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Abstract Helical symmetry is invariance under a one-dimensional group of rigid motions
generated by a simultaneous rotation around a fixed axis and translation along the same axis.
The key parameter in helical symmetry is the step or pitch, the magnitude of the translation
after rotating one full turn around the symmetry axis. In this article we study the limits of three-
dimensional helical viscous and inviscid incompressible flows in an infinite circular pipe, with
respectively no-slip and no-penetration boundary conditions, as the step approaches infinity.
We show that, as the step becomes large, the three-dimensional helical flow approaches
a planar flow, which is governed by the so-called two-and-half Navier–Stokes and Euler
equations, respectively.
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1 Introduction

The helical groups are a family of one-dimensional subgroups of the rigid motions of three-
dimensional Euclidean space consisting of simultaneous rotation around an axis and trans-
lation along the same axis, for which the ratio of angular rotation to translation is kept fixed.
Each helical group is characterized by a parameter σ ∈ R\{0}, which we call the step or pitch,
defined as the translation displacement along the symmetry axis after one full clockwise turn
around the axis. The incompressible Navier–Stokes and Euler equations are covariant under
the action of the helical group. Helically-symmetric or, simply, “helical” flows represent
a physically interesting class of fluid motions, which interpolate between two-dimensional
flows and axisymmetric flows, see for instance [2]. Indeed, the helical groups lie between
rigid translations in one direction, associated with 2D flows, and rotation around a fixed axis,
associated with axisymmetric flows. These regimes correspond to formally taking the limits
σ → ∞ and σ → 0, respectively. The main goal of this work is to examine the precise nature
of the limit σ → ∞ for helical flows, in the case of viscous and inviscid incompressible flows
in a circular pipe satisfying, respectively, no-slip and no-penetration boundary conditions.
The limit σ → 0 is more technical and, in some sense, less interesting, as we expect that
helical flows will converge in the limit to axisymmetric, planar flows, a trivial special case of
axisymmetric flows. In fact, periodicity in this case implies asymptotically high-frequency
oscillations, with weak averaging in the vertical direction. The analysis of the limit σ → 0
is closely related to that in some of the thin domain literature, particularly the special case
referred to as PD, or periodic Dirichlet (see [8] for more details.) We reserve to study the
limit σ → 0 in future work.

We begin by recalling the known mathematical results concerning helical flows. As it is
the case of two-dimensional flows and axisymmetric flows in cylindrical domains bounded
away from the axis of symmetry viscous incompressible helical flows are globally well posed.
This result was proved by Mahalov et al. in [12]. In fact, for the case of a circular pipe they
established both global existence of a weak helical solution with initial data in L2, and global
existence and uniqueness of a strong solution with initial data in the Sobolev space H1.
(For a discussion about uniqueness of weak solutions, within the class of all Leray–Hopf
weak solutions of the three-dimensional Navier–Stokes with helical initial data, see [1].) The
situation is different, and rather interesting, in the case of ideal fluid governed by the Euler
equations, see [5,6]. As a matter of fact, an additional geometric condition is imposed on
inviscid flows, akin to assuming no swirl in the axisymmetric setting [13,15], which we call
no helical swirl or no helical stretching. Under this condition, Ettinger and Titi [6] showed
global existence and uniqueness of weak solutions in an appropriate vorticity-stream function
formulation. This formulation can be used, because, even for finite σ , the flow is essentially
two-dimensional, in the sense that it is completely determined by the dynamics of the first
two components of the velocity field restricted to any cross section of the pipe.

The main result of this work is a convergence result of helical flows to certain flows, the
dynamics of which is two dimensional. For this reason, we will call such limits planar flows,
even though the velocity field can still have three non-zero components. More precisely, we
show that, in the limit σ → ∞, helical flows converge, respectively, to so-called 2 and 1/2
dimensional flows in the viscous case, and to 2D Euler flows in the inviscid case. These
results are established by first obtaining a set of symmetry-reduced equations equivalent
to the original fluid equations, at least for regular flows. The unknowns in these equations
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are fields on a cross section of the pipe and, hence, depend on two spatial variables only.
Convergence is then investigated via energy methods and compactness arguments. For the
Navier–Stokes equations, energy estimates are sufficient to pass to the limit and give us a
rate of convergence of order 1/

√
σ in the energy norm.

One special difficulty in the viscous case is the way in which the divergence-free condition
and the symmetry reduction interact when we vary σ . To be more precise, the symmetry
reduction amounts to the fact that a helical vector field is entirely determined by its trace on
a horizontal slice, say D = {x2

1 + x2
2 < 1, x3 = 0}, the trace being a three-component vector

field in the plane. For a given σ > 0 all three-component fields in D may be extended in
a unique way to helical vector fields in D × (0, σ ). However, the resulting extension will
not be divergence-free unless the original field in the slice satisfies a certain σ -dependent
condition. In other words, after symmetry reduction, problems with different σ reside in
different function spaces, even if their physical domain D is the same. This difficulty is
bypassed in the inviscid case with the use of a stream function, under the “no helical swirl”
condition.

The remainder of this article is divided into four sections. In Sect. 2, we fix notation and
derive an equivalent formulation of helical symmetry for functions and vector fields. In Sect.
3, we perform the symmetry reduction on the Navier–Stokes equations. In Sect. 4 we study
the limit σ → ∞ for the viscous case, while in Sect. 5 we discuss the case of the Euler
equations.

2 Preliminaries and Symmetry Reduction

We begin by recalling some standard notation for function spaces that will appear throughout
the paper. If� is a domain in R

d , we denote by Hk(�), k ∈ N, the standard L2-based Sobolev
spaces:

Hk(�) = {
f : � → R ; f, ∂α f ∈ L2(�), |α| ≤ k

}
,

where we employed the usual multi-index notation for derivatives, which are interpreted in
the weak sense, while W k,p(�) denotes L p-based Sobolev spaces. By abuse of notation, if
u : � → R

d is a vector field, we will often write u ∈ Hk(�) for u ∈ (Hk(�))d , and we
will drop the explicit dependence on the domain�when no confusion can arise. H1

0 (�)will
denote the subspace of H1(�) of functions with zero trace at the boundary ∂�. If � is an
unbounded domain, L p

loc(�) is the space of functions with p-th integrable power on each
bounded open subset of�. Lastly, we denote Hölder spaces by Cα(�), α ∈ R+. Later in the
paper, we will introduce other spaces adapted to the symmetry and geometry of the problem.
Throughout, (, ) will denote the standard L2 inner product.

One tool that will be used repeatedly in the analysis is the following interpolation inequality
in two space dimensions, the so-called Ladyzhenskaya inequality. If D is a smooth domain
in R

2 and f ∈ H1
0 (D), then

‖ f ‖4
L4(D) ≤ 2‖ f ‖2

L2(D)‖∇ f ‖2
L2(D). (2.1)

This inequality follows immediately from Lemma 1 on page 8 of [10].
Let � = {x = (x1, x2, x3) ∈ R

3 | x2
1 + x2

2 ≤ 1} = D × R be the infinite pipe parallel to
the x3 axis with circular cross-section D.
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We consider the initial-boundary-value problem for the incompressible Navier–Stokes
(NSE) and Euler equations (EE) in �. We recall the notion of helically symmetric solutions
of these equations, studied in [6,12].

We first give the definition of a helical vector field and a helical (scalar) function. We
denote a point in R

3 by x = (x1, x2, x3) in Cartesian coordinates. Given a non-zero number
σ ∈ R, we define the action of the helical group of transformations Gσ on R

3 by:

S(ρ)(x) =
⎛

⎝
x1 cos ρ + x2 sin ρ

−x1 sin ρ + x2 cos ρ
x3 + σ

2π ρ

⎞

⎠ , ρ ∈ R,

that is, a rotation around the x3 axis with simultaneous translation along the x3 axis. Gσ is
uniquely determined by σ , which we will call the step (or pitch). Invariant curves for the
action of the helical group Gσ are helices having the x3 axis as axis of symmetry. The cylinder
� is an invariant set for the action of Gσ for all σ . A change of sign in σ corresponds to
switching the orientation of the helices preserved by the group action from right-handed to
left-handed. Without loss of generality, we will restrict our attention to the case of σ > 0.

We will say that the smooth function f (x) is helically symmetric, or simply helical, if f
is invariant under the action of Gσ , i.e., f (S(ρ)x) = f (x),∀ρ ∈ R. Similarly, we say that
the smooth vector field u(x) is helically symmetric, or simply helical, if it is covariant with
respect to the action of Gσ , i.e., M(ρ)u(x) = u(S(ρ)x) for all ρ ∈ R, where

M(ρ) :=

⎡

⎢
⎢
⎢
⎢
⎣

cos ρ sin ρ 0

− sin ρ cos ρ 0

0 0 1

⎤

⎥
⎥
⎥
⎥
⎦
. (2.2)

We find it convenient to give an alternative definition of helical symmetry as follows. We
re-write a vector field u(x) = (u1, u2, u3)(x1, x2, x3)with respect to the moving orthonormal
frame associated to standard cylindrical coordinates (r, θ, z),

er = (cos θ, sin θ, 0), eθ = (− sin θ, cos θ, 0), ez = (0, 0, 1),

as:

u = ur er + uθeθ + uzez,

where ur , uθ , uz are functions of (r, θ, z). We introduce two new independent variables in
place of θ and z:

η := σ

2π
θ + z, ξ := σ

2π
θ − z. (2.3)

As shown in [6] for instance, a (smooth) function p = p(r, θ, z) is a helical function if and
only if, when expressed in the (r, ξ, η) variables, it is independent of ξ : p = q(r, σ2π θ + z),
for some q = q(r, η). Indeed, by definition f is helical if and only if f (S(ρ)x) is actually
independent of ρ, being equal to f (x). Then, by the Chain Rule d f (S(ρ)x)/dρ = 0 is
equivalent to d f (r, ξ, η)/dξ = 0.

Similarly, a (smooth) vector field u is helical if and only if there exist vr , vθ , vz , functions
of (r, η) such that ur = vr (r,

σ
2π θ + z), uθ = vθ (r,

σ
2π θ + z), uz = vz(r,

σ
2π θ + z).

We note that a vector field u is invariant under the action of Gσ for all σ 
= 0 if and only
if vr , vθ , vz are functions of r only. In particular, planar, circularly symmetric flows, that is
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flows for which vr = vz ≡ 0 and vθ is a radial function, are a (very) special case of helical
flows.

The change of variables (x1, x2, x3) �→ (r, ξ, η) introduced above has often been used to
characterize helical symmetry, and, in fact, it does provide a simple, geometrically elegant
description of invariance for both scalar functions and vector fields. However, to obtain
estimates on solutions of the fluid equations, we find that an alternative characterization
actually simplifies calculations, by avoiding moving frames. As a matter of fact, we show in
the following proposition that sufficiently smooth functions and fields with helical symmetry
are essentially two dimensional, in the sense that they are uniquely determined by their trace
on any “slice” � ∩ {z = constant}, which can be canonically identified with the unit disk
D ⊂ R

2.
Below we will make use of the following notation, where we employ Cartesian coordinates

and frames. Given y = (y1, y2) we let y⊥ = (−y2, y1) and we set

E ≡ y⊥ · ∇y . (2.4)

The operator E is scalar and will be applied component wise to vectors as well in what
follows.

We also use the notation VH = (V 1, V 2, 0) for the horizontal component of the vector
V = (V 1, V 2, V 3), and we denote the vector (−V 2, V 1, 0) by V⊥

H .

Proposition 2.1 Let u = u(x) be a smooth helical vector field and let p = p(x) be a smooth
helical function, where x = (x1, x2, x3). Then there exist unique w = (w1, w2, w3) =
(w1, w2, w3)(y1, y2) and q = q(y1, y2) such that

u(x) = M(2πx3/σ)w(y(x)), p = p(x) = q(y(x)), (2.5)

with M(ρ) given in (2.2), and

y(x) =
⎡

⎣
y1

y2

⎤

⎦ =
⎡

⎣
cos(2πx3/σ) − sin(2πx3/σ)

sin(2πx3/σ) cos(2πx3/σ)

⎤

⎦

⎡

⎣
x1

x2

⎤

⎦ . (2.6)

Conversely, if u and p are defined through (2.5) for some w = w(y1, y2), q = q(y1, y2),
then u is a helical vector field and p is a helical scalar function.

We omit the proof, which is a standard application of vector calculus.
In what follows, for notational convenience we set

mσ (x3) =
⎡

⎣
cos(2πx3/σ) − sin(2πx3/σ)

sin(2πx3/σ) cos(2πx3/σ)

⎤

⎦ ,

so that

y(x1, x2, x3) =
[

y1

y2

]
= mσ (x3)

[
x1

x2

]
,

and

Mσ (x3) ≡ M(2πx3/σ) =
⎡

⎣
(mσ (x3))

T 0

0 1

⎤

⎦ .
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It is clear, from Proposition 2.1 above that any smooth helical flow is periodic in x3, both
velocity and pressure, with period the stepσ . We can therefore state the initial-boundary-value
problem for the Navier–Stokes equations in the fundamental domain �σ := D × (0, σ ):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t u + (u · ∇)u = −∇ p + ν�u + f, in (0,+∞)×�σ ;
div u = 0, in [0,+∞)×�σ ;
u(t, x ′, x3) = 0, for t ∈ [0,+∞), |x ′| = 1, 0 ≤ x3 ≤ σ ;
u(t, x ′, x3) = u(t, x ′, x3 + σ) for t ∈ [0,+∞), x ′ ∈ D;
p(t, x ′, x3) = p(t, x ′, x3 + σ) for t ∈ [0,+∞), x ′ ∈ D;
u(0, x) = u0, x ∈ �σ ,

(2.7)
where we set x ′ = (x1, x2), so that x = (x ′, x3).

The Euler equations are formally obtained by setting ν = 0 above and by replacing the
no-slip boundary condition u|∂�σ = 0 with the no-penetration condition u · x ′ = 0 on ∂�σ .
We discuss Euler solutions in Sect. 5.

In what follows, for simplicity we set any body forcing f ≡ 0, and take the viscosity
coefficient ν = 1, as we do not contend ourselves with the vanishing viscosity limit in this
work. We plan to study the interplay between the limits ν → 0 and σ → 0 in future work.

We denote by Cα
per (�

σ ) the subspace of Cα(�), α ∈ R+ of functions that are σ -periodic
in x3, and by C∞

c,per (�
σ ) the space of smooth functions which are σ -periodic in x3 and com-

pactly supported in D for each fixed x3 ∈ [0, σ ]. We also denote by H1
0,per (�

σ ) the closure

of C∞
c,per (�

σ ) in H1(�σ ), and by H−1
per (�

σ ) its dual. We note that the closure of the subspace

of C∞
c,per (�

σ ) of divergence-free vector field is the subspace {u ∈ H1
0,per (�

σ ) | div u = 0},
where derivatives are taken in the weak sense.

In the remainder of the paper we will consider solutions to (2.7) and the corresponding
inviscid system (5.1) with initial data u0 of limited regularity. More specifically, u0 will
be taken in H1

0,per (�
σ ) for Navier–Stokes and in H1

per (�
σ ) with initial vorticity curl u0 ∈

L∞(�σ ) for Euler. We now briefly discuss helical symmetry in this context.

Definition 2.1 Let p ∈ H1
per (�

σ ). We say that p has helical symmetry if there exists a
sequence of smooth, helical functions pn such that p = limn→∞ pn in H1

per (�
σ ). Similarly,

we say that a vector field u in H1
per (�

σ )3 has helical symmetry if u is a strong limit in
H1

per (�
σ )3 of a sequence of smooth, helical vector fields un .

We next show that the characterization of helical symmetry given in Proposition 2.1 carries
over to functions and vector fields in H1.

Proposition 2.2 Let u ∈ (H1
per (�

σ ))3, p ∈ H1
per (�

σ ) be, respectively, a helical vector field

and a helical function. Then, there exist a unique w ∈ H1(D)3 and q ∈ H1(D), where D is
the unit disk in R

2, such that

u(x) = Mσ (x3)w(mσ (x3)x
′),

p(x) = q(mσ (x3)x
′)),

a. e. x ′ ∈ D, ∀ 0 ≤ x3 ≤ σ. (2.8)

Conversely, given w ∈ H1(D)3 and q ∈ H1(D), if u and p are defined through (2.8), then
u ∈ (H1

per (�
σ ))3, p ∈ (H1

per (�
σ )), and they have helical symmetry.

Proof We only consider the case of a helical vector field u. The case of a helical func-
tion is similar and simpler. By definition, there exist helical vector fields un ∈ C∞(�̄σ )
such that un → u strongly in H1

per (�
σ ). By Proposition 2.1, for each un there exists
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a unique, smooth wn such that wn(x ′) = (Mσ (x3))
T un((mσ (x3))

T x ′), for all x ′ =
(x1, x2) ∈ D. Therefore, the expression on the right-hand side is independent of x3 and
∇x (Mσ (x3))

T u((mσ (x3))
T x ′) = (∇x ′w(x ′), 0). If we define

w(x ′, x3) := (Mσ (x3))
T u((mσ (x3))

T x ′),

then ∂x3 w(x ′, x3) = 0 in weak sense, since it is true for wn and ∇x un → ∇u strongly in
L2(�σ ). Consequently, w is independent of x3 for almost all x ′ ∈ D (functions with vanishing
weak derivatives are constant, see e.g. [11, Theorem 6.11]) and w ∈ H1(D). Furthermore,

‖wn − w‖H1(D) ≤ C
√
σ ‖un − u‖H1(�σ ),

by a simple change of variables, so that wn → w strongly in H1(D). The converse statement
is a direct consequence of (2.8). ��
Remark 2.1 The proof of Proposition 2.2 shows that if u ∈ Hm(�σ ),m ∈ N, then w ∈
Hm(D) and the Hm norm of w on D is bounded by the Hm norm of u on�σ with constants
that depend on σ . The same result holds in L p-Sobolev spaces W m,p

per (�
σ ) for 1 ≤ p < ∞.

These spaces are defined in a manner totally analogous to Hm
per (�

σ ).

We next recall the notion of weak and strong Navier–Stokes solutions. By a classical
solution of (2.7) on the time interval [0, T ], we mean a vector field u ∈ C1([0, T ]; C2(�σ )),
together with a function p ∈ C1([0, T ),C1(�σ )) such that the equations, and the initial and
boundary conditions are met pointwise in t and x . By a weak solution on the time interval
[0, T ), we mean a divergence-free vector field u : [0, T ) × �σ → R

3 such that u ∈
Cw([0, T ); L2(�σ ))∩ L2((0, T ); H1

0,per (�
σ )) and ∂t u ∈ L1((0, T ), H−1

per (�
σ )), satisfying

the equations in the sense of distributions and the initial condition u(0) = u0 ∈ L2(�σ ). Here,
Cw([0, T ); L2) is the space of all functions of t with values in L2 that are continuous w.r.t. the
weak topology on L2. We remark that weak solutions satisfy the Dirichlet (no-slip) boundary
conditions at least in trace sense on the boundary for almost all 0 < t < T . By a strong
solution we mean a weak solution that satisfies in addition u ∈ L∞([0, T ); H1

0,per (�
σ )) ∩

L2((0, T ); H2
per (�

σ ) ∩ H1
0,per (�

σ )) and the condition u0 ∈ H1
0,per (�

σ ). It then follows

that there exists an associated pressure function p ∈ L2((0, T ); H1(�σ )). A strong helical
solution will denote a strong solution that is a helical field in the sense of Definition 2.1.
We recall that any strong solution of the Navier–Stokes equations is unique and smooth for
t > 0 (see e.g., [16, Theorem 1.8.2]). Hence, strong solutions are actually classical solutions
on any time interval [δ, T ], δ > 0. It was shown in [12, Theorem 3.4] that weak solutions of
(2.7) with helical symmetry are unique, global in time, and agree with a strong solution, if
the initial data belongs to H1

0,per (�
σ ) and the associated pressure p is also a helical function.

(See also [1] for more elaborate discussion regarding this matter.)

3 Symmetry Reduction for the Navier–Stokes Equations

In this section we derive a set of symmetry-reduced equations that completely capture the
dynamics of the original system under the hypothesis of helical symmetry.

We begin by deriving the symmetry-reduced system under the hypothesis that (u, p) are
classical solutions of (2.7) and have helical symmetry. Let w = w(t, y1, y2) be given in
terms of u by Proposition 2.1. We will derive from the Navier–Stokes system the equations
satisfied by w. Smoothness of u and w justifies all the algebraic manipulations. For ease of
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notation, in this proof we write MT for [(Mσ )(x3)]T . We multiply the momentum equation
in (2.7) by MT and identify each term in the resulting expression as follows to obtain:

MT ∂t u = ∂t w, (3.1a)

MT [(u · ∇x )u] = (wH · ∇y)w +
(

2π

σ

)
w3 Ew −

(
2π

σ

)
w3w⊥

H , (3.1b)

MT ∇x p = (∇yq)H +
(

2π

σ

)
Eqe3, (3.1c)

MT�x u = �yw +
(

4π2

σ 2

)
[E2w − 2Ew⊥

H − wH ], (3.1d)

where E is the operator defined in (2.4). We similarly perform the symmetry reduction on
the incompressibility condition for u to obtain

divx u = divywH +
(

2π

σ

)
Ew3. (3.2)

Therefore, we find that w and q satisfy the following initial-boundary-value problem:

∂t w + (wH · ∇y)w + 2π

σ
w3[Ew − w⊥

H ] = −(∇yq)H

− 2π

σ
Eqe3 +�yw + 4π2

σ 2 [E2w − 2Ew⊥
H − wH ], (3.3a)

divywH + 2π

σ
Ew3 = 0, t > 0, y ∈ D, (3.3b)

w(t, y) = 0, t > 0, |y| = 1, (3.3c)

w(0, y) = w0(y), y ∈ D, (3.3d)

where w0 is related to u0 via (2.5).
Before giving a weak formulation of the above initial-boundary-value problem, we note

that the operator E = y⊥ · ∇y is anti-selfadjoint, i.e., E∗ = −E , since divy y⊥ = 0. If we
write (3.3b) as A w = 0, for some matrix operator A with w considered as a column vector,
it follows that A and its adjoint A∗ are given by:

A := [
∂y1 , ∂y2 ,

2π
σ

E
]
, A∗ :=

⎡

⎣
−∂y1

−∂y2

− 2π
σ

E

⎤

⎦ ,

assuming natural (homogeneous Neumann) boundary conditions. It can be easily checked

that the (scalar) second-order operator A A∗ = −�y − 4π2

σ 2 E2 is elliptic for any σ 
= 0.
We will call a vector field w on [0, T ) × D a weak solution of (3.3) if w ∈

Cw([0, T ); L2(D)) ∩ L2((0, T ); H1
0 (D)), ∂t w ∈ L1((0, T ); H−1(D)), w(0) = w0 ∈

L2(D),w satisfies the constraint (3.3b) in the sense of distributions, and for all (vector-
valued) test functions � ∈ C∞

c ([0, T )× D) that satisfy (3.3b),
∫ t

0

∫

D
w · ∂t� dy dt + 2π

σ

∫ t

0

∫

D
w3(� · w⊥

H + E� · w) dy dt

+
∫ t

0

∫

D
�� · w dy dt + 4π2

σ 2

∫ t

0

∫

D

(
E2� · w + 2E� · w⊥

H

)
dy dt

−4π2

σ 2

∫ t

0

∫

D
� · wH dy dt = −

∫

D
�(0) · w(0) dy. (3.4)
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A weak solution will be called a strong solution if, in addition, w ∈ L∞([0, T ); H1
0 (D)) ∩

L2((0, T ); H2(D)∩ H1
0 (D)) and w0 ∈ H1

0 (D).By interpolation then, w∈C((0, T ); H1
0 (D))

(c.f. e.g. [18, Lemma 4.8 p. 570]). By projecting the momentum equation (3.3a) onto the
kernel of the operator A, one obtains an elliptic equation for the pressure q:

A A∗q = A

[
(wH · ∇y)w − 2π

σ
w3 (Ew − w⊥

H )+ 4π2

σ 2 (2Ew⊥
H + wH )

]
, (3.5)

using that E and �y (hence E and A) commute and the fact that Aw = 0. Consequently,
elliptic regularity gives that q is at least in L1([0, T ); H1(D)) by the regularity of strong
solutions.

In the following proposition we establish the relationship between strong solutions to the
Navier–Stokes system (2.7) and strong solutions of the symmetry-reduced system (3.3).

Proposition 3.1 Let u0 ∈ H1
0,per (�

σ ) be a divergence-free, helical vector field. Let u be the
unique, strong helical solution of (2.7) on [0, T ), for any T > 0, with initial condition u0

and associated pressure function p. Then, the vector function w = (w1, w2, w3) and scalar
function q, defined through (2.8) from u and p, give a strong solution of the reduced system
(3.3).

Conversely, let w be a strong solution of (3.3) and associated pressure q. Then, if u and
p are defined from w and q via (2.8), u is a strong helical solution of (2.7). In particular,
strong solutions of (3.3) are unique.

Proof By Definition 2.1, there exists a sequence of smooth, helical functions u0,n on
�σ such that u0,n → u0 strongly in H1

0,per (�
σ ). Let un be the unique, classical heli-

cal solution of (2.7) with initial data u0,n , and pressure pn . (We recall that such solu-
tions exist globally in time by the results in [12].) The sequence {un} is uniformly
bounded in L∞([0, T ); H1

0,per (�
σ )) ∩ L2((0, T ); H2

per (�
σ ) ∩ H1

0,per (�
σ )) and {∂t un}

is uniformly bounded in L1([0, T ); H−1
per (�

σ )). Therefore, by interpolation and Rellich’s

theorem, there exists a subsequence converging strongly in H−ε([0, T ); H1
0,per (�

σ )) ∩
L2((0, T ); H1−ε

per (�
σ )), for all ε > 0, weakly in L2((0, T ); H2(�σ )), and weakly-∗ in

L∞([0, T ); H1
0,per (�

σ )), such that ∂t un converges weakly in L1((0, T ); H−1(D)). The limit
u is then a weak solution of (2.7) with initial data u0 (by arguments similar to those showing
existence of Leray–Hopf weak solutions, cf. [18, Theorem 5.9, Chapter 17]. )

Since weak solutions agree with strong solutions as long as the latter exists, we must
have that u is the unique, strong helical solution of (2.7) with initial data u0. Hence, the
whole sequence {um} converges to u by uniqueness of the limit. A similar argument gives
convergence of pn to p in L1((0, T ); H1(D)) .

Let now wn be associated to un by (2.5). Then, wn is a classical solution of (3.3), with
associated pressure qn given by (2.5) in terms of pn , by the calculations at the begin-
ning of this section. Furthermore, the proof of Proposition 2.1 implies that all Sobolev
norms of wn and qn are bounded by the corresponding Sobolev norms of un with constants
depending on σ . Hence, the sequence {wn} is uniformly bounded in L∞([0, T ); H1

0 (D)) ∩
L2((0, T ); H2(D)∩ H1

0 (D)). From the equations, it follows that ∂t wn is uniformly bounded
in L1((0, T ); H−1(D)). Hence, by interpolation and Rellich’s theorem there exists a subse-
quence converging strongly in H−ε([0, T ); H1

0 (D)) ∩ L2((0, T ); H1−ε(D)), for all ε > 0,
weakly in L2((0, T ); H2(D)), and weakly-∗ in L∞([0, T ); H1

0 (D)) to a weak solution w of
the symmetry-reduced system (3.3). Since w ∈ L∞([0, T ); H1

0 (D)) ∩ L2((0, T ); H2(D) ∩
H1

0 (D)),w is a strong solution of the reduced system. Also, by refining the subsequence
if needed, we can assume that {qn} converges weakly in L1((0, T ); H1(D)). Furthermore,

123



852 J Dyn Diff Equat (2014) 26:843–869

the convergence of un to u implies weak convergence of the right-hand side of (3.5) in
L1(0, T ); H−1(D)) and, hence, q is a weak solution of the pressure equation. Lastly, since
w and q in (2.8) are unique, given u and p, these must agree with the limits of un and pn .
The first half of the theorem is established.

The converse follows by similar arguments, using again the uniqueness in the relation
between u, p with w, q of Proposition 2.2. Energy estimates for strong solutions of the
symmetry-reduced equations are given in Propositions 4.2 and 4.3. Uniqueness of strong
solutions to the reduced equations then follows from uniqueness of helical, strong solutions
of the Navier–Stokes equations. ��

4 The Limit σ → ∞ for the Navier–Stokes System

The purpose of this section is to discuss the limit σ → ∞ for helical solutions of the Navier–
Stokes equations. To emphasize the dependence of the solution on the parameter σ , we will
write uσ and pσ for u and p.

Next, we recall that to any helical vector field uσ in H1(�σ ) we can associate a three-
component vector function wσ in H1(D) by means of Proposition 2.2. The divergence-free
condition on uσ is recast as (3.3b) for wσ . In what follows, we will need to relate divergence-
free vector fields in D to fields satisfying the condition in (3.3b). To this end, we will exploit
the following useful lemma.

Lemma 4.1 There exists a constant C > 0 such that, for every f ∈ L2(D) with∫
D f (x) dx = 0, there exists a vector field v ∈ H1

0 (D) satisfying

divyv = f and

‖∇v‖L2(D) ≤ C‖ f ‖L2(D).

Proof Since D is clearly star-shaped, this is a special case of Lemma III.3.1 on p 116 of [7].��
We note that v is not uniquely determined. In fact, we can add to v any divergence-free

vector field in D, satisfying the H1 bound above. The vector field v can be made unique by
assuming, for example, that it is curl free.

Next, we will state and prove several energy-type estimates for wσ . These follow from
corresponding bounds for uσ thanks to Proposition 3.1, but we derive them here keeping
track of the precise dependence on the parameter σ .

Given a helical vector field u0 ∈ H1
0,per (�

σ ), Proposition 3.1 gives a one-to-one corre-
spondence between strong helical solutions of (2.7) and strong solutions of (3.3) with initial
data w0 ∈ H1

0 (D) satisfying

divy
[
(wσ

0 )H
] + 2π

σ
E[(wσ,30 )] = 0, (4.1)

where wσ,30 refers to the third component of wσ
0 , and u0 and w0 are related via (2.8). In

particular, w ∈ C([0, T ), H1
0 (D)).

We remark that for any helical vector field uσ0 for which the component along the axis of

the pipe, uσ,30 , is a radial function, the symmetry-reduced constraint on the divergence is in

fact simply the divergence-free constraint in 2D for (wσ
0 )H , since in this case E wσ,30 ≡ 0. In

this special case, the analysis is considerably simplified. We may now state our next results,
consisting of energy estimates for wσ . We split these into two propositions, the first one valid
for all σ > 0 and the second one valid for large σ .

123



J Dyn Diff Equat (2014) 26:843–869 853

Proposition 4.2 Given σ > 0, let wσ be a strong solution of (3.3) on the time interval [0, T ).
Then, for all t ∈ (0, T ), we have that

∫

D
|wσ

0 (y)|2 dy =
∫

D
|wσ (t, y)|2 dy + 2

∫ t

0

∫

D
|∇wσ (s, y)|2 dy ds

+ 2
∫ t

0

∫

D

4π2

σ 2

[
(E(wσ,3))2 + |Ewσ

H − (wσ
H )

⊥|2
]

dy ds.

(4.2)

Proof We simply observe that wσ has enough regularity to be a test function in the weak
formulation of (3.3), so we are justified in multiplying (3.3) by wσ and integrating over the
domain D and, subsequently, in time. This easily yields the desired identity. ��
Remark 4.1 The following scaling relations hold:

‖uσ0 ‖L2(�σ ) = √
σ‖wσ

0 ‖L2(D), (4.3)

‖∇H uσ0 ‖L2(�σ ) ≤ √
σ‖∇wσ

0 ‖L2(D),

‖∂x3 uσ0 ‖L2(�σ ) ≤ C√
σ

‖wσ
0 ‖H1(D), (4.4)

where C is a universal constant. Indeed, a straightforward change of variables from the
relation

uσ0 (x) = Mσ (x3)wσ
0 (m

σ (x3)x
′),

gives by the chain rule

∇H uσ0 = Mσ (x3)[(Dwσ
0 )(m

σ (x3)x
′)][mσ (x3)],

and

∂x3 uσ0 = 2π

σ

[
∂ρMσ (x3)wσ

0 (m
σ (x3)x

′)

+Mσ (x3)[(Dwσ
0 )(m

σ (x3)x
′)][∂ρmσ (x3)]x ′] .

Proposition 4.3 Let 1 ≤ σ < ∞, and fix T > 0. Let uσ be a strong helical solution of (2.7)
on the interval [0, T ). Let wσ be the corresponding symmetry-reduced flow, which solves
(3.3). Then the following hold:

(1) There exists C > 0, independent of σ , such that

‖∂t wσ ‖L2((0,T );H−1(D)) ≤ C(‖wσ ‖L∞((0,T );L2(D)) + 1)‖∇wσ ‖L2((0,T );L2(D)).

(2) There exists C > 0, independent of σ , such that

‖qσ ‖L2((0,T );L2(D)) ≤ C
(
(‖wσ ‖L∞((0,T );L2(D)) + 1)‖∇wσ ‖L2((0,T );L2(D))

)
.

Remark 4.2 As a result of Propositions 4.2 and 4.3 it follows that

‖wσ (t)‖L2(D) ≤ ‖wσ
0 ‖L2(D), for each t ∈ [0, T ],

‖∇wσ ‖L2((0,T );L2(D)) ≤ C‖wσ
0 ‖L2(D),

‖∂t wσ ‖L2((0,T );H−1(D)) ≤ C1‖wσ
0 ‖2

L2(D) + C2‖wσ
0 ‖L2(D),

‖qσ ‖L2((0,T );L2(D)) ≤ C1‖wσ
0 ‖2

L2(D) + C2‖wσ
0 ‖L2(D), (4.5)

with constants that are uniform in σ on [1,+∞).
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Proof We begin with estimate (1). We recall that uσ (x) = Mσ (x3)wσ (t,mσ (x3)x ′), where
x ′ = (x1, x2). We exploit the duality between H−1 and H1

0 to compute

‖∂t wσ ‖H−1(D) = sup
� 
=0,�∈H1

0 (D)

〈�, ∂t wσ 〉
‖�‖H1

0

.

To this end, we test the symmetry-reduced equations (3.3) against a (vector) test function
� ∈ H1

0 (D)
3 and relate the weak form of the reduced equations to that of the Navier–Stokes

equations by constructing an appropriate test function � in H1
0,per (�

σ )3 from�, as follows:

�(x) ≡ 1

σ
Mσ (x3)�(m

σ (x3)x
′).

We recall now as well that (mσ (x3))
−1 y = x ′ = (x1, x2) by (2.6). We then observe that

(Mσ (x3))
T �((mσ )−1(x3)y, x3) = 1

σ
�(y),

by the orthogonality of Mσ .
We have that

∫

D
�(y) · ∂t wσ (t, y) dy

=
∫

D

∫ σ

0
(Mσ (x3))

T �((mσ )−1(x3)y, x3) · ∂t wσ (t, y) dx3 dy

=
∫

�σ
�(x ′, x3) · Mσ (x3)∂t wσ (t,mσ (x3)x

′) dx =
∫

�σ
�(x) · ∂t uσ (t, x) dx .

To bound the H1 norm of u, we calculate the derivatives of � to find

∇H �(x) = 1

σ
Mσ (x3) [(D�)(mσ (x3)x

′)] mσ (x3),

∂x3�(x) = 2π

σ 2

(
∂ρMσ (x3)�(m

σ (x3)x
′)

+ Mσ (x3) [(D�)(mσ (x3) x ′)] [(∂ρmσ )(x3)x
′]) ,

where D denotes differentiation of a function with respect to its variables and ρ denotes the
argument of Mσ and mσ . A simple change of variables then gives:

‖�‖L2(�σ ) = 1√
σ

‖�‖L2(D),

‖∇H �‖L2(�σ ) ≤ C
1√
σ

‖∇�‖L2(D),

‖∂x3�‖L2(�σ ) ≤ C
1

σ 3/2 ‖∇�‖L2(D),

with C a constant independent of σ .
Hence, since σ ≥ 1,

‖∂t wσ (t, ·)‖H−1(D) ≤ C
1√
σ

‖∂t uσ (t, ·)‖H−1(�σ ). (4.6)

Next, we estimate the H−1 norm of ∂t u directly from equations (2.7):

∂t uσ = −P[(uσ · ∇)uσ ] + P[�uσ ],
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where P denotes the Leray projector onto divergence-free vector fields tangent to ∂D and
periodic in x3 with period σ , so that

‖∂t uσ (t, ·)‖H−1(�σ ) ≤ C1‖div (uσ ⊗ uσ )(t, ·)‖H−1(�σ ) + C2‖�uσ (t, ·)‖H−1(�σ )

≤ C1‖uσ (t, ·)‖2
L4(�σ )

+ C2‖∇uσ (t, ·)‖L2(�σ )

= C1
√
σ‖wσ (t, ·)‖2

L4(D) + C2

(√
σ + 1√

σ

)
‖∇wσ (t, ·)‖L2(D),

using the helical symmetry expressed by relation (2.8). It follows from (4.6) and the estimates
above that

‖∂t wσ (t, ·)‖H−1(D) ≤ C
1√
σ

(√
σ‖wσ (t, ·)‖2

L4(D) +
(√

σ + 1√
σ

)
‖∇wσ (t, ·)‖L2(D)

)

≤ C
(‖wσ (t, ·)‖L2(D)‖∇wσ (t, ·)‖L2(D) + ‖∇wσ (t, ·)‖L2(D)

)
,

where we have used the two-dimensional Ladyzhenskaya inequality (2.1). This concludes
the proof of estimate (1).

To prove estimate (2), we deal directly with the equations for wσ , qσ . Since pσ , and hence
qσ , is chosen up to a constant, we can assume that

∫

D
qσ (y) dy = 0.

We again use duality and interpret the L2-norm of qσ as the dual norm in (L2(D))∗. Con-
sequently, we pick an arbitrary f ∈ L2(D) such that

∫
D f (y) dy = 0 and ‖ f ‖L2 = 1. By

virtue of Lemma 4.1 there exists vH ∈ H1
0 (D) such that

div vH = f,

‖vH ‖H1(D) ≤ C‖ f ‖L2(D) = C. (4.7)

We multiply (3.3) by vH and integrate over D to find:
∫

D
vH ·

(
∂t wσ

H + (wσ
H · ∇y)wσ

H + 2π

σ
wσ,3[Ewσ

H − (wσ
H )

⊥]
)

dy

=
∫

D
vH ·

(
−(∇yqσ )H +�ywσ

H + 4π2

σ 2 [E2wσ
H

−2E(wσ
H )

⊥ − wσ
H ]

)
dy. (4.8)

We next perform several integrations by parts, using the divergence constraint for wσ :

divywH + 2π

σ
Ew3 = 0,

together with (4.7), to find
∫

D
vH · ∂t w dy −

∫

D
wσ · [(wσ

H · ∇y)vH ] dy

−2π

σ

∫

D
wσ

H · w3,σ EvH + w3,σvH · (wσ
H )

⊥ dy

=
∫

D
f (y) qσ (y) dy −

∫

D
∇yvH · ∇ywσ dy − 4π2

σ 2

∫

D
EvH · Ewσ

H dy

+ 8π2

σ 2

∫

D
EvH · (wσ

H )
⊥ dy − 4π2

σ 2

∫

D
vH · wσ

H dy. (4.9)
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By Poincaré’s inequality for functions with zero average on D, we deduce that
∣
∣
∣
∣

∫

D
f qσ dy

∣
∣
∣
∣ ≤ C‖vH ‖H1(D)(‖∂t wσ ‖H−1(D) + ‖wσ ‖2

L4(D) + ‖∇wσ ‖L2(D)), (4.10)

for C a constant independent of f or σ . Above we exploit that the operator E = y⊥ · ∇y is
first order and σ ≥ 1.

Hence, using that ‖vH ‖H1(D) ≤ C‖ f ‖L2(D) = C from (4.7) and the Ladyzhenskaya
inequality again, we find

‖qσ ‖L2(D) ≡
∣
∣
∣
∣

∫

D
f qσ dy

∣
∣
∣
∣ ≤ C(‖∂t wσ ‖H−1 + ‖wσ ‖L2‖∇wσ ‖L2 + ‖∇wσ ‖L2). (4.11)

Finally, squaring both sides of the inequality (4.11) and using Young’s inequality, subse-
quently integrating in time, we arrive at

‖qσ ‖2
L2((0,T );L2(D)) ≤ C

(
‖∂t wσ ‖2

L2((0,T );H−1(D))

+ (‖wσ ‖2
L∞((0,T );L2(D)) + 1)‖∇wσ ‖2

L2((0,T );L2(D))

)
.

(4.12)

��
With these estimates at hand, we are now ready to discuss the limit σ → ∞. We observe

that σ is not a parameter appearing explicitly in the Navier–Stokes system (2.7). Therefore
it is not clear what the limit equations are even at a formal level. The dependence on σ is
elucidated however in the symmetry-reduced system (3.3), which is equivalent to the original
system at the level of strong solutions thanks to Proposition 3.1.

For the reduced system (3.3), formally setting σ = ∞ produces the following system of
equations for a three-component vector function w∞ : (0,+∞)× D → R

3, with associated
pressure q∞:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tw
∞,1 + (w∞,1∂y1 + w∞,2∂y2 )w

∞,1 = −∂y1 q∞ + (∂2
y1

+ ∂2
y2
)w∞,1,

∂tw
∞,2 + (w∞,1∂y1 + w∞,2∂y2 )w

∞,2 = −∂y2 q∞ + (∂2
y1

+ ∂2
y2
)w∞,2,

∂tw
∞,3 + (

w∞,1∂y1 + w∞,2∂y2

)
w∞,3 = (∂2

y1
+ ∂2

y2
)w∞,3,

∂y1w
∞,1 + ∂y2w

∞,2 = 0, in [0,+∞)× D;
w∞ = 0, on [0,+∞)× ∂D;
w∞(0, y) = w∞

0(y), y ∈ D.
(4.13)

The initial condition w∞
0 will be taken in H1

0 (D) and assumed to satisfy:

∂y1w
∞,1
0 + ∂y2w

∞,2
0 = 0. (4.14)

The first two momentum equations are independent of w∞,3 and together with the
fourth equation give precisely the two-dimensional Navier–Stokes equations in D, where
the fluid velocity is identified with w∞

H := (w∞,1, w∞,2, 0). The third component
w∞,3 is simply advected by the first two and diffused. For this reason, we refer to
this flow as a planar flow. Existence and regularity results for the 2D Navier–Stokes
equations immediately give existence and uniqueness of the divergence-free vector field
w∞

H ∈ C([0, T ); H1
0 (D)) ∩ L2((0, T ); H2(D) ∩ H1

0 (D)) and associated pressure q∞ ∈
L2((0, T ); H1(D))∩ C∞((0, T )× D) for any initial condition w∞

H (0) ∈ H1
0 (D) satisfying

(4.14), and any T > 0. In fact, w∞
H is smooth for t > 0. Consequently, the advection-

diffusion equation for w∞,3 admits a unique solution, which belongs to the same class (see
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e.g. Proposition 2.7 in [14] and Theorem 3.10 in [19].) We refer to the three-component
vector function

w∞ ∈ C([0, T ); H1
0 (D)) ∩ L2((0, T ); H2(D) ∩ H1

0 (D)) ∩ C∞((0, T )× D),

as the unique strong solution of problem (4.13).
The System (4.13) gives the so-called two-dimensional, three-component Navier–Stokes

equations (also known as the 2 1
2 D Navier–Stokes equations, see [14].) We can uniquely

associate to w∞ a solution u∞ of the Navier–Stokes equations in � with initial data u∞
0 by:

u∞(t, x) := w∞(t, x ′), x ′ ∈ D, t > 0,

u∞
0 (x) := w∞

0 (x
′), x ′ ∈ D

p∞(t, x) := q∞(t, x ′, 0), x ′ ∈ D, t > 0,

(4.15)

with x ′ = (x1, x2). It is immediate to see that u∞ and p∞ have at least the same regularity
as w∞ and q∞. We will refer to u∞ as the 2 1

2 D solution of the Navier–Stokes system (2.7)
in � with associated pressure p∞.

To obtain a relationship with the original problem (2.7), at least at a formal level, we
observe that, if we take the limit σ → ∞ in (2.5), thanks to (2.2) and (2.6), we have the
identification:

u∞(t, x) = w∞(t, x ′) ≡ lim
σ→∞ uσ (t, x). (4.16)

Above, we have naturally identified the cross section of the cylinder � at height x3 = 0
with D and x ′ = (x1, x2) with y. We will use the identities and estimates established in
Proposition 4.3, valid for all 1 ≤ σ < ∞, to establish an estimate for the difference between
wσ and w∞. One difficulty in studying the limit σ → ∞ is that w∞

H is divergence free, while
wσ

H satisfies a divergence constraint that is σ dependent.

Proposition 4.4 Let w∞
0 ∈ H1

0 (D) satisfy (4.14). Given σ ≥ 1, let wσ
0 ∈ H1

0 (D) satisfy
(4.1). Let w∞ be the unique strong solution of (4.13) with initial data w∞

0 , and let wσ be the
unique regular solution of (3.3) with initial data wσ

0 on the time interval (0, T ), T > 0. Set:

�σ ≡ wσ − w∞. (4.17)

Then, for all 0 < t < T ,
∫

D
|�σ (t, y)|2 dy +

∫ t

0

∫

D
|∇�σ (s, y)|2 ds dy

≤ C
(
t, ‖w∞

0 ‖2
L2 , ‖wσ

0 ‖2
L2

)
(

‖�σ
0 ‖2

L2 + 1

σ

)
.

(4.18)

Proof Since wσ is a strong solution of (3.3) and w∞ is a strong solution of (4.13) on
the interval [0, T ), there exist functions qσ and q∞ ∈ L1((0, T ); H1(D)) enforcing the
divergence constraints. If we set rσ = q∞ − qσ , then �σ satisfies the following set of
equations on (0, T )× D:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t�
σ + (wσ

H · ∇y)�
σ + (�σ

H · ∇y)w∞ + 2π

σ
wσ,3[Ewσ − (wσ

H )
⊥]

= −(∇yrσ )H − 2π

σ
Eqσ e3 +�y�

σ + 4π2

σ 2 [E2wσ − 2E(wσ
H )

⊥ − wσ
H ],

divy�
σ
H + 2π

σ
Ewσ,3 = 0,

(4.19)

123



858 J Dyn Diff Equat (2014) 26:843–869

where E is again the differential operator y⊥ · ∇y defined in (2.4). These equations are
complemented by the initial condition

�σ
0 := �σ (0) = wσ

0 − w∞
0 ∈ H1

0 (D)

and no-slip boundary conditions on ∂D.
We observe that �σ has enough regularity to be a test function for the weak formulation

of (4.19). In particular, ∂t�
σ ∈ L2((0, T ), L2(D)). The weak form, after rearranging the

terms and integrating by parts, gives:

1

2

d

dt

∫

D
|�σ |2 dy +

∫

D
|∇�σ |2 dy = −

∫

D
�σ · [

(wσ
H · ∇y)�

σ
]

dy

−
∫

D
�σ · [

(�σ
H · ∇y)w∞]

dy − 2π

σ

∫

D
�σ ·

[
wσ,3(Ewσ − (wσ

H )
⊥)

]
dy

+4π2

σ 2

∫

D
�σ ·

[
E2wσ − 2E(wσ

H )
⊥ − wσ

H

]
dy (4.20)

−
∫

D
�σ ·

[
(∇yrσ )H + 2π

σ
Eqσ e3

]
dy ≡ −I1 − I2 − I3 + I4 − I5.

We estimate each of the five integrals on the right-hand side. Since wσ is a strong solution
and in view of estimates (4.5) for wσ , all norms appearing in the bounds to follow are finite
and all constants C are uniform in σ ∈ [1,+∞). We have:

|I1| ≤ 2π

σ

∫

D

1

2
|�σ |2|∇wσ | dy,

|I2| ≤
∫

D
|�σ |2|∇w∞| dy,

|I3| ≤ 2π

σ

∫

D
|�σ ||wσ |(|∇wσ | + |wσ |) dy,

|I4| ≤ 4π2

σ 2

[∫

D
|∇�σ ||∇wσ | dy +

∫

D
|�σ |(|∇wσ | + |wσ |) dy

]
,

|I5| =
∣
∣
∣
∣
2π

σ

∫

D
[q∞ E(wσ,3)− qσ E(w∞,3)] dy

∣
∣
∣
∣ ≤ 2π

σ

∫

D
(|∇wσ | |q∞| + |∇w∞| |qσ |) dy.

We bound further each integral Ii , i = 1, . . . , 5, using repeatedly the Ladyzhenskaya
inequality (2.1), Cauchy-Schwartz and Young’s inequalities:

|I1| ≤ C

σ
‖�σ ‖2

L4(D)‖∇wσ ‖L2(D) ≤ C

σ
(‖�σ ‖2

L2(D)‖∇wσ ‖2
L2(D) + ‖∇�σ ‖2

L2(D)),

(4.21)

|I2| ≤ ‖�σ ‖2
L4(D)‖∇w∞‖L2(D) ≤ 1

2
‖�σ ‖2

L2(D)‖∇w∞‖2
L2(D) + 1

2
‖∇�σ ‖2

L2(D), (4.22)

|I3| ≤ C

σ
(‖�σ ‖L2(D)‖wσ ‖2

L4(D) + ‖�σ ‖L4(D)‖∇wσ ‖L2(D)‖wσ ‖L4(D))

≤ C

σ
(‖�σ ‖2

L2(D)‖wσ ‖2
L2(D)+‖∇wσ ‖2

L2(D)+‖�σ ‖1/2
L2(D)

‖∇�σ ‖1/2
L2(D)

× ‖∇wσ ‖3/2
L2(D)

‖wσ ‖1/2
L2(D)

)

≤ C

σ
(‖�σ ‖2

L2(D)‖wσ ‖2
L2(D) + ‖∇wσ ‖2

L2(D) + ‖�σ ‖2
L2(D)‖∇�σ ‖2

L2(D)‖wσ ‖2
L2(D)
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+ ‖∇wσ ‖2
L2(D))

≤ C

σ
[‖�σ ‖2

L2(D)‖wσ ‖2
L2(D) + ‖∇wσ ‖2

L2(D)

+ (‖wσ ‖2
L2(D) + ‖w∞‖2

L2(D))‖∇�σ ‖2
L2(D)‖wσ ‖2

L2(D)], (4.23)

|I4| ≤ C

σ 2 (‖∇�σ ‖L2‖∇wσ ‖L2(D) + ‖�σ ‖L2(D)‖∇wσ ‖L2(D) + ‖�σ ‖L2(D)‖wσ ‖L2(D))

≤ C

σ 2 (‖∇�σ ‖2
L2(D) + ‖∇wσ ‖2

L2(D) + ‖�σ ‖2
L2(D) + ‖wσ ‖2

L2(D)), (4.24)

|I5| ≤ C

σ
(‖q∞‖L2(D)‖∇wσ ‖L2(D) + ‖qσ ‖L2(D)‖∇w∞‖L2(D))

≤ C

σ
(‖q∞‖2

L2(D) + ‖∇wσ ‖2
L2(D) + ‖qσ ‖2

L2(D) + ‖∇w∞‖2
L2(D)). (4.25)

Inserting estimates (4.21) — (4.25) into identity (4.20) yields:

d

dt
‖�σ ‖2

L2(D) + ‖∇�σ ‖2
L2(D) ≤ ‖∇�σ ‖2

L2(D)

·
(

C

σ
+ 1

2
+ C

σ
‖wσ ‖4

L2(D) + C

σ
‖wσ ‖2

L2(D)‖w∞‖2
L2(D) + C

σ 2

)
+ ‖�σ ‖2

L2(D)

·
(

C

σ
‖∇wσ ‖2

L2(D) + C

σ
‖∇w∞‖2

L2(D) + C

σ
‖wσ ‖2

L2(D) + 1

2
‖∇w∞‖2

L2(D) + C

σ 2

)

+
(

C

σ
‖∇wσ ‖2

L2(D) + C

σ 2 ‖∇wσ ‖2
L2(D) + C

σ 2 ‖wσ ‖2
L2(D) + C

σ
‖∇w∞‖2

L2(D)

+ C

σ
‖q∞‖2

L2(D) + C

σ
‖qσ ‖2

L2(D)

)
. (4.26)

Thanks again to the regularity of w∞, i.e.,

w∞ ∈ C([0, T ); H1
0 (D)) ∩ L2((0, T ); H2(D) ∩ H1

0 (D)),

and estimates (4.5) for wσ , we can now choose σ large enough such that

C

σ
+ 1

2
+ C

σ
‖wσ ‖4

L2(D) + C

σ
‖wσ ‖2

L2(D)‖w∞‖2
L2(D) + C

σ

2

<
3

4
.

We will rewrite (4.26) as a differential inequality in order to apply Grönwall’s Lemma. To
this end, we introduce the functions

f (t) = C

σ
‖∇wσ ‖2

L2 +
(

C

σ
+ 1

2

)
‖∇wσ ‖2

L2 + C

σ
‖wσ ‖2

L2 + C

σ 2

and

g(t) = C

σ
‖∇wσ (t)‖2

L2 + C

σ 2 ‖∇wσ (t)‖2
L2 + C

σ 2 ‖wσ (t)‖2
L2

+C

σ
‖∇w∞(t)‖2

L2 + C

σ
‖q∞(t)‖2

L2 + C

σ
‖qσ (t)‖2

L2 .

We also set

z(t) = ‖�σ (t)‖2
L2 .
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With this notation the differential inequality above becomes

d

dt
z ≤ f (t)z + g(t),

so that, by Grönwall’s Lemma we conclude that

z(t) ≤ exp

{∫ t

0
f (s) ds

}
z(0)+

∫ t

0
exp

{∫ t

s
f (τ ) dτ

}
g(s) ds. (4.27)

Next, standard energy estimates for the 2D Navier–Stokes equations along with similar
energy estimates for advection-diffusion equations, using that w∞

H is divergence-free, give:
∫ t

0
‖∇w∞(s)‖2

L2(D) ds ≤ ‖w∞
0 ‖2

L2(D).

We employ once again the estimates (4.5) in Remark 4.2 to deduce that
∫ t

0
f (s) ds ≤ C

(
‖w∞

0 ‖2
L2 + 1

σ
‖wσ

0 ‖2
L2

)
,

∫ t

0
g(s) ds ≤ C

σ

(‖w∞
0 ‖2

L2 + ‖wσ
0 ‖2

L2

)
.

Hence we arrive at the estimate, using that σ ≥ 1,

‖�σ ‖2
L2 ≤ C

(‖w∞
0 ‖2

L2 , ‖wσ
0 ‖2

L2

) ‖�σ
0 ‖2

L2 + C

σ

(‖w∞
0 ‖2

L2 + ‖wσ
0 ‖2

L2

)
.

This estimate, together with the choice of σ , produces, upon integrating the differential
inequality (4.26) in time, the desired result. ��

Before formulating our main results concerning the limit σ → ∞ , we note a consequence
of Proposition 4.4; namely, there may be more than one 2 1

2 D flow within a certain distance
to a given helical flow wσ . This non-uniqueness will be apparent later, since a correction to
the initial data wσ

0 will be needed to enforce the divergence-free condition for w∞
0 .

We start with a simpler result, describing a way in which solutions of the two-dimensional,
three-component Navier–Stokes equations can be approximated by suitable helical solutions
of the three-dimensional Navier–Stokes equations. More precisely, suppose we are initially
given a vector function

w∞
0 = (w

∞,1
0 , w

∞,2
0 , w

∞,3
0 ) ∈ H1

0 (D)

that satisfies the divergence-free constraint (4.14). Let w∞ be the unique strong solution
of (4.13) with pressure q∞. Recall that we can uniquely associate to w∞ a solution u∞
of the Navier–Stokes equations in � with initial data u∞

0 via (4.15). We will construct a
σ -dependent correction to w∞

0 , vσ0 , using Lemma 4.1, so that the resulting field wσ
0 , given

in (4.30) below, satisfies (4.1) and, hence, can be taken as initial data for the reduced helical
equations (3.3).

We first observe that, since w∞
0 |∂D ≡ 0 and divy y⊥ ≡ 0,

∫

D
y⊥ · ∇yw

∞,3
0 dy =

∫

D
divy (y

⊥w∞,3
0 ) dy = 0.

Therefore, by Lemma 4.1, there exists a solution vσ0 = (v
σ,1
0 , v

σ,2
0 ) ∈ H1

0 (D) to the problem

divy vσ0 = −2π

σ
E w∞,3

0 , (4.28)
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such that

‖vσ0 ‖H1 ≤ C
1

σ
‖E w∞,3

0 ‖L2(D) ≤ C

σ
‖w∞

0 ‖H1(D), (4.29)

where we recall that E = y⊥ · ∇y .
Next, we introduce the three-component vector function

wσ
0 = w∞

0 + (vσ0 , 0) ∈ H1
0 (D), (4.30)

which by construction satisfies (4.1), since wσ,30 = w
∞,3
0 . We will take wσ

0 so constructed as
initial data for (3.3). We are now ready to state our first theorem.

Theorem 4.5 Fix σ ≥ 1. Let w∞
0 ∈ H1

0 (D) satisfy (4.14). Let w∞ be the unique strong
solution of (4.13) with initial data w∞

0 . Let u∞ be the unique 2 1
2 D solution of the Navier–

Stokes equations (2.7) associated to w∞ via (4.15). Let wσ
0 be given by (4.30) for a choice

of vσ0 solution of (4.28), and denote by wσ the strong solution of (3.3) with initial data wσ
0 .

Let uσ0 be the associated strong helical solution of the Navier–Stokes equations (2.7) given
by Proposition 3.1. Then, for any fixed T > 0,

‖uσ (t, ·, x3 = 0)− u∞(t, ·, x3 = 0)‖L2(D) ≤ C√
σ
, for all 0 < t < T,

‖∇H uσ |x3=0 − ∇H u∞|x3=0‖L2(0,T ;L2(D)) ≤ C√
σ
,

(4.31)

where C is independent of σ ∈ [1,∞).

Proof Since by hypothesis, both uσ and u∞ ∈ C([0, T ); H1
0,per (�

σ )

∩L2((0, T ); H2
per (�

σ ) ∩ H1
0,per (�

σ )), the traces uσ |x3=0(t) and u∞|x3=0(t) are well

defined as elements of L2(D) for all 0 ≤ t < T , while the traces ∇uσ |x3=0 and ∇u∞|x3=0

are well defined as elements of L2((0, T ); L2(D)).
We continue by showing that

‖wσ
0 − w∞

0 ‖L2(D) ≤ C√
σ

and (4.32)

‖wσ
0 ‖L2(D) ≤ C, (4.33)

with constants C uniform in σ ∈ [1,∞). To see that the first statement (4.32) holds true, we
note that

wσ
0 − w∞

0 = (vσ0 , 0),

where vσ0 is a solution of (4.28) and satisfies (4.29).
Hence,

‖wσ
0 − w∞

0 ‖L2(D) = ‖vσ0 ‖L2(D) ≤ ‖vσ0 ‖H1(D) ≤ C

σ
‖w∞

0 ‖H1(D).

The second statement (4.33) follows immediately from the first.
Then, Proposition 4.4 gives that

‖wσ (t, ·)− w∞(t, ·)‖L2(D) ≤ C√
σ
, for almost all 0 < t < T, (4.34)

and

‖∇H wσ − ∇H w∞‖L2(0,T ;L2(D)) ≤ C√
σ
, (4.35)

again with constants C that do not depend on σ ≥ 1.
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Next, the proof of Proposition 3.1 shows that the helical solution uσ of (2.7) with initial
condition uσ0 related to wσ

0 via (2.8) is given by

uσ (t, x ′, x3) = Mσ (x3)wσ (t,mσ (x3)x
′),

for t > 0, where x ′ = (x1, x2), so that in particular:

uσ (t, xH ) = wσ (t, x ′), ∇H uσ (t, xH ) = ∇x ′wσ (t, x ′).

From (4.15), it also immediately follows that

u∞(t, xH ) = w∞(t, x ′), ∇x u∞(t, xH ) = ∇H u∞(t, xH ) = ∇x ′wσ (t, x ′).

Then, estimate (4.31) is a straightforward consequence of (4.34) and (4.35). ��
Remark 4.3 It is natural to derive bounds of traces at x3 = 0 in view of (4.16). In fact,
recalling that uσ is smooth in x ∈ �σ for t > 0, a simple argument, using a Taylor’s
expansion for uσ in 0 ≤ x3/σ < 1, centered at 0 with x ′ ∈ D fixed, shows that for a given
fixed t ,

|uσ (t, x)− u∞(t, x)| = |wσ (t, x ′)− w∞(t, x ′)| + O

( |x3|
σ

)
,

with bounds that depend on |wσ (x ′)| and |∇ywσ (x ′)|. Therefore, an argument similar to that
of the proof of Theorem 4.5 above gives:

‖uσ (t)− u∞(t)‖L2(U ) → 0
σ→∞, for all 0 < t < T,

‖∇uσ − ∇u∞‖L2(0,T ;L2(U )) → 0
σ→∞,

(4.36)

for any cylinder U ⊂ � of the form

U = {x = (x ′, x3) | x ′ ∈ D, x3 ∈ [0, δ], δ/σ −→
σ→∞ 0}.

On the other hand, |x3|/σ is O(1) in�σ . Hence, it seems difficult to obtain any convergence
estimate of uσ to u∞ globally in �σ as σ → ∞.

The previous result is not exactly what we aimed at, as it represents a way of approximating
a general two-dimensional flow by a well-chosen helical flow. What we want, instead, is to
show that helical flows with large σ are nearly two-dimensional. This adjustment is expressed
in our next result.

Theorem 4.6 Fix σ ≥ 1 and T > 0. Let uσ0 ∈ H1
0,per (�

σ ) be a divergence-free, helical
vector field. Let uσ be the unique, strong helical solution of (2.7) on [0, T ) with initial
velocity uσ0 . There exists a (not necessarily unique) w̃∞

0 ∈ H1(D), such that, if ũ∞ is the

unique 2 1
2 D solution of the Navier–Stokes equations (2.7) with initial data ũ∞

0 (·, x3) = w̃∞
0 ,

then for all 0 < t < T ,

‖uσ (t, ·, x3 = 0)− ũ∞(t, ·, x3 = 0)‖L2(D)

+‖∇H uσ |x3=0 − ∇H ũ∞|x3=0‖L2(0,T ;L2(D)) ≤ C(T )
1√
σ
, (4.37)

where C is independent of σ ∈ [1,∞).

We use the notation ũ∞ to emphasize that, while this is a solution of the limit problem, it is
still dependent on σ due to the correction to the initial condition to enforce the divergence-free
condition.
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Proof As in the proof of Theorem 4.5, the traces of uσ and u∞ are well defined at the level
of strong solutions. Furthermore, as in that theorem we will introduce a correction to the
initial data uσ0 to enforce the divergence-free condition on the initial data ũ∞

0 we take for
the limit problem. Let wσ

0 ∈ H1
0 (D) be associated to the helical field uσ0 ∈ H1

0,per (�
σ ) by

(2.8), satisfying (4.1). Let wσ be the regular solution of (3.3) with this initial data.
Next, let vσ0 = (v

σ,1
0 , v

σ,2
0 ) ∈ H1

0 (D) be a solution, given by Lemma 4.1, to the problem

divyvσ0 = −2π

σ
Ewσ,30 , (4.38)

where again E is the differential operator defined in (2.4), such that

‖vσ0 ‖H1 ≤ C
1

σ
‖E wσ,30 ‖L2(D) ≤ C

σ
‖wσ

0 ‖H1(D). (4.39)

Its existence is justified exactly as before.
We then set

ũ∞
0 (x) = w̃∞

0(x
′) := wσ

0 (x
′)− (vσ0 (x

′), 0), (4.40)

which is divergence free by (4.38). Let w̃∞ be the solution of (4.13) with initial data w̃∞
0.

The 2 1
2 D solution of the Navier–Stokes equations is given by ũ∞(t, x) = w̃∞(t, x ′). In

particular, the trace ũ∞(t, ·, x3 = 0) = w̃∞(t, ·).
By Proposition 4.4, estimate (4.37) now follows from

‖wσ
0 − w̃∞

0 ‖L2(D) = ‖vσ0 ‖L2(D) ≤ ‖vσ0 ‖H1(D) ≤ C

σ
‖wσ

0 ‖H1(D), (4.41)

‖̃w∞
0 ‖L2(D) ≤ ‖wσ

0 ‖L2(D) + ‖vσ0 ‖L2(D) ≤
(

1 + C

σ

)
‖wσ

0 ‖H1(D), (4.42)

‖wσ
0 ‖L2(D) ≤ ‖wσ

0 ‖H1(D) = ‖uσ0 (x3 = 0)‖H1(D), (4.43)

with constants uniform in σ ∈ [1,∞). ��

5 The Inviscid Case

In this section we discuss symmetry reduction and the limit σ → ∞ for the Euler equations
under an additional geometric assumption, considered already in [5,6]. This assumption can
be viewed as the analog of the no-swirl condition in axisymmetric flows and for this reason
we will call it the no helical swirl or no helical stretching condition. It can be shown that
the flow induced by solutions of the Euler equations preserves this condition at least when
the solution is regular enough. Furthermore, vorticity has an especially simple form, being
determined by its vertical component, which is advected by the flow. This observation allows
to prove global existence and uniqueness of weak, helical solutions in much the same spirit as
for solutions to the two-dimensional Euler equations, provided the initial velocity is bounded
(cf. [9].)

We now briefly review these results, referring the reader to [5,6] for more details. We will
then discuss the limit problem as σ → ∞ and convergence of solutions. On one hand the limit
problem is simpler, being given by the 2D Euler equations. In fact, under the no-stretching
constraint the symmetry-reduced helical Euler equations become a two-dimensional systems
for two components of the velocity, which admits a vorticity-stream function formulation
(see e.g. [14].) This system is the analog of the symmetry-reduced equations (3.3) for the
Navier–Stokes. On the other hand, to circumvent the lack of smoothing in the equations for
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positive time we will use compactness arguments to pass to the limit in σ , which do not
provide a rate of convergence.

For ease of notation, we temporarily suppress the explicit σ -dependence of solutions and
write u for uσ for example. We assume for now that u and p are smooth, so that all the
manipulations to follow are justified.

Given that smooth, helical vector fields and functions are σ periodic by Proposition 2.1, we
state the initial-boundary-value problem for the Euler equations in the fundamental domain
�σ :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t u + (u · ∇)u = −∇ p, in (0,+∞)×�σ ;
div u = 0, in [0,+∞)×�σ ;
u(t, x ′, x3) · x ′ = 0, for t ∈ [0,+∞), |x ′| = 1, 0 ≤ x3 ≤ σ ;
u(t, x ′, 0) = u(t, x ′, σ ) for t ∈ [0,+∞), x ′ ∈ D;
p(t, x ′, 0) = p(t, x ′, σ ) for t ∈ [0,+∞), x ′ ∈ D;
u(0, x) = u0, x ∈ �σ ,

(5.1)

where again x = (x ′, x3) and x ′ = (x1, x2).
Let

ξ :=
(

x2,−x1,
σ

2π

)
= −x⊥

H + σ

2π
e3. (5.2)

We will consider flows satisfying the following no-helical-swirl or stretching condition:

u · ξ = 0. (5.3)

This condition is preserved by smooth flows under the time evolution governed by the Euler
equations.

There are several consequences of this condition. Firstly, the vertical component u3 of
the velocity field u is computed from the other two components, i.e., the dynamics is planar.
Secondly, the vorticity ω = curlx u is given by

ω(t, x) = 2π

σ
ω(t, x) ξ , ω := ω3, (5.4)

where ω3 is the component of the vorticity along the axis of the cylinder� (see Lemma 2.11
in [6] for a proof of this fact). Furthermore, ω is advected by the flow u:

∂tω + u · ∇ω = 0. (5.5)

To derive the symmetry-reduced equations, we recall that w(t, y) = u(t, y, 0) from
Proposition 2.1, given that the matrices M and m becomes the identity matrix for x3 = 0.
Consequently,

�(t, y) := ω(t, y, 0) = ∇⊥
y · wH (t, y) = curlywH (t, y). (5.6)

Above, to avoid introducing further notation, we have abused notation slightly and identified
(w1, w2) with wH = (w1, w2, 0), where w1, w2 are the horizontal components of w with
respect to the standard Cartesian frame in R

3.
While wH is not divergence free in view of (3.3b), one observes that a divergence-free 2D

flow can be constructed from w under the no-helical-swirl condition, which therefore admits
a stream function ψ on D. This stream function satisfies:

⎧
⎪⎨

⎪⎩

∂y1ψ = 4π2

σ 2

[
−y1 y2 w

1 +
(
σ 2

4π2 + y2
1

)
w2

]
,

∂y2ψ = − 4π2

σ 2

[(
σ 2

4π2 + y2
2

)
w1 − y1 y2 w

2
]
.

(5.7)
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We define the following matrix:

H(y) := 4π2

σ 2

⎡

⎣

(
σ 2

4π2 + y2
2

)
−y1 y2

−y1 y2

(
σ 2

4π2 + y2
1

)

⎤

⎦ , (5.8)

and rewrite as

∇⊥
y ψ = H(y)wH .

A direct calculation, as in [6], then shows that

curl wH = divy K (y)∇yψ, with

K (y) := 1
σ 2

4π2 + |y|2

⎡

⎣

(
σ 2

4π2 + y2
2

)
−y1 y2

−y1 y2

(
σ 2

4π2 + y2
1

)

⎤

⎦ .
(5.9)

From (5.6) and (5.9), it follows that

� = LH ψ,

where the operator LH is defined by:

LH := divy(K (y)∇y). (5.10)

It is not difficult to show that LH is a second-order, scalar, strongly elliptic operator. Conse-
quently, ∇2L−1

H is a singular integral (see e.g. [17] for a proof).
Next, calculus equalities show that the transport equation (5.5) for ω reduces by helical

symmetry (i.e., using the correspondence in Proposition 2.1) to the following equation for
� on (0, T )× D:

∂t� + wH · ∇y� + 4π2

σ 2 (y
⊥ · wH )E� = 0,

where E is again the operator given in (2.4). Using (5.9), we can rewrite this equation as
an equation for � and ψ only (cf. [6, Lemma 2.17].) Furthermore, we can choose Dirichlet
boundary conditions for ψ from the no-penetration condition for u as in Corollary 2.16 of
[6]. Therefore, under the no-helical swirl condition and for sufficiently regular solutions, the
initial-boundary-value (5.1) for the Euler equations is equivalent to the following symmetry-
reduced system:

∂t� + ∂y1ψ ∂y2� − ∂y2ψ ∂y1� = 0, y ∈ D, 0 < t < T, (5.11a)

� = LHψ, y ∈ D, 0 < t < T,

ψ(0, y) = ψ0(y), y ∈ D, (5.11b)

ψ |∂D = 0, 0 < t < T . (5.11c)

Since (5.11a) is a transport equation by the divergence-free vector field ∇⊥
y ψ , the L∞ norm

of the reduced vorticity � is preserved under the flow. By (5.4) and Proposition 2.1, the
vorticity ω = curlx u is preserved under the flow induced by u. By the Beale-Kato-Majda
criterion ( see e.g. [14]) then, smooth helical solutions of (5.1) are global in time and agree
with a weak solution with the same initial data.

We next discuss weak solutions. Given ψ0 ∈ H1
0 (D) ∩ H2(D), we call a function ψ ∈

L1([0, T ); H1
0 (D)∩ H2(D)) a weak solution of the above system on [0, T ) with initial data

ψ0 if, for all test function φ ∈ C∞
c ([0, T )× D), ψ satisfies:
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∫

D
LHψ0 φ(0) dy −

∫ T

0

∫

D
LHψ ∂tφ dy dt +

∫ T

0

∫

D
∂y2ψLHψ ∂y1φ dy dt

−
∫ T

0

∫

D
∂y1LHψ ∂y2φ dy dt = 0.

(5.12)

Ettinger and Titi [6] proved that there exists a unique weak solution on [0, T ), for all T > 0,
provided in addition LHψ0 ∈ L∞(D). In this case the solution satisfies LHψ ∈ L∞((0, T )×
D).

While there is an existence theory for weak solutions of the Euler equation in three
dimensions [4,20], we will give here a definition of weak solution to (5.1) adapted to the
geometry of the problem and amenable to the analysis of the limit σ → ∞ (for further
discussion of helical weak solutions, in particular non-uniqueness of weak solutions with
helical initial data and symmetry-breaking, we refer the reader to [1].) Let ψ be the unique
weak solution of (5.11) with initial condition ψ0 ∈ H1

0 (D) ∩ H2(D) such that LHψ0 ∈
L∞(D). Let w = (wH , w

3), where wH is given in the equation above (5.9) and w3 is
obtained from wH via (5.3) as

w3 = 2π

σ
y⊥ · wH .

Let u be defined from w by (2.8). We will call u a weak, helical solution of (5.1). This
definition is justified in view of the following proposition.

Proposition 5.1 Let {ψ0,n} be a sequence of functions converging toψ0 ∈ H1
0 (D)∩ H2(D).

Letψn be the smooth solution of (5.11a) with initial dataψ0,n. Then,ψn converges uniformly
on [0, T )× D) to ψ the unique weak solution of (5.11).

The proof is contained in [6]. We recall it briefly.

Proof The sequence {ψn} is uniformly bounded in L1([0, T ); H1
0 (D) ∩ H2(D)) and LHψ

is uniformly bounded in L∞([0, T ) × D). Recall that the equation for �n = LHψn is
a transport equation by ∇⊥

y ψn , which is divergence free. Since ∂i∂ j L−1
H is a Calderon-

Zygmund singular integral, {∇⊥
y ψn} is bounded in the space LLip of Log-Lipschitz vector

fields. Hence, the family {Xn}, where Xn is the flow generated by ∇⊥ψn is equicontinuous
and hence, upon possibly passing to subsequences,�n converges strongly in L1((0, T )× D)
and ∇⊥

y ψn converges uniformly to ∇⊥
y ψn . In particular,ψn converges uniformly toψ . These

convergence results are enough to pass to the limit in the weak formulation (5.12) (cf. [14,
Section 8.2.2].) The limit limn→∞ ψn must necessarily agree with ψ by uniqueness of the
solution, so the whole sequence converges to ψ . ��

This result also implies that, if �(0) ∈ L∞(D), then �(t, x) = �(X−1(t, x), where X
is the flow generated by ∇⊥ψ , is the (unique) weak solution of (5.11), hence all its L p norms
are constant in time.

We next discuss the limit σ → ∞. We reinstate the explicit dependence on σ , and write for
example uσ for the solution of (5.1), ωσ for curlx uσ and so on. We denote the corresponding
quantities in the limit by u∞,ω∞ and so on.

Formally taking the limit σ → ∞ in (5.3) gives u∞,3 ≡ 0 and, hence, u∞ = u∞
H .

Furthermore, u∞ becomes independent of the x3 variable, so that

u∞(x) = w∞(x ′) = w∞
H (x

′)

is divergence-free as a vector field on D. Also, the matrix K σ approaches the identity matrix
in the limit, so that L∞

H is simply the Laplace operator,ψ∞ is the stream functions associated
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to u∞
H , and �∞(x ′) = ω∞(x) = curlx ′u∞

H (x). In particular, (5.11a) becomes the vorticity-
stream function formulation of the 2D Euler equations. We conclude that, at least formally,
helical solutions to the 3D Euler equations become planar 2D solutions of the Euler equations
as σ → ∞.

We explicitly state the limit problem:

∂t�
∞ + ∂y1ψ

∞ ∂y2�
∞ − ∂y2ψ

∞ ∂y1�
∞ = 0, y ∈ D, 0 < t < T, (5.13a)

�∞ = �yψ
∞, y ∈ D, 0 < t < T,

ψ∞(0, y) = ψ∞
0 (y), y ∈ D, (5.13b)

ψ∞|∂D = 0, 0 < t < T . (5.13c)

Below we will study convergence of the corresponding stream functions ψσ → ψ∞ as
σ → ∞. Since the uniqueness and regularity of weak solutions depends on an L∞ control
on the vorticity, we will prescribe the initial vorticity �σ

0 independent of σ , i.e.,

�∞
0 = �σ

0 = �0 ∈ L∞(D).

This choice can be relaxed by taking a sequence�σ
0 converging to�0 strongly in L∞(D). We

then obtain an initial condition for the stream function, ψσ0 , that is σ -dependent. We choose
the initial data for the stream function as the unique solution in H1

0 (D) of the following
problems, respectively:

�ψ∞
0 = �0,

LσHψσ0 = �0.
(5.14)

By elliptic regularity, ψ∞
0 , ψ

σ
0 ∈ W 2,p for all 1 < p < ∞.

Next we will derive uniform bounds inσ on the W 2,p norm ofψσ and then use compactness
arguments to pass to the limit. It is well known that, under the condition that the initial
vorticity �0 is bounded, solutions to the 2D Euler equations are global in time and unique
[9]. Therefore, it will be enough to establish convergence along subsequences.

Lemma 5.2 Let 1 < p < ∞ be fixed. Then, there exists a constant C p > 0 such that, for
all σ > 1 and for all f ∈ W 2,p(D),

‖LH f ‖L p(D) ≤ C p‖ f ‖W 2,p(D). (5.15)

Moreover, there exists a σ0 > 1 and a constant C p > 0, independent of σ ∈ [σ0,∞) such
that

‖ f ‖W 2,p(D) ≤ C p ‖LH f ‖L p(D). (5.16)

Proof We observe that we can write the matrix K σ = I2 + Fσ , where I2 is the 2×2-identity
matrix and

Fσ (y) = 1

1 + 4π2 |y|2
σ 2

⎡

⎣
4π2 y2

1
σ 2

4π2 y1 y2
σ 2

4π2 y1 y2
σ 2

4π2 y2
2

σ 2

⎤

⎦ .

We have:

‖Fσ ‖L∞(D) ≤ C1
1

σ 2 , ‖∇y Fσ ‖L∞(D) ≤ C2
1

σ 2 , (5.17)

for some constants C1,C2 independent of σ . The bound (5.15) then follows immediately.
To establish (5.16), we write

�y f = LH f − Fσ (y) : ∇2 f − (divy Fσ (y)) · ∇y f,
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so that from elliptic regularity for the Poisson’s problem for 1 < p < ∞, Hölder’s inequality
and (5.17):

‖ f ‖W 2,p ≤ C ′
p ‖LH f ‖L p + ‖Fσ : ∇2 f ‖L p + ‖divy Fσ · ∇y f ‖L p

≤ C ′
p ‖LH f ‖L p + C1

1

σ 2 ‖∇2
y f ‖L p + C2

1

σ 2 ‖∇y f ‖L p ,

or equivalently:

(1 − (C1 + C2)/σ
2)‖ f ‖W 2,p ≤ C ′

p ‖LH f ‖L p .

So, the result follows provided we choose σ0 > 1/
√
(C1 + C2). ��

We now state and prove our convergence result for the Euler equations. We recall that the
only difference between the equations at σ finite and in the limit is the equation expressing
the relationship between the vorticity and the stream function.

Theorem 5.3 Let �0 ∈ L∞(D). Let ψσ0 and ψ∞
0 be given by (5.14). Let ψσ be the unique

weak solution of (5.11) with initial dataψσ0 . Letψ∞ be the unique weak solution of (5.13) with
initial data ψ∞

0 . Then, ψσ converges to ψ∞ strongly in L p([0, T ); W 1,p(D)), 1 < p < ∞.

Proof Since the initial vorticity �0 ∈ L∞(D),∇⊥ψσ ∈ LLip(D) with a bound on the
Log-Lipschitz norm that is uniform in σ for σ ∈ [1,∞) by (5.17). Therefore, we have a
uniform bound on �σ in L∞([0, T )× D), thanks to the transport equation (5.11a). In turn
by (5.16), this bound implies a bound on the family {ψσ } of weak solutions of (5.11) in all
spaces L∞([0, T ); W 2,p), 1 < p < ∞ that is uniform in σ ≥ σ0 for σ0 large enough.

Next, we recall the following a priori bound for weak solutions of (5.11) (see [6, Lemma
4.2]):

‖∂tψ
σ ‖L∞([0,T );W 1,p(D)) ≤ C p‖LσHψσ ‖L∞((0,T )×D) ‖ψσ ‖L∞([0,T );W 1,p),

where C p is independent of σ for σ large enough as in Lemma 5.2. Therefore, {ψσ } is
uniformly bounded in Lip([0, T ); W 1,p(D)). By the Aubin compactness theorem (see e.g. [3,
Lemma 8.4]) then, there is a sequence {ψσn } that converges strongly in Lq([0, T ); W 1,p), 1 <
q < ∞, to a function ψ∞. Upon passing to a subsequence if necessary, one can assume also
that�σn converges weakly-∗ in L∞([0, T )× D) to a function�∞ from the uniform bound
obtained above. It remains to show that �∞ = �ψ∞ in L2(D). This result follows from
the identity �σ = LHψ

σ , valid for all σ , and (5.17), by writing again K σ = I2 + Fσ .
As in the proof of Proposition 5.8 in [6], these convergence results are sufficient to show that

ψ∞ and�∞ satisfy the weak formulation of the limit problem (5.13). But weak solutions of
the 2D Euler equations are unique if the vorticity is bounded, hence any converging sequence
of {ψσ } must converge to ψ∞. ��
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