of our set-up
and results starts in Sect. 2.

For a deterministic trajectory, we can symbolically write an MMO as a sequence

· · · Ls j−1
j−1 L

s j
j L

s j+1
j+1 · · · (1.1)

where L
s j
j denotes L j LAOs followed by s j SAOs, etc. For example, a periodic solution

alternating between 2 SAOs and 1 LAO would be · · · 121212 · · · or simply 12 with the
periodicity understood. A prototypical mechanism to generate SAOs are folded-node sin-
gularities [24] which are generic in three-dimensional ODEs with one fast and two slow
variables [7,77]. For the global return mechanism, one frequently encounters a relaxation-
type structure induced by a cubic (or S-shaped) fast-variable nullcline, also called the critical
manifold, which was studied extensively already in the context of van der Pol-type oscilla-
tors; see e.g. [20,24,35,51] and the references therein. Non-degenerate folds, folded-node
singularities and S-shaped critical manifolds form the basic deterministic building blocks for
the work in this paper. However, let us mention already here that the stochastic techniques
we develop in this paper could potentially be adapted to other cases such as singular Hopf
bifurcation and folded saddle-nodes [38,58], bursting oscillations [30,48], tourbillon struc-
tures [26,81], and other global return mechanisms [40,61]. Although it is certainly of high
interest to study all these cases, it seems to us that the combination of folded singularities
and relaxation oscillations is a natural first step as both components are basic elements which
occur in a large variety of different models [26].

While in some experiments, remarkably clear MMO patterns have been observed [42,47],
in many other cases the SAOs in the patterns appear noisy [28,65]. Weak noise acting
on a dynamical system is known to induce a variety of phenomena, ranging from small
fluctuations around deterministic solutions to large excursions in phase space, as shown,
e.g., in stochastic resonance [12,34,64] and transitions near tipping points [4,60,74]. In the
context of oscillatory patterns, the effect of noise on MMO patterns in low-dimensional
prototypical models has been studied, for instance, in [43,52,62,69,76,87], using numer-
ical simulations, bifurcation theory and asymptotic descriptions of the Fokker–Planck
equation.

This work concerns the effect of noise on fast–slow differential equations with one fast and
two slow variables, containing a folded-node singularity and an S-shaped critical manifold
responsible for the global return mechanism. The resulting stochastic differential equations
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Fig. 1 z-Coordinate of the first-return map on the section �1 for the Koper model (7.1). Parameter values
are k = −10, λ = −7.6, ε2 = 0.7, ε1 = 0.01, with noise intensities a σ = σ ′ = 0, b σ = σ ′ = 2 · 10−7,
c σ = σ ′ = 2 ·10−5, and d σ = σ ′ = 2 ·10−3. The horizontal and vertical lines mark the location of canards

(SDEs) show a subtle interplay between noise, local and global dynamics, which requires a
careful analysis of the behaviour of stochastic sample paths. Our approach builds upon our
earlier work [17] which in turn was based upon a pathwise approach to fast–slow SDEs [14,
15].

Our main focus is the derivation of estimates for the Poincaré (or return) map of the stochas-
tic system, for a conveniently chosen two-dimensional section�. Deterministic return maps
in the presence of folded-node singularities have been analyzed, e.g., in [37,54]. Although
the two-dimensional Poincaré map is invertible, the strong contraction near attracting critical
manifolds implies that it is close to a one-dimensional, usually non-invertible map. Figure 1a
shows an example of such a one-dimensional deterministic return map zn �→ zn+1. The
apparent discontinuities are in fact points where the map’s graph displays very narrow dips,
due to the presence of so-called canard orbits. Canards are particular solutions of the system
staying close to both the attracting and repelling parts of the critical manifold [7,10,11],
which separate the phase space into sectors of rotation characterized by different numbers of
SAOs [24].

The concept of return maps has been extended to stochastic systems, see for instance [18,
44,85]. This requires some care, because the rapid fluctuations of stochastic sample paths
prevent one from using their very first return to � to define the map. Instead, one has to
consider the first return after a suitably defined, sufficiently large excursion in phase space
has taken place. With these precautions, successive intersections X0, X1, X2, . . . of sample
paths with� define a continuous-space, discrete-time Markov chain. The distribution of Xn+1

is obtained from the distribution of Xn via integration with respect to a transition kernel K .
Under suitable regularity assumptions [6], the theory of harmonic measures ensures that the
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kernel K admits a smooth density k, so that the evolution of Xn is specified by an integral
equation, namely

P
{

Xn+1 ∈ A | Xn = x
} =
∫

A
k(x, y) dy =: K (x, A) (1.2)

holds for all Borel sets A ⊂ �; see for instance [16, Sects. 5.2 and 5.3]. The main aim of
the present work is to provide estimates on the kernel K . Part of the mathematical challenge
is due to the fact that the deterministic flow is not a gradient flow, and thus the stochastic
system is irreversible.

Figure 1b–d shows simulated stochastic return maps for increasing noise intensity. For
each value of zn , the red points indicate the value of zn+1 for 10 different realizations of
the noise. The deterministic return map is plotted in blue for comparison. Several interesting
phenomena can be observed:

1. The size of fluctuations increases with the noise intensity;
2. Orbits in sectors with a small number of SAOs (inner sectors) are less affected by noise

than those in sectors with a large number of SAOs (outer sectors);
3. There is a saturation effect, in the sense that for large enough SAO numbers, the typical

value of the stochastic return map and its spreading become independent of the sector;
4. The saturation effect sets in earlier for larger noise intensities.

While the first phenomenon is not surprising, the other observed features are remarkable,
and can lead to non-intuitive effects. In the example shown in Fig. 1, the deterministic map
has a stable fixed point in the 11th sector, so that the deterministic system will display a stable
MMO pattern 111. For sufficiently strong noise, the stochastic system will asymptotically
operate in the 12th sector, with occasional transitions to neighbouring sectors such as sectors
11 and 13. Hence, the noise shifts the global return to a higher rotation sector. However, two
more noise-induced effects may also affect the number of observed SAOs. First, the noise
may alter the number of SAOs for orbits starting in a given sector, by causing earlier escapes
away from the critical manifold. Second, it may produce fluctuations large enough to mask
small oscillations. All these effects must be quantified and compared to determine which
oscillatory pattern we expect to observe.

The estimates on the kernel we provide in this work yield quantitative information on the
above phenomena. In particular, we obtain estimates on the typical size of fluctuations as a
function of noise intensity and sector number, and on the onset of the saturation phenomenon.
These results complement those already obtained in [17] on the size of fluctuations near a
folded-node singularity.

The structure of this article is the following: After introducing the deterministic set-up
in Sect. 2, we provide first estimates on noise-induced fluctuations in Sect. 3. Sections 4
and 5 extend the analysis to a neighbourhood of the regular fold and of the folded node,
respectively. Section 6 combines all the local estimates to provide quantitative results on the
kernel. The main results are:

• Theorem 6.1 (Global return map) quantifies the effect of noise during the global return
phase;
• Theorem 6.2 (Local map for inner sectors) provides estimates on noise-induced fluctua-

tions for orbits starting near a folded node in sectors with small SAO number; together
with Theorem 6.1 it yields bounds on the size of fluctuations of the Poincaré map in all
inner sectors;
• Theorem 6.4 (Local map for outer sectors) gives similar estimates for orbits starting in

sectors with a large SAO number; in particular, it proves the saturation effect.
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Fig. 2 A singularly perturbed Markov chain

A short discussion of the consequences of these results on the observed MMO patterns is
given in Sect. 6.3. Finally, Sect. 7 illustrates these results with numerical simulations for the
Koper model.

The results obtained here are a first step towards the understanding of stochastic MMOs,
that calls for further work. In particular, it would be desirable to obtain a more precise
description of the possible MMO patterns. Let us mention two possible ways to achieve
this:

1. Singularly perturbed Markov chains: Consider the ideal case where the sectors of rotation
form a Markov partition, meaning that the image of each sector is entirely contained in
a sector. Then the dynamics can be described by a topological Markov chain between
sectors, see Fig. 2. Such a chain will in general not be irreducible, for instance, for the
chain shown in Fig. 2, state 3 is an absorbing state. In the presence of noise, however, new
transitions between sectors appear, typically yielding an irreducible chain. In this sense,
the chain for the stochastic system is a singular perturbation of its deterministic limit.
For weak, non-vanishing noise, transitions between all states may become possible, but
transition times diverge as the noise intensity goes to zero. Methods allowing to determine
transition rates in singularly perturbed Markov chains for small positive noise have been
developed, for instance, in [5,41,75,86].

2. Metastable transitions between periodic orbits: Consider a situation where the deter-
ministic system admits several stable periodic orbits, each corresponding to an MMO
pattern. Weak noise will induce rare transitions between these orbits. The theory of large
deviations [33] provides a way to estimate the exponential asymptotics of transition
rates (Arrhenius’ law [3]), via a variational problem. In the reversible case, Kramers’
law [31,53] provides a more precise expression for transition rates, which are related
to exponentially small eigenvalues of the diffusion’s infinitesimal generator, see for
instance [21,22], and [13] for a recent review. For irreversible systems, such precise
expressions for transition rates are not available. However, the spectral-theoretic approach
may still yield useful information, as in similar irreversible problems involving random
Poincaré maps [16,18].

Notations We write |·| to denote the absolute value and ‖·‖ for the Euclidean norm. For
x ∈ R we write �x	 for the smallest integer not less than x . Furthermore, for a, b ∈ R we use
a∧b := min{a, b} and a∨b := max{a, b}. Regarding asymptotics, we use O(·) in the usual
way, i.e., we write f (x) = O(g(x)) as x → x∗ if and only if lim supx→x∗

∣
∣ f (x)/g(x)

∣
∣ <∞.

The shorthand f (x) � g(x) is used whenever f (x) = O(g(x)) and g(x) = O( f (x)) hold
simultaneously. Furthermore, by f (x) � g(x) we indicate that limx→x∗

∣
∣ f (x)/g(x)

∣
∣ = 0.

Vectors are assumed to be column vectors and vT denotes the transpose of a vector v.
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2 Mixed-Mode Oscillations: The Setup

In this section, we shall outline a typical setup for deterministic mixed-mode oscillations
based upon three-dimensional fast–slow systems of the form

ε dx
ds = ε ẋ = f (x, y, z; ε),
dy
ds = ẏ = g1(x, y, z; ε),
dz
ds = ż = g2(x, y, z; ε), (2.1)

where (x, y, z) ∈ R
3 and 0 < ε � 1 is a small parameter. Throughout, we shall make the

following assumption:

(A0) The functions f, g1, g2 : R4 → R are of class C3.

In particular, (A0) implies that on a fixed compact set there exist uniform bounds on f, g1, g2.
We remark that the system (2.1) is allowed to depend smoothly upon further system para-
meters μ ∈ R

p although we do not indicate this dependence in the notation. The critical set
of (2.1) is

C0 = {(x, y, z) ∈ R
3 : f (x, y, z; 0) = 0}. (2.2)

Motivated by several applications, such as the Hodgkin–Huxley model [45,73], the Koper
model [51,59], the forced van der Pol equation [36,79] and the Rössler model [72], we will
assume that the geometric structure of the critical set is an S-shaped smooth manifold; see
also Fig. 3. More precisely, this assumption can be stated as follows:

(A1) Suppose C0 is a smooth manifold composed of five smooth submanifolds,

C0 = Ca−
0 ∪ L− ∪ Cr

0 ∪ L+ ∪ Ca+
0 , (2.3)

Regular fold

Folded node

Σ1

Σ1Σ1Σ2

Σ3

Σ4

Σ4

Σ5

Σ6

Ca−
0

Cr
0

Ca+
0

x

y

z

Fig. 3 Sketch illustrating the definition of the different sections. The horizontal coordinate is x , the vertical
one is y, and z points out of the plane
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where the two-dimensional submanifolds Ca±
0 are normally hyperbolic attracting,

while the two-dimensional submanifold Cr
0 is normally hyperbolic repelling, i.e.,

∂ f

∂x
(p; 0) < 0 ∀p ∈ Ca±

0 and
∂ f

∂x
(p; 0) > 0 ∀p ∈ Cr

0, (2.4)

and L± are one-dimensional smooth fold curves consisting of generic fold points

f (p; 0) = 0,
∂ f

∂x
(p; 0) = 0,

∂2 f

∂x2 (p; 0) �= 0,

(
∂y f (p; 0)
∂z f (p; 0)

)

�=
(

0
0

)

∀p ∈ L±. (2.5)

Without loss of generality we assume from now on that ∂y f (p; 0) �= 0 for all p ∈ L±.

Fenichel theory [32] shows that for ε > 0, the critical submanifolds Ca±
0 and Cr

0 perturb
to invariant manifolds Ca±

ε and Cr
ε , which are ε-close to Ca±

0 and Cr
0 in points bounded away

from the fold curves L±.
Setting ε = 0 in (2.1) leads to the slow subsystem

0 = f (x, y, z; 0),
ẏ = g1(x, y, z; 0),
ż = g2(x, y, z; 0), (2.6)

which is solved by the so-called slow flow. Differentiating f implicitly with respect to s
yields

∂ f

∂x
ẋ = −∂ f

∂y
ẏ − ∂ f

∂z
ż = −∂ f

∂y
g1 − ∂ f

∂z
g2 (2.7)

for the slow flow, so that the slow subsystem (2.6) can be written as

∂ f

∂x
ẋ = −∂ f

∂y
g1 − ∂ f

∂z
g2,

ż = g2, (2.8)

where it is understood that all functions are evaluated at points (x, y, z; ε) = (p; 0) with
p ∈ C0. One may use that (2.8) can locally be written as a closed system by applying the
implicit-function theorem to express C0 as a graph, e.g. y = h(x, z), near the fold as ∂ f

∂y �= 0.

Observe that (2.8) is singular on the fold curves as ∂ f
∂x = 0 on L±. The desingularized

slow subsystem is obtained by multiplying the right-hand side of (2.8) by ∂ f
∂x and applying

a rescaling of time. It reads

ẋ = −∂ f

∂y
g1 − ∂ f

∂z
g2,

ż = ∂ f

∂x
g2. (2.9)

We make the following further assumptions:

(A2) Suppose all fold points on L− satisfy the normal switching condition [67,78]
(
∂ f
∂y (p; 0)
∂ f
∂z (p; 0)

)

·
(

g1(p; 0)
g2(p; 0)

)

�= 0 ∀p ∈ L−. (2.10)
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Furthermore, assume that the projections of L± along the x-coordinate onto Ca∓
0 ,

which are also called the drop curves, are transverse to the slow flow.
(A3) Assume that the normal switching condition fails only at a unique singularity p∗ ∈ L+

and p∗ is a node equilibrium point of (2.9); in this case, p∗ is called a folded node (or
folded-node singularity) [9,77].

Let us stress that the above geometric assumptions (A1)–(A3), as well as several further
assumptions to follow, provide a convenient framework but that the deterministic and stochas-
tic techniques we present here apply to a much wider range of multiscale systems displaying
oscillatory patterns.

On the fast timescale t = s/ε the limit ε → 0 of (2.1) leads to the fast subsystem

dx
dt = x ′ = f (x, y, z; 0),
dy
dt = y′ = 0,
dz
dt = z′ = 0, (2.11)

which is solved by the fast flow. It is helpful to decompose the singular limit flows and their
perturbations into several parts; see Fig. 3 for an illustration. In particular, we consider the
sections of the form

�i := {(x, y, z) ∈ R
3 : x = xi , y ∈ [yi,a, yi,b], z ∈ [zi,a, zi,b]}, i ∈ {2, 5},

�i := {(x, y, z) ∈ R
3 : y = yi , x ∈ [xi,a, xi,b], z ∈ [zi,a, zi,b]}, i ∈ {1, 3, 4, 6},

(2.12)

for xi,a < xi,b, yi,a < yi,b, zi,a < zi,b suitably chosen to capture the return map. For an
appropriate choice of the constants xi and yi (see below or consider the approach in [59]),
there are well-defined maps from �i to � j .

(A4) The geometry of the flow-induced maps and sections is as shown in Fig. 3.

In particular, Assumption (A4) implies that there is an O(1) transition time on the slow
timescale from �3 to �4 as well as from �6 to �1. (A4) incorporates that there is an O(1)
spatial separation between each pair of fold/drop curves and it guarantees there is an O(1)
transition time on the fast timescale from �2 to �3 as well as from �5 to �6. Furthermore,
we exclude the case of a singular Hopf bifurcation [38,39], where an equilibrium of the full
system (2.1) may occur in the neighbourhood of a folded node.

There are four distinct important parts of the flow to analyze:

(I) the flow near the folded node �1 → �2,
(II) the fast segment �2 → �3,

(III) the slow-flow region �3 → �4 near Ca−
ε , and

(IV) the non-degenerate fold via �4 → �5.

The map �5 → �6 can be covered by the same techniques as �2 → �3, and �6 → �1

is similar to �3 → �4.
The geometry of flow maps and the possible generation mechanisms for mixed-mode

oscillations under the assumptions (A0)–(A4) are well-known; see for example [24,26]. A
main idea is that twisting of the slow manifolds Ca+

ε and Cr
ε near a folded node generates

SAOs and the global return mechanism via the S-shaped critical manifold induces the LAOs.
Fixed points of a full return map, say�1 → �1, correspond to MMOs with a certain pattern

· · · Lsk
k Lsk+1

k+1 · · · Lsk+l
k+l Lsk+1

k+1 · · · (2.13)
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The main question we address in this paper is how noise influences the patterns (2.13). We
are going to split the analysis into two main parts. In Sect. 3 we provide basic estimates
and consider the global part of the return map. Sections 4–5 address local dynamics in the
regions near the regular fold and the folded node.

3 The Stochastic System

3.1 Estimating Stochastic Deviations

As a stochastic extension to (2.1) we consider the fast–slow SDE

dxs = 1

ε
f (xs, ys, zs) ds + σ√

ε
F(xs, ys, zs) dWs,

dys = g1(xs, ys, zs) ds + σ ′G1(xs, ys, zs) dWs,

dzs = g2(xs, ys, zs) ds + σ ′G2(xs, ys, zs) dWs, (3.1)

where (Ws)s�0 is a k-dimensional standard Brownian motion on a probability space
(�,F,P). The maps

F(x, y, z) ∈ R
1×k, G(x, y, z) =

(
G1(x, y, z)
G2(x, y, z)

)
∈ R

2×k (3.2)

may depend on ε, and are assumed to be C1 and to satisfy the usual bounded-growth condition
guaranteing existence of a unique strong solution of (3.1). We shall adopt the shorthand
notation to write just (x, y, z) instead of (x, y, z; ε).

We will assume that the diffusion coefficients satisfy the following uniform ellipticity
assumption:

(A5) Let

D(x, y, z) =
(

F FT(x, y, z) FGT(x, y, z)

G FT(x, y, z) GGT(x, y, z)

)

∈ R
3×3 (3.3)

be the diffusion matrix. There exist constants c+ � c− > 0 such that

c− ‖ξ‖2 � 〈ξ, D(x, y, z)ξ 〉 � c+ ‖ξ‖2 ∀ξ ∈ R
3 ∀(x, y, z)T ∈ R

3. (3.4)

Remark 3.1 In fact, most of our results remain valid under a weaker hypoellipticity assump-
tion (cf. [6, p. 175]—this weaker condition is needed for the random Poincaré map to have a
smooth density). The only result that requires the lower bound in (3.4) is Theorem 6.4, which
relies on the early-escape result [17, Theorem 6.4]. See [46] for recent work under weaker
assumptions.

Finally we make the following assumption on the noise intensities:

(A6) Assume 0 < σ = σ(ε)� 1 and 0 < σ ′ = σ ′(ε)� 1.

In fact, in the course of the analysis, we will encounter more restrictive conditions of the
form σ = O(εα), σ ′ = O(εβ) with α, β > 0. The most stringent of these conditions will be
needed for the analysis near the folded node, and requires σ, σ ′ = O(ε3/4).

The main goal is to establish bounds on the noise-induced deviation from a deterministic
solution. In [15, Theorem 5.1.18], rather precise bounds for the deviation near normally
hyperbolic critical manifolds are derived. We want to adapt these to the other phases of motion.
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As it turns out, the leading-order effect of noise occurs near the folded-node singularity.
Therefore, it will be sufficient to determine the order of magnitude of noise-induced deviations
during other phases of the dynamics, as a function of σ, σ ′ and ε.

We fix a deterministic reference solution (xdet
s , ydet

s , zdet
s ) and set

ξs = xs − xdet
s , ηs =

(
ys

zs

)
−
(

ydet
s

zdet
s

)

, ζs =
(
ξs

ηs

)
. (3.5)

As initial condition we choose (ξ0, η0) = (0, 0) as it corresponds to (xdet
0 , ydet

0 , zdet
0 ). Sub-

stituting in (3.1) and Taylor-expanding, we obtain a system of the form

dζs = 1

ε
A(s)ζs ds +

(
σ√
ε
F(ζs, s)

σ ′G(ζs, s)

)

dWs +
(

1
ε

bξ (ζs, s)

bη(ζs, s)

)

ds, (3.6)

where

A(s) ∈ R
3×3, F(ζs, s), bξ (ζs, s) ∈ R, G(ζs, s), bη(ζs, s) ∈ R

2. (3.7)

The nonlinear terms bξ and bη satisfy b·(ζs, s) = O(‖ζ‖2) as ‖ζ‖ → 0. The matrix A(s) of
the system linearized around the deterministic solution has the structure

A(s) =
(

a(s) c1(s)

εc2(s) εB(s)

)

, (3.8)

where a(s) = ∂ f
∂x (x

det
s , ydet

s , zdet
s ) and so on, so that in particular c1(s) ∈ R

1×2, c2(s) ∈ R
2×1

and B(s) ∈ R
2×2. Let

U (s, r) =
(

Uξξ (s, r) Uξη(s, r)

Uηξ (s, r) Uηη(s, r)

)

(3.9)

denote the principal solution of the linear system εζ̇ = A(s)ζ . Then the solution of (3.6)
can be written in the form

ξs = σ√
ε

∫ s

0
Uξξ (s, r)F(ζr , r) dWr + σ ′

∫ s

0
Uξη(s, r)G(ζr , r) dWr

+ 1

ε

∫ s

0
Uξξ (s, r)bξ (ζr , r) dr +

∫ s

0
Uξη(s, r)bη(ζr , r) dr, (3.10)

and

ηs = σ√
ε

∫ s

0
Uηξ (s, r)F(ζr , r) dWr + σ ′

∫ s

0
Uηη(s, r)G(ζr , r) dWr

+ 1

ε

∫ s

0
Uηξ (s, r)bξ (ζr , r) dr +

∫ s

0
Uηη(s, r)bη(ζr , r) dr. (3.11)

In both equations, we expect the stochastic integrals to give the leading contribution to
the fluctuations. They can be estimated by the Bernstein-type inequality Lemma 8.2. The
magnitude of the other integrals can then be shown to be smaller, using a direct estimate
which is valid as long as the system does not exit from the region where the nonlinear terms
are negligible; see e.g. [17, p. 4826] or [14, Theorem 2.4].

In order to carry out this program, we need estimates on the elements of the principal
solution U . Note that the ξ -components are in principle larger than the η-components, but
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this is compensated by the fact that xdet
s spends most of the time in the vicinity of stable

critical manifolds. The following ODEs will play an important rôle:

ε ṗ1 = c1(s)+ a(s)p1 − εp1 B(s)− εp1c2(s)p1,

ε ṗ2 = c2(s)− a(s)p2 + εB(s)p2 − εp2c1(s)p2. (3.12)

Here p1(s) ∈ R
1×2 and p2(s) ∈ R

2×1. If a(s) is bounded away from 0, standard singular
perturbation theory implies that these ODEs admit solutions p1(s) and p2(s) of order 1 (and
in fact p1(s) close to −a(s)−1c1(s)). If a(s) approaches 0 or changes sign, this need no
longer be the case, but there may still be solutions such that ε|p1(s)p2(s)| remains small.

Lemma 3.2 Assume s − r � O(1) and that the ODEs (3.12) admit solutions such that
ε|p1(u)p2(u)| is bounded for u ∈ [r, s] by a function ρ(ε) satisfying limε→0 ρ(ε) = 0. Let
α(s, r) = ∫ s

r a(u) du. Then for sufficiently small ε,

Uξξ (s, r) =
[
e(α(s,r)+O(ε))/ε −ε p1(s)V p2(r)

]
(1+O(ρ)),

Uξη(s, r) =
[− e(α(s,r)+O(ε))/ε p1(r)+ p1(s)V

]
(1+O(ρ)),

Uηξ (s, r) = ε
[
e(α(s,r)+O(ε))/ε p2(s)− V p2(r)

]
(1+O(ρ)),

Uηη(s, r) =
[
V − ε e(α(s,r)+O(ε))/ε p2(s)p1(r)

]
(1+O(ρ)), (3.13)

where V = V (s, r) is the principal solution of the system

η̇ = [B(s)+ c2(s)p1(s)] η. (3.14)

Proof Consider the matrix

S(s) =
(

1 p1(s)

εp2(s) 1

)

. (3.15)

Then the equations (3.12) imply

ε Ṡ = AS − SD with D(s) =
(

d1(s) 0

0 εD2(s)

)

, (3.16)

where the blocks d1(s) ∈ R and εD2(s) ∈ R
2×2 are given by

d1(s) = a(s)+ εc1(s)p2(s),

εD2(s) = εB(s)+ εc2(s)p1(s). (3.17)

Consider now the variable ζ1 = S(s)−1ζ . If εζ̇ = A(s)ζ , then (3.16) implies

εζ̇1 = D(s)ζ1. (3.18)

The principal solution of this equation is block-diagonal, with blocks e
1
ε

∫ s
r d1(u) du and V (s, r),

where V is the principal solution of η̇ = D2(s)η. The principal solution of the original
equation is then given by

U (s, r) = S(s)

(
e

1
ε

∫ s
r d1(u) du 0

0 V (s, r)

)

S(r)−1. (3.19)

Furthermore, we have

S(s)−1 =
(

1 −p1(s)

−εp2(s) 1

)([1− εp1(s)p2(s)]−1 0

0 [1− εp2(s)p1(s)]−1

)

. (3.20)
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Computing the matrix product in (3.19) yields the result. Note that more precise expressions
for the matrix elements can be obtained if needed. ��

To describe the size of fluctuations, for given h, h1 > 0 we introduce stopping times

τξ = inf
{
s > 0 : |ξs | > h

}
,

τη = inf
{
s > 0 : ‖ηs‖ > h1

}
. (3.21)

Proposition 3.3 Suppose the assumptions of Lemma 3.2 are satisfied with p1, p2 bounded
uniformly in ε. Given a finite time horizon T of order 1 on the slow timescale, there exist
constants κ, h0 > 0 such that whenever h, h1 � h0, h2

1 � h0h and h2 � h0h1,

P
{
τξ ∧ τη < s

}
�
⌈

s

ε

⌉(
e−κh2/σ 2 + e−κh2/(σ ′)2 + e−κh2

1/(σ
′)2 + e−κh2

1/(εσ
2)
)

(3.22)

holds for all s � T .

Proof Denote by ξ i
s , i = 0, 1, 2, 3, the four terms on the right-hand side of (3.10). We will

start by estimating ξ0
s and ξ1

s . Since p1, p2 are assumed to be bounded, we may choose ρ(ε)
of order ε in (3.13), and Uηξ is of order ε, while the other elements of U are of order 1 at
most.

By Lemma 8.2 and the bounds on Uξξ and Uξη, there exists a constant M > 0 such that

P

{
sup

0�r�s
|ξ0

r | > h

}
�
⌈

s

ε

⌉
e−h2/(Mσ 2) and P

{
sup

0�r�s
|ξ1

r | > h

}
�
⌈

s

ε

⌉
e−h2/(M(σ ′)2) .

(3.23)
Indeed, to estimate ξ0

s we first use that on any short time interval s ∈ [s1, s2] with
|s2 − s1| � ε, the stochastic process ξ0

s = Uξξ (s, s2)Ms is close to the martingale Ms ,
defined by

Ms = σ√
ε

∫ s

0
Uξξ (s2, r)F(ζr , r) dr, (3.24)

since |Uξξ (s, s2)| remains of order 1 on these time intervals. First using (3.13) and (A0) and
then our choice of ρ and Lemma 8.1, we see that the martingale’s variance is bounded by

σ 2

ε

∫ s

0

∣
∣Uξξ (s2, r)(FFT)(ζr , r)U

T
ξξ (s2, r)

∣
∣ dr � M̃

σ 2

ε

∫ s

0

[
e(2α(s,r)+O(ε))/ε +ρ2 ‖V ‖2

]
dr

(3.25)
for some positive constant M̃ . Thus the variance is at most of order σ 2 for all s ∈ [s1, s2].
Now the first inequality in (3.23) follows immediately from the Bernstein-type estimate
Lemma 8.2. The prefactor in (3.23) simply counts the number of intervals [s1, s2] needed to
cover [0, s], see e.g. [15, Proposition 3.15] for a detailed proof in a simpler, one-dimensional
setting. The second inequality in (3.23) is shown similarly.

Furthermore, we have |ξ2
s | + |ξ3

s | � M ′(h2 + h2
1) for a constant M ′ > 0 and s � τξ ∧ τη.

From this, together with Gronwall’s lemma, we deduce that there exists a constant M > 0
such that

P
{
τξ < s ∧ τη

}
�
⌈

s

ε

⌉
exp

{
−[h − M ′(h2 + h2

1)]2
Mσ 2

}
+
⌈

s

ε

⌉
e−h2/(M(σ ′)2) . (3.26)

In a similar way, we find

P
{
τη < s ∧ τξ

}
�
⌈

s

ε

⌉
exp

{
−[h1 − M ′(h2 + h2

1)]2
M(σ ′)2

}
+
⌈

s

ε

⌉
e−h2

1/(Mεσ
2) . (3.27)
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Choosing h0 small enough, we can ensure that the terms M ′(h2+ h2
1) are negligible, and the

result follows by taking the sum of the last two estimates. ��
The size of typical fluctuations is given by the values of h, h1 for which the probabil-

ity (3.22) starts getting small, namely h � σ ∨ σ ′ and h1 � σ ′ ∨ σ√ε. We conclude that
fluctuations have size σ + σ ′ in the fast direction, and σ ′ + σ√ε in the slow direction. Note
that for simplicity we ignore the logarithmic contribution arising from the prefactor �s/ε	.

We now want to estimate the noise-induced spreading for the Poincaré map, starting on
the section �2 after the folded node, and arriving on the section �1 before the folded node.
As described in Sect. 2 we decompose the map into several maps, see Fig. 3, and estimate
the spreading for each map separately. This means that we fix an initial condition on each
section, and estimate the deviation of the stochastic sample paths from the deterministic
solution when it first hits the next section.

3.2 The Fast Segments

The fast segments are given by �2 → �3 and �5 → �6. By Assumption (A4) there exists
a slow time T0 of order ε in which the deterministic solution starting on �2 reaches a neigh-
bourhood of order 1 of the stable critical manifold. In this neighbourhood, the linearization
a(s) = ∂ f

∂x (x
det
s , ydet

s , zdet
s ) is negative and of order 1. To reach an ε-neighbourhood of the

critical manifold, an additional slow time T1 of order ε|log ε| is required. By the drop-curve
transversality assumption (A2) and using (A4), it takes another slow time T2 of at most order 1
to reach the section �3. For T := T0 + T1 + T2 we thus have

a(s) �
{

a1 for all s

−a2 for c1ε � s � T
(3.28)

for some positive constants a1, a2, c1. This implies that whenever T � s > r � 0,

α(s, r) � c2ε (3.29)

for a constant c2, and furthermore α(s, r) is negative as soon as s is larger than a constant
times ε.

Consider now the equations (3.12) for p1 and p2. We will show that p1 remains bounded
on [0, T ] and that there exists a particular solution p2 which also remains bounded on [0, T ].
For p1, we proceed in two steps:

• For 0 � s � c1ε, p1(s) can grow at most by an amount of order 1.
• For c1ε < s � T , since a(s) is negative, we can use standard singular perturbation theory

to show that p1(s) remains of order 1, and in fact approaches c1(s)/|a(s)|.
For p2(s), we change the direction of time and consider the equation

ṗ2 = −c2(T − s)+ a(T − s)p2 − εB(T − s)p2 + εp2c1(T − s)p2. (3.30)

We know that a(T − s) is negative, bounded away from 0, except for a time interval of length
c1ε near T . Thus we conclude that there exists a particular solution which remains bounded,
of order 1, on the whole time interval. Therefore Lemma 3.2 shows that Uξξ , Uξη and Uηη
remain bounded (in norm), of order 1, and that Uηξ remains of order ε for 0 � r < s � T .
As a consequence, we can apply Proposition 3.3 as is, with the result that on the section �3,

• the spreading in the fast direction is of order σ + σ ′,
• the spreading in the slow z-direction is of order σ ′ + σ√ε.
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3.3 The Slow Segments

The slow segments are given by �3 → �4 and �6 → �1. The analysis of the previous
subsection can actually be extended to these segments, because a(t) is always negative,
bounded away from 0. The conclusions on typical spreading are the same:

• the spreading in the fast direction is of order σ + σ ′,
• the spreading in the slow z-direction is of order σ ′ + σ√ε.

Note that [15, Theorem 5.1.18] provides a more precise description of the dynamics, by
constructing more precise covariance tubes. The qualitative conclusion on typical spreading
is the same as above.

4 The Regular Fold

4.1 Approach

The regular fold corresponds to the transition�4 → �5. We again fix a deterministic solution,
now starting on �4. We choose the origin of the coordinate system on the regular fold L−
and the origin of time in such a way that at time s = 0, (ydet

0 , zdet
0 ) = (0, 0).

Recall from the deterministic analysis (see e.g. [55,68] for the two-dimensional and [67,
78] for the three-dimensional case) that, given s0 < 0 of order 1,

• for s0 � s � −ε2/3, the distance of xdet
s to the critical manifold grows like ε/|s|1/2;

• there exists a c1 > 0 such that xdet
s � ε1/3 for −ε2/3 � s � c1ε

2/3;
• there exists a c2 > 0 such that xdet

s reaches order 1 before time c2ε
2/3.

In this section, we consider the transition �4 → �′4, where �′4 is a section on which

y = c1ε
2/3. In this region, the linearization a(s) = ∂ f

∂x (x
det
s , ydet

s , zdet
s ) satisfies

a(s) � −(|s|1/2 + ε1/3). (4.1)

Lemma 4.1 There are solutions of the equations (3.12) satisfying

‖p1(s)‖, ‖p2(s)‖ = O
(

1

|a(s)|
)
= O
(

1

|s|1/2 + ε1/3

)
for s0 � s � c1ε

2/3. (4.2)

Proof For p1(s), we first consider the equation ε ṗ1 = a(s)p1 + c1(s), whose solution we
know behaves as above, see Lemma 8.1 (or [15, pp. 87–88]). Regular perturbation theory
allows us to extend the estimate to the full equation for p1. In the case of p2, we change the
direction of time, and thus consider an equation similar to the equation for p1 on an interval
[−c1ε

2/3,−s0]. The above bound can be obtained, e.g., by scaling space by ε1/3 and time
by ε2/3 on [−c1ε

2/3, ε2/3], and using integration by parts on the remaining time interval. ��
Corollary 4.2 For all s0 � r � s � c1ε

2/3, the principal solution U (s, r) satisfies

|Uξξ (s, r)| = O
(

eα(s,r)/ε + ε

(|s|1/2 + ε1/3)(|r |1/2 + ε1/3)

)
, (4.3)

∥
∥Uξη(s, r)

∥
∥ = O

(
eα(s,r)/ε

|r |1/2 + ε1/3 +
1

|s|1/2 + ε1/3

)
, (4.4)
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∥
∥Uηξ (s, r)

∥
∥ = O

(
ε

[
eα(s,r)/ε

|s|1/2 + ε1/3 +
1

|r |1/2 + ε1/3

])
, (4.5)

∥
∥Uηη(s, r)

∥
∥ = O(1). (4.6)

Proof We can apply Lemma 3.2, since ε|p1(s)p2(s)| = O(ε1/3). Recall that the matrix V
occurring in (3.13) is the principal solution of η̇ = D2(s)η, where

D2(s) = B(s)+ c2(s)p1(s) = O(|a(s)|−1). (4.7)

It follows that

d

ds
‖ηs‖2 = 2(η1η̇1 + η2η̇2) �

M

|a(s)| ‖ηs‖2 (4.8)

for some constant M > 0, so that Gronwall’s Lemma implies

‖ηs‖2 �
∥
∥ηs0

∥
∥2 exp

{∫ s

s0

M

|a(u)| du

}
. (4.9)

A direct computation using (4.1) shows that for s � c1ε
2/3 the integral has order 1, and thus

the principal solution V has order 1 as well. Then the result follows from Lemma 3.2. ��

Proposition 4.3 There exist constants κ, h0 > 0 such that whenever h � h0ε
1/3, h1 � h0,

h2 � h0h1 and h2
1 � h0hε1/3,

P
{
τξ ∧ τη < c1ε

2/3}

�
⌈

1

ε

⌉(
e−κh2/(σ 2ε−1/3)+ e−κh2/((σ ′)2ε−2/3)+ e−κh2

1/(σ
′)2 + e−κh2

1/(ε|log ε|σ 2)
)
. (4.10)

Proof Estimate (4.3) and Lemma 8.1 imply

1

ε

∫ s

s0

Uξξ (s, r)
2 dr = O

(
1

|s|1/2 + ε1/3

)
� O (ε−1/3) (4.11)

for s0 + O(1) � s � c1ε
2/3. Indeed, the term eα(s,r)/ε yields a contribution of this order,

while the second term in (4.3) gives a contribution of order ε|log ε|/(|s|1/2+ ε1/3), which is
smaller. Next, we estimate

∫ s

s0

∥
∥Uξη(s, r)

∥
∥2 dr = O

(
1

|s| + ε2/3

)
� O (ε−2/3) , (4.12)

where the main contribution now comes from the second term in (4.4). We also obtain

1

ε

∫ s

s0

∥
∥Uηξ (s, r)

∥
∥2 dr = O(ε|log ε|), (4.13)

where the main contribution comes from the second term in (4.5). Finally

∫ s

s0

∥
∥Uηη(s, r)

∥
∥2 dr = O(1). (4.14)
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Similarly, we obtain the estimates

1

ε

∫ s

s0

|Uξξ (s, r)| dr = O
(

1

|s|1/2 + ε1/3

)
,

∫ s

s0

∥
∥Uξη(s, r)

∥
∥ dr = O

(
1

|s|1/2 + ε1/3

)
,

1

ε

∫ s

s0

∥
∥Uηξ (s, r)

∥
∥ dr = O(1),

∫ s

s0

∥
∥Uηη(s, r)

∥
∥ dr = O(1). (4.15)

We can now adapt the proof of Proposition 3.3 to the present situation. Recall the definitions
of τξ , τη from (3.21). We denote again by ξ i

s , i = 0, 1, 2, 3, the four terms on the right-hand
side of (3.10). Let T = c1ε

2/3. The Bernstein-type estimate Lemma 8.2 and (4.11) yield

P

{
sup

s0�r�T
|ξ0

r | > h

}
�
⌈

1

ε

⌉
e−h2/(Mσ 2ε−1/3), (4.16)

and similarly

P

{
sup

s0�r�T
|ξ1

r | > h

}
�
⌈

1

ε

⌉
e−h2/(M(σ ′)2ε−2/3) . (4.17)

Furthermore, using (4.15) we obtain |ξ2
s | + |ξ3

s | � M ′ε−1/3(h2 + h2
1) for s � τξ ∧ τη. From

this we can deduce

P
{
τξ < T ∧ τη

}
�
⌈

1

ε

⌉(
exp

{
−[h − M ′ε−1/3(h2 + h2

1)]2
Mσ 2ε−1/3

}
+ e−h2/(M(σ ′)2ε−2/3)

)
.

(4.18)
In a similar way, we get

P
{
τη < T ∧ τξ

}
�
⌈

1

ε

⌉(
exp

{
−[h1 − M ′(h2 + h2

1)]2
Mσ 2ε|log ε|

}
+ e−h2

1/(M(σ
′)2)
)
. (4.19)

This concludes the proof. ��
The condition h2

1 � h0hε1/3 together with h � h0ε
1/3 imposes that we can take h1 at

most of order ε1/3. For the typical spreadings, we obtain

• in the fast direction:
σ

ε1/6 +
σ ′

ε1/3 , (4.20)

• in the slow direction:
σ ′ + σ√ε|log ε|. (4.21)

For the bound (4.10) to be useful, we need the spreading in the fast direction to be small
compared to ε1/3, because of the condition on h. This yields the conditions

σ � ε1/2, σ ′ � ε2/3. (4.22)

The term σ/ε1/6 of the x-spreading and the condition σ � ε1/2 are expected, because they
already occur when there is no noise acting on the slow variables (see [15, Sect. 3.3]). The
term σ ′/ε1/3 and the condition σ ′ � ε2/3 are due to the coupling with the slow variables.
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Remark 4.4 By using sharper estimates on the size of the linear terms ξ0
r and ξ1

r
(cf. Remark 8.3), one can in fact show that the typical spreading in the x-direction grows like

σ

|s|1/4 + ε1/6 +
σ ′

|s|1/2 + ε1/3 . (4.23)

4.2 Normal Form

Before analysing the behaviour during the jump, we make a preliminary transformation to
normal form near the fold. Recall that t = s/ε denotes the fast timescale.

Proposition 4.5 Near a regular fold on L− satisfying the assumptions (A1)–(A2) there exists
a smooth change of coordinates such that (3.1) is locally given by

dxt =
[
yt + x2

t +O(zt ,
∥
∥(xt , yt )

T
∥
∥3, ε, σ 2)

]
dt + σ F̂1(xt , yt , zt ) dWt

+ σ ′√ε F̂2(xt , yt , zt ) dWt ,

dyt = ε ĝ1(xt , yt , zt ; ε, σ ′) dt + σ ′√ε Ĝ1(xt , yt , zt ) dWt ,

dzt = ε ĝ2(xt , yt , zt ; ε) dt + σ ′√ε Ĝ2(xt , yt , zt ) dWt , (4.24)

where ĝ1 = g1 +O((σ ′)2) and

ĝ1(0, 0, 0; 0, 0) = 1, ĝ2(0, 0, 0; 0) = 0. (4.25)

Proof The result is a stochastic analogue of the transformation result for deterministic sys-
tems. We extend the proof presented by Szmolyan and Wechselberger in [78, pp. 73–74]
and [82, pp. 8–10] to the stochastic case.

First, we may use a translation of coordinates so that the neighbourhood of L− is chosen
with center (0, 0, 0) ∈ L−. From the normal switching condition Assumption (A2) we may
assume without loss of generality that g1(0, 0, 0; 0) �= 0; indeed, if g1(0, 0, 0; 0) = 0 then
g2(0, 0, 0; 0) �= 0 and we may exchange the names of the two slow variables. Next, define a
coordinate change

z =: z̄ + γ y with γ = g2(0, 0, 0; 0)
g1(0, 0, 0; 0) �= 0. (4.26)

This yields

dz̄t = dzt − γ dyt = ε
[
g2(x, y, z̄ + γ y; ε)− γ g1(x, y, z̄ + γ y; ε)] dt

+ σ ′
√
ε
[
G1(x, y, z̄ + γ y; ε)− γG2(x, y, z̄ + γ y; ε)] dWt . (4.27)

Introducing new maps ḡ2 = g2 − γ g1 and G2 = G1 − γG2 and then dropping all the
overbars from the notation yields a stochastic fast–slow system of the form (3.1) which now
satisfies

g1(0, 0, 0; 0) �= 0 and g2(0, 0, 0; 0) = 0. (4.28)

The next step is to rectify the fold curve. By the implicit-function theorem there exists a
parametrization of L− by (ξ(z), η(z), z) for z ∈ I ⊂ R where I is a suitable interval. The
transformation

(x, y, z) = (x̄ + ξ(z), ȳ + η(z), z̄) (4.29)
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rectifies the fold curve in new coordinates (x̄, ȳ, z̄), in the sense that f̄ (0, 0, z̄) = 0. Itô’s
formula shows

dx̄t =
[

f̄ (x̄t , ȳt , z̄t )+O(ε(σ ′)2)] dt + [σ F(x̄t , ȳt , z̄t )− σ ′√ε(∂zξ)G2(x̄t , ȳt , z̄t )
]

dWt

d ȳt =
[
ε ḡ1(x̄t , ȳt , z̄t )+O(ε(σ ′)2)] dt + σ ′√ε[G1(x̄t , ȳt , z̄t )− (∂zη)G2(x̄t , ȳt , z̄t )

]
dWt ,

(4.30)

where f̄ (x̄, ȳ, z̄) = a ȳ + bx̄2 + cx̄ ȳ + d ȳ2 + O(z,
∥
∥(x̄, ȳ)T

∥
∥3). By a scaling of x̄, ȳ and

time, we can achieve that a = b = 1 and ḡ1(0, 0, 0) = 1.
The final step is a normal-form transformation x̂ = x̄ − 1

2 cx̄2 − dx̄ ȳ, which eliminates
the terms of order x̄ ȳ and ȳ2 in the drift term of dx̄t . Applying again Itôs formula yields the
result. ��

Remark 4.6 It is possible to further simplify the drift term, in such a way that for ε = 0 and
σ = 0 = σ ′, g1(x, y, z) = g(z) + g11(x, y, z) where g11(0, 0, z) = 0 and g2(0, 0, z) = 0,
see [82, pp. 9–10] and [78, p. 73]. However, this introduces a diffusion term of order σ in
dyt , which we want to avoid.

4.3 Neighbourhood and Escape

We determine now the size of fluctuations during the “jump phase” of sample paths starting
on�′4, until they hit the section�5 which is located at a distance of order 1 in the x-direction
from the fold.

Before giving a rigorous estimate, we briefly recall some well-known deterministic asymp-
totics as they are going to motivate several choices in the analysis of the stochastic dynamics.

The lowest-order approximation for the deterministic dynamics near the planar fold is

ε
dx

dy
= y + x2, (4.31)

which is just the classical Ricatti equation; see [68, pp. 68–72] or [57, p. 100]. Setting
y = ε2/3θ and x = ε1/3 x̃ removes ε and yields

dx̃

dθ
= θ + x̃2 (4.32)

as the system of first approximation [2, p. 175] which also appears as the key asymptotic
problem in the blow-up analysis [55, p. 293] of the non-degenerate fold. It is known [68,
pp. 68–72] that there exists an orbit θ(x̃) of (4.32) with

θ(x̃) = −x̃2 − 1

2x̃
+O
(

1

x̃4

)
as x →−∞, (4.33)

θ(x̃) = θ∗ − 1

x̃
+O
(

1

x̃3

)
as x →∞, (4.34)

which is the extension of the attracting slow manifold through the fold region; the constant θ∗
is the horizontal asymptote which can be expressed as the zero of suitable Bessel functions.
However, if we look at the variational equation of (4.32) around θ(x̃) to leading order it
follows that

dξ

dθ
= 2

1

θ∗ − θ ξ, as x̃ →∞ (or θ → θ∗). (4.35)
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Fig. 4 Geometry of sections near the regular fold

The solution is given by

ξ(θ) ∼= 1

(θ∗ − θ)2 ξ(θ0). (4.36)

This growth of the linearization in the fast direction turns out to be too fast to apply directly
the same method to control stochastic sample paths as in the previous cases. However, we
do not need such a precise control of fluctuations in the fast direction. It is sufficient to show
that sample paths are likely to stay in a tube around the deterministic solution, with some
specific extension in the slow directions y and z. To do so, we will compare the random
process with different deterministic solutions on successive time intervals [θn, θn+1] during
which fluctuations in the fast direction remain bounded (cf. Fig. 4). The expression (4.36)
shows that a possible choice are geometrically accumulating θn of the form θn = θ∗ − 2−n .
During the interval [θn, θn+1], the deterministic solution x(θ) moves by a distance of order
ε1/3(2n+1 − 2n) = ε1/32n . For x(θ) to reach order 1, we need to choose n of order |log ε|.

To make the last idea rigorous, we write the system (4.24) on the timescale θ = ε1/3t =
ε−2/3s as

dxθ = 1

ε1/3 f̂ (xθ , yθ , zθ ) dθ + σ

ε1/6 F̂1(xθ , yθ , zθ ) dWθ + σ ′ε1/3 F̂2(xθ , yθ , zθ ) dWθ ,

dyθ = ε2/3ĝ1(xθ , yθ , zθ ; ε, σ ′) dθ + σ ′ε1/3Ĝ1(xθ , yθ , zθ ) dWθ ,

dzθ = ε2/3ĝ2(xθ , yθ , zθ ; ε) dθ + σ ′ε1/3Ĝ2(xθ , yθ , zθ ) dWθ , (4.37)

where f̂ (x, y, z) = y + x2 + O(z,
∥
∥(x, y)T

∥
∥3, ε, σ 2). Given δ > 0 of order 1, there exists

a δ0 of order 1 such that by restricting the analysis to a cube of size δ0, we may assume that
|ĝ1 − 1| < δ and |ĝ2| < δ.

For convenience, we set �∗0 = {(x0, y0, z0)} ⊂ �′4, where we recall that the initial
condition satisfies x0 � −ε1/3, y0 = c1ε

2/3 for some c1 > 0, and that we may assume
|z0| � ε2/3. For n � 1 and ε > 0 such that ε1/32n < δ0, we introduce sets

�∗n =
{
(x, y, z) : x = ε1/32n, (y, z) ∈ Dn

}
, (4.38)

see Fig. 4. The sets Dn are defined inductively as follows:

D1 = (y1 − c2ε
2/3, y1 + c2ε

2/3)× (−c2ε
2/3, c2ε

2/3), (4.39)
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where y1 is such that (2ε1/3, y1, z1) belongs to the deterministic orbit starting in (x0, y0, z0),
and c2 < c1 is a sufficiently small constant. Given Dn , the next set Dn+1 is chosen as the
c2ε

2/32−n/2-neighbourhood of the image of Dn under the deterministic Poincaré map from
�∗n to �∗n+1. It is not difficult to show that for sufficiently small δ and c2, the time needed
for the deterministic flow to go from �∗n to �∗n+1 is of order θ = O(2−n). During this time,
y and z vary by O(ε2/32−n) at most, and thus

diam(Dn+1) � diam(Dn)+O(ε2/32−n/2). (4.40)

The geometric decay in 2−n/2 shows that the diameter of the Dn has a uniform bound of
order ε2/3. In fact, by taking δ small, we can make the extension of Dn in the z-direction
small.

We return to the stochastic system (4.37). Fix n. For an initial condition (xn, yn, zn) ∈ �∗n ,
we denote by (xdet

θ , ydet
θ , zdet

θ ) and (xθ , yθ , zθ ) the deterministic and stochastic solutions
starting in (xn, yn, zn). We write P

(xn ,yn ,zn) whenever we wish to stress the initial condition.
Consider the stopping times

τn+1 = inf{θ : (xθ , yθ , zθ ) ∈ �∗n+1},
τ det

n+1 = τ det = inf{θ : (xdet
θ , ydet

θ , zdet
θ ) ∈ �∗n+1},

τξ = τ (n)ξ (h) = inf{θ : |xθ − xdet
θ | > h2−n/2},

τη = τ (n)η (h1) = inf{θ : ‖(yθ , zθ )− (ydet
θ , zdet

θ )‖ > h12−n/2}. (4.41)

We first establish that sample paths are likely to go from �∗n to �∗n+1 in a time of order
θ = O(2−n), as in the deterministic case.

Lemma 4.7 There exist h0, c, c2, κ > 0, not depending on n, such that for all initial condi-
tions (xn, yn, zn) ∈ �∗n and h � h0ε

1/3, h1 � c2ε
2/3,

P
(xn ,yn ,zn)

{
τn+1 ∧ τ (n)ξ (h) ∧ τ (n)η (h1) > c2−n} � exp

{
−κ 23nε

σ 2 + (σ ′)2ε
}
. (4.42)

Proof First note that τn+1 > c2−n implies that either x does not reach the level ε1/32n+1

before time c2−n or that x does reach ε1/32n+1 at a stopping time τ x
n+1 � c2−n while

(yτ x
n+1
, zτ x

n+1
) �∈ Dn+1.

Let us estimate the probability that τ x
n+1 > c2−n . Note that h0 and c2 can be chosen

sufficiently small to guarantee that f̂ � ε2/322n−2 for all times θ � τξ ∧ τη. From the
representation

xc2−n = ε1/32n+ 1

ε1/3

∫ c2−n

0
f̂ dθ+ σ

ε1/6

∫ c2−n

0
F̂1 dWθ+σ ′ε1/3

∫ c2−n

0
F̂2 dWθ (4.43)

we find that

P{xc2−n < ε1/32n+1, τξ ∧ τη > c2−n}

� P

{
σ

ε1/6

∫ c2−n

0
F̂1 dWθ + σ ′ε1/3

∫ c2−n

0
F̂2 dWθ < −

(
1

4
c − 1

)
ε1/32n

}

� exp

{
− ( 1

4 c − 1)2ε2/322n

Mc2−n[σ 2ε−1/3 + (σ ′)2ε2/3]
}

(4.44)
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for some constant M > 0, provided c > 4. In the last line, we used the fact that if Mt =∫ t
0 F(s, ·) dWt with integrand F(s, ω) bounded in absolute value by a constant K , then

Novikov’s condition [49, pp. 198–199] is satisfied and thus

Zt = exp

{
γMt − γ

2

2

∫ t

0
F(s, ω)2 ds

}
(4.45)

is a martingale for any γ > 0. It follows that for h > 0,

P
{

Mt > h
}

� P
{

Zt > eγ h−γ 2 K 2t/2} � e−γ h+γ 2 K 2t/2
E{Zt } = e−γ h+γ 2 K 2t/2, (4.46)

where we used Markov’s inequality and the fact that a martingale has constant expectation.
Thus we obtained a bound on the probability of x not reaching ε1/32n+1 despite of ξ and

η remaining small. It remains to consider the case (yτ x
n+1
, zτ x

n+1
) �∈ Dn+1 for τ x

n+1 � c2−n .

By (4.37), the lower bound on f̂ and the fact that xdet
τ det = ε1/32n+1 = xτ x

n+1
, we see that

on the set �′ = {ω ∈ � : τ det ∨ τ x
n+1(ω) � τξ (ω) ∧ τη(ω)},

|ydet
τ x

n+1
− ydet

τ det | � const ε2/3|τ x
n+1 − τ det| � const ε2/3

ε1/322n−2 |xdet
τ x

n+1
− xdet

τ det |
� O(ε1/3h2−5n/2) � O(h0ε

2/32−5n/2) (4.47)

and |yτ x
n+1
− ydet

τ x
n+1
| � h12−n/2 = c2ε

2/32−n/2. Similar estimates hold for the z-coordinate.

Since (ydet
τ det , zdet

τ det ) belongs to the image of Dn under the deterministic Poincaré map, we

conclude that (yτ x
n+1
, zτ x

n+1
) belongs to an ε2/32−n/2-neighbourhood of this image. Thus

τ x
n+1 = τn+1 on�′. Choosing c large enough to guarantee τ det � c2−n concludes the proof.

��

The next result gives a bound on fluctuations of sample paths, up to time c2−n .

Lemma 4.8 There exist M, h0 > 0 such that for all initial conditions (xn, yn, zn) ∈ �∗n and
all h, h1 > 0 satisfying h � h0ε

1/325n/2, h1 � h0ε
−1/327n/2, h2 � h0ε

−1/327n/2h1 and
h2

1 � h0ε
1/325n/2h,

P
(xn ,yn ,zn)

{
τ
(n)
ξ (h) ∧ τ (n)η (h1) < c2−n}

� exp

{
− h2

M(σ 2 + (σ ′)2ε)ε−1/3

}
+ exp

{
− h2

M(σ ′)22−2n

}

+ exp

{
− h2

1

M(σ 2 + (σ ′)2ε)ε2−2n

}
+ exp

{
− h2

1

M(σ ′)2ε2/3

}
. (4.48)

Proof The proof is similar to the proof of Proposition 4.3. First note that the linearization
a(θ) = ∂x f̂ (xdet

θ , ydet
θ , zdet

θ ) has order xdet
θ , satisfying xdet

θ � const ε1/32k+1 for θ � τ det
k+1

for any k. Since τ det
k+1 � 2−k for all k, xdet

θ remains of order ε1/32n for all θ � c2−n . Thus
a(θ) = O(ε1/32n) for all θ � c2−n , which implies

α(θ, φ) =
∫ θ

φ

a(u) du � O(τ detε1/32n) � O(2−nε1/32n) = O(ε1/3) (4.49)

for all 0 � φ � θ � c2−n .
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Using this, one shows that the analogue of (3.12) admits solutions p1(θ), p2(θ) =
O(ε−1/32−n), so that by Lemma 3.2,

Uξξ (θ, φ) = O(1), Uξη(θ, φ) = O(ε−1/32−n),

Uηξ (θ, φ) = O(ε2/32−n), Uηη(θ, φ) = O(1), (4.50)

for 0 � φ � θ � c2−n . It follows from computations similar to those yielding (4.18) that

P
{
τξ < c2−n∧τη

}
� exp

{
−[h − Mε−1/32−5n/2(h2 + h2

1)]2
M(σ 2 + (σ ′)2ε)ε−1/3

}
+e−h2/(M(σ ′)22−2n) . (4.51)

Since we are working on rather short time intervals, we can approximate the stochastic integral
by the same Gaussian martingale on the whole time interval. Thus there is no subexponential
prefactor of the type �·	.

In a similar way, using the fact that ε1/3 � δ02−n , we get

P
{
τη < c2−n ∧ τξ

}
� exp

{
−[h1 − Mε1/32−7n/2(h2 + h2

1)]2
M(σ 2 + (σ ′)2ε)ε2−2n

}
+ e−h2

1/(M(σ
′)2ε2/3) .

(4.52)
The conditions on h, h1 guarantee that the terms in (h2 + h2

1) are negligible. ��

The conditions on h and h1 are illustrated in Fig. 5.
Putting the preceeding two results together, we obtain the following estimate on the spread-

ing of sample paths when they hit �5.

Proposition 4.9 Denote by (y∗, z∗) the point where the deterministic solution starting in
(x0, y0, z0) ∈ �′4 first hits �5 = {x = δ0}. Then there exist C, κ, h0 > 0 such that for any
h1 satisfying h1 � h0ε

2/3, the stochastic sample path starting in (x0, y0, z0) first hits �5 at
time τ = τ�5 at a point (δ0, yτ , zτ ) such that

2/3 1/3 h1

1/3

h
h1 = 1/3h2

h = −1/3h2
1

Fig. 5 The shaded area is the set of (h1, h) satisfying the conditions given in Lemma 4.8 (if h0 = 1 and
n = 0). Lemma 4.7 requires in addition that h1 � ε2/3.
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P
{∥∥(yτ , zτ )− (y∗, z∗)

∥
∥ > h1

}
� C |log ε|

[

exp

{
− κh2

1

σ 2ε + (σ ′)2ε1/3

}

+ exp

{
− κε

σ 2 + (σ ′)2ε
}]

. (4.53)

Proof Let N be the largest integer such that ε1/32N � δ0, and τ (n) = τ (n)ξ (h) ∧ τ (n)η (h1/2)

for n = 1, . . . , N , where h = h0(ε
1/3 ∧ ε−1/6h2

1) is taken as large as possible, cf. Fig. 5.
If τh1 denotes the first time the stochastic sample path leaves a tube of size h1 around the

deterministic solution, the left-hand side of (4.53) can be bounded above by P{τh1 < τ�5}.
Since

N⋂

n=1

{
τn+1 � c2−n ∧ τ (n)} ⊂

{
τ�5 �

N∑

n=1

c2−n ∧ τh1

}
, (4.54)

we have the bound

P
{
τh1 < τ�5

}
� P

{
τh1 ∧

N∑

n=1

c2−n < τ�5

}
�

N∑

n=1

P
{
τn+1 > c2−n ∧ τ (n)}. (4.55)

Each term of the sum is bounded by P{τn+1∧τ (n) > c2−n}+P{τ (n) < c2−n ∧τn+1}, so that
the result follows from the last two lemmas. By distinguishing the cases h1 � ε and h1 � ε,
one checks that our choice of h implies that the terms in h2 are negligible, compared to at
least one of the two summands on the right-hand side of (4.53). ��

This result implies that the spreading in the y- and z-directions on �5, for a given initial
condition on �′4, is of order

σ
√
ε + σ ′ε1/6. (4.56)

5 The Folded Node

In this section we analyze the transition �1 → �2 of sample paths in a neighbourhood of
the folded-node point p∗. For convenience, we translate the origin of the coordinate system
to p∗. We will decompose the transition into three parts, by introducing further sections
�′1 = {x = δ

√
ε } and �′′1 = {x = −δ

√
ε }, where δ is a small constant of order 1. The

transitions �1 → �′1, �′1 → �′′1 , and �′′1 → �2 are analyzed, respectively, in Sect. 5.2, in
Sects. 5.3 and 5.4, and in Sect. 5.5.

5.1 Normal Form

We start by making a preliminary transformation to normal form near the folded node point p∗.
Recall once again that t = s/ε denotes the fast timescale.

Proposition 5.1 Near a folded-node point p∗ ∈ L+ satisfying the assumptions (A1) and
(A3), there exist a smooth change of coordinates and a random time change such that (3.1)
is locally given by

dxt = f̂ (xt , yt , zt ; ε, σ, σ ′) dt + [σ F̂1(xt , yt , zt )+ σ ′√ε F̂2(xt , yt , zt )
]

dWt ,

dyt = ε ĝ1(xt , yt , zt ; ε, σ ′) dt + σ ′√ε Ĝ1(xt , yt , zt ) dWt ,

dzt = 1

2
εμ dt + σ ′√ε Ĝ2(xt , yt , zt ) dWt , (5.1)
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where μ ∈ (0, 1) is the ratio of weak and strong eigenvalues at the folded node (see also [17,
p. 4793] or [24, p. 48]), and

f̂ (x, y, z; ε, σ, σ ′) = y − x2 +O
(∥
∥(x, y, z)T

∥
∥3, ε
∥
∥(x, y, z)T

∥
∥ , σ 2, (σ ′)2ε

)
,

ĝ1(x, y, z; ε, σ ′) = −(μ+ 1)x − z +O(y, (x + z)2, ε, (σ ′)2), (5.2)

while the diffusion matrices F̂1, F̂2, Ĝ1, Ĝ2 all remain of order 1.

Proof The result is again a stochastic analogue of the transformation result for deterministic
systems, see [82, pp. 8–10], as well as [83].

We start by translating the origin of the coordinate system to the folded-node point p∗. Note
that the failure of the normal-switching condition (A2) implies that the vectors ( ∂ f

∂y ,
∂ f
∂z )(0)

and g(0) are orthogonal. We may thus rotate coordinates in such a way that g1(0) = 0 and
∂ f
∂z (0) = 0. This rotation does not change the order of magnitude of the diffusion coefficients
σ ′
√
ε G1 and σ ′

√
ε G2.

Calculating the linearization of the desingularized slow flow (2.9) and using Assump-
tion (A1), we see that g2(0) �= 0, since otherwise p∗ = 0 would not be a node for (2.9) as
required by Assumption (A3). We can thus carry out locally a random time change given by

dt̃ = g2(xt , yt , zt )

g2(0, 0, 0)
dt. (5.3)

Lemma 8.4 in Appendix 1 shows that this time change yields a system in which all drift
coefficients have been multiplied by g2(0, 0, 0)/g2(x, y, z), and all diffusion coefficients
have been multiplied by [g2(0, 0, 0)/g2(x, y, z)]1/2. We may thus assume that g2(x, y, z) is
constant and equal to g2(0, 0, 0) in (3.1).

The remainder of the proof is similar to the proof of Proposition 4.5. A transforma-
tion x = x̄ + ξ(z), y = ȳ + η(z) rectifies the fold curve, i.e. f (ξ(z), η(z), z) = 0 and
∂ f
∂x (ξ(z), η(z), z) = 0 in a neighbourhood of z = 0, and thus

f̄ (x̄, ȳ, z) = a ȳ + bx̄2 + cx̄ ȳ + d ȳ2 + eȳz + kε +O(‖(x̄, ȳ, z)‖3 , εz, (σ ′)2ε). (5.4)

The standard form of f and g1 can then be achieved by combining a translation of x by O(ε),
a scaling of space and a near-identity transformation x̂ = x̄ − 1

2 cx̄2 − dx̄ ȳ − ex̄z (cf. [82,
pp. 9–10]). These transformations do not change the order of the diffusion coefficients for y
and z. ��
5.2 Approach

In this section, we consider solutions of the normal form (5.1), starting at a fast time s0 � −1
on �1, as long as x � O(√ε ). We fix a deterministic solution (xdet

s , ydet
s , zdet

s ) which is
sufficiently close to the strong canard to display SAOs when approaching the folded-node
point p∗. From the deterministic analysis we know that

a(s) = ∂x f (xdet
s , ydet

s , zdet
s ) = −2xdet

s = cs +O(s2) for s0 � s � −√ε, (5.5)

where c is a constant of order 1. Scaling time if necessary, we may assume that c = 1.
The linearization of the deterministic system at (xdet

s , ydet
s , zdet

s ) has the form εζ̇ = A(s)ζ ,
where

A(s) =
(

A(s) c1(s)
0 0

)
, A(s) =

(
2a(s) 1+O(s2)

−ε(1+ μ)+O(εs) O(ε)
)
, (5.6)
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and c1(s) = (1+O(s2),O(ε))T. We have used the fact that s2 � ε to simplify the expression
of the error terms.

For s � −√ε, the eigenvalues of A(s) behave like s and ε/|s|. This implies that while
for s � −1, the variable x is faster than both y and z, ẋ and ẏ become of comparable order
1/
√
ε as s approaches−√ε. This is the well-known effect that one may extend the normally

hyperbolic theory slightly near fold points from x � 1 up to a neighbourhood with x � √ε,
see [24, pp. 48–49]. Instead of blocking y and z as in (3.5), we write

ξs =
(

xs

ys

)
−
(

xdet
s

ydet
s

)

, ηs = zs − zdet
s , ζs =

(
ξs

ηs

)
, (5.7)

since ẋ and ẏ eventually become comparable. Then ζs obeys a system of the form

dζs = 1

ε
A(s)ζs ds +

⎛

⎜
⎝

σ√
ε
F1(ζs, s)+ σ ′F2(ζs, s)

σ ′G1(ζs, s)

σ ′G2(ζs, s)

⎞

⎟
⎠ dWs +

⎛

⎜
⎝

1
ε

bx (ζs, s)

by(ζs, s)

0

⎞

⎟
⎠ ds. (5.8)

The principal solution of εζ̇ = A(s)ζ has the block structure

U (s, r) =
⎛

⎝V (s, r)
1

ε

∫ r

s
V (s, u)c1(u) du

0 1

⎞

⎠ , (5.9)

where V (s, r) denotes the principal solution of εξ̇ = A(s)ξ .

Lemma 5.2 For s0 � r � s � −√ε, the matrix elements of V (s, r) satisfy

Vxx (s, r) = O
( |a(r)|1+μ
|a(s)|1+μ eα(s,r)/ε

)
,

Vxy(s, r) = O
( |a(r)|μ
|a(s)|1+μ eα(s,r)/ε + |a(s)|

μ

|a(r)|1+μ
)
,

Vyx (s, r) = O
(
ε
|a(r)|1+μ
|a(s)|2+μ eα(s,r)/ε +ε |a(s)|

1+μ

|a(r)|2+μ
)
,

Vyy(s, r) = O
( |a(s)|1+μ
|a(r)|1+μ + ε

|a(r)|μ
|a(s)|2+μ eα(s,r)/ε

)
, (5.10)

where

α(s, r) =
∫ s

r
Tr A(u) du = (s2 − r2)+O((s − r)(s2 + r2)). (5.11)

In the particular case where A(s) = ( 2s 1−ε(1+μ) 0

)
, the equation εξ̇ = A(s)ξ for ξs =

(ξ1,s, ξ2,s)
T is equivalent to a Weber equation

ε
d2ξ1

ds2 − 2s
dξ1

ds
+ (μ− 1)ξ1 = 0, (5.12)

and the estimates (5.10) follow directly from the asymptotics of parabolic cylinder func-
tions [1, p. 689]; see also [77, p. 449]. In Appendix 2, we provide a proof of Lemma 5.2 valid
in the general case, which does not rely on these asymptotics. With the above estimates, we
obtain the following result on the size of fluctuations during the approach phase.
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Proposition 5.3 Define the stopping times

τξ,1 = inf{s > s0 : |ξ1,s | > h},
τξ,2 = inf{s > s0 : |ξ2,s | > h1},
τη = inf{s > s0 : |ηs | > h2}. (5.13)

There exist constants κ, h0 > 0 such that for all s0 � s � −√ε, and all h, h1, h2 > 0
satisfying h2 + h2

1 + h2
2 � h0|s|h and h2 + h2

1 + h2
2 � h0h1,

P
{
τξ,1 ∧ τξ,2 ∧ τη < s

}
�
⌈

s − s0

ε

⌉[
exp

{
− κh2

(σ 2 + (σ ′)2) |s|−1

}

+ exp

{
− κh2

1

σ 2ε |s|−1 + (σ ′)2 |s|
}
+ exp

{
− κh2

2

(σ ′)2

}]
.

(5.14)

Proof The proof is similar to the proof of Proposition 4.3, so we omit the details. Let us just
remark that when evaluating the elements in (5.9), one encounters integrals of the form

∫ s

s0

|s|μ
|u|1+μ du = 1− yμ

μ
= |log y| 1− e−μ|log y|

μ |log y| (5.15)

where y = |s| / |s0|. The fraction on the right-hand side being bounded, the integral is
bounded by a constant times |log(|s| / |s0|)|. ��

Under the condition σ, σ ′ = O(ε3/4), we obtain the typical spreadings

• (σ + σ ′) |s|−1/2 in the x-direction, which reaches order (σ + σ ′)ε−1/4 for s � −√ε,
• σε1/2 |s|−1/2+σ ′ |s|1/2 in the y-direction, which reaches order (σ+σ ′)ε1/4 for s � −√ε,
• and σ ′ in the z-direction.

Note carefully that the integrals in (5.15) become unbounded when s → 0 as μ ∈ (0, 1) so
we cannot use the same methods to control sample paths closer to the folded node.

5.3 Neighbourhood: Deterministic Dynamics

In this section we briefly describe the behaviour of solutions of the normal form (5.1) in
the deterministic case σ = σ ′ = 0. Recall that standard results (see [77, Sect. 4], [26,
Theorem 2.3] and the foundational work [7,8]) imply the existence of two primary canards
and kμ secondary canards [83] where

2kμ + 1 < μ−1 < 2kμ + 3, (5.16)

and each canard lies in Cr
ε ∩ Ca+

ε . One strategy to prove the existence of canards, as first
suggested for the planar case in [29], is to look for transversal intersections of Cr

ε and Ca+
ε

by extending the manifolds via the blow-up method [77] into a region near the folded node
where the blow-up reduces to the scaling (or zoom-in) transformation

x = √ε x̄, y = ε ȳ, z = √ε z̄. (5.17)

The scaling (5.17) transforms the deterministic version of the normal form (5.1) to

μ
dx̄

dz̄
= 2 ȳ − 2x̄2 +O(√ε ),

μ
d ȳ

dz̄
= −2(1+ μ)x̄ − 2z̄ +O(√ε ). (5.18)
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x̄

ȳ

Σ1

γw(z̄0)

Σ1

(x̄0, ȳ0)

Σ1

Σ1

z̄

x̄(z̄0, x̄0)

γw

Fig. 6 Sketch of the geometry of the orbits near the folded-node singularity

We consider henceforth the dynamics for ε = 0, as results can be extended to small positive
ε by regular perturbation theory. Note that the system is symmetric under the transformation

(x̄, ȳ, z̄) �→ (−x̄, ȳ,−z̄). (5.19)

The normal form admits a particular solution γ w given by

x̄ = −z̄, ȳ = z̄2 − μ
2
, (5.20)

which is called the singular weak canard (there is also a singular strong canard, given by
x̄ = −z̄/μ, ȳ = (z̄/μ)2 − 1/2). Generic solutions twist a certain number of times around
the weak canard, see Fig. 6 for an illustration. One possibility to prove the persistence of
the weak and strong canards as well as secondary canards is to analyse the zeros of the
variational Weber equation as shown in [77]. To also obtain estimates on individual non-
canard orbits, our aim is to determine the map from an initial condition P0 = (δ, ȳ0, z̄0) ∈
�′1, close to the attracting slow manifold, to the first-hitting point P1 = (−δ, ȳ1, z̄1) ∈
�′′1 . The key tool will be suitable coordinate transformations; we note that although the
method only provides a small refinement of previous results, it has the advantage of being
quite explicit so we choose to record the results here. We will proceed in three steps, see
Fig. 7:

(S1) Estimate the coordinates of P ′ = (0, ȳ′, z̄′), the first-hitting point of {x̄ = 0}.
(S2) Use an averaging-type transformation to describe the rotations of this orbit around the

weak canard, until the last-hitting point P ′′ = (0, ȳ′′, z̄′′) of {x̄ = 0}.
(S3) Determine the map from P ′′ to P1.

For Steps (S1) and (S3), it is useful to introduce the rectified coordinate η = ȳ − x̄2 +
(1+ μ)/2. The normal form (with ε = 0) in rectified coordinates then reads

μ
dx̄

dz̄
= 2η − (1+ μ),

μ
dη

dz̄
= −4x̄η − 2z̄. (5.21)

Lemma 5.4 Fix constants 0 < β < α � 1 and 0 < L �
√
(α − β)|logμ|/2. Then for

μ > 0 small enough the orbit of (5.21) passing through a point (x̄, η, z̄) = (0, η∗, z̄∗) with
|η∗| � μα and |z̄∗| � μβ is given by

123



110 J Dyn Diff Equat (2015) 27:83–136

x̄

Σ1 Σ1

ȳ − x̄2 + 1+μ
2

γw

K = K0

P0

P

P

P1

Fig. 7 The map from �′1 to �′′1 is decomposed into three phases

η(x̄) = e2x̄2
[
η∗ + z̄∗

∫ 2x̄

0
e−u2/2 du +O(μ)

]
[
1+O(μβL2)

]
,

z̄(x̄) = z̄∗ + μx̄
[
1+O(μβ)], (5.22)

for all x̄ ∈ [−L , L].
Proof For η = O(μβ) the equations (5.21) can be rewritten in the form

dz̄

dx̄
= μ[1+O(μβ)],

dη

dx̄
= a(x̄)η + 2z̄[1+O(μβ)], (5.23)

where a(x̄) = 4x̄[1 + O(μβ)]. Integrating the first equation yields the expression for z̄(x̄).
To obtain the expression for η(x̄), observe that exp(

∫ x̄
0 a(y) dy) = e2x̄2 [1+O(μβL2)] and

solve the equation for η by variation of the constant. ��
From this result we immediately see that the map from P0 to P ′ is given by

η′ = e−2δ2
η0[1+O(δ2μβ)] − z̄0

∫ 2δ

0
e−u2/2 du +O(μ),

z̄′ = z̄0 +O(δμ), (5.24)

provided η0, z̄0 = O(μβ) for some β ∈ (0, 1). Similarly, the map from P ′′ to P1 is given by

η1 = e2δ2
[
η′′ − z̄′′

∫ 0

−2δ
e−u2/2 du +O(μ)

]
[1+O(δ2μβ)],

z̄1 = z̄′′ +O(δμ), (5.25)

provided η′′ = O(μα) and z̄′′ = O(μβ) for some choice of 0 < β < α � 1. In addition,
Lemma 5.4 shows that for sufficiently small z̄, the distance at x̄ = 0 between the invariant
manifolds Ca+

ε and Cr
ε has order z̄. This follows from the fact that orbits in Ca+

ε should be
such that η(x̄) is close to 0 for large positive x̄ , while orbits in Cr

ε should be such that η(x̄)
is close to 0 for large negative x̄ .
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We now turn to Step (S2), estimating the map from P ′ to P ′′. The difference u between
a general solution of (5.18) and the weak canard γ w satisfies the variational equation

μ
du1

dz̄
= 4z̄u1 + 2u2 − 2u2

1,

μ
du2

dz̄
= −2(1+ μ)u1. (5.26)

Consider the variable

K :=
[

1+ 2

1+ μ(u2 − u2
1)

]
e−2u2/(1+μ), (5.27)

which is a first integral of the system when z̄ = 0. In fact, K is just a version of the classical
first integral near planar degenerate folded singularities (cf. [56, Lemma 3.3; Figure 3.2], [54,
Figure 5], [69, Figure 2]). Although K is not a first integral for arbitrary z̄ it turns out that
the variable K is still very useful for obtaining explicit control over the oscillations near the
folded node. A short computation yields

μ
dK

dz̄
= − 16z̄

1+ μu2
1 e−2u2/(1+μ) . (5.28)

In [17, Section D.2] we provided an averaging result valid in a small neighbourhood of the
weak canard (for the stochastic case). The following result extends this to the larger domain
{K > 0}.

Proposition 5.5 (Averaged system) Set ρ(K ) = (1− K )(1+ |log K |3/2). For z̄ in a neigh-
bourhood of 0 and K > 0, there exist a variable K = K +O(|z̄| ρ(K )), an angular variable
ϕ, a function ḡ and constants c± > 0 such that

c−
1+ |log K |1/2 � μ

dϕ

dz̄
� c+(1+ |log K |1/2) (5.29)

for K � O(|z̄|) and
dK

dϕ
= z̄ ḡ(K , z̄)+O

(
(μ+ z̄2)ρ(K )

)
, (5.30)

where c−(1− K ) � −ḡ(K , z̄) � c+(1− K ).

We give the proof in Appendix 3.
The averaged equation (5.30) is similar to the equation describing dynamic pitchfork or

Hopf bifurcations, which display a bifurcation delay. Initially, i.e. when z̄ = z̄′ < 0, K has a
value K 0 > 0 of order z̄0. As long as z̄ < 0, K will keep increasing, and thus get so close to
1 that a time of order |z̄′| is needed, once z̄ becomes positive, for K to decrease to the value
K 0 again. We set

τ = inf{z̄ > 0 : K = K 0}. (5.31)

Note that the error term in (5.30) is no longer negligible when |z̄| is of order μ, but this only
results in a shift of the delay by a quantity of order μ, which will be negligible.

Corollary 5.6 Let ρ1 = (μ+ z̄2
0)|log z̄0|3/2. We have

τ = −z̄′ +O(ρ1). (5.32)
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Furthermore, the change in angle is given by ϕ(τ)− ϕ(z̄′) = φ(z̄′)/μ, where φ is monoton-
ically decreasing for z̄′ < 0 and satisfies

2c−
1+ |log z̄0|1/2

[|z̄′| +O(ρ1)
]

� φ(z̄′) � 2c+(1+ |log z̄0|1/2)
[|z̄′| +O(ρ1)

]
. (5.33)

Proof Set Q = 1− K . As long as z̄ � τ , we can bound |log K | by |log z̄0| and write

dQ

dϕ
� Q
[
c+ z̄ +O(Q(μ+ z̄2)|log z̄0|3/2

)]
. (5.34)

Using (5.29) we obtain

dQ

dz̄
�

1

μ
Q
[
c2+ z̄ +O(Q(μ+ z̄2)|log z̄0|3/2

)][
1+O(|log z̄0|1/2)

]
. (5.35)

Integrating, we arrive at

Q(z̄) � Q(z̄′) exp

{
c2+
2μ
(z̄ − z̄′)

[
z̄ + z̄′ +O(ρ1)

][
1+O(|log z̄0|1/2)

]
}
. (5.36)

This shows that τ � −z̄′ + O(ρ1). Using the corresponding lower bounds, we also get
τ � −z̄′ −O(ρ1). This proves (5.32), and (5.33) follows by using (5.29) again. ��

We can now draw consequences on the Poincaré map from the last results. If

φ(z̄′) = 2πnμ, n ∈ N, (5.37)

then the orbit will hit the plane {x̄ = 0} at P ′′ = P ′, which is on (or very near) the repelling
slow manifold Cr

ε , cf. (5.24). Therefore (5.37) gives a condition on z̄′ (and thus on z̄0) for
the orbit being a canard. If, on the other hand,

φ(z̄′) = (2πn − θ)μ, 0 < θ < 2π, (5.38)

the orbit will leave the set {K > K 0} far from the repelling slow manifold Cr
ε , see Fig. 7.

One can then use Proposition 5.5 to estimate z̄′′, which is of the form z̄′′ = τ +O(μθ). As
θ increases from 0 to 2π , P ′′ moves downwards until it approaches the continuation of the
attracting slow manifold Ca+

ε .
Once orbits have hit x̄ = 0 at some point P ′′ below P ′, one can use (5.25) to follow their

future evolution. Note in particular that the domain {x̄ < 0, η < 0} is positively invariant,
so that once orbits have reached this domain they will stay bounded away from the repelling
slow manifold.

5.4 Neighbourhood: Stochastic Dynamics

We now consider the stochastic dynamics of sample paths starting on �′1 up to the first time
they hit the section �′′1 = {x = −δ

√
ε }. The first step is again to apply the scaling (or

zoom-in)

x = √ε x̄, y = ε ȳ, z = √ε z̄,
1

2
μ
√
ε t = θ, (5.39)

123



J Dyn Diff Equat (2015) 27:83–136 113

which transforms the normal form (5.1) into

dx̄θ = 2

μ

[
ȳθ − x̄2

θ +O(√ε )] dθ +
√

2

μ

[
σ̄ F̂1(x̄θ , ȳθ , z̄θ )+ σ̄ ′√ε F̂2(x̄θ , ȳθ , z̄θ )

]
dWθ ,

d ȳθ = 2

μ

[−(1+ μ)x̄θ − z̄θ +O(√ε )] dθ +
√

2

μ
σ̄ ′Ĝ1(x̄θ , ȳθ , z̄θ ) dWθ ,

dz̄θ = dθ +
√

2

μ
σ̄ ′
√
ε Ĝ2(x̄θ , ȳθ , z̄θ ) dWθ , (5.40)

where
σ̄ = ε−3/4σ and σ̄ ′ = ε−3/4σ ′. (5.41)

The deviation ζθ from the deterministic solution (x̄det
θ , ȳdet

θ , z̄det
θ ), defined as in (5.7), satisfies

a SDE of the form

dζθ = 1

μ
A(θ)ζθ dθ+ 1√

μ

⎛

⎜
⎝

σ̄F1(ζθ , θ)+ σ̄ ′√ε F2(ζθ , θ)

σ̄ ′G1(ζθ , θ)

σ̄ ′
√
ε G2(ζθ , θ)

⎞

⎟
⎠ dWθ+ 1

μ

⎛

⎜
⎝

bx (ζθ , θ)√
ε by(ζθ , θ)

0

⎞

⎟
⎠ dθ.

(5.42)
The principal solution of μζ̇ = A(θ)ζ has a block structure similar to (5.9). Provided we
take δ sufficiently small, the upper left block A(θ) has complex conjugated eigenvalues
a(θ)± 2 iω(θ), where

a(θ) = −2x̄det
θ +O(√ε ), ω(θ) =

√
1− (x̄det

θ )2 + μ +O(√ε ). (5.43)

By [17, Theorem 4.3], the principal solution V (θ, φ) of μξ̇ = A(θ)ξ can be written in the
form

V (θ, θ0) = eα(θ,θ0)/μ S(θ)

(
cos(φ(θ, θ0)/μ) sin(φ(θ, θ0)/μ)

− sin(φ(θ, θ0)/μ) cos(φ(θ, θ0)/μ)

)

S(θ0)
−1, (5.44)

where

S(θ) = 1√
ω(θ)

(−θ + ω(θ) −θ − ω(θ)
1 1

)
+O(μ), (5.45)

and

α(θ, θ0) =
∫ θ

θ0

a(ψ) dψ, φ(θ, θ0) =
∫ θ

θ0

2ω(ψ) dψ +O(μ). (5.46)

The off-diagonal term in the principal solution of μζ̇ = A(θ)ζ has the form

Uξη(θ, θ0) = 1

μ

∫ θ

θ0

V (θ, ψ)c1(ψ) dψ

= 1

μ

∫ θ

θ0

eα(θ,ψ)/μ
[

cos

(
φ(θ, ψ)

μ

)
v1 + sin

(
φ(θ, ψ)

μ

)
v2

]
dψ (5.47)

for some vectors v1, v2. Using integration by parts and the fact that the eigenvalues a ± iω
are bounded away from 0, one shows that the elements of Uξη are of order 1 at most. The
next proposition then follows in the same way as before.
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Proposition 5.7 Define stopping times

τξ = inf{θ > θ0 : ‖ξθ‖ > h},
τη = inf{θ > θ0 : |ηθ | > h1}. (5.48)

There exist constants κ, h0 > 0 such that for all θ0 � θ � √μ, and all 0 < h, h1 � √μ,

P
{
τξ ∧ τη > θ

}
�
⌈
θ − θ0

μ

⌉(
exp

{
−κ[h − μ

−1/2(h2 + h2
1)]2

(σ̄ 2 + (σ̄ ′)2)μ−1/2

}

+ exp

{
− κh2

(σ̄ 2+(σ̄ ′)2)εμ−1(θ− θ0)

}
+exp

{
− κh2

1

(σ̄ ′)2εμ−1(θ − θ0)

})
. (5.49)

These estimates show that if the deterministic solution hits�′′1 at a point such that z̄ � √μ,
and provided ε(θ − θ0) � √μ and σ̄ + σ̄ ′ � μ3/4, the typical spreadings are

�ȳ � (σ̄ + σ̄ ′)
(

1

μ1/4 +
ε1/2(θ − θ0)

1/2

μ1/2

)
and �z̄ � σ̄ ′ε1/2(θ − θ0)

1/2

μ1/2 . (5.50)

In particular, if θ − θ0 � μ1/2, going back to original variables we find that provided
σ + σ ′ � (εμ)3/4, the typical spreadings on �′′1 are of order

• (σ + σ ′)(ε/μ)1/4 in the y-direction,
• and σ ′(ε/μ)1/4 in the z-direction.

Remark 5.8 Theorem 6.2 in [17] provides a more precise description of the dynamics, in a
slightly simpler setting (in particular without noise on the z-variable): it shows that sample
paths concentrate in a “covariance tube” centred in the deterministic solution. The size of
the tube is compatible with the above estimates on noise-induced spreading. Such a refined
analysis is possible in the present setting as well, but it would require some more work,
mainly in order to control the effect of the position-dependence of the noise term.

Remark 5.9 It is possible to extend Estimate (5.49) to slightly larger θ , at the cost of replacing
μ−1/2 in the denominator by μ−1/2 e2cθ2/μ for some c > 0. This is due to the exponential
growth of the variance for θ >

√
μ.

5.5 Escape

In this subsection, we fix an initial condition (−δ√ε, y0, z0) ∈ �′′1 , sufficiently close to the
folded-node point p∗, and estimate the fluctuations of sample paths up to their first hitting
of �2 = {x = −δ0}.
Proposition 5.10 Denote by (y∗, z∗) the point where the deterministic solution starting in
(x0 = −δ√ε, y0, z0) ∈ �′′1 first hits �2 = {x = −δ0}. Assume y0 � x2

0 − ε( 1+μ
2 + c0)

for a constant c0 > 0, and 0 � z0 � O(√ε). For sufficiently small δ, δ0 > 0, there exist
C, κ, h0 > 0 such that for all h1, h2 > 0 satisfying h1 � h0ε and h2 � h0

√
h1, the stochastic

sample path starting in (x0, y0, z0) first hits�2 at time τ = τ�2 in a point (−δ0, yτ , zτ ) such
that

P
(x0,y0,z0)

{|yτ − y∗| > h1 or |zτ − z∗| > h2
}

� C |log ε|
(

exp

{
− κh2

1

(σ 2 + (σ ′)2)√ε
}
+ exp

{
− κh2

2

(σ ′)2
√
ε

}
+ exp

{
− κε3/2

σ 2 + (σ ′)2ε
})
.

(5.51)
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The result remains true uniformly in initial conditions (x0, y, z) such that |y− y0| � h1 and
|z − z0| � h2.

Proof The proof is basically the same as the proof of Proposition 4.9, so we will omit its
details. We introduce sections �∗n = {x = −δ

√
ε 2n, (y, z) ∈ Dn}, where each Dn+1 is

obtained by enlarging the image of Dn under the deterministic flow by order h12−n/2 in
the y-direction, and by order h22−n/2 in the z-direction. Choosing D1 as a rectangle of size
2h1 × 2h2 allows to deal with more general initial conditions. Let τ (n) denote the first-exit
time from a block of dimensions 2h × 2h1 × 2h2 centred in a given deterministic solution.

Then the analogue of Lemma 4.7 reads

P
(xn ,yn ,zn)

{
τn+1 ∧ τ (n) > cδ2−nμ

}
� exp

{
− κδ

223nε3/2

σ 2 + (σ ′)2ε
}
, (5.52)

while the equivalent of Lemma 4.8 is

P
(xn ,yn ,zn)

{
τ (n) < cδ2−nμ

}

� exp

{
− κh2√ε
δ[σ 2+(σ ′)22−2n]

}
+ exp

{
− κh2

1

δ
√
ε[σ 2δ22−2n+(σ ′)2]

}
+ exp

{
− κh2

2

δ(σ ′)2
√
ε

}
.

(5.53)

The remainder of the proof is similar to the proof of Proposition 4.9, after redefining κ . ��
This result shows that if σ + σ ′ � ε3/4, for a given initial condition on�′′1 , the spreading

in the y- and z-directions on �2 is of order

(σ + σ ′)ε1/4 and σ ′ε1/4. (5.54)

6 From Noisy Returns to Markov Chains

In this section we combine the results from the last three sections to obtain estimates on the
kernel K of the random Poincaré map on�1. Table 1 summarizes the results obtained so far.
For each part of the dynamics, it shows the typical size of fluctuations when starting in a point
on the previous section. Deviations will not necessarily add up because of the contraction
during some phases of the motion.

6.1 The Global Return Map

The following result describes the global return map �2 → �1.

Theorem 6.1 (Global return map) Fix P2 = (x∗2 , y∗2 , z∗2) ∈ �2. Assume the deterministic
orbit starting in P2 hits �1 for the first time in P1 = (x∗1 , y∗1 , z∗1). Then there exist constants
h0, κ,C > 0 such that for all h � h0 and h2/h0 � h1 � h, the stochastic sample path
starting in P2 hits �1 for the first time in a point (x1, y∗1 , z1) satisfying

P
P2
{|x1 − x∗1 | > h or |z1 − z∗1| > h1

}

�
C

ε

(
exp

{
− κh2

σ 2+(σ ′)2
}
+ exp

{
− κh2

1

σ 2ε|log ε|+(σ ′)2
}
+ exp

{
− κε

σ 2 + (σ ′)2ε−1/3

})
.

(6.1)
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Table 1 Summary of results on the size of fluctuations at the time of first hitting a section � j , when starting

from a specific point on �i , under the assumption σ + σ ′ � ε3/4, cf. Fig. 3

Transition Analysis in �x �y �z

�2 → �3 Sect. 3.2 σ + σ ′ σ
√
ε + σ ′

�3 → �4 Sect. 3.3 σ + σ ′ σ
√
ε + σ ′

�4 → �′4 Sect. 4.1
σ

ε1/6 +
σ ′
ε1/3 σ

√
ε|log ε| + σ ′

�′4 → �5 Sect. 4.3 σ
√
ε + σ ′ε1/6 σ

√
ε + σ ′ε1/6

�5 → �6 Sect. 3.2 σ + σ ′ σ
√
ε + σ ′

�6 → �1 Sect. 3.3 σ + σ ′ σ
√
ε + σ ′

�1 → �′1 Sect. 5.2 (σ + σ ′)ε1/4 σ ′

�′1 → �′′1 Sect. 5.4 (σ + σ ′)(ε/μ)1/4 σ ′(ε/μ)1/4
if z = O(√με)
�′′1 → �2 Sect. 5.5 (σ + σ ′)ε1/4 σ ′ε1/4

Proof Denote by (x∗i , y∗i , z∗i ) the deterministic first-hitting point of section �i , and by
(xi , yi , zi ) the corresponding random first-hitting point. We use similar notations for �′4.
We will decompose the dynamics into three main steps, and introduce the events

�1(h, h1) =
{|x ′4 − (x ′4)∗| � h, |z′4 − (z′4)∗| � h1

}
,

�2(H1) =
{∥∥(y5, z5)− (y∗5 , z∗5)

∥
∥ � H1

}
. (6.2)

• Step 1: �2 → �3 → �4 → �′4. Propositions 3.3 and 4.3 can be applied simultaneously,
because they are based on the same kind of estimates of the principal solution. This directly
yields the bound

P
P2
(
�1(h, h1)

c) �
C

ε

(
exp

{
− κh2

σ 2ε−1/3 + (σ ′)2ε−2/3

}
+exp

{
− κh2

1

σ 2ε|log ε| + (σ ′)2
})

(6.3)
for some C > 0, which is valid for all h, h1 satisfying h � h0ε

1/3, h1 � h0, h2 � h0h1

and h2
1 � h0hε1/3.

• Step 2: �′4 → �5. The difference ζθ between two deterministic solutions starting on �′4
satisfies a relation of the form

ζθ = U (θ, θ0)ζθ0 +
∫ θ

θ0

U (θ, φ)b(ζφ, φ) dφ, (6.4)

where b(ζ, φ) is a nonlinear term. Using the estimates on the principal solution (cf. (4.50) in
the proof of Lemma 4.8), one obtains that the deterministic orbit starting in (x̂4, (y′4)∗, ẑ4) ∈
�′4 hits �5 at a point (x∗5 , ŷ5, ẑ5) satisfying

∥
∥(ŷ5, ẑ5)− (y∗5 , z∗5)

∥
∥ � Mε2/3|x̂4 − (x ′4)∗| + M |ẑ4 − (z′4)∗| (6.5)

for some constant M > 0. Proposition 4.9 yields that for H1 � h0ε
2/3,

P
P2
(
�1(h, h1) ∩�2(H1)

c
)

� C |log ε|
(

exp

{
−κ(H1 − M[ε2/3h + h1])2

σ 2ε + (σ ′)2ε1/3

}
+ exp

{
− κε

σ 2 + (σ ′)2ε
})
. (6.6)
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z

x + z

√
µ

√

kμ
√

√

(σ + σ )( )1/4

Fig. 8 Inner (blue) and outer (green) canards. The shaded sets indicate the extension of typical fluctuations
(Color figure online)

We now choose h1 = H1/(3M) and h = ε1/3 ∧ H1/(3Mε2/3). Distinguishing the cases
h = ε1/3 and h = H1/(3Mε2/3) when using (6.3), this yields

P
P2
(
�2(H1)

c) �
C

ε

(
exp

{
− κH2

1

σ 2ε|log ε| + (σ ′)2
}
+ exp

{
− κε

σ 2 + (σ ′)2ε−1/3

})
,

(6.7)
where κ has been redefined.
• Step 3: �5 → �6 → �1. A similar argument as above shows that two deterministic

solutions starting at distance H1 on �5 hit �1 at a distance of order H1. The result then
follows from Proposition 3.3 and (6.7), choosing H1 = ε2/3 ∧ ch1 for a sufficiently small
constant c. ��
This result is useful if σ � √ε and σ ′ � ε2/3. It shows that stochastic sample paths are

likely to hit �1 at a distance of order σ + σ ′ in the fast directions from the deterministic
solution, and at a distance of order σ

√
ε|log ε| + σ ′ in the slow direction.

6.2 The Local Map

We know from the deterministic analysis (cf. (5.16)) that the section �1 can be subdivided
into kμ � 1/(2μ) sectors of rotation. An orbit starting in the k th sector makes 2k + 1
half-turns before hitting �2. The width of the k th sector has order ε(1−μ)/2, cf. [24]. The
analysis of Sect. 5.3 shows that the images of these sectors on �′1 have a size of order με.

For the stochastic system, it will be relevant to distinguish (Fig. 8) between

• inner sectors, which are sectors with k � O(1/√μ); orbits starting in these sectors hit
�′′1 for z � O(√εμ);
• outer sectors, which are sectors with k > O(1/√μ).
Theorem 6.2 (Local return map for inner sectors) Fix P0 = (x∗0 , y∗0 , z∗0) ∈ �1, and suppose
that P0 lies in an inner sector. Assume the deterministic orbit starting in P0 hits�2 for the first
time in P2 = (x∗2 , y∗2 , z∗2). Further assume ε � μ. Then there exist constants h0, κ,C > 0
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such that for all h � h0ε
√
μ and h2 � h0(

√
h1∧√εμ ), the stochastic sample path starting

in P0 hits �2 for the first time in a point (x∗2 , y2, z2) satisfying

P
P0
{|y2 − y∗2 | > h1 or |z2 − z∗2| > h2

}

�
C

ε

(
exp

{
− κh2

1
√
μ

(σ 2 + (σ ′)2)√ε
}
+ exp

{
− κh2

2

(σ ′)2

}
+ exp

{
− κε3/2

σ 2 + (σ ′)2
})
. (6.8)

Proof We introduce the events

�1(h1, h2) =
{|y′1 − (y′1)∗| � h1, |z′1 − (z′1)∗| � h2

}
,

�2(H1, H2) =
{|y′′1 − (y′′1 )∗| � H1, |z′′1 − (z′′1)∗| � H2

}
, (6.9)

where (y′1, z′1) and (y′′1 , z′′1) denote the first-hitting points of the stochastic path with �′1 and
�′′1 , and the starred quantities are the corresponding deterministic hitting points. Proposi-
tion 5.3 with h of order

√
ε implies

P
P0 (�1(h1, h2)

c)� C

ε

(
exp

{
− κh2

1

(σ 2 + (σ ′)2)√ε
}
+ exp

{
− κh2

2

(σ ′)2

}
+ exp

{
− κε3/2

σ 2 + (σ ′)2
})

(6.10)

for some C > 0. Using this bound with h1 of order H1 and h2 of order H1 ∧ H2, together
with Proposition 5.7 to estimate the probability of �1 ∩�c

2 and the assumption ε � μ yield

P
P0 (�2(H1, H2)

c) � C

ε

(
exp

{
− κH2

1
√
μ

(σ 2+(σ ′)2)√ε
}
+ exp

{
− κH2

2

(σ ′)2

}
+ exp

{
− κε3/2

σ 2+(σ ′)2
})
.

(6.11)

The result then follows from Proposition 5.10, taking h1 = H1 and h2 = H2. ��
This result is useful if σ, σ ′ � (εμ)3/4. It shows that stochastic sample paths are likely

to hit �2 at a distance of order (σ + σ ′)(ε/μ)1/4 in the y-direction from the deterministic
solution, and at a distance of order σ ′ in the z-direction. Combining this with Theorem 6.1
on the global return map, we conclude that for initial conditions P0 ∈ �1, starting in a inner
sector, stochastic sample paths will return to �1 in a neighbourhood of the deterministic
solution, of width

• σ + σ ′ in the fast x-direction,
• σ√ε|log ε| + σ ′ in the z-direction.

Remark 6.3 The limitation k � O(1/√μ) is due to the fact that Proposition 5.7 is
formulated for θ � √μ. Using Remark 5.9, Theorem 6.2 can be extended to sectors
k = √a|log(σ + σ ′)|/μ, which results in fluctuations of y of order (σ + σ ′)1−ca(ε/μ)1/4.
This does not affect the order of fluctuations in the z-direction as long as a is small enough.

Finally, we consider what happens to sample paths starting on �1 in an outer sector.

Theorem 6.4 (Local return map for outer sectors) Fix P0 = (x∗0 , y∗0 , z∗0) ∈ �1, and assume
P0 lies in an outer sector k, with k � k0/

√
μ for some k0 > 0. If k0 is large enough, there

exist constants κ,C0,C, γ > 0 such that the stochastic sample path starting in P0 hits �2

for the first time in a point (x∗2 , y2, z2) satisfying

P
P0
{
z2 � √εμ} �

C

ε
exp

{
− κμ

1/2ε3/2

σ 2 + (σ ′)2
}
, (6.12)

P
P0
{
z2 � z

}
� C0|log σ |γ exp

{
− κ(z2 − εμ)
εμ|log(σ + σ ′)|

}
∀z � √εμ. (6.13)
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η

x̄ + z̄

z̄
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√
μ

D
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PτDPτz

Fig. 9 Escape of sample paths starting in an outer sector from a neighbourhood of the weak canard γw

Furthermore, there exist a constant h0 > 0 and an interval I of size of order ε, independent
of k � k0/

√
μ, such that

P
P0
{
dist(y2, I ) > h1

}
�

C

ε

(
exp

{
− κh2

1

(σ 2 + (σ ′)2)√ε
}
+ exp

{
− κε3/2

σ 2 + (σ ′)2ε
})

(6.14)

holds for all h1 � h0ε.

Proof We shall work in the zoomed-in coordinates (x̄, ȳ, z̄), cf. (5.17). Fix a K0 ∈ (0, 1)
and introduce a neighbourhood D of the weak canard γ w given by

D = {(x̄, ȳ, z̄) : K � K0, z̄ � √μ} = D0 × [√μ,∞), (6.15)

where K is the first integral introduced in (5.27) (recall that u1 and u2 measure the deviation
of (x̄, ȳ) from the weak canard)— see Fig. 9. The proof proceeds in four main steps:

• Step 1: Entering D. From Theorem 4.4 in [17] describing the spacing of canards, we know
that the deterministic solution starting in P0 hits D in a point P∗0 at a distance of order

e−c(2k+1)2μ < e−4ck2
0 from the weak canard. Taking k0 sufficiently large, we may assume

that P∗0 is bounded away from the boundary ∂D0. Combining, as in the previous theorem,
Proposition 5.3 and Proposition 5.7, we obtain that the stochastic sample path first hits D
at a point Pτz such that

P
P0
{
(x̄τz , ȳτz ) /∈ D0

}
�

C

ε
exp

{
− κμ

1/2ε3/2

σ 2 + (σ ′)2
}
. (6.16)

This proves in particular (6.12).
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• Step 2: Leaving D. Theorem 6.4 in [17] estimates the probability of sample paths not
leaving a neighbourhood of the weak canard. Because we worked in polar coordinates,
the result only applied to a small neighbourhood of size proportional to

√
z̄. However by

using the coordinate K instead of the distance to γ w , the same proof applies to the exit
from D. It suffices to realize that the nonlinear drift term β in Equation (D.33) of [17] is
replaced by a term of order z̄ as a consequence of Proposition 5.5. We thus conclude that
the sample path leaves D at a point PτD whose z̄-coordinate satisfies

P
P0
{
z̄τD � z̄

}
� C0|log σ̄ |γ exp

{
− κ(z̄2 − μ)
μ log|σ̄ + σ̄ ′|

}
∀z̄ � √μ (6.17)

for some constants C0, γ > 0.
• Step 3: Transition from D to�′′1 . Since PτD is at distance of order 1 from the weak canard,

we know that the deterministic solutions starting in PτD will take a time of order μ to
reach �′′1 , in a point that we will denote P∗1 = (x̄∗1 , ȳ∗1 , z̄∗1). Let P1 = (x̄∗1 , ȳ1, z̄1) denote
the point where the stochastic sample path first hits �′′1 . Starting from System (5.40) and
applying the usual procedure, we obtain the estimate

P
PτD
{|ȳ1 − ȳ∗1 | > h̄1 or |z̄1 − z̄∗1| > h̄2

}

� C

(
exp

{
−κ[h̄1 − M(h̄2

1 + h̄2
2)]2

σ̄ 2 + (σ̄ ′)2
}
+ exp

{
− κ h̄2

2

(σ̄ ′)2ε

})
. (6.18)

Note that this implies fluctuations of size σ̄ + σ̄ ′ in the ȳ-direction, and of size σ̄ ′
√
ε in the

z̄-direction. Going back to original variables, this entails fluctuations of size (σ + σ ′)ε1/4

in the y-direction, and σ ′ε1/4 in the z-direction.
We also have to take into account the fact that we do not know the (x̄, ȳ)-coordinates
of PτD . In fact all exit points on ∂D0 might have a comparable probability. Hence the
coordinate ȳ∗1 can vary in an interval I1, which is the image of ∂D0 under the deterministic
flow. It follows from (5.25) that I1 has a size of order z̄∗1 in ȳ-coordinates.
• Step 4: Transition from �′′1 to �2. If P1 satisfied y1 � x2

1 − ε( 1+μ
2 + c0) for some

c0 > 0, or equivalently η1 � −c0, we could directly apply Proposition 5.10 to estimate
the fluctuations during the last transition step, which would remain of the same order as
in Step 3.
The estimate (5.25) shows that P1 is too close to the repelling slow manifold Cr

ε to apply
Proposition 5.10 directly. However, using (5.40), we obtain that the variable η measuring
the distance to Cr

ε satisfies an equation of the form

dηθ = 2

μ

[
−2x̄θ ηθ − z̄θ +O(√ε(1+ |x̄θ |)

)]
dθ +
√

2

μ

[
σ̄ G̃1 + σ̄ ′G̃2

]
dWθ . (6.19)

We have used that we may assume σ, σ ′ � √ε to simplify the error term (for larger noise
intensities, the main results of the theorem become meaningless). Using the same approach
as in [15, Sect. 3.2] or [17, Section D], one can show that ηθ is likely to leave [−c0, c0] in
a time θ of order μ

√|log(σ̄ + σ̄ ′)|. During this time interval, x̄θ decreases by an amount
of order

√|log(σ̄ + σ̄ ′)|. Either this exit takes place in the direction of negative η, and we
can apply again Proposition 5.10. Or it takes place in the direction of positive η, and the
sample path makes one more excursion towards Ca+

ε (backward canard). In this case we
have to use one more time the analysis of Step 3 before applying again Proposition 5.10.
Finally, one can check that the deterministic flow maps the set of points where paths escape
{−c0 � η � c0} to points in �2 with a y-coordinate in an interval I of size O(ε). ��
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The important point of Theorem 6.4 is that the bounds on the distribution of (y2, z2)

are independent of the starting sector number k, as soon as k > k0/
√
μ. Thus we observe

a saturation effect, in the sense that the stochastic Poincaré map becomes independent of
the initial condition—see Fig. 1. Combining the local result with Theorem 6.1, we see in
particular that the size of fluctuations in the z-direction is at most of order

√
εμ|log(σ + σ ′)| + σ√ε|log ε| + σ ′. (6.20)

Disregarding logarithms, we observe that unless μ < σ 2 ∧ ((σ ′)2/ε), the first term will be
the dominating one. We conclude that in this regime, the noise-induced fluctuations in the
z-direction are at most of order

√
εμ|log(σ + σ ′)|. However this bound is certainly not sharp,

since it uses z = √εμ as lower bound of typical exits from a neighbourhood of the weak
canard, which may underestimate typical exit times if the noise is weak.

6.3 Consequences for the MMO Patterns

As mentioned in the introduction, which MMO patterns will be observed depends on the
following factors:

1. in which rotation sector, if any, the Poincaré map admits a fixed point;
2. how many SAOs the stochastic system performs when starting at that fixed point;
3. whether or not stochastic fluctuations mask the smallest oscillations.

Figure 10 gives a schematic view of the situation. Assume that the deterministic Poincaré
map on the section �1 is such that zn+1 is a decreasing function of zn on average (that
is, disregarding the dips caused by canards), as indicated by the blue dashed line. Here we
assume that the z-axis is oriented in such a way that larger values of zn lead to more SAOs.
When zn belongs to an inner sector, Theorems 6.1 and 6.2 apply, and show that stochastic
sample paths are likely to return to �1 in the green shaded set, that is, at a distance of order
σ
√
ε|log ε| + σ ′ from the deterministic orbit. When zn belongs to an outer sector, however,

the saturation effect sets in, meaning that stochastic sample paths tend to return to �1 in the
red shaded set, at a coordinate zn+1 that no longer depends on the starting point.

σ |log | + σ

zn

zn+1

Π−1
1 (

√
)

Π−1
1 ( |log(σ + σ )| )

Fig. 10 Sketch of the Poincaré map zn �→ zn+1 on the section�1. The dashed blue line indicates the position
of the deterministic map, disregarding the canards. �1 denotes the z-component of the map �1 → �2. The
saturation effect sets in when �1(zn) reaches

√
εμ (Color figure online)
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In order to quantify Point 1 listed above, we may consider that the average map zn �→ zn+1

induces a map kn �→ kn+1 between sectors of rotation given approximately by

�(k) =
{
�det(k) if k < k∗

�det(k∗) if k � k∗,

where �det is the deterministic map, and k∗ is the number of the sector in which the sat-
uration effect sets in. According to the discussion in the previous section (see in particular
Remark 6.3), we have

O(1/√μ ) � k∗(μ, σ, σ ′) � O(
√|log(σ + σ ′)|/μ ).

Assume that�det is decreasing, and admits a unique fixed point kdet. Then the map� admits
a fixed point in the sector

max{kdet,�det(k∗)}.
Consider now Point 2, i.e., determine the number nstoch of SAOs associated with the fixed

point. Recall that in the deterministic case, the system performs ndet = kdet SAOs (this being
the rounded value of the 2kdet + 1 half-turns). If kdet < k∗, we have nstoch = ndet = kdet.
Otherwise, the number of SAOs will be given by

nstoch = 1

2

(
�det(k∗)+ k∗

)

because the system starts in the sector�det(k∗), performs�det(k∗) half-turns for z < 0, and
only k∗ half-turns for z > 0 before escaping. Using the fact that �det(kdet) = kdet, it is easy
to see that

nstoch > ndet ⇔ �det(k∗)+ k∗ > �det(kdet)+ kdet. (6.21)

In other words, the number of SAOs may increase in the presence of noise provided the map
k �→ �det(k)+ k is decreasing.

Consider finally Point 3, namely whether the amplitude of SAOs may become so small as
to be indistinguishable from random fluctuations due to the noise. In fact, this phenomenon
has been analysed in [17, Sect. 6.3]. The results obtained there show that for orbits starting
in the sector k, fluctuations start dominating the small oscillations near z = 0 if

k2μ � log

(
μ1/4ε3/4

σ

)
, (6.22)

where we have already incorporated the zoom-out transformation, cf (5.41). First note that
owing to our assumption σ � (εμ)3/4, the right-hand side of (6.22) will always be larger
than 1. In the saturated regime, the left-hand side is bounded below by (k∗)2μ, and thus at
least of order 1. However, (k∗)2μ can be as large as order |log(σ + σ ′)| = log(1/(σ + σ ′)).
Thus whether or not the SAOs are masked by fluctutations depends crucially on where k lies
in the window of possible values: the SAOs will still be visible as long as k is sufficiently
close to 1/

√
μ.

It is important to note that one key component in the previous analysis is the “dynamical
skeleton” provided by the global return map for the deterministic system. For example, if the
global deterministic return map already generates a highly complicated multi-stable scenario
with several possible MMO patterns, then the noise-induced effects can become even more
complicated.
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7 An Example: The Koper Model

In order to illustrate some of our results numerically, we consider the example of the Koper
model [51]. Its deterministic version [59] is given by

ε1 ẋ = y − x3 + 3x,

ẏ = kx − 2(y + λ)+ z,

ż = ε2(λ+ y − z), (7.1)

with parameters k, λ, ε1, ε2. Note that there is a symmetry

(x, y, z, λ, k) �→ (−x,−y − z,−λ, k) (7.2)

so that we can restrict the parameter space. We shall assume that 0 < ε1 =: ε � 1 and
ε2 = 1 so that (7.1) has the structure (2.1) and Assumption (A0) obviously holds. For a
detailed bifurcation analysis we refer to [26,59].

Of course, if 0 < ε2 � 1 one may still simulate the three-scale system numerically, and it
is even known via explicit asymptotic analysis which MMO patterns one expects to observe in
certain classes of three-scale systems [54]. The first variant of the Koper model was a planar
system due to Boissonade and De Kepper [19]. Koper [51] introduced the third variable
and studied MMOs via numerical continuation. In fact, the system (7.1) has been suggested
independently by various other research groups as a standard model for MMOs [24,38,50].
Therefore it certainly provides an excellent test case.

The critical manifold of (7.1) is given by C0 = {(x, y, z) ∈ R
3 : y = c(x)} with c(x) :=

x3 − 3x , and the two fold curves are L± = {(x, y, z) ∈ R
3 : x = ±1, y = ∓2}. This yields

a decomposition

C0 = Ca−
0 ∪ L− ∪ Cr

0 ∪ L+ ∪ Ca+
0 , (7.3)

where Ca−
0 = C0 ∩ {x < −1}, Cr = C0 ∩ {−1 < x < 1} and Ca+

0 = C0 ∩ {1 < x} are
normally hyperbolic. It is easy to verify that Assumption (A1) is satisfied.

The desingularized slow subsystem is of the form

ẋ = kx − 2(c(x)+ λ)+ z,

ż = (3x2 − 3)(λ+ c(x)− z). (7.4)

Note that in (7.4) the direction of time is reversed on Cr
0. The only folded equilibria are

(x, z) = (1, 2λ− 4− k) ∈ L+ and (x, z) = (−1, 2λ+ 4+ k) ∈ L−. From the linearization
of the slow subsystem

A± =
(

k 1

6(2+ k ∓ λ) 0

)

(7.5)

at the folded singularities one may determine the parameter values for which we have a
folded node on L+. It turns out that there exist parameter regimes where this is the case, and
the only passages of deterministically stable MMO orbits near L− are via nondegenerate
folds [26,59]. Furthermore, the fast flow is transverse to the relevant drop curves in such a
regime [26,59]. From now on, we shall restrict our attention to this parameter regime so that
Assumptions (A2)–(A4) are satisfied in a suitable compact absorbing set in phase space.
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Since (7.1) is a phenomenological model, it is not immediate how to derive noise terms
so we will just choose correlated additive noise as a first benchmark, setting

dxs = 1

ε
(ys − x3

s + 3xs) ds + σ√
ε

F dWs,

dys = (kxs − 2(ys + λ)+ zs) ds + σ ′G1 dWs,

dzs = ε2(λ+ ys − zs) ds + σ ′G2 dWs, (7.6)

where the Brownian motion (Ws)s is assumed to be three-dimensional, and σ√
ε

F , σ ′G1,

σ ′G2 may be viewed as rows of a constant matrix M ∈ R
3×3. Figure 11 shows the basic

geometry of the Koper model including two orbits computed for (ε, k, λ) = (0.01,−10,−7).
One of these orbits is deterministic (σ = 0 = σ ′) and the other one shows a realization of a
stochastic sample path computed for σ = 0.01 = σ ′ and

M =
⎛

⎝
F

G1

G2

⎞

⎠ =
⎛

⎜
⎝

1.0 0.5 0.2

0.5 1.0 0.3

0.2 0.3 1.0

⎞

⎟
⎠ . (7.7)

Note that the deterministic orbit exhibits an MMO of type 1112 while the stochastic sample
path shows combinations of patterns of the form 10, 11 and 12. Since we proved results about
separate phases of the flow we investigate the estimates for each phase as summarized in
Table 1.

Figure 12 illustrates the map �2 → �3 which describes the fast flow towards the critical
manifold Ca−

0 . Several stochastic sample paths are compared with the deterministic solution.
In Sect. 3.2 we derived the typical spreading of stochastic sample paths around their deter-
ministic counterpart. It was shown that the typical spreading has an upper bound O(σ + σ ′)
in the x-coordinate and O(σ ′ +σ√ε) in the z-coordinate. Since the typical spreading can be
understood as standard deviation, cf. [15, Prop. 3.1.13], Fig. 12b confirms that the theoretical
results indeed provide upper bounds (note the scaling on the axes and that σ = 0.01 = σ ′).

To investigate the scaling results further, we computed sample paths going from�2 to�3

numerically for a much wider range of noise values as shown in Fig. 13a. For the hitting point
on �3 we plotted the standard deviation of the hitting point’s distance to its deterministic
counterpart for the (x, z)-coordinates in a log–log plot for different noise levels with σ = σ ′.
The slope of 1 for both coordinates in Fig. 13a, b is expected from the upper bounds in Table 1.
However, the overall spreading is smaller than expected since we have started the orbits in
the vicinity of an attracting deterministic periodic orbit, cf. Fig. 11. Therefore, contraction
transverse to the periodic orbit shrinks the stochastic neighbourhood more than the general
upper-bound estimates predict. Similarly, we may also study the remaining phases of the flow
which are analyzed in Fig. 13b, d. We observe not only the correct asymptotic decrease in
size of the stochastic neighbourhood as σ → 0, but also a larger spreading of sample paths
near the folded node, see Fig. 13d. This is related to the mechanism that sample paths may
jump only with high probability during certain parts of the SAOs after the folded node; this
effect has already been discussed in detail in [17] with associated numerics in [17, Sect. 7]
so we shall not detail it here.

Via the same strategy as in Fig. 13 one may also numerically investigate the dependence
upon ε. Fig. 14 shows the results for this computation. Again, the results are consistent with
the derived upper bounds. Fig. 14a, b verifies that for the maps �2 → �3 and �3 → �4

the stochastic spreadings of order O(σ + σ ′) and O(σ√ε + σ ′) are dominated by σ, σ ′ if
the noise level is fixed. For the map �4 → �5 analyzed in Fig. 14c we expect from Table 1
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Fig. 13 Dependence of the standard deviation of the distance between the stochastic and the deterministic
transition maps on the noise intensity for an attracting deterministic periodic MMO during various phases of
the flow. We have always fixed the matrix M by (7.7), ε = 0.01 and σ = σ ′. The results are shown on a log–log
scale with two directions out of x (red), y (blue) and z (black). The standard deviation std has been computed
from 100 realizations of sample paths and the domain for the noise level was subdivided into 40 points. a
Transition map from�2 → �3 with�2 = {x = 0.5},�3 = {y = −1.8} and (x0, y0, z0) = (0.5,−2.1,−8).
b Transition map from �3 → �4 with �4 = {y = 1.8} and (x0, y0, z0) = (−2,−1.8,−8). c Transition
map from �4 → �5 with �5 = {x = −0.5} and (x0, y0, z0) = (−1.3, 1.8,−7.8). d Transition map from
�1 → �2 with �1 = {y = −1.8} and (x0, y0, z0) = (1.3,−1.8,−7.7) (Color figure online)

that the spreading is dominated by a scaling O(ε1/6) since we have fixed σ = 0.01 = σ ′
and ε1/2 � ε1/6 as ε → 0. Inspection of Fig. 14c shows indeed a corresponding slope of
approximately 1/6. Figure 14d is also consistent with the expected scaling O(ε1/4) near the
folded node for noise level and μ fixed. These results provide very good evidence that our
theoretical estimates may also form a practical guideline to analyze the spreading due to
noise.

Of course, one may also consider the influence of noise on sample paths for global
returns. Figure 1 shows the global return map �1 → �1. For this computation, in contrast
to the previous computations in this section, we have chosen a regime with many secondary
canards [17,83]. Indeed, the parameter values have been fixed to k = −10, λ = −7.6 so
that the folded node on L+ is given by (x, z) = (1,−9.2) with eigenvalues of the matrix A
from (7.5) given by ρs < −1 < ρw < 0. The eigenvalue ratio μ := ρw/ρs is approximately
given by μ ≈ 0.0252 so that [26, Thm. 2.3] implies that there are two primary and 19 sec-
ondary canards. The deterministic return map has been analyzed numerically in [37,59], and
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Fig. 14 Dependence of the standard deviation of the distance between the stochastic and the deterministic
transition maps on ε for an attracting deterministic periodic MMO during various phases of the flow. We have
always fixed σ = 0.01 = σ ′ and viewed ε as a parameter. Otherwise, the same conventions as in Fig. 13 apply

the structure of the different rotational sectors separated by canard orbits is well understood;
see also [40]. However, Fig. 1 shows that the attracting deterministic periodic orbit corre-
sponding to a fixed point of the return map, can shift due to noise, even to a higher sector of
rotation. This effect can be seen directly from Theorem 6.4 above.

In summary, we may conclude that there is a highly non-trivial interplay between the
number of SAOs, the global return map and the noise level (cf. also [17, Cor. 6.3]). As
discussed already in Sect. 1, the natural next step is to consider the analysis of the discrete-
time Markov chain on a finite state space of MMO patterns. The results in this paper and
in [17] provide the necessary estimates for the kernel of the Markov chain and may form the
starting point for future work.
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Appendix 1: Technical Lemmas

Lemma 8.1 (Scaling behaviour) Assume a(s) � −(|s|1/2 + ε1/3) for −1 � s � ε2/3, and
define α(s, r) = ∫ s

r a(u) du. Then for any ν � −1,
∫ s

s0

eα(s,r)/ε |a(r)|ν dr � ε|a(s)|2ν−1 (8.1)

holds for −1 � s0 � s0 +O(ε|log ε|) � s � ε2/3.

Lemma 8.2 (Bernstein-type inequality) Let W (1)
t , . . . ,W (k)

t be k independent standard

Brownian motions, and let Xt be adapted to the filtration generated by the W ( j)
t . For mea-

surable functions gi j and deterministic bounds Gi satisfying almost surely

k∑

j=1

gi j (Xs, s)2 � Gi (s)
2, Vi (t) =

∫ t

0
Gi (s)

2 ds <∞, (8.2)

consider the n martingales

M (i)
t =

k∑

j=1

∫ t

0
gi j (Xs, s) dW ( j)

s , i = 1, . . . , n. (8.3)

Then for any h > 0 and any choice of γ1, . . . , γn ∈ [0, 1] such that γ1 + · · · + γn = 1, one
has

P

{
sup

0�s�t
‖Ms‖ � h

}
� 2

n∑

i=1

exp

{
− γi h2

2Vi (t)

}
. (8.4)

Proof The left-hand side of (8.4) is bounded above by

P

{ n∑

i=1

sup
0�s�t

(M (i)
s )2 � h2

}
�

n∑

i=1

P

{
sup

0�s�t
(M (i)

s )2 � γi h
2
}
. (8.5)

Each term in this sum is bounded by 2 e−γi h2/(2Vi (t)), cf. [17, Lemma D.8]. ��

Remark 8.3 It is possible to obtain sharper estimates of the form

P

{
sup

0�s�t

‖Ms‖
‖V (s)‖1/2 � h

}
� C(t, κ) e−κh2/2σ 2

(8.6)

for any κ < 1, using a decomposition of [0, t] in small intervals (see [15, Sect. 5.1.2]).

Lemma 8.4 (Random time change) Consider an R
n-valued diffusion (Yt )t�0 given by

dYt = f (Yt ) dt + g(Yt ) dWt , (8.7)

where f : Rn → R
n is such that the n th component fn of f satisfies fn(y) > 0 for all y. We

further assume that g : Rn → R
n×k , and that (Wt )t�0 is a k-dimensional standard Brownian

motion. Fix γ > 0 and let

β(t, ω) = γ
∫ t

0
fn(Ys(ω)) ds. (8.8)
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Then (Yβ−1(t))t�0 is equal in distribution to (Xt )t�0, where Xt satisfies X0 = Y0 and

dXt = 1

γ fn(Xt )
f (Xt ) dt + 1√

γ fn(Xt )
g(Xt ) dWt . (8.9)

If the condition fn(y) > 0 is only satisfied in a subset D of R
n, then the result remains true

for 0 � t � τD = inf{s � 0 : Ys �∈ D}.
Proof Write dXt = f̃ (Xt ) dt + g̃(Xt ) dWt for the SDE (8.9). The stochastic process
c(t, ω) = γ fn(Yt (ω)) is adapted to the filtration (Ft )t of the Brownian motion. Since
t �→ β(t) is almost surely invertible, [70, Theorem 8.5.1,p. 154] implies that (Xt )t is equal
in distribution to (Yβ−1(t))t , with Yt is given by

dYt = u(t, ω) dt + v(t, ω) dWt , (8.10)

provided

u(t, ω) = c(t, ω) f̃ (Yt ),

vvT(t, ω) = c(t, ω)g̃g̃T(Yt ). (8.11)

Setting u(t, ω) = f (Yt (ω)) and v(t, ω) = g(Yt (ω)) this is clearly the case. To prove the last
statement, it suffices to consider Yt∧τD . ��

Appendix 2: Proof of Lemma 5.2

We would like to estimate the principal solution of εξ̇ = A(s)ξ for times s � −√ε, where

A(s) =
(

a0(s) d(s)
c(s) εa1(s)

)
=
(

s +O(s2) 1+O(s2)

−ε(1+ μ)+O(εs) εO(1)
)
. (9.1)

By changing s into −s and ξ2 into −ξ2, we can restrict the analysis to positive s. The proof
of the lemma is close in spirit to the proof of [17, Theorem 4.3], and consists in a number of
changes of variables bringing the system into diagonal form.

A first transformation

ξ = exp

{
1

2ε

∫ s

0
Tr A(u) du

}
ξ1 =: eα(s)/2ε ξ1 (9.2)

yields the system εξ̇1 = A1(s)ξ1, where

A1(s) =
(

1
2 a(s) d(s)

c(s) − 1
2 a(s)

)

, a(s) = a0(s)− εa1(s) = s +O(s2). (9.3)

Next we set ξ1 = S1(s)ξ2, where

S1(s) = 1√
d(s)

(
d(s) 0

− 1
2 a(s)+ 1

2ε
ḋ(s)
d(s) 1

)

, (9.4)

which yields εξ̇2 = A2(s)ξ2, with

A2(s) =
(

0 1
h(s) 0

)
, (9.5)
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and

h = a2

4
+ cd + ε ȧ

2
− ε aḋ

2d
+ ε

2

2

d̈

d
+ 3

4
ε2 ḋ2

d2 =
a2

4
− ε
(

1

2
+ μ
)
+O(εs). (9.6)

Note that this system is equivalent to ε2ξ̈2,1 = h(s)ξ2,1, which reduces to Weber’s equation
in the particular case a(s) = s. The next step is to set ξ2 = S2(s)ξ3, where

S2(s) = 1√
2

(
h(s)−1/4 −h(s)−1/4

h(s)1/4 h(s)1/4

)

(9.7)

is such that S−1
2 A2S2 is diagonal. This yields εξ̇3 = A3(s)ξ3, with

A3(s) =
⎛

⎝
h(s)1/2 − ε4 ḣ(s)

h(s)

− ε4 ḣ(s)
h(s) −h(s)1/2

⎞

⎠ . (9.8)

The last transformation ξ3 = S3(s)ξ4 makes the system diagonal. This final transformation
is given by

S3(s) =
(

1 p2(s)

p1(s) 1

)

, (9.9)

where p1 and p2 satisfy the ODEs

ε ṗ1 = −2h(s)1/2 p1 + ε
4

ḣ(s)

h(s)
(p2

1 − 1), (9.10)

ε ṗ2 = 2h(s)1/2 p2 + ε
4

ḣ(s)

h(s)
(p2

2 − 1). (9.11)

One can show that these ODEs admit solutions of order ε/s2. The resulting system has the
form εξ̇4 = A4(s)ξ4, where

A4(s) =
⎛

⎝
h(s)1/2 − ε

4
ḣ(s)
h(s) p1(s) 0

0 −h(s)1/2 − ε
4

ḣ(s)
h(s) p2(s)

⎞

⎠ , (9.12)

and the principal solution is thus of the form V (s, r) = V (s)V (r)−1, where

V (s) = eα(s)/2ε S1(s)S2(s)S3(s)

(
eα+(s)/ε 0

0 eα−(s)/ε

)
(9.13)

with

α±(s) = ±
∫ s

1
h(u)1/2 du +O

(
ε2

s2

)
. (9.14)

Expanding h(s)1/2 and using the fact that ȧ(s) = 1+O(s), one obtains

eα±(s)/ε � a(s)∓(1/2+μ) e±α(s)/2ε . (9.15)

The result follows by evaluating the matrix products in (9.13). ��

123



132 J Dyn Diff Equat (2015) 27:83–136

Appendix 3: Proof of Proposition 5.5

We shall use a parametrization of the level curves of K for K > 0 which was introduced
in [18]. It is given by

u1 =
√

1+ μ
2
|log K | sin ϕ,

u2 = u2
1 +

1+ μ
2

f
(
X
)
, X :=

√ |log K |
2

cosϕ, (10.1)

where f (t) is the solution of

log(1+ f (t)) = f (t)− 2t2 (10.2)

satisfying sign f (t) = sign t . It is easy to check (see [63, Sect. 5.2.1]) that

• f (t) = 2t +O(t2) near t = 0;
• −1+ e−1−2t2 � f (t) � −1+ e−1−2t2 +O((e−1−2t2

)2) for t � 0;
• f (t) � 2t2 +O(t) for all t � 0.

Lemma 10.1 The variational equations (5.26) are equivalent to

μ
dK

dz̄
= −8z̄

K |log K |
1+ f (X)

sin2 ϕ,

μ
dϕ

dz̄
= 1

X

[√
1+ μ f (X)− 4z̄

√ |log K |
2

sin ϕ

(
sin2 ϕ

1+ f (X)
− 1

)]
. (10.3)

Proof The first equation is a direct consequence of (5.28), using the fact that e− f (X) =
K cos2 ϕ/[1+ f (X)]. The second one is obtained by differentiating the first equation in (10.1)
and solving for μ dϕ/ dz̄. ��

The first term on the right-hand side ofμ dϕ/ dz̄ is of order f (X)/X , which varies between
1/|X | and 2|X |. As for the second term, it is easy to see that it is negligible for X � 0. For
X < 0, setting u = sin ϕ, we have 1 + f (X) = K 1−u2

. The function u �→ u3 K u2−1 has a
maximal value 1/(K |log K |3/2), reached when u2 = 3/(2|log K |). This allows to bound the
second term for X < 0 and proves (5.29).

It follows immediately from (10.3) that we can write

dK

dϕ
= z̄g(K , ϕ, z̄), (10.4)

where

g(K , ϕ, z̄) = −8
K |log K |
1+ f (X)

X sin2 ϕ
√

1+ μ f (X)− 4z̄ R sin ϕ
[

sin2 ϕ
(1+ f (X)) − 1

] , (10.5)

and we have set R = √|log K |/2. Note that μ dK/ dz̄ has order (1 − K ) near K = 1, and
order |log K | near K = 0, because 1+ f (X) � e−1 K . This shows that

|g(K , ϕ, z̄)| � O((1− K )(1+ |log K |)3/2) =: O(ρ(K )). (10.6)

We now perform the averaging transformation

K = K + z̄w(K , ϕ, z̄), (10.7)
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where

∂

∂ϕ
w(K , ϕ, z̄) = −g(K , ϕ, z̄)+ ḡ(K , z̄), ḡ(K , z̄) = 1

2π

∫ 2π

0
g(K , ϕ, z̄) dϕ. (10.8)

This yields
dK

dϕ
= z̄ ḡ(K , z̄)+ z̄

∂w

∂K

dK

dϕ
+
(

z̄
∂w

∂ z̄
+ w
)

dz̄

dϕ
. (10.9)

Recalling that dK/ dϕ has order z̄g and dz̄/ dϕ has order μ|log K |1/2, together with (10.6)
allows to bound the last two terms.

Finally, we show that c−(1 − K ) � −ḡ � c+(1 − K ) for K � cz̄. The result will then
follow by expressing K in terms of K (note that 1−K and 1−K are comparable for K � cz̄).
It will be sufficient to consider the behaviour of ḡ near K = 1 and near K = 0. Near K = 1
we have

g(K , ϕ, z̄) = −4(1− K )√
1+ μ

[
1+O(1− K )+O(z̄)] sin2 ϕ, (10.10)

and sin2 ϕ averages to 1/2. Near K = 0, the integral defining ḡ is dominated by ϕ near π .
Performing the change of variables u = 2R sin ϕ, we obtain
∫ 3π/2

π/2
g(K , ϕ, z̄) dϕ = − 2 e√

1+ μ
∫ 2R

−2R
u2 e−u2/2

[
1+O(K eu2/2)+O

(
z̄u3

K R2 e−u2/2
)]

= − 2
√

2π e√
1+ μ

[
1+O(K |log K |)+O(z̄/(K |log K |))

]
, (10.11)

while the integral over [−π/2, π/2] has order K |log K |. ��
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