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Abstract We introduce a model of dynamic visco-elasto-plastic evolution in the linearly
elastic regime and prove an existence and uniqueness result. Then we study the limit of (a
rescaled version of) the solutions when the data vary slowly. We prove that they converge,
up to a subsequence, to a quasistatic evolution in perfect plasticity.
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1 Introduction

The quasistatic evolution of rate independent systems has been often obtained as the limit case
of a viscosity driven evolution (see [7–10,14,15,17,18,20–23,26,27,30]). In this paper we
present a case study on the approximation of a quasistatic evolution by dynamic evolutions,
in a mechanical problem governed by partial differential equations. For a similar problem in
finite dimension we refer to [1].

More precisely, we approximate the solutions of the quasistatic evolution in linearly elas-
tic perfect plasticity (see [6,27]) by the solutions of suitable dynamic visco-elasto-plastic
problems, when a parameter connected with the speed of the process tends to 0.

In the first part of the paper we consider a model of dynamic visco-elasto-plastic evolu-
tion in the linearly elastic regime. In a sense it couples dynamic visco-elasticity with Perzyna
visco-plasticity. In [27] the quasistatic evolution for perfect plasticity is obtained as a van-
ishing viscosity limit of Perzyna visco-plasticity. This is the main reason for our choice of
this particular dynamic model.

G. D. Maso · R. Scala (B)
SISSA, Mathematics Area, via Bonomea 265, 34136 Trieste, Italy
e-mail: rscala@sissa.it; riccardo.scala@unipv.it

G. D. Maso
e-mail: dalmaso@sissa.it

123



916 J Dyn Diff Equat (2014) 26:915–954

We now describe the model in more detail. The reference configuration is a bounded open
set Ω ⊂ R

n with sufficiently smooth boundary. The linearized strain Eu, defined as the
symmetric part of the gradient of the displacement u, is decomposed as Eu = e + p, where e
is the elastic part and p is the plastic part. The stress σ = A0e + A1ė is the sum of an elastic
part A0e and a viscous part A1ė, where A0 is the elasticity tensor, A1 is the viscosity tensor,
and ė is the derivative of e with respect to time. As usual we assume that A0 is symmetric and
positive definite, while we only assume that A1 is symmetric and positive semidefinite, so
that we are allowed to consider also A1 = 0, which corresponds to the purely visco-plastic
case.

The balance of momentum gives the equation

ü − divσ = f,

where f is the volume force, and we have supposed, for simplicity, that the mass density
is identically equal to 1. As in Perzyna visco-plasticity, the evolution of the plastic part is
governed by the flow rule

ṗ = σD − πKσD,

where σD is the deviatoric part of σ and πK is the projection onto a prescribed convex set
K in the space of deviatoric symmetric matrices, which can be interpreted as the domain of
visco-elasticity. Indeed, if σD belongs to K during the evolution, then there is no production
of plastic strain, so that, if p = 0 at the initial time, then p = 0 for every time and the solution
is purely visco-elastic.

The complete system of equations is then

Eu = e + p, (1.1a)

σ = A0e + A1ėA1 , (1.1b)

ü − divσ = f, (1.1c)

ṗ = σD − πKσD, (1.1d)

where eA1 denotes the projection of e into the image of A1. This system is supplemented
by initial and boundary conditions. Other dynamic models of elasto-plasticity with viscosity
have been considered in [2] and [3]. The main difference with respect to our model is that
they couple visco-elasticity with perfect plasticity, while we couple visco-elasticity with
visco-plasticity.

Under natural assumptions on A0, A1, f , and K we prove existence and uniqueness
of a solution to (1.1) with initial and boundary conditions (Theorem 1). In analogy with
the energy method for rate independent processes developed by Mielke (see [20] and the
references therein), we first prove that system (1.1) has a weak formulation expressed in
terms of an energy balance together with a stability condition (Theorem 2). The proof of
the existence of a solution to this weak formulation is obtained by time discretization. In the
discrete formulation we solve suitable incremental minimum problems and then we pass to
the limit as the time step tends to 0.

In the second part of the work we analyze the behavior of the solution to system (1.1) as
the data of the problem become slower and slower. After rescaling time, as described at the
beginning of Sect. 6, we are led to study the solutions to the system
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Euε = eε + pε, (1.2a)

σ ε = A0eε + εA1ėεA1
, (1.2b)

ε2üε − divσ ε = f, (1.2c)

ε ṗε = σ εD − πKσ
ε
D, (1.2d)

as ε tends to 0.
Under suitable assumptions we show (Theorem 6) that these solutions converge, up to

a subsequence, to a weak solution of the quasistatic evolution problem in perfect plasticity
(see [27] and [6]), whose strong formulation is given by

Eu = e + p, (1.3a)

σ = A0e, (1.3b)

− divσ = f, (1.3c)

σD ∈ K and ṗ ∈ NKσD, (1.3d)

where NKσD denotes the normal cone to K at σD .
The proof of this convergence result is obtained using the weak formulation of (1.1)

expressed by energy balance and stability condition (see Theorem 2). We show that we can
pass to the limit obtaining the energy formulation of (1.3) developed in [6]. A remarkable
difficulty in this proof is due to the fact that problems (1.1) and (1.3) are formulated in
completely different function spaces (see Theorem 1 and Definition 1).

2 Visco-Elasto-Plastic Evolution

2.1 Notation

Vectors and Matrices If a, b ∈ R
n , their scalar product is defined by a · b := ∑

i ai bi , and
|a| := (a · a)1/2 is the norm of a. If η = (ηi j ) and ξ = (ξi j ) belong to the space M

n×n

of n × n matrices with real entries, their scalar product is defined by η · ξ := ∑
i j ηi jξi j .

Similarly |η| := (η · η)1/2 is the norm of η. M
n×n
sym is the subspace of M

n×n composed of

symmetric matrices. Moreover M
n×n
D denotes the subspace of symmetric matrices with null

trace, i.e., η ∈ M
n×n
D if η is symmetric and trη = ∑

i ηi i = 0. The space M
n×n
sym can be split

as

M
n×n
sym = M

n×n
D ⊕ RI,

where I is the identity matrix, so that every η ∈ M
n×n
sym can be written as η = ηD + trη

n I ,

where ηD , called the deviatoric part of η, is the projection of η into M
n×n
D .

Duality and Norms If X is a Banach space and u ∈ X , we usually denote the norm of u by
‖u‖X . If X is L p(Ω), L p(Ω; R

n), L p(Ω; M
n×n
sym ), or L p(Ω; M

n×n
D ) the norm is denoted by

‖u‖L p . In general, if X is a Banach space, X ′ is its dual space and 〈u, v〉X denotes the duality
product between u ∈ X ′ and v ∈ X . The subscript X is sometimes omitted, if it is clear from
the context.
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2.2 Kinematic Setting

The Reference Configuration The reference configuration is a bounded connected open set
Ω in R

n , n ≥ 2, with Lipschitz boundary. We suppose that ∂Ω = Γ0 ∪ Γ1 ∪ ∂Γ , where Γ0,
Γ1, and ∂Γ are pairwise disjoint, Γ0 and Γ1 are relatively open in ∂Ω , and ∂Γ is the relative
boundary in ∂Ω both of Γ0 and Γ1. We assume that Γ0 �= ∅ and that Hn−1(∂Γ ) = 0, where
Hn−1 denotes the n −1 dimensional Hausdorff measure. On Γ0 we will prescribe a Dirichlet
condition on the displacement u, while on Γ1 we will impose a Neumann condition on the
stress σ .

Elastic and Plastic Strain If u is the displacement, the linearized strain Eu is its symmetrized
gradient, defined as the M

n×n
sym -valued distribution with components Ei j u = 1

2 (Di u j +D j ui ).
The linearized strain is decomposed as the sum of the elastic strain e and the plastic strain
p. Given w ∈ H1(Ω,Rn), we say that a triple (u, e, p) is kinematically admissible for the
visco-elasto-plastic problem with boundary datum w if u ∈ H1(Ω; R

n), e ∈ L2(Ω; M
n×n
sym ),

p ∈ L2(Ω; M
n×n
D ), and

Eu = e + p onΩ, (2.1a)

u|Γ0 = w onΓ0. (2.1b)

We denote the set of these triples by A(w). It is convenient to introduce the subspace of
H1(Ω; R

n) defined by

H1
Γ0
(Ω; R

n) := {u ∈ H1(Ω; R
n) : u|Γ0 = 0}

and its dual space, denoted by H−1
Γ0
(Ω; R

n). It is clear that (u, e, p) ∈ A(w) if and only if

u − w ∈ H1
Γ0
(Ω; R

n) and Eu = e + p, with e ∈ L2(Ω; M
n×n
sym ) and p ∈ L2(Ω; M

n×n
D ).

Stress and External Forces In the visco-elasto-plastic model the stress σ depends linearly on
the elastic part e of the strain Eu and on its time derivative ė. To express this dependence we
introduce the elastic tensor A0 and the visco-elastic tensor A1, which are symmetric linear
operators of M

n×n
sym into itself. We assume that there exist positive constants α0, β0, and β1

such that

|Aiξ | ≤ βi |ξ |, for i = 1, 2, (2.2a)

A0ξ · ξ ≥ α0|ξ |2 and A1ξ · ξ ≥ 0, (2.2b)

for every ξ ∈ M
n×n
sym . Note that A1 = 0 is allowed. Inequalities (2.2) imply

|Aiξ |2 ≤ βi Aiξ · ξ, (2.2c)

for every ξ ∈ M
n×n
sym and for i = 1, 2.

For every ξ ∈ M
n×n
sym let ξA1 be the orthogonal projection of ξ onto the image of A1. Then

there exists a constant α1 > 0 such that

A1ξ · ξ ≥ α1|ξA1 |2 (2.3)

for every ξ ∈ M
n×n
sym .

The stress satisfies the constitutive relation

σ = A0e + A1ė. (2.4)
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The term A1ė in the equation above is the component of the stress due to internal frictions.
To express the energy balance it is useful to introduce the quadratic forms

Q0(ξ) = 1

2
A0ξ · ξ and Q1(ξ) = A1ξ · ξ.

For every e ∈ L2(Ω; M
n×n
sym ) we define

Q0(e) =
∫

Ω

Q0(e)dx and Q1(e) =
∫

Ω

Q1(e)dx .

These function turn out to be lower semicontinuous with respect to the weak topology of
L2(Ω; M

n×n
sym ). Q0(e) represents the stored elastic energy associated to e ∈ L2(Ω; M

n×n
sym )

while Q1(ė) represents the rate of visco-elastic dissipation.
We assume that the time dependent body force f (t) belongs to L2(Ω; R

n) and that the
time dependent surface force g(t) belongs to L2(Γ1,Hn−1; R

n). It is convenient to introduce
the total load L(t) ∈ H−1

Γ0
(Ω; R

n) of external forces acting on the body, defined by

〈L(t), u〉 := 〈 f (t), u〉Ω + 〈g(t), u〉Γ1 , (2.5)

where 〈·, ·〉 denotes the duality pairing between H−1
Γ0
(Ω; R

n) and H1
Γ0
(Ω; R

n), 〈·, ·〉Ω
denotes the scalar product in L2(Ω; R

n), while 〈·, ·〉Γ1 denotes the scalar product in
L2(Γ1,Hn−1; R

n).
When dealing with the visco-elasto-plastic problem, we will only suppose that the total

load L(t) belongs to H−1
Γ0
(Ω; R

n), without assuming the particular form (2.5). The hypothe-
ses on the functions t �→ L(t) and t �→ w(t) and the regularity of t �→ (u(t), e(t), p(t))
will be made precise in the statement of Theorems 1 and 2 below.

The law which expresses the second law of dynamic is

ü(t)− divσ(t) = f (t) inΩ, (2.6)

where we assume that the mass density of the elasto-plastic body is 1. Equation (2.6) is
supplemented with the boundary conditions

u(t) = w(t) onΓ0, (2.7a)

σ(t)ν = g(t) onΓ1. (2.7b)

To deal with (2.6) and (2.7), it is convenient to introduce the continuous linear operator
divΓ0 : L2(Ω; M

n×n
sym ) → H−1

Γ0
(Ω; R

n) defined by

〈divΓ0σ, ϕ〉 := −〈σ, Eϕ〉 (2.8)

for every σ ∈ L2(Ω; M
n×n
sym ) and every ϕ ∈ H1

Γ0
(Ω; R

n).
If f (t), g(t), σ(t), u(t), Γ0, and Γ1 are sufficiently regular and L(t) is the total external

load defined by (2.5), then we can prove, using integration by parts, that (2.6) and (2.7b) are
equivalent to

ü(t)− divΓ0σ(t) = L(t), (2.9)

interpreted as equality between elements of H−1
Γ0
(Ω; R

n). In other words (2.9) is satisfied if
and only if

〈ü(t), ϕ〉 + 〈σ(t), Eϕ〉 = 〈L(t), ϕ〉 (2.10)

for every ϕ ∈ H1
Γ0
(Ω; R

n). In the irregular case, Eq. (2.10) represents the weak formulation
of problem (2.6) with boundary condition (2.7b).

123



920 J Dyn Diff Equat (2014) 26:915–954

Plastic Dissipation The elastic domain K is a convex and compact set in M
n×n
D . We will

suppose that there exist two positive real numbers r1 < R1 such that

B(0, r1) ⊆ K ⊆ B(0, R1). (2.11)

It is convenient to introduce the set

K(Ω) := {ξ ∈ L2(Ω; M
n×n
D ) : ξ(x) ∈ K for a.e. x ∈ Ω}. (2.12)

If πK denotes the minimal distance projection of M
n×n
D into K , and πK(Ω) denotes the

projection of L2(Ω; M
n×n
D ) into K(Ω), then it is easy to check that

(πK(Ω)ξ)(x) = πK ξ(x) for a.e. x ∈ Ω, (2.13)

for every ξ ∈ L2(Ω; M
n×n
D ).

The evolution of the plastic strain p(t, x) will be expressed by the Maximum Dissipation
Principle (Hill’s Principle of Maximum Work, see, e.g., [12,19,27]): if σ is the stress, then
p will satisfy the following

(σD(t, x)− ξ) · ṗ(t, x) ≥ 0 for every ξ ∈ K and a.e. x inΩ

σD(t, x)− ṗ(t, x) ∈ K , for a.e. x inΩ,

where we assume for simplicity that the viscosity coefficient is 1. Thanks to the character-
ization of the projection onto convex sets (see, e.g., [13]), this condition is satisfied if and
only if σD(t, x)− ṗ(t, x) coincides with πKσD(t, x), for a.e. x ∈ Ω . By (2.13), this can be
written as

ṗ(t) = σD(t)− πK(Ω)σD(t). (2.14)

We define the support function H : M
n×n
D → [0,+∞[ of K by

H(ξ) = sup
ζ∈K

ζ · ξ. (2.15)

It turns out that H is convex and positively homogeneous of degree one. In particular it
satisfies the triangle inequality

H(ξ + ζ ) ≤ H(ξ)+ H(ζ )

and the following inequality, due to (2.11):

r1|ξ | ≤ H(ξ) ≤ R1|ξ |. (2.16)

We define H : L2(Ω; M
n×n
D ) → R by

H(p) =
∫

Ω

H(p(x))dx . (2.17)

If p ∈ H1([0, T ]; L2(Ω; M
n×n
D )) and ṗ(t) is its time derivative, then H( ṗ) represents the

rate of plastic dissipation, so that,
∫ T

0
H( ṗ)dt (2.18)

is the total plastic dissipation in the time interval [0, T ].
We notice that, by the definition of H , the subdifferential of H satisfies (see e.g. [25,

Theorem 13.1])
∂H(0) = K . (2.19)
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From (2.19), it easily follows
∂H(0) = K(Ω), (2.20)

where ∂H(ξ) denotes the subdifferential of H at ξ .

2.3 Existence Results for Elasto-Visco-Plastic Evolutions

Given an elasto-visco-plastic body satisfying all the properties described in the previous
section, we fix an external load L and a Dirichlet boundary datum w, and look for a solution
of the dynamic Eq. (2.9) and of the flow rule (2.14), with stress σ defined by (2.4) and strain
satisfying Eq. (2.1). Our existence result for an elasto-visco-plastic evolution is given by the
following theorem.

Theorem 1 Let T > 0, let L ∈ AC([0, T ]; H−1
Γ0
(Ω; R

n)), and letw be a function such that

w ∈ L∞([0, T ]; H1(Ω; R
n)), (2.21a)

ẇ ∈ C0([0, T ]; L2(Ω; R
n)) ∩ L2([0, T ]; H1(Ω; R

n)), (2.21b)

ẅ ∈ L2([0, T ]; L2(Ω; R
n)). (2.21c)

Then for every (u0, e0, p0) ∈ A(w(0)) and v0 ∈ L2(Ω; R
n) there exists a unique quadruple

(u, e, p, σ ) of functions, with

u ∈ L∞([0, T ]; H1(Ω; R
n)), (2.22a)

u̇ ∈ L∞([0, T ]; L2(Ω; R
n)), (2.22b)

ü ∈ L2([0, T ]; H−1
Γ0
(Ω; R

n)), (2.22c)

e ∈ L∞([0, T ]; L2(Ω; M
n×n
sym )), (2.22d)

p ∈ L∞([0, T ]; L2(Ω; M
n×n
D )), (2.22e)

ėA1 ∈ L2([0, T ]; L2(Ω; M
n×n
sym )), (2.22f)

ṗ ∈ L2([0, T ]; L2(Ω; M
n×n
D )), (2.22g)

σ ∈ L2([0, T ]; L2(Ω; M
n×n
sym )), (2.22h)

such that for a.e. t ∈ [0, T ] we have

Eu(t) = e(t)+ p(t), (2.23a)

σ(t) = A0e(t)+ A1ėA1(t), (2.23b)

ü(t)− divΓ0σ(t) = L(t), (2.23c)

ṗ(t) = σD(t)− πK(Ω)σD(t), (2.23d)

and
u(t) = w(t) on Γ0, (2.24)

u(0) = u0, p(0) = p0, (2.25a)

lim
h→0+

1

h

∫ h

0
‖e(t)− e0‖2

L2 dt = 0, lim
h→0+

1

h

∫ h

0
‖u̇(t)− v0‖2

L2 dt = 0. (2.25b)

In (2.22f) and in the rest of the paper the symbol ėA1 denotes the time derivative (in the sense
of distributions) of the function eA1 defined before (2.3).
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Moreover (u, e, p, σ ) satisfies the equilibrium condition

−H(q) ≤ 〈σ(t), η〉 + 〈 ṗ(t), q〉 + 〈ü(t), ϕ〉 − 〈L(t), ϕ〉 ≤ H(−q), (2.26)

for a.e. t ∈ [0, T ] and for every (ϕ, η, q) ∈ A(0), where 〈·, ·〉 denotes the duality pairing
between H−1

Γ0
(Ω; R

n) and H1
Γ0
(Ω; R

n) in the terms containing ü and L, while it denotes the

scalar product in L2 in all other terms.

Remark 1 In view of (2.21) and (2.22) we see that u, w, u̇, ẇ, eA1 , and p are absolutely
continuous in time, more precisely,

w ∈ AC([0, T ]; H1(Ω; R
n)), (2.27a)

u, ẇ ∈ AC([0, T ]; L2(Ω; R
n)), (2.27b)

u̇ ∈ AC([0, T ]; H−1
Γ0
(Ω; R

n)), (2.27c)

eA1 ∈ AC([0, T ]; L2(Ω; M
n×n
sym )), (2.27d)

p ∈ AC([0, T ]; L2(Ω; M
n×n
D )) (2.27e)

(see, e.g., [5], Proposition A.3 and following Corollary). Properties (2.27b) and (2.27e) give
a precise meaning to the initial conditions (2.25a).

Moreover since u is bounded in H1(Ω; R
n) by (2.22a), we deduce from (2.27b) that

t �→ u(t) is weakly continuous into H1(Ω; R
n). Similarly, thanks to (2.27c) and since

u̇ ∈ L∞([0, T ]; L2(Ω; R
n)) by (2.22b), it follows that t �→ u̇(t) is weakly continu-

ous into L2(Ω; R
n). Moreover, e = Eu − p ∈ H1([0, T ]; H−1(Ω; M

n×n
sym )) by (2.22a),

(2.22b), (2.22e), and (2.22g), thus e ∈ AC([0, T ]; H−1(Ω; M
n×n
sym )). Since we have also

e ∈ L∞([0, T ]; L2(Ω; M
n×n
sym )) by (2.22d), we conclude that t �→ e(t) is weakly contin-

uous into L2(Ω; M
n×n
sym ). In particular for every t ∈ [0, T ] the functions u(t), e(t), p(t),

u̇(t) are univocally defined as elements of H1(Ω; R
n), L2(Ω; M

n×n
sym ), L2(Ω; M

n×n
D ), and

L2(Ω; R
n), respectively.

Remark 2 From (2.22), (2.23a), and (2.25) it follows that

lim
h→0+

1

h

∫ h

0
‖u(t)− u0‖2

H1 dt = 0. (2.28)

Indeed, by (2.27b) we have 1
h

∫ h
0 ‖u(t)− u0‖2

L2 dt → 0, and (2.22g), (2.23a), while (2.25b)

give 1
h

∫ h
0 ‖Eu(t)− Eu0‖2

L2 dt → 0.

Before proving Theorem 1 we will first state the following result, which characterizes the
solutions of Eqs. (2.23c) and (2.23d).

Theorem 2 Under the hypotheses of Theorem 1, we assume that (u, e, p, σ ) satisfies (2.22),
(2.23a), (2.23b), (2.24), and (2.25). Then (u, e, p, σ ) satisfies (2.23c) and (2.23d) for a.e.
t ∈ [0, T ] if and only if both the following conditions hold:
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(a) Energy balance: for a.e t ∈ [0, T ] we have

Q0(e(t))+ 1

2
‖u̇(t)−ẇ(t)‖2

L2 +
∫ t

0
Q1(ėA1)ds +

∫ t

0
‖ ṗ‖2

L2 ds +
∫ t

0
H( ṗ)ds

= Q0(e0)+ 1

2
‖v0 − ẇ(0)‖2

L2 +
∫ t

0
〈σ, Eẇ〉ds −

∫ t

0
〈ẅ, u̇ − ẇ〉ds

+ 〈L(t), u(t)− w(t)〉 − 〈L(0), u0 − w(0)〉 −
∫ t

0
〈L̇, u − w〉ds, (2.29)

(b) For a.e. t ∈ [0, T ] the equilibrium condition (2.26) holds for every (ϕ, η, q) ∈ A(0).

Moreover, if the two previous conditions are satisfied, then

〈σD(t)− ṗ(t), ṗ(t)〉 = H( ṗ(t)) for a.e. t ∈ [0, T ]. (2.30)

Remark 3 If A1 is positive definite, then (2.27d), (2.27e), and the Korn inequality, imply that
u ∈ AC([0, T ]; H1(Ω; R

n)). If moreover the dataw and L are sufficiently regular, L has the
form (2.5), then we can integrate by parts the terms

∫ t
0 〈ẅ, u̇〉ds and

∫ t
0 〈ẅ, ẇ〉ds obtaining

that we can rewrite the energy balance as follows:

Q0(e(t))+ 1

2
‖u̇(t)‖2

L2 +
∫ t

0
Q1(ė)ds +

∫ t

0
‖ ṗ‖2

L2 ds +
∫ t

0
H( ṗ)ds

=
∫ t

0
〈σ, Eẇ〉ds +

∫ t

0
〈 f, u̇ − ẇ〉ds +

∫ t

0
〈g, u̇ − ẇ〉Γ1 ds

+
∫ t

0
〈ü, ẇ〉ds + Q0(e0)+ 1

2
‖v0‖2

L2 ,

which becomes, using ü = divΓ0σ + L:

Q0(e(t))+ 1

2
‖u̇(t)‖2

L2 +
∫ t

0
Q1(ė)ds +

∫ t

0
‖ ṗ‖2

L2 ds +
∫ t

0
H( ṗ)ds

=
∫ t

0
〈σν, u̇〉Γ0 ds +

∫ t

0
〈 f, u̇〉ds +

∫ t

0
〈g, u̇〉Γ1 ds + Q0(e0)+ 1

2
‖v0‖2

L2 ,

where we have used u̇ = ẇ on Γ0. This is the usual formulation of the energy balance.
Indeed Q0(e(t)) is the stored elastic energy, 1

2‖u̇(t)‖2
L2 is the kinetic energy,

∫ t
0 Q1(ė(t))ds

is the visco-elastic dissipation,
∫ t

0 ‖ ṗ‖2
L2 ds is the visco-plastic dissipation, and

∫ t
0 H( ṗ)ds

is the plastic dissipation. On the right-hand side the terms
∫ t

0 〈σν, u̇〉Γ0 ds,
∫ t

0 〈g, u̇〉Γ1 ds, and
∫ t

0 〈 f, u̇〉ds represent the work done by the external forces on the Dirichlet boundary, on the
Neumann boundary, and on the body itself, while the two terms Q0(e0) and 1

2‖v0‖2
L2 are the

stored elastic energy and the kinetic energy at the initial time.

Lemma 1 Let T > 0, let L ∈ AC([0, T ]; H−1
Γ0
(Ω; R

n)), let w satisfy (2.21), and let
(u, e, p, σ ) be a quadruple satisfying (2.22), (2.23a), (2.23b), (2.23c), (2.24), and (2.25).
Then

Q0(e(t))− Q0(e0)+
∫ t

0
Q1(ėA1)ds −

∫ t

0
〈σ, Eẇ〉ds +

∫ t

0
〈σD, ṗ〉ds

+ 1

2
‖u̇(t)− ẇ(t)‖2

L2 − 1

2
‖v0 − ẇ(0)‖2

L2 = −
∫ t

0
〈ẅ, u̇ − ẇ〉ds

+ 〈L(t), u(t)− w(t)〉 − 〈L(0), u0 − w(0)〉 −
∫ t

0
〈L̇, u − w〉ds, (2.31)
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for a.e. t ∈ [0, T ].
Proof Given a function ϑ from [0, T ] into a Banach space X , for all h > 0 we define the
difference quotient shϑ : [0, T −h] → X as shϑ(t) := 1

h (ϑ(t +h)−ϑ(t)). By (2.21), (2.22),
and (2.24) for a.e. t ∈ [0, T ] the function ϕ := shu(t)− shw(t) belongs to H1

Γ0
(Ω; R

n). We
use this function in (2.10) first at time t and then at time t + h. Summing the two expressions
we get

〈ü(t+h)−ẅ(t+h)+ü(t)−ẅ(t), shu(t)−shw(t)〉 + 〈hshσ(t), shp(t)−shEw(t)〉
+ 〈A0e(t + h)+ A1ėA1(t + h)+ A0e(t)+ A1ėA1(t), she(t)〉

= −〈ẅ(t + h)+ ẅ(t), shu(t)− shw(t)〉 + 〈L(t + h)+ L(t), shu(t)− shw(t)〉. (2.32)

We now integrate in time on the interval [0, t]. An integration by parts in time gives that the
first term is equal to

〈u̇(t + h)− ẇ(t + h), shu(t)− shw(t)〉 + 〈u̇(t)− ẇ(t), shu(t)− shw(t)〉
− 〈u̇(h)− ẇ(h), shu(0)− shw(0)〉 − 〈u̇(0)− ẇ(0), shu(0)− shw(0)〉

− 1

h

∫ t+h

t
‖u̇(r)− ẇ(r)‖2

L2 dr + 1

h

∫ h

0
‖u̇(r)− ẇ(r)‖2

L2 dr. (2.33)

As for the third term we find that it is equal to

2

h

∫ t+h

t
Q0(e(r))dr − 2

h

∫ h

0
Q0(e(r))dr +

∫ t

0
〈h A1sh ėA1(r), sheA1(r)〉dr, (2.34)

while the last one is equal to

2

h

∫ t+h

t
〈L(r), u(r)− w(r)〉dr − 2

h

∫ h

0
〈L(r), u(r)− w(r)〉dr

−
∫ t

0
〈shL(r), u(r + h)− w(r + h)+ u(r)− w(r)〉dr. (2.35)

Now (2.21), (2.25b), (2.27b), the weak continuity of u̇ on [0, T ] into L2(Ω; R
n) (see

Remark 1), and the Lebesgue mean value Theorem, allow us to pass to the limit as h → 0
in (2.33) for a.e. t ∈ [0, T ]. By similar arguments, using (2.21), (2.22), (2.25b), (2.28), and
the weak continuity of u on [0, T ] into H1(Ω; R

n) (see Remark 1), we pass to the limit in
(2.34), (2.35), and in the other terms of (2.32), so that we obtain (2.31) for a.e. t ∈ [0, T ].
Proof (Theorem 2) Let us suppose that the quadruple (u, e, p, σ ) satisfies (2.26) and (2.29);
let us prove (2.23c). Let ϕ ∈ H1

Γ0
(Ω; R

n); since (ϕ, Eϕ, 0) ∈ A(0), we can choose η = Eϕ
and q = 0 in (2.26) and for a.e. t ∈ [0, T ] we get

〈A0e(t)+ A1ėA1(t), Eϕ〉 + 〈ü(t), ϕ〉 − 〈L(t), ϕ〉 = 0, (2.36)

which is equivalent to (2.23c), thanks to (2.10) and (2.23b).
It remains to prove (2.23d). Choosing (0, q,−q) ∈ A(0) in (2.26) for some q ∈

L2(Ω,Mn×n
D ), for a.e. t ∈ [0, T ] we get

−H(−q) ≤ 〈A0e(t)+ A1ėA1(t), q〉 − 〈 ṗ(t), q〉 ≤ H(q), (2.37)

which, by (2.23b), says that

σD(t)− ṗ(t) ∈ ∂H(0) = K(Ω) (2.38)
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thanks to the arbitrariness of q .
Now we observe that (u, e, p, σ ) satisfies the hypotheses of Lemma 1, so (2.31) holds for

a.e. t ∈ [0, T ]. This, together with the energy balance (2.29), implies that (2.30) holds for
a.e. t ∈ [0, T ]. As a consequence, by the definition of H, we deduce that for a.e. t ∈ [0, T ]
and for every ξ ∈ K(Ω) we have

〈σD(t)− ṗ(t), ṗ(t)〉 ≥ 〈ξ, ṗ(t)〉,
which is equivalent to

〈σD(t)− (σD(t)− ṗ(t)), ξ − (σD(t)− ṗ(t))〉 ≤ 0.

Thanks to (2.38), σD(t) − ṗ(t) belongs to K(Ω); therefore the arbitrariness of ξ and the
well-known characterization of the projection onto convex sets (see, e.g., [13], Chap. 1.2)
give that σD(t)− ṗ(t) = πK(Ω)σD(t) for a.e. t ∈ [0, T ].

Conversely, suppose (u, e, p, σ ) to be a solution of the system of Eq. (2.23). Then (2.23d)
implies (2.38), which in turn gives (2.37). On the other hand (2.23b) and (2.23c) give (2.36).
Subtracting (2.37) from (2.36) term by term and taking into account (2.1a), we get (2.26).

In order to obtain the energy balance we first prove that, if a function (u, e, p, σ ) satisfies
(2.23), then (2.30) holds. Indeed, if ξ ∈ K(Ω), then from the properties of convex sets it
follows that for a.e. t ∈ [0, T ]

(σD − ṗ) · ṗ = πKσD · (σD − πKσD)

≥ πKσD · (σD − πKσD)+ (ξ − πKσD) · (σD − πKσD) = ξ · (σD − πKσD)

almost everywhere in Ω , that is (σD − ṗ) · ṗ ≥ H(σD − πKσD) = H( ṗ) thanks to the
definition of H . Since σD − ṗ ∈ K a.e. inΩ and for a.e. t ∈ [0, T ] by (2.23d), the definition
of H gives also the opposite inequality. So integrating on Ω we get (2.30).

Now since (u, e, p, σ ) satisfies the hypotheses of Lemma 1, we obtain (2.31), which
together with (2.30) gives the energy balance (2.29) for a.e. t ∈ [0, T ].

Proof (Theorem 1)
The proof is reminiscent of that of [3, Theorem 3.1], with some important differences.

In [3, Theorem 3.1] only Dirichlet conditions are considered and the data of the problem
are more regular than ours: the external load f belongs to AC([0, T ]; L2(Ω; R

n)) and the
boundary datumw belongs to H2([0, T ]; H1(Ω; R

n))∩ H3([0, T ]; L2(Ω; R
n)). Moreover,

the model discussed in [3] is slightly different from ours: in [3] the plastic component of the
strain plays a role in the viscous part of the stress, while we assume that the component ṗ
of the strain rate does not affect the viscous stress, which only depends on ė. This leads to a
different flow rule, whose strong form cannot be proved directly from the approximate flow
rules as in [3]; for this reason we prefer to prove first the energy balance and then to derive
the flow rule from it.

As in [3] we will obtain the solution by time discretization, considering the limit of
approximate solutions constructed by solving incremental minimum problems. Given an
integer N > 0 we define τ = T/N and subdivide the interval [0, T ) into N subintervals
[ti , tt+1), i = 0, . . . , N − 1 of length τ , with ti = iτ . Let us set

u−1 = u0 − τv0, w−1 = w0 − τẇ(0),

wi = w(ti ), Li = 1

τ

∫ ti+1

ti
L(s)ds.

123



926 J Dyn Diff Equat (2014) 26:915–954

We construct a sequence (ui , ei , pi ) with i = 0, 1, . . . , N by induction. First (u0, e0, p0)

coincides with the initial data in (2.25). Let us fix i and let us suppose (u j , e j , p j ) ∈ A(w j )

to have been defined for j = 0, . . . , i . Then (ui+1, ei+1, pi+1) is defined as the unique
minimizer on A(wi+1) of the functional

Vi (u, e, p) =1

2
〈A0e, e〉 + 1

2τ
〈A1(e − ei ), e − ei 〉 + 1

2τ
‖p − pi‖2

L2

+ H(p − pi )+ 1

2
‖u − ui

τ
− ui − ui−1

τ
‖2

L2 − 〈Li , u〉, (2.39)

which turns out to be coercive and strictly convex on A(wi+1).
To obtain the Euler conditions we observe that (ui+1, ei+1, pi+1) + λ(ϕ, η, q) belongs

to A(wi+1) for every (ϕ, η, q) ∈ A(0), and for every λ ∈ R. Evaluating Vi in this point and
differentiating with respect to λ at 0± we get

−H(q) ≤〈A0ei+1, η〉 + 1

τ
〈A1(ei+1 − ei ), η〉 + 1

τ
〈pi+1 − pi , q〉

+ 1

τ
〈vi+1 − vi , ϕ〉 − 〈Li , ϕ〉 ≤ H(−q), (2.40)

where we have set

v j = 1

τ
(u j − u j−1). (2.41)

We now define the piecewise affine interpolation uτ , eτ , pτ , wτ on [0, T ] by

uτ (t) = ui + ui+1 − ui

τ
(t − ti ) if t ∈ [ti , ti+1) (2.42a)

eτ (t) = ei + ei+1 − ei

τ
(t − ti ) if t ∈ [ti , ti+1) (2.42b)

pτ (t) = pi + pi+1 − pi

τ
(t − ti ) if t ∈ [ti , ti+1) (2.42c)

wτ (t) = wi + wi+1 − wi

τ
(t − ti ) if t ∈ [ti , ti+1) (2.42d)

To simplify the notation we also set ωi = 1
τ
(wi − wi−1) = 1

τ

∫ ti
ti−1

ẇ(s)ds and define, for
t ∈ [0, T ],

ωτ (t) = ωi + (ωi+1 − ωi )
t − ti
τ

if t ∈ [ti , ti+1), (2.43a)

vτ (t) = vi + (vi+1 − vi )
t − ti
τ

if t ∈ [ti , ti+1). (2.43b)

The proof now is divided into five steps: in the first one we prove that a subsequence
of (uτ , eτ , pτ ) has a limit (u, e, p) as τ → 0, and we show that this limit satisfies the
regularity conditions (2.22). In the second step we pass to the limit in (2.40), obtaining
the equilibrium condition (2.26). In the third step we obtain the energy balance (2.29) for
(u, e, p). In the fourth step we prove that (u, e, p) satisfies the initial conditions (2.25). From
this and Theorem 2 it will follow that (u, e, p) satisfies the required Eq. (2.23). In the last
step we prove the uniqueness.
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Step 1 Since ẅ ∈ L2([0, T ]; L2(Ω; R
n)) and ẇ ∈ L2([0, T ]; H1(Ω; R

n)), we see that

wτ → w strongly in L2([0, T ]; H1(Ω; R
n)), (2.44a)

ẇτ → ẇ strongly in L2([0, T ]; H1(Ω; R
n)), (2.44b)

ωτ → ẇ strongly in L2([0, T ]; H1(Ω; R
n)), (2.44c)

ω̇τ → ẅ strongly in L2([0, T ]; L2(Ω; R
n)). (2.44d)

The proof of the first three properties is straightforward. To prove (2.44d) we first put w̃τ (t) :=
1
τ

∫ ti+1
ti
ẅ(s)ds ∈ L2(Ω; R

n) for t ∈ [ti , ti+1). Since w̃τ tends to ẅ, it suffices to show that

w̃τ − ω̇τ tends to 0 strongly in L2([0, T ]; L2(Ω; R
n)). So we write

‖ω̇τ − w̃τ‖2
L2(L2)

=
N−1∑

i=0

τ

∥
∥
∥

1

τ

∫ ti+1

ti

( 1

τ

∫ s

s−τ
ẅ(r)dr − ẅ(s)

)
ds

∥
∥
∥

2

L2

≤ 1

τ

N−1∑

i=0

∫ ti+1

ti

∫ s

s−τ
‖ẅ(r)− ẅ(s)‖2

L2 drds

≤ 1

τ

N−1∑

i=0

∫ ti+1

ti−1

∫ ti+1

ti−1

‖ẅ(r)− ẅ(s)‖2
L2 drds,

where we set ẅ(s) = 0 for s < 0. Defining W (r, s) = ‖ẅ(r) − ẅ(s)‖2
L2 , we see that the

integral in the last line is bounded by

2

τ

∫ 2τ

−2τ
dh

∫ T

0
W (r, r + h)dr,

that turns out to go to 0 as τ → 0, because h �→ ∫ T
0 W (r, r +h)dr is continuous and vanishes

at h = 0.
Therefore we can argue as in [3, Proposition 3.4], using (2.44) for the boundary conditions

w, and the duality between H1
Γ0
(Ω; R

n) and H−1
Γ0
(Ω; R

n) for the load L. We obtain that

uτ ∈ L∞([0, T ]; H1(Ω; R
n)), (2.45a)

u̇τ ∈ L∞([0, T ]; L2(Ω; R
n)), (2.45b)

eτ ∈ L∞([0, T ]; L2(Ω; M
n×n
sym )), (2.45c)

(ėτ )A1 ∈ L2([0, T ]; L2(Ω; M
n×n
sym )), (2.45d)

pτ ∈ L∞([0, T ]; L2(Ω; M
n×n
D )), (2.45e)

ṗτ ∈ L2([0, T ]; L2(Ω; M
n×n
D )), (2.45f)

and these functions are bounded in these spaces uniformly with respect to τ . Moreover from
the same estimate we find that

τ
1
2 ėτ ∈ L2([0, T ]; L2(Ω; M

n×n
sym )), (2.46)
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uniformly with respect to τ . With the same arguments of [3, Proposition 3.4] we pass to the
limit as τ tends to 0 in a subsequence, not relabeled, and prove that

uτ ⇀ u weakly* in ∈ L∞([0, T ]; H1(Ω; R
n)), (2.47a)

u̇τ ⇀ u̇ weakly* in L∞([0, T ]; L2(Ω; R
n)), (2.47b)

eτ ⇀ e weakly* in L∞([0, T ]; L2(Ω; M
n×n
sym )), (2.47c)

(ėτ )A1 ⇀ ėA1 weakly in L2([0, T ]; L2(Ω; M
n×n
sym )), (2.47d)

pτ ⇀ p weakly* in L∞([0, T ]; L2(Ω; M
n×n
D )), (2.47e)

ṗτ ⇀ ṗ weakly in L2([0, T ]; L2(Ω; M
n×n
D )). (2.47f)

Moreover we can prove that
Eu(t) = e(t)+ p(t) (2.48)

for a.e. t ∈ [0, T ].
Let ϕ ∈ H1

Γ0
(Ω; R

n). Putting η = Eϕ and q = 0 in (2.40) we get

−divΓ0(A0ei+1)− divΓ0

(

A1
ei+1 − ei

τ

)

+ vi+1 − vi

τ
= Li ,

which allows us to deduce from (2.45c) and (2.45d) that v̇τ = vi+1−vi
τ

is bounded in

L2([0, T ]; H−1
Γ0
(Ω; R

n)) uniformly with respect to τ , thanks to the continuity of the operator
divΓ0 .

So, using the Hölder inequality, we estimate

‖vτ (t)− vτ (ti+1)‖H−1
Γ0

≤ τ 1/2 M for t ∈ [ti , ti+1),

for some positive constant M independent of τ , t , and i . Since u̇τ (t) = vτ (ti+1) for t ∈
[ti , ti+1) we have

‖vτ (t)− u̇τ (t)‖H−1
Γ0

≤ τ 1/2 M,

so that vτ−u̇τ tends to 0 strongly in L∞([0, T ], H−1
Γ0
(Ω; R

n)). From this it easily follows that

the two sequences vτ and u̇τ must have the same weak* limit in L∞([0, T ]; H−1
Γ0
(Ω; R

n)),
so

vτ ⇀ u̇ weakly* in L∞([0, T ]; H−1
Γ0
(Ω; R

n)). (2.49)

The boundness condition proved above implies that v̇τ tends, up to a subsequence, to a
function ζ weakly in L2([0, T ]; H−1

Γ0
(Ω; R

n)), and it easily follows that ζ = ü. Therefore

v̇τ ⇀ ü weakly in L2([0, T ]; H−1
Γ0
(Ω; R

n)). (2.50)

We now defineσ(t) := A0e(t)+A1ėA1(t). The results proved so far imply that (u, e, p, σ )
satisfies (2.22).

Step 2 In order to show that the functions above satisfy (2.23) we need to pass to the limit in
(2.40). We consider the piecewise constant interpolation ẽτ defined by

ẽτ (t) = ei+1 if t ∈ [ti , ti+1).

We want to prove that

ẽτ ⇀ e weakly* in L∞([0, T ]; L2(Ω; M
n×n
sym )). (2.51)
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Since ẽτ is bounded in L∞([0, T ]; L2(Ω; M
n×n
sym )) it is not restrictive to assume that ẽτ ⇀ ẽ

weakly* in L∞([0, T ]; L2(Ω; M
n×n
sym )). Since eτ = Euτ − pτ , by (2.45) we have that

(eτ )τ>0 is bounded H1([0, T ]; H−1(Ω; M
n×n
sym )). (2.52)

Therefore, using the Hölder inequality, we obtain

‖eτ (t)− eτ (ti+1)‖H−1 ≤ τ 1/2 M for t ∈ [ti , ti+1),

for some constant M > 0 independent of τ , t , and i . Since ẽτ (t) = eτ (ti+1) for t ∈ [ti , ti+1),
we have

‖eτ (t)− ẽτ (t)‖H−1 ≤ τ 1/2 M for all t ∈ [0, T ].
This implies e = ẽ and concludes the proof of (2.51).

We also define the piecewise affine interpolation Lτ by

Lτ (t) = Li + (Li+1 − Li )
t − ti
τ

if t ∈ [ti , ti+1),

where Li := L(ti ). By standard properties of L2 functions and of their approximation by
averaging on subintervals, we have that

Lτ → L strongly in L2([0, T ]; H−1
Γ0
(Ω; R

n)), (2.53a)

L̇τ → L̇ strongly in L2([0, T ]; H−1
Γ0
(Ω; R

n)). (2.53b)

For fixed τ (2.40) says that for a.e. t ∈ [0, T ] we have

−H(q) ≤ 〈A0ẽτ , η〉 + 〈A1(ėτ )A1 , η〉 + 〈 ṗτ , q〉 + 〈v̇τ , ϕ〉 − 〈Lτ , ϕ〉 ≤ H(−q)

for every (ϕ, η, q) ∈ A(0). All terms in the formula above converge weakly in L1([0, T ]) as
τ → 0, thanks to (2.47d), (2.47e), (2.50), (2.51), and (2.53). So for every (ϕ, η, q) ∈ A(0)
we can pass to the limit obtaining

−H(q) ≤ 〈A0e, η〉 + 〈A1ėA1 , η〉 + 〈 ṗ, q〉 + 〈ü, ϕ〉 − 〈L, ϕ〉 ≤ H(−q) (2.54)

for a.e. t ∈ [0, T ]. Since the space A(0) is separable, we can construct a set of full measure
in [0, T ] such that (2.54) holds in this set for every (ϕ, η, q) ∈ A(0), which gives (2.26).

Step 3 We will now prove the energy balance (2.29). We shall use the three following iden-
tities:

〈A0ei+1, ei+1 − ei 〉 =
∫ ti+1

ti
〈A0eτ , ėτ 〉ds + τ

2

∫ ti+1

ti
〈A0ėτ , ėτ 〉ds, (2.55)

〈A0ei+1, Ewi+1 − Ewi 〉
=

∫ ti+1

ti
〈A0eτ , Eẇτ 〉ds + τ

2

∫ ti+1

ti
〈A0ėτ , Eẇτ 〉ds, (2.56)

〈(vi+1 − vi )− (ωi+1 − ωi ), vi+1 − ωi+1〉
= 1

2
‖vi+1 − ωi+1‖2

L2 − 1

2
‖vi − ωi‖2

L2 + τ

2

∫ ti+1

ti
‖v̇τ − ω̇τ‖2

L2 ds. (2.57)

Let λ ∈ (0, 1) and put ϕ = ui+1 −λ(ui+1 − ui )+λ(wi+1 −wi ), η = ei+1 −λ(ei+1 − ei )+
λ(Ewi+1 − Ewi ), and q = pi+1 −λ(pi+1 − pi ), so by the minimality of (ui+1, ei+1, pi+1)
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for the functional Vi defined by (2.39) we have Vi (ui+1, ei+1, pi+1)≤ Vi (ϕ, η, q). This
implies

1

2
〈A0ei+1, ei+1〉 + 1

2τ
〈A1(ei+1 − ei ), ei+1 − ei 〉 + 1

2τ
‖pi+1 − pi‖2

L2

+ H(pi+1 − pi )+ 1

2
‖vi+1 − vi‖2

L2 − 〈Li , ui+1〉

≤ (1 − λ)2

2
〈A0ei+1, ei+1〉 + λ(1 − λ)〈A0ei+1, ei 〉 + λ2

2
〈A0ei , ei 〉

+ λ2

2
〈A0(Ewi+1 − Ewi ), Ewi+1 − Ewi 〉 + λ〈A0ei+1, Ewi+1 − Ewi 〉

− λ2〈A0(ei+1 − ei ), Ewi+1 − Ewi 〉 + (1 − λ)2

2τ
〈A1(ei+1 − ei ), ei+1 − ei 〉

+ λ2

2τ
〈A1(Ewi+1 − Ewi ), Ewi+1 − Ewi 〉

+ λ(1 − λ)

τ
〈A1(ei+1 − ei ), Ewi+1 − Ewi 〉

+ (1 − λ)2

2τ
‖pi+1 − pi‖2

L2 + (1 − λ)H(pi+1 − pi )+ 1

2
‖vi+1 − vi‖2

L2

+ λ2

2
‖vi+1−ωi+1‖2

L2 − λ〈vi+1− vi −(ωi+1− ωi ), vi+1−ωi+1〉

− 〈Li , ui+1〉 + λτ 〈Li − ωi+1 − ωi

τ
, vi+1 − ωi+1〉.

Dividing by λ we get

2 − λ

2
(A0ei+1, ei+1)− (1 − λ)〈A0ei+1, ei 〉

− 〈A0ei+1, Ewi+1 − Ewi 〉 + λ〈A0(ei+1 − ei ), Ewi+1 − Ewi 〉
− λ

2
〈A0(Ewi+1 − Ewi ), Ewi+1 − Ewi 〉 + 2 − λ

2τ
〈A1(ei+1 − ei ), ei+1 − ei 〉

+ 2 − λ

2τ
‖pi+1 − pi‖2

L2 + H(pi+1 − pi )− λ

2τ
〈A1(Ewi+1−Ewi ), Ewi+1−Ewi 〉

− 1 − λ

τ
〈A1(ei+1 − ei ), Ewi+1 − Ewi 〉 + 〈vi+1 − vi − (ωi+1−ωi ), vi+1−ωi+1〉

− τ 〈Li − ωi+1 − ωi

τ
, vi+1 − ωi+1〉 ≤ λ

2
〈A0ei , ei 〉 + λ

2
‖vi+1 − ωi+1‖2

L2 .

Since 〈A0ei+1, ei+1〉 ≥ 0 and λ ∈ (0, 1) it follows that

(1 − λ)〈A0ei+1, ei+1 − ei 〉 + 2 − λ

2
τ 〈A1

ei+1 − ei

τ
,

ei+1 − ei

τ
〉

− 〈A0ei+1, Ewi+1 − Ewi 〉 + λτ 2〈A0
ei+1 − ei

τ
,

Ewi+1 − Ewi

τ
〉

− τ 2 λ

2
〈A0

Ewi+1 − Ewi

τ
,

Ewi+1 − Ewi

τ
〉

− (1 − λ)τ 〈A1
ei+1 − ei

τ
,

Ewi+1 − Ewi

τ
〉 + 2 − λ

2
τ‖ pi+1 − pi

τ
‖2

L2

+ τH( pi+1 − pi

τ
)+ 〈(vi+1 − vi )− (ωi+1 − ωi ), vi+1 − ωi+1〉
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≤ τ 〈Li − ωi+1 − ωi

τ
, vi+1 − ωi+1〉

+ λ

2
〈A0ei , ei 〉 + λ

2
‖vi+1 − ωi+1‖2

L2 + λτ

2
〈A1

Ewi+1 − Ewi

τ
,

Ewi+1 − Ewi

τ
〉.

Now, thanks to (2.55)–(2.57), from the last inequality we get

(1 − λ)

∫ ti+1

ti
〈A0eτ , ėτ 〉ds + 2 − λ

2

∫ ti+1

ti
〈A1ėτ , ėτ 〉ds

+ 2 − λ

2

∫ ti+1

ti
‖ ṗτ‖2

L2 ds +
∫ ti+1

ti
H( ṗτ )ds

+ τ

2

∫ ti+1

ti
‖v̇τ − ω̇τ‖2

L2 ds + 1

2
‖vi+1 − ωi+1‖2

L2 − 1

2
‖vi − ωi‖2

L2

≤ −
∫ ti+1

ti
〈ω̇τ , u̇τ − ẇτ 〉ds −

∫ ti+1

ti
〈L̇, uτ − wτ 〉ds

+ 〈L(ti+1), ui+1 − wi+1〉 − 〈L(ti ), ui − wi 〉 − 6 − 7λ

12
τ

∫ ti+1

ti
〈A0ėτ , ėτ 〉ds

+ λ

2τ

∫ ti+1

ti
‖u̇τ − ẇτ‖2

L2 ds + λ

2

∫ ti+1

ti
〈τ A0 Eẇτ + A1 Eẇτ , Eẇτ 〉ds

+
∫ ti+1

ti
〈A0eτ + A1ėτ , Eẇτ 〉ds +

∫ ti+1

ti
〈( τ

2
− λτ)A0ėτ − λA1ėτ , Eẇτ 〉ds

+ λ

2τ

∫ ti+1

ti
〈A0eτ , eτ 〉ds − λ

2

∫ ti+1

ti
〈A0eτ , ėτ 〉ds,

where we have used that

λ

2
〈A0ei , ei 〉 = λ

2τ

∫ ti+1

ti
〈A0eτ , eτ 〉ds

− λ

2

∫ ti+1

ti
〈A0eτ , ėτ 〉ds + λτ

12

∫ ti+1

ti
〈A0ėτ , ėτ 〉ds.

We now sum over i = 0, . . . , j and we obtain

1 − λ

2
〈A0eτ (t j+1), eτ (t j+1)〉 − 1 − λ

2
〈A0e0, e0〉

+ 2 − λ

2

∫ t j+1

0
〈A1(ėτ )A1 , (ėτ )A1〉ds + 2 − λ

2

∫ t j+1

0
‖ ṗτ‖2

L2 ds +
∫ t j+1

0
H( ṗτ )ds

+ τ

2

∫ t j+1

0
‖v̇τ − ω̇τ‖2

L2 ds + 1

2
‖v j+1 − ω j+1‖2

L2 − 1

2
‖v0 − ω0‖2

L2

≤
∫ t j+1

0
〈ω̇τ , u̇τ − ẇτ 〉ds −

∫ t j+1

0
〈L̇τ , uτ − wτ 〉ds + 〈Lτ (t j+1), u j+1 − w j+1〉

− 〈L(0), u0 − w(0)〉 +
∫ t j+1

0
〈A0eτ + A1(ėτ )A1 , Eẇτ 〉ds

+ λ

2τ

∫ t j+1

0
〈A0eτ , eτ 〉ds + λ

2τ

∫ t j+1

0
‖u̇τ − ẇτ‖2

L2 ds

− 6 − 7λ

12
τ

∫ t j+1

0
〈A0ėτ , ėτ 〉ds + λ

2

∫ t j+1

0
〈τ A0 Eẇτ + A1 Eẇτ , Eẇτ 〉ds

123



932 J Dyn Diff Equat (2014) 26:915–954

+
∫ t j+1

0
〈( τ

2
− λτ)A0ėτ − λA1(ėτ )A1 , Eẇτ 〉ds − λ

2

∫ t j+1

0
〈A0eτ , ėτ 〉ds.

We now take λ = o(τ ) and then pass to the limit as τ → 0. To this aim we fix t ∈ [0, T ]
and, for every τ > 0, we define t̂τ = t j+1, where j is the unique index such that t j ≤ t < t j+1.
For the third, fourth, and fifth term in the left-hand side of the previous inequality we just
use the lower semicontinuity with respect to the convergences in (2.47); the sixth term is
nonnegative; to deal with the first and the seventh term we apply Lemma 2 below taking into
account (2.44c), (2.44d), (2.47c), (2.49), (2.50), and (2.52), obtaining

eτ (t j+1) = eτ (t̂τ ) ⇀ e(t) weakly in H−1(Ω; M
n×n
sym ),

v j+1 − ω j+1 = vτ (t̂τ )− ωτ (t̂τ ) ⇀ u̇(t)− ẇ(t) weakly in H−1
Γ0
(Ω; R

n).

Since the L2 norm is lower semicontinuous with respect to weak convergence in H−1 and
H−1
Γ0

(this can be proved by a duality argument), we obtain a lower semicontinuity inequality
also for these terms.

As for the right-hand side of the previous inequality, we can pass to the limit in the first two
terms thanks to (2.44), (2.47a), (2.47b), and (2.53), which implies also that uτ ⇀ u weakly
in H1([0, T ]; L2(Ω; R

n)). This implies by Lemma 2 that u j+1 = uτ (t̂ j ) ⇀ u(t) weakly in
L2(Ω; R

n). Since u j+1 is bounded in H1(Ω; R
n) by (2.47a) we deduce that u j+1 ⇀ u(t)

weakly in H1(Ω; R
n). We can now pass to the limit in the third term of the right-hand side

thanks to (2.44) and (2.52), and in the fifth term thanks to (2.44b), (2.47c), and (2.47d). The
eighth has a negative coefficient, while all other terms tend to 0 by (2.44), (2.45), and (2.46).
Thus we obtain

Q0(e(t))−Q0(e(0))+ 1

2
‖u̇(t)−ẇ(t)‖2

L2 − 1

2
‖v0 − ẇ(0)‖2

L2 +
∫ t

0
Q1(ėA1)ds

+
∫ t

0
‖ ṗ‖2

L2 ds +
∫ t

0
H( ṗ)ds −

∫ t

0
〈A0e + A1ėA1 , Eẇ〉ds +

∫ t

0
〈ẅ, u̇ − ẇ〉ds

+
∫ t

0
〈L̇, u − w〉ds − 〈L(t), u(t)− w(t)〉 + 〈L(0), u0 − w(0)〉 ≤ 0. (2.58)

To prove the energy balance (2.29) we need to show that also the opposite inequality
holds. We use the notation of the proof of Lemma 1. For a.e. t ∈ [0, T ], we consider the
first inequality of (2.26) with ϕ = shu(t) − shw(t), η = she(t) − sh Ew(t), q = sh p(t),
and we sum this expression to the one obtained from (2.26) at time t + h with the same test
functions. Then, using an argument similar to the one employed in (2.31), we get the opposite
inequality in (2.58) for a.e. t ∈ [0, T ].
Step 4 Equalities (2.25a) follow easily from (2.47) and from the initial conditions satisfied
by the approximate solutions (uτ , eτ , pτ ). Moreover by (2.52) the functions eτ converge to
e weakly in H1([0, T ]; H−1(Ω; M

n×n
sym )) as τ → 0. Since eτ (0) = e0 for all τ , we conclude

that e(0) = e0. Since t → e(t) is weakly continuous into L2(Ω; M
n×n
sym ) by Remark 1, we

deduce that

e(t) ⇀ e0 weakly in L2(Ω; M
n×n
sym ) as t → 0. (2.59)

Similarly, using (2.49) and (2.50), we obtain that vτ → u̇ weakly in H1([0, T ]; H−1
Γ0
(Ω;

R
n)). Since vτ (0) = v0 for every τ , we conclude that u̇(0) = v0. Since t → u̇(t) is weakly
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continuous into L2(Ω; R
n) by Remark 1, we deduce that

u̇(t) ⇀ v0 weakly in L2(Ω; R
n) as t → 0. (2.60)

In order to deduce from (2.59) and (2.60) the stronger conditions (2.25b) we use the energy
equality (2.29). Let tk be a sequence in [0, T ] converging to 0 such that (2.29) holds for
t = tk . Then

1

2
‖u̇(tk)− ẇ(tk)‖2

L2 + Q0(e(tk)) → 1

2
‖v0 − ẇ(0)‖2

L2 + Q0(e0). (2.61)

Since ẇ ∈ C0([0, T ]; L2(Ω; R
n)), the weak convergence (2.59) and (2.60) together with

(2.61) imply that e(tk) → e0 strongly in L2(Ω; M
n×n
sym ) and u̇(tk) → v0 strongly in

L2(Ω; R
n). Equalities (2.25b) follow now from the arbitrariness of the sequence tk .

We are now in a position to apply Theorem 2: since the quadruple (u, e, p, σ ) satisfies
(2.26) and (2.29), it satisfies also Eqs. (2.23c) and (2.23d) .

Step 5 It only remains to prove that the solution is unique. Let us suppose that (u1, e1, p1, σ1)

and (u2, e2, p2, σ2) are solutions. We set u := u2 − u1, e := e2 − e1, p := p2 − p1,
σ := σ2−σ1, and observe that the quadruple (u, e, p, σ ) satisfies the hypotheses of Lemma 1,
implying that (2.31) holds for a.e. t ∈ [0, T ]. Since the map ξ → ξ − πK ξ is a monotone
operator from M

n×n
D into itself (see, e.g., [5, Chap. 2]), it follows from (2.23d) that

〈σD(t), ṗ(t)〉ds ≥ 0

for a.e. t ∈ [0, T ]. Using this inequality in (2.31) we obtain that

Q0(e(t))+
∫ t

0
Q1(ėA1)ds + 1

2
‖u̇(t)‖2

L2 = 0

for a.e. t ∈ [0, T ], taking into account the initial and boundary conditions satisfied by u. This
implies by standard arguments that u(t) = 0 for all t ∈ [0, T ], concluding the proof.

Here we prove the lemma we have used in the previous proof.

Lemma 2 Let X be a Banach space. Assume that qτ tends to q0 weakly in H1([0, T ]; X) as
τ tends to zero. Then

qτ (tτ ) ⇀ q0(t0) weakly in X (2.62)

for every tτ , t0 ∈ [0, T ] with tτ → t0 as τ → 0.

Proof Since H1([0, T ]; X) is continuously embedded in C0,1/2([0, T ]; X), we have qτ ⇀
q0 weakly in C0,1/2([0, T ]; X). This implies in particular that

qτ (t) ⇀ q0(t)weakly in X (2.63)

for all t ∈ [0, T ]. If tτ → t0 we have

‖qτ (tτ )− qτ (t0)‖ ≤
∫ tτ

t0
‖q̇τ‖dt ≤ M(tτ − t0)

1/2,

where ‖ · ‖ is the norm in X and M is an upper bound for the norm of qτ in H1([0, T ]; X).
Now (2.62) follows from the previous inequality and (2.63).

Theorem 3 Let (u, e, p, σ ) be the solution of the problem considered in Theorem 1. Then
u ∈ C0([0, T ]; H1(Ω; R

n)), e ∈ C0([0, T ]; L2(Ω; M
n×n
sym )), u̇ ∈ C0([0, T ]; L2(Ω; R

n)),
and the energy balance (2.29) holds for all t ∈ [0, T ].
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Proof We may assume that w and L are defined on [0, T + 1] and satisfy the hypotheses of
Theorem 1 with T replaced by T +1. As forw, it is enough to setw(t) := w(T )+(t−T )ẇ(T )
for t ∈ (T, T +1], noticing that ẇ(T ) can be univocally defined as an element of H1(Ω; R

n)

arguing as in Remark 1. By Theorem 1 the solution on [0, T ] can be extended to a solution
on [0, T + 1] still denoted by (u, e, p, σ ).

Let us fix t∗ ∈ [0, T ]. Thanks to Remark 1, the functions u(t∗), e(t∗), p(t∗), u̇(t∗) are uni-
vocally defined as elements of H1(Ω; R

n), L2(Ω; M
n×n
sym ), L2(Ω; M

n×n
D ), and L2(Ω; R

n),
respectively. Therefore we can consider the solution (u∗, e∗, p∗, σ ∗) of the problem of The-
orem 1, with [0, T ] replaced by [t∗, T + 1] and initial data u(t∗), e(t∗), p(t∗), and u̇(t∗)
in the sense of (2.25), with 0 replaced by t∗. It is easy to see that the function defined by
(u, e, p, σ ) on [0, t∗) and by (u∗, e∗, p∗, σ ∗) on [t∗, T + 1] is a solution of the problem
considered in Theorem 1 on [0, T + 1], with initial data u0, e0, p0, and v0. By uniqueness
(u∗, e∗, p∗, σ ∗) = (u, e, p, σ ) on [t∗, T + 1].

In view of Theorem 2, we can fix t̂ ∈ (t∗, T + 1] such that the energy balance (2.29)
between 0 and t̂ holds for (u, e, p, σ ) and the energy balance between t∗ and t̂ holds for
(u∗, e∗, p∗, σ ∗). Since (u∗, e∗, p∗, σ ∗) = (u, e, p, σ ) on [t∗, t̂], by difference we obtain the
energy balance for (u, e, p, σ ) between [0, t∗]. Since t∗ is arbitrary, this implies that the
energy balance holds for all t ∈ [0, T ].

Now the energy balance, together with the continuity of L and the weak continuity of
u − w, implies that the term Q0(e) + ‖u̇ − ẇ‖2

L2 is a continuous function on [0, T ]. Then
for all t ∈ [0, T ] and any sequence tk → t ∈ [0, T ] we have

Q0(e(t))+ ‖u̇(t)− ẇ(t)‖2
L2 = lim

k→∞ Q0(e(tk))+ ‖u̇(tk)− ẇ(tk)‖2
L2 .

This and the weak continuity of e and u̇ − ẇ, thanks to the fact that Q0 is equivalent
to the norm on L2(Ω; M

n×n
sym ), imply that e(tk) → e(t) strongly in L2(Ω; M

n×n
sym ), and

u̇(tk) − ẇ(tk) → u̇(t) − ẇ(t) strongly in L2(Ω; R
n). Thanks to (2.21b), this implies

that e ∈ C0([0, T ]; L2(Ω; M
n×n
sym )) and u̇ ∈ C0([0, T ]; L2(Ω; R

n)). We conclude that

u ∈ C0([0, T ]; H1(Ω; R
n)) by (2.27e).

3 Perfect Plasticity

In this and in the next sections we study the behavior of the solutions of (2.23) when the
data of the problem, i.e., the external load and the boundary conditions, vary very slowly. We
are going to prove that the inertial and viscosity terms become negligible in the limit, and
that the solutions of the dynamic problems actually approach the quasistatic evolution for
perfect plasticity. To this aim we provide in this section the mathematical setting and tools
to formulate and solve the perfect plasticity problem.

3.1 Preliminary Tools

Space BD In perfect plasticity the displacement u belongs to the space of functions with
bounded deformation on Ω , defined as

B D(Ω) = {u ∈ L1(Ω; R
n) : Eu ∈ Mb(Ω; M

n×n
sym )}.

Here and henceforth, if V is a finite dimensional vector space and A is a locally compact
subset of R

n , the symbol Mb(A; V ) denotes the space of V -valued bounded Radon measures
on A, endowed with the norm ‖λ‖Mb := |λ|(A), where |λ| is the variation of λ.
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The space B D(Ω) is endowed with the norm

‖u‖B D = ‖u‖L1 + ‖Eu‖Mb .

Besides the strong convergence, we shall also consider a notion of weak* convergence in
B D(Ω) . We say that a sequence uk converges to u weakly* in B D(Ω) if and only if uk

converges to u weakly in L1(Ω; R
n) and Euk converges to Eu weakly* in Mb(Ω; M

n×n
sym ).

Every function u in B D(Ω) has a trace in L1(∂Ω; R
n), that we will still denote by u, or

sometimes by u|∂Ω . By [28, Proposition 2.4 and Remark 2.5] there exists a constant C
depending only on Ω such that

‖u‖L1(Ω) ≤ C(‖u‖L1(Γ0)
+ ‖Eu‖Mb(Ω)). (3.1)

For technical reasons related to the stress-strain duality, in addition to the assumption already
introduced in Sect. 2.1, we now suppose that

∂Ω and ∂Γ are of class C2. (3.2)

Elastic and Plastic Strain In perfect plasticity the plastic strain p belongs to Mb(Ω ∪
Γ0; M

n×n
D ). The singular part of this measure describes plastic slips. Givenw ∈ H1(Ω; R

n),
we say that a triple (u, e, p) is kinematically admissible for the perfectly plastic problem
with boundary datum w if u ∈ B D(Ω; R

n), e ∈ L2(Ω; M
n×n
sym ), p ∈ Mb(Ω ∪ Γ0; M

n×n
D ),

and

Eu = e + p onΩ, (3.3a)

p = (w − u)� νHn−1 onΓ0, (3.3b)

where ν denotes the outer unit normal to ∂Ω and � denotes the symmetrized tensor product.
The set of these triples will be denoted by AB D(w). Note that in this definition of kinematic

admissibility, the Dirichlet boundary condition (2.1b) is replaced by the relaxed condition
(3.3b), which represents a plastic slip occurring at Γ0. It is also easily seen that the inclusion
A(w) ⊂ AB D(w) holds, so that every admissible triple for the visco-elasto-plastic problem
is also admissible for the perfectly plastic problem.

The following closure property is proved in [6, Lemma 2.1].

Lemma 3 Letwk be a sequence in H1(Ω; R
n) and (uk, ek, pk) ∈ AB D(wk). Let us suppose

that wk ⇀ w∞ weakly in H1(Ω; R
n), uk ⇀ u∞ weakly* in B D(Ω), ek ⇀ e∞ weakly

in L2(Ω; M
n×n
sym ), and pk ⇀ p∞ weakly* in Mb(Ω ∪ Γ0; M

n×n
D ). Then (u∞, e∞, p∞) ∈

AB D(w∞).

Stress In addition to the assumptions of Sect. 2.1, we now suppose that the elastic tensor
A0 maps the orthogonal spaces M

n×n
D and RI into themselves. This is equivalent to require

that there exist a positive definite symmetric operator A0D : M
n×n
D → M

n×n
D and a positive

constant κ0 such that
A0ξ = A0DξD + κ0(trξ)I. (3.4)

In the perfectly plastic model the stress σ is related to the strain by the equation

σ = A0e (3.5)

where e is the elastic component of the strain Eu. Therefore if (u, e, p) is kinematically
admissible, then σ belongs to L2(Ω; M

n×n
sym ).

123



936 J Dyn Diff Equat (2014) 26:915–954

In perfect plasticity the stress satisfies the constraint

σD ∈ K(Ω), (3.6)

where K(Ω) is defined in (2.12). In particular

σD ∈ L∞(Ω; M
n×n
D ). (3.7)

Convex Functions of Measures In perfect plasticity we need to define the functional (2.17) for
p ∈ Mb(Ω ∪ Γ0; M

n×n
D ). This is done by using the theory of convex functions of measures

(see [11,24,30]): for every p ∈ Mb(Ω ∪ Γ0; M
n×n
D ) we consider the nonnegative Radon

measure H(p) on Ω ∪ Γ0 defined by

H(p)(B) :=
∫

B
H(p/|p|)d|p| (3.8)

for every Borel set B ⊂ Ω ∪ Γ0, where p/|p| is the Radon-Nikodym derivative of p with
respect to its variation |p|. We also define

H(p) := H(p)(Ω ∪ Γ0) =
∫

Ω∪Γ0

H(p/|p|)d|p|.

The function p �→ H(p) turns out to be lower semicontinuous with respect to the weak*
topology of Mb(Ω ∪ Γ0; M

n×n
D ), and satisfies the triangle inequality. Moreover if pk ⇀ p

weakly* and |pk |(Ω ∪ Γ0) → |p|(Ω ∪ Γ0), then H(pk) → H(p).

Stress-Strain Duality If σ ∈ L2(Ω; M
n×n
sym ), with divσ ∈ L2(Ω; R

n), we define the distrib-
ution [σν] on ∂Ω by setting

〈[σν], ϕ〉∂Ω := 〈divσ, ϕ〉 + 〈σ, Eϕ〉, (3.9)

for each ϕ ∈ H1(Ω; R
n). It turns out that [σν] ∈ H− 1

2 (∂Ω; R
n) (see e.g. [28, Theorem 1.2,

Chap. I]). We define the normal and tangential part of [σν] by

[σν]ν := ([σν] · ν)ν, [σν]⊥ν := [σν] − [σν]ν, (3.10)

and we have that [σν]ν and [σν]⊥ν belong to H− 1
2 (∂Ω; R

n) thanks to the regularity
assumption (3.2) on ∂Ω . If σD ∈ L∞(Ω; M

n×n
D ), by [16, Lemma 2.4] we also have that

[σν]⊥ν ∈ L∞(∂Ω; R
n) and

‖[σν]⊥ν ‖∞,∂Ω ≤ 1√
2
‖σD‖L∞ . (3.11)

The set of admissible stresses for the perfectly plastic problem is defined by

Σ(Ω) := {σ ∈ L2(Ω; M
n×n
sym ) : divσ ∈ Ln(Ω; R

n) and σD ∈ L∞(Ω; M
n×n
D )}.

The set of admissible plastic strains ΠΓ0(Ω) is the set of all p ∈ Mb(Ω ∪ Γ0; M
n×n
D )

such that there exist u ∈ B D(Ω), e ∈ L2(Ω; M
n×n
sym ) and w ∈ H1(Ω; R

n) satisfying
(u, e, p) ∈ AB D(w).

If σ ∈ Σ(Ω) it turns out that σ ∈ Lr (Ω; M
n×n
sym ) for all r < +∞ (see [29, Proposition

2.5]). For every u ∈ B D(Ω) with divu ∈ L2(Ω) we define the distribution [σD · EDu] by

〈[σD · EDu], ϕ〉 = −〈divσ, ϕu〉 − 1

n
〈trσ, ϕdivu〉 − 〈σ, u � ∇ϕ〉 (3.12)
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for every ϕ ∈ C∞
c (Ω). As proved in [29, Theorem 3.2] the distribution [σD · EDu] is a

bounded Radon measure in Ω .
As in [6], if σ ∈ Σ(Ω) and p ∈ ΠΓ0(Ω), we define the bounded Radon measure [σD · p]

on Ω ∪ Γ0 by setting

[σD · p] := [σD · EDu] − σD · eD on Ω,

[σD · p] := [σν]⊥ν · (w − u)Hn−1 on Γ0,

where u ∈ B D(Ω), e ∈ L2(Ω; M
n×n
sym ) and w ∈ H1(Ω; R

n) satisfy (u, e, p) ∈ AB D(w),
and we notice that this definition does not depend on the particular choice of u, e, w (see [6,
page 250]). We also define the duality pairing between σ ∈ Σ(Ω) and p ∈ ΠΓ0(Ω) by

〈σD, p〉 := [σD · p](Ω ∪ Γ0). (3.13)

The following inequalities between measures hold (see [6, (2.33) and Proposition 2.4]):

|[σD · p]| ≤ ‖σD‖L∞|p| onΩ ∪ Γ0, (3.14)

[σD · p] ≤ H(p) onΩ ∪ Γ0, (3.15)

where H(p) is the measure introduced in (3.8). The following integration by parts formula
is proved in [6, Proposition 2.2] when ϕ ∈ C1(Ω̄). The extension to Lipschitz functions is
straightforward.

Proposition 1 Let σ ∈ Σ(Ω), f ∈ Ln(Ω; R
n), g ∈ L∞(Γ1; R

n) and suppose (u, e, p) ∈
AB D(w) with w ∈ H1(Ω; R

n). If −divσ = f on Ω and [σν] = g on Γ1, then it holds

〈σD, p〉 + 〈σ, e − Ew〉 = 〈 f, u − w〉 + 〈g, u − w〉Γ1 . (3.16)

Moreover

〈[σD · p], ϕ〉 + 〈σ · (e − Ew), ϕ〉 + 〈σ,∇ϕ � (u − w)〉
= 〈 f, ϕ(u − w)〉 + 〈g, ϕ(u − w)〉Γ1 , (3.17)

for every ϕ ∈ C0,1(Ω̄).

As a consequence of the formula above we obtain the following lemma.

Lemma 4 Let σk, σ ∈ Σ(Ω), wk, w ∈ H1(Ω; R
n), (uk, ek, pk) ∈ AB D(wk), and

(u, e, p) ∈ AB D(w) be such that

σk → σ strongly in L2(Ω; M
n×n
sym ),

divσk → divσ strongly in Ln(Ω; R
n),

(σk)D are uniformly bounded in L∞(Ω; M
n×n
D ),

uk ⇀ u weakly in L
n

n−1 (Ω; R
n),

wk ⇀ wweakly in H1(Ω; R
n),

ek ⇀ e weakly in L2(Ω; M
n×n
sym ),

then 〈[(σk)D · pk], ϕ〉 → 〈[σ · p], ϕ〉 for every ϕ ∈ C0,1
c (Ω ∪ Γ0).

Proof Our hypotheses imply that σk → σ strongly in Ln(Ω; M
n×n
sym ) by [29, Proposition

2.5]. The conclusion follows now from (3.17).
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3.2 Hypotheses on the Data

We discuss here the hypotheses on the data for the quasistatic evolution problem in perfect
plasticity.

External Load In contrast to the dynamic case, in perfect plasticity it is not enough to assume
that the total load L(t) belongs to H−1

Γ0
(Ω; R

n). Instead, we assume that L(t) takes the form
(2.5), with f (t) ∈ Ln(Ω; R

n) and g(t) ∈ L∞(Γ1; R
n), so that now the duality 〈L(t), u〉 is

well defined by (2.5) for every u ∈ B D(Ω).
The balance equations for the forces are

− divσ(t) = f (t) inΩ, (3.18)

[σ(t)ν] = g(t) onΓ1, (3.19)

where [σ(t)ν] denotes the normal component of σ(t), which can be defined as a distribution
according to (3.9), since divσ(t) ∈ L2(Ω; R

n) by (3.18). As for the time dependence, we
assume that

f ∈ AC([0, T ]; Ln(Ω; R
n)), (3.20a)

g ∈ AC([0, T ]; L∞(Γ1; R
n)). (3.20b)

This implies that for a.e. t ∈ [0, T ] there exists an element of the dual of B D(Ω), denoted
by L̇(t), such that

〈L̇(t), u〉 = lim
s→t

〈L(s)− L(t)
s − t

, u〉 (3.21)

for every u ∈ B D(Ω) (see [6, Remark 4.1]).
As usual in perfect plasticity problems, we assume a uniform safe-load condition: there

exist a function � : [0, T ] → L2(Ω,Mn×n
sym ) and a positive constant δ such that for every

t ∈ [0, T ] we have

− div�(t) = f (t) onΩ, (3.22a)

[�(t)ν] = g(t) onΓ1, (3.22b)

and
�D(t)+ ξ ∈ K(Ω) for every ξ ∈ M

n×n
D with |ξ | ≤ δ. (3.23)

Moreover we require that

t �→ �(t) and t �→ �D(t) are absolutely continuous (3.24)

from [0, T ] to L2(Ω; M
n×n
sym ) and L∞(Ω; M

n×n
D ) respectively, so that the function t �→ �̇(t)

belongs to L1([0, T ]; L2(Ω; M
n×n
sym )) and

�D(t)− �D(s)

t − s
→ �̇D(s)weakly* in L∞(Ω; M

n×n
D ) as t → s, (3.25)

for a.e. s ∈ [0, T ], and
t �→ ‖�̇(t)‖L∞ belongs to L1([0, T ]) (3.26)

(see [6, Theorem 7.1]).
Using (3.14) and (3.24) we see that for every p ∈ ΠΓ0(Ω) the function

t �→ 〈�D(t), p〉 belongs to AC([0, T ]). (3.27)
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Moreover, by (3.20a), (3.22a), (3.23), and (3.24), we obtain

d
dt 〈�D(t), p〉 = 〈�̇D(t), p〉 for a.e. t ∈ [0, T ], (3.28)

thanks to [6, formula (2.38)].

Boundary Conditions The boundary condition on Γ0 is given in the relaxed form considered
in (3.3b) with a time dependent function t → w(t). We assume that

w ∈ AC([0, T ]; H1(Ω; R
n)). (3.29)

Plastic Dissipation In the energy formulation for the quasistatic evolution problem for perfect
plasticity, it is not convenient to use formulas like (2.18), because they require the existence
of the time derivative of p(t). Instead, for an arbitrary function p : [0, T ] → Mb(Ω ∪
Γ0; M

n×n
D ) we define the plastic dissipation in [a, b] ⊂ [0, T ] as

DH (a, b; p) := sup
N−1∑

i=0

H(p(ti+1)− p(ti )), (3.30)

where the supremum is taken over all the possible choices of the integer N > 0 and of the
real numbers a = t0 < t1 < ... < tN−1 < tN = b. One can prove (see [6, Chap. 7]) that, if
p : [0, T ] → Mb(Ω ∪ Γ0; M

n×n
D ) is absolutely continuous, then

DH (a, b; p) =
∫ b

a
H( ṗ(t))dt, (3.31)

where ṗ is the derivative of p defined by

ṗ(t) := w∗- lim
s→t

p(s)− p(t)

s − t
. (3.32)

As a consequence of the safe-load condition (3.23) we can easily prove that for every
t ∈ [0, T ]

H(q)− 〈�(t), q〉 ≥ γ ‖q‖Mb , (3.33)

for every q ∈ L1(Ω,Mn×n
D ), where the positive constant γ is independent of q and t (see [6,

Lemma 3.2]). Moreover we have that

H(q)− �(t) · q ≥ 0 a.e. in Ω, (3.34)

for every q ∈ L1(Ω,Mn×n
D ).

4 Quasistatic Evolution in Perfect Plasticity

We recall here the energy formulation of a perfectly plastic quasistatic evolution.

Definition 1 Suppose that f , g, L, �, and w satisfy (2.5), (3.21), (3.23), (3.23), (3.24), and
(3.29). Let u0 ∈ B D(Ω), e0 ∈ L2(Ω; M

n×n
sym ), and p0 ∈ Mb(Ω ∪ Γ0; M

n×n
D ). A quasistatic

evolution in perfect plasticity with initial conditions u0, e0, p0, and boundary condition w
on Γ0 is a function (u, e, p, σ ) from [0, T ] into B D(Ω,Rn) × L2(Ω,Mn×n

sym ) × Mb(Ω ∪
Γ0,M

n×n
D )× L2(Ω,Mn×n

sym ), with

u(0) = u0, e(0) = e0, p(0) = p0, (4.1)

σ(t) = A0e(t) for every t ∈ [0, T ], (4.2)
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such that t �→ p(t) has bounded variation and the following two conditions are satisfied for
every t ∈ [0, T ]:
(a) (u(t), e(t), p(t)) ∈ AB D(w(t)) and

Q0(e(t))− 〈L(t), u(t)〉 ≤ Q0(η)− 〈L(t), ϕ〉 + H(q − p(t)) (4.3)

for every (ϕ, η, q) ∈ AB D(w(t));
(b) Q0(e(t))− Q0(e0)+ DH (p; 0, t) = ∫ t

0 〈σ, Eẇ〉ds − ∫ t
0 〈L, ẇ〉ds

+ 〈L(t), u(t)〉 − 〈L(0), u0〉 −
∫ t

0
〈L̇, u〉ds, (4.4)

where DH (p; 0, t) is defined by (3.30).

The integrals in the right-hand side of (4.4) are well defined thanks to [6, Theorem 3.8 and
Remark 4.3].

If (u0, e0, p0) ∈ AB D(w(0)) satisfies the following stability condition

Q0(e0)− 〈L(0), u0〉 ≤ Q0(η)− 〈L(0), ϕ〉 + H(q − p0) (4.5)

for every (ϕ, η, q) ∈ AB D(w(0)), then there exists a quasistatic evolution in perfect plasticity
with initial conditions u0, e0, p0, and boundary condition w on Γ0 (see [6, Theorem 4.5]).
Moreover the function t �→ (u(t), e(t), p(t)) is absolutely continuous from [0, T ] into
B D(Ω; R

n)× L2(Ω; M
n×n
sym )× Mb(Ω ∪ Γ0; M

n×n
D ) ([6, Theorem 5.1]).

In our analysis of the behavior of the solution (uε, eε, pε, σ ε) of (1.2) as ε → 0 we find
that (uε, eε, pε, σ ε) converges to a function (u, e, p, σ ) which satisfies conditions (4.3) and
(4.4) only for a.e. t ∈ [0, T ]. The following theorem shows that this is enough to guarantee
that (u, e, p, σ ) is a quasistatic evolution, according to Definition 1.

Theorem 5 Let u0, e0, p0, f , g, L, w, and � be as in Definition 1. Let S be a subset of
[0, T ] of full L1 measure containing 0 and let (u, e, σ ) : S → B D(Ω) × L2(Ω; M

n×n
sym ) ×

L2(Ω; M
n×n
sym ) be a bounded and measurable function satisfying (4.1) and (4.2) for all t ∈ S.

Suppose that p : [0, T ] → Mb(Ω∪Γ0; M
n×n
D )has bounded variation and that conditions (a)

and (b) of Definition 1 are satisfied for every t ∈ S. Then there exists an absolutely continuous
function (u, e, σ ) : [0, T ] → B D(Ω) × L2(Ω; M

n×n
sym ) × L2(Ω; M

n×n
sym ) which extends

(u, e, σ ). Moreover p is absolutely continuous and (u, e, p, σ ) is a quasistatic evolution in
perfect plasticity with initial conditions u0, e0, p0, and boundary condition w on Γ0.

Remark 4 Let t ∈ S, (u(t), e(t), p(t)) ∈ AB D(w(t)) and σ(t) := A0e(t). As shown in [6,
Theorem 3.6] the following conditions are equivalent:

(a) Inequality (4.3) is satisfied for every (ϕ, η, q) ∈ AB D(w(t));
(b) −H(q) ≤ 〈A0e(t), η〉 − 〈L(t), v〉 ≤ H(−q) for every (v, η, q) ∈ AB D(0);
(c) σ(t)∈Σ(Ω), σD(t)∈K(Ω), −divσ(t)= f (t) in Ω , and [σ(t)ν]=g(t) on Γ1.

The following lemma gives an elementary but useful tool for the proof of Theorem 5.

Lemma 5 Let p : [0, T ] → Mb(Ω ∪ Γ0; M
n×n
D ) be a function with bounded variation and

let ψ(t) := DH (p; 0, t) for t ∈ [0, T ]. Assume that there exists a set S ⊆ [0, T ] of full
L1 measure such that p|S and ψ |S are absolutely continuous on S. Then p is absolutely
continuous on [0, T ].
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Proof The absolute continuity on S implies that

lim
s→t−
s∈S

ψ(s) = lim
s→t+
s∈S

ψ(s)

for every t ∈ [0, T ]. Since ψ is non-decreasing, we deduce that the common value of the
limit coincides with ψ(t). This shows that ψ is continuous on [0, T ]. Since

‖p(t1)− p(t2)‖Mb ≤ DH (p; t1, t2) = ψ(t2)− ψ(t1)

for every 0 ≤ t1 ≤ t2 ≤ T , we conclude that also p is continuous on [0, T ]. Moreover the fact
that the restriction of p to S is absolutely continuous implies that it is absolutely continuous
on [0, T ] as well.

Proof (Proof of Theorem 5) We first prove that the functions e, p and u are absolutely
continuous on S. We argue as in the proof of [6, Theorem 5.2] using only times t1, t2 and s
in the set S, and we obtain that for any t1, t2 ∈ S with t1 < t2 we have that

‖e(t2)− e(t1))‖2
L2 ≤

∫ t2

t1
‖e(s)− e(t1)‖L2φ(s)ds +

(∫ t2

t1
φ(s)ds

)2

,

where φ is a suitable nonnegative integrable function. As a consequence of [6, Lemma 5.3]
we get that ‖e(t2) − e(t1))‖L2 ≤ 3

2

∫ t2
t1
φ(s)ds so that t �→ e(t) is absolutely continuous

from S into L2(Ω; M
n×n
sym ). Continuing as in the proof of [6, Theorem 5.2] we obtain also that

p and u are absolutely continuous on S. From Eq. (4.4) it follows that t �→ DH (p; 0, t) is
absolutely continuous on S, so that, applying Lemma 5, we get that p is absolutely continuous
on [0, T ]. Now (u, e) admits an absolutely continuous extension to [0, T ] that we still denote
by (u, e). By continuity this extension satisfies (4.3) and (4.4) for every t ∈ [0, T ]. This
completes the proof.

Remark 5 Under the hypotheses of Definition 1, for every t ∈ [0, T ] condition (b) of Defi-
nition 1 is equivalent to the following condition:

(b′) The function p : [0, T ] → Mb(Ω ∪ Γ0; M
n×n
D ) has bounded variation and

Q0(e(t))+ DH (p; 0, t)− 〈�(t), e(t)− Ew(t)〉 − 〈�D(t), p(t)〉
= Q0(e0)− 〈�(0), e(0)− Ew(0)〉 − 〈�D(0), p(0)〉 +

∫ t

0
〈σ, Eẇ〉ds

−
∫ t

0
〈�̇, e − Ew〉ds −

∫ t

0
〈�̇D, p〉ds. (4.6)

This is proved in [6, Theorem 4.4] using the integration by parts formula (3.16). Note
that the duality product 〈�̇D(t), p(t)〉 is well defined for a.e. t ∈ [0, T ] by (3.20a), (3.22a),
(3.24), and (3.25).

5 Limit of Dynamic Solutions

Here we formulate in a precise way the asymptotic analysis of the dynamic problem as the
data become slower and slower. This will be done by a suitable change of variables. We
start from an external load L(t), a boundary datum w(t) defined on the interval [0, T ], and
initial conditions u0, e0, p0, and v0. We then consider the rescaled problem with external
load Lε(t) = L(εt), boundary condition wε(t) = w(εt) on the interval [0, T/ε], and initial
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conditions uε(0) = u0, eε(0) = e0, pε(0) = p0, and u̇ε(0) = εv0. The dynamic solutions
of the corresponding systems (2.23) are denoted by (uε(t), eε(t), pε(t), σε(t)).

To study the limit behavior of (uε(t), eε(t), pε(t), σε(t)) on the whole interval [0, T/ε]
it is convenient to consider the rescaled functions

(uε(t), eε(t), pε(t), σ ε(t)) := (uε(t/ε), eε(t/ε), pε(t/ε), σε(t/ε)),

defined on [0, T ], and to study their limit as ε ↓ 0. A straightforward change of variables
shows that (uε, eε, pε, σ ε) will satisfy the following system of equations on [0, T ]

Euε = eε + pε, (5.1a)

σ ε = A0eε + εA1ėεA1
, (5.1b)

ε2üε − divΓ0(σ
ε) = L, (5.1c)

ε ṗε = σ ε − πKσ
ε, (5.1d)

with boundary and initial conditions

uε(t) = w(t) on Γ0 for every t ∈ [0, T ], (5.2)

uε(0) = u0, eε(0) = e0, pε(0) = p0, u̇ε(0) = v0. (5.3)

We shall prove (Theorem 6) that, under suitable assumptions, the solutions (uε, eε, pε, σ ε)
of (5.1) tend to a solution of the quasistatic evolution problem in perfect plasticity, according
to Definition 1.
Hypotheses on the Data The regularity assumptions on the data considered in the dynamical
problem are not sufficient to study the limit of the solutions of (5.1). Therefore we introduce
a new set of hypotheses, which includes also the case of data depending on ε and converging
in a suitable way as ε tends to 0.

Let M > 0 be a constant. For ε ∈ (0, 1) we consider the following assumptions.

(i) Hypotheses on wε and w:

wε ∈ L∞([0, T ]; H1(Ω; R
n)), (5.4a)

ẇε ∈ C0([0, T ]; L2(Ω; R
n)) ∩ L2([0, T ]; H1(Ω; R

n)), (5.4b)

ẅε ∈ L2([0, T ]; L2(Ω; R
n)), (5.4c)

w ∈ AC([0, T ]; H1(Ω; R
n)), (5.4d)

wε → w strongly in W 1,1([0, T ]; H1(Ω; R
n)), (5.4e)

ε‖ẇε(0)‖L2 → 0, (5.4f)

ε‖ẇε(t)‖L2 ≤ M for all t ∈ [0, T ], (5.4g)

ε

∫ T

0
‖ẇε‖2

H1 dt → 0, (5.4h)

ε2
∫ T

0
‖ẅε‖2

L2 dt → 0. (5.4i)

(ii) Hypotheses on f ε , gε , f , and g: we assume that there exist �ε and � satisfying (3.23) and
(3.23) with f ε , gε and f , g respectively, and with δ independent of ε. We also suppose
that
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f ε ∈ AC([0, T ]; Ln(Ω; R
n)), (5.5a)

gε ∈ AC([0, T ]; H− 1
2 (Γ1; R

n)), (5.5b)

�ε ∈ AC([0, T ]; Ln(Ω; M
n×n
sym )), (5.5c)

f ∈ AC([0, T ]; Ln(Ω; R
n)), (5.5d)

g ∈ AC([0, T ]; L∞(Γ1; R
n)), (5.5e)

� ∈ AC([0, T ]; Ln(Ω; M
n×n
sym )), (5.5f)

�D ∈ AC([0, T ]; L∞(Ω; M
n×n
D )), (5.5g)

f ε → f strongly in W 1,1([0, T ]; Ln(Ω; R
n)), (5.5h)

�ε → � strongly in W 1,1([0, T ]; Ln(Ω; M
n×n
sym )). (5.5i)

The functionals Lε(t) and L(t) are defined by (2.5) with f ε(t), gε(t) and f (t), g(t)
respectively.

(iii) Hypotheses on the initial data (uε0, eε0, pε0), (u0, e0, p0), and vε0.

(uε0, eε0, pε0) ∈ A(wε(0)), (5.6a)

(u0, e0, p0) ∈ AB D(w(0)), (5.6b)

(u0, e0, p0) satisfies the stability condition (45), (5.6c)

uε0 → u0 strongly in L
n

n−1 (Ω; R
n), (5.6d)

eε0 → e0 strongly in L2(Ω; M
n×n
sym ), (5.6e)

pε0 ⇀ p0 weakly* in Mb(Ω ∪ Γ0; M
n×n
D ), (5.6f)

vε0 ∈ L2(Ω; R
n) and ε‖vε0‖L2 → 0. (5.6g)

Remark 6 If we assume that

�εD ∈ AC([0, T ]; L∞(Ω; M
n×n
D )), (5.7a)

∫ T

0
‖�̇εD − �̇D‖L∞dt → 0, (5.7b)

then we can replace (5.5c), (5.5f), and (5.5i) by the weaker conditions

�ε, � ∈ AC([0, T ]; L2(Ω; M
n×n
sym )), (5.7c)

�ε → � strongly in W 1,1([0, T ]; L2(Ω; M
n×n
sym )). (5.7d)

Indeed using [29, Proposition 2.5] (see also [28, Chap. 2, Proposition 7.1]) from (3.26),
(5.5h), and (5.7) we deduce that �ε , � ∈ AC([0, T ]; Ln(Ω; M

n×n
sym )) and that (5.5i) holds.

We now state the main result.

Theorem 6 Assume hypotheses (i)–(iii) above. Let (uε, eε, pε, σ ε) be the solution of (5.1),
with L replaced by Lε , satisfying the boundary condition wε on Γ0 for every t ∈ [0, T ], and
the initial data

uε(0) = uε0, eε(0) = eε0, pε(0) = pε0 u̇ε(0) = vε0 .

Then there exist a quasistatic evolution in perfect plasticity (u, e, p, σ ), with initial conditions
(u0, e0, p0) and boundary condition w on Γ0, and a subsequence of (uε, eε, pε, σ ε), not
relabeled, such that
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uε(t) ⇀ u(t) weakly* in B D(Ω), (5.8)

eε(t) → e(t) strongly in L2(Ω; M
n×n
sym ), (5.9)

for a.e. t ∈ [0, T ], and

pε(t) ⇀ p(t) weakly* in Mb(Ω ∪ Γ0; M
n×n
D ), (5.10)

for all t ∈ [0, T ]. Moreover there exists M > 0 such that

‖uε(t)‖L1 + ‖eε(t)‖L2 + ‖pε(t)‖Mb ≤ M (5.11)

for every ε ∈ (0, 1) and every t ∈ [0, T ].

Proof From Theorem 2 we get the energy balance formula

Q0(e
ε(t))+ ε2

2
‖u̇ε(t)−ẇε(t)‖2

L2 + ε

∫ t

0
Q1(ė

ε
A1
)ds + ε

∫ t

0
‖ ṗε‖2

L2 ds +
∫ t

0
H( ṗε)ds

=
∫ t

0
〈σ ε, Eẇε〉ds + 〈 f ε(t), uε(t)− wε(t)〉 − 〈 f ε(0), uε(0)− wε(0)〉

−
∫ t

0
〈 ḟ ε, uε − wε〉ds + 〈gε(t), uε(t)− wε(t)〉Γ1 − 〈gε(0), uε(0)− wε(0)〉Γ1

−
∫ t

0
〈ġε, uε − wε〉Γ1 ds − ε2

∫ t

0
〈ẅε, u̇ε − ẇε〉ds + Q0(e

ε
0)+ ε2

2
‖vε0 − ẇε(0)‖2

L2 ,

(5.12)

where σ ε = A0eε + εA1ėεA1
. Using the safe-load condition (3.23) and (3.23) and integrating

by parts in space, we get

Q0(e
ε(t))+ ε2

2
‖u̇ε(t)−ẇε(t)‖2

L2 + ε

∫ t

0
Q1(ė

ε
A1
)ds + ε

∫ t

0
‖ ṗε‖2

L2 ds +
∫ t

0
H( ṗε)ds

=
∫ t

0
〈σ ε, Eẇε〉ds + 〈�ε(t), Euε(t)− Ewε(t)〉 − 〈�ε(0), Euε(0)− Ewε(0)〉

−
∫ t

0
〈�̇ε, Euε − Ewε〉ds − ε2

∫ t

0
〈ẅε, u̇ε − ẇε〉ds + Q0(e

ε
0)+ ε2

2
‖vε0 − ẇε(0)‖2

L2 .

(5.13)

By (2.2), (5.4e), (5.4g), (5.4i), (5.5i), (5.6e), and (5.6g), using the Cauchy inequality, we get
a positive constant D0 such that

α0

2
‖eε(t)‖2

L2 + ε2

2
‖u̇ε(t)−ẇε(t)‖2

L2 + ε

∫ t

0
Q1(ė

ε
A1
)ds + ε

∫ t

0
‖ ṗε‖2

L2 ds +
∫ t

0
H( ṗε)ds

≤ β0

∫ t

0
‖eε‖L2‖Eẇε‖L2 ds + ε

∫ t

0
‖A1ėεA1

‖L2‖Eẇε‖L2 ds + 〈�ε(t), eε(t)〉

− 〈�ε(0), eε(0)〉 −
∫ t

0
〈�̇ε, eε〉ds +

∫ t

0
〈�εD, ṗε〉ds + ε2

2

∫ t

0
‖u̇ε − ẇε‖2

L2 ds + D0,

(5.14)

for every ε ∈ (0, 1), where we have integrated by parts in time the term
∫ t

0 〈�̇ε, pε〉. Using
again the Cauchy inequality and the inequality ‖eε‖L2 ≤ 1+‖eε‖2

L2 , we obtain that for every
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λ > 0 the right-hand side of (5.14) can be estimated from above by

β0

∫ t

0
‖eε‖2

L2‖Eẇε‖L2 ds + ελ

∫ t

0
‖A1ėεA1

‖2
L2 ds +λ‖eε(t)‖2

L2 +
∫ t

0
‖�̇ε‖L2‖eε‖2

L2 ds

+
∫ t

0
〈�εD, ṗε〉ds + ε2

2

∫ t

0
‖u̇ε − ẇε‖2

L2 ds + Dλ, (5.15)

for a suitable constant Dλ independent of ε that can be obtained using (5.4e), (5.4h), (5.5i),
and (5.6e). Recalling that ‖A1ėεA1

‖2
L2 ≤ β1Q1(ėεA1

) by (2.2c), and taking λ = min{α0
4 ,

1
2β1

},
from (3.33), (5.14), and (5.15) we get

α0

4
‖eε(t)‖2

L2 + ε2

2
‖u̇ε(t)−ẇε(t)‖2

L2 + ε

2

∫ t

0
Q1(ė

ε
A1
)ds + ε

∫ t

0
‖ ṗε‖2

L2 dt

+ γ

∫ t

0
‖ ṗε‖L1 ds ≤

∫ t

0
ψε‖eε‖2

L2 ds + ε2

2

∫ t

0
‖u̇ε − ẇε‖2

L2 ds + Dλ, (5.16)

where ψε = β0‖Eẇε‖L2 + ‖�̇ε‖L2 . Since ψε is bounded in L1([0, T ]) by (5.4e) and (5.5i),

using the Gronwall Lemma we obtain that ‖eε(t)‖L2 and ε2

2 ‖u̇ε(t)− ẇε(t)‖2
L2 are bounded

by some constant independent of t and ε. Together with (5.4g) and (5.16), this gives

‖eε(t)‖L2 ≤ M for all t ∈ [0, T ], (5.17a)

ε‖u̇ε(t)‖L2 ≤ M for all t ∈ [0, T ], (5.17b)

ε

∫ t

0
Q1(ė

ε
A1
)ds ≤ M, (5.17c)

ε

∫ T

0
‖ ṗε‖2

L2 ds ≤ M, (5.17d)

∫ T

0
‖ ṗε‖L1 ds ≤ M, (5.17e)

for all ε ∈ (0, 1) and some constant M > 0 independent of t and ε.
Since L1(Ω; M

n×n
D ) is naturally embedded into Mb(Ω∪Γ0; M

n×n
D ), the functions pε are

actually continuous from [0, T ] into Mb(Ω ∪ Γ0; M
n×n
D ), and inequality (5.17e) says that

the total variation of pε is bounded uniformly with respect to ε. Taking into account (5.6f),
we can employ a generalization of Helly Theorem (see [6, Lemma 7.2] and [4, Theorem 3.5,
Chap. 1]), which implies that there exist a subsequence, still denoted by pε , and a function
p : [0, T ] → Mb(Ω ∪ Γ0; M

n×n
D ), with bounded variation, such that, as ε → 0,

pε(t) ⇀ p(t) weakly* in Mb(Ω ∪ Γ0; M
n×n
D ) for every t ∈ [0, T ]. (5.18)

It then follows that p(t) is bounded in Mb(Ω ∪ Γ0; M
n×n
D ) uniformly with respect to t .

From (5.17a) we also get, possibly passing to another subsequence, that there exists
e ∈ L∞([0, T ]; L2(Ω; M

n×n
sym )) such that

eε ⇀ e weakly* in L∞([0, T ]; L2(Ω; M
n×n
sym )), (5.19)

as ε → 0.
Writing E(uε − wε) = eε + pε − Ewε , by (5.4e), (5.6f), (5.17a), and (5.17e), we see

that E(uε − wε) is bounded in L∞([0, T ]; L1(Ω; M
n×n
sym )) uniformly with respect to ε, so

that, thanks to (3.1), uε −wε is bounded in L∞([0, T ]; B D(Ω,Rn)) uniformly with respect
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to ε. Then, as a consequence of the embedding B D(Ω) ↪→ L
n

n−1 (Ω; R
n), there exists

u ∈ L∞([0, T ]; L
n

n−1 (Ω; R
n)) such that

uε ⇀ u weakly* in L∞([0, T ]; L
n

n−1 (Ω; R
n)), (5.20)

again for a suitable subsequence, as ε → 0. Using the equality Euε = eε + pε , from (5.18)
and (5.19) we obtain that u ∈ L∞([0, T ]; B D(Ω)) and Eu = e + p.

By (2.26) we see that the function (uε, eε, pε) satisfies the equilibrium condition

−H(q) ≤ 〈A0eε(t), η〉 + 〈εA1ėεA1
(t), η〉 + 〈ε ṗε(t), q〉

+ 〈ε2üε(t), ϕ〉 − 〈 f ε(t), ϕ〉 − 〈gε(t), ϕ〉Γ1 ≤ H(−q), (5.21)

for every (ϕ, η, q) ∈ A(0) and a.e. t ∈ [0, T ].
Let us fix a smooth and nonnegative real function ψ on [0, T ]. Multiplying the previous

formula by ψ and integrating on [0, T ] we get

−
∫ T

0
H(q)ψ(s)ds ≤

∫ T

0
〈A0eε(s), η〉ψ(s)ds +

∫ T

0
〈εA1ėεA1

(s), η〉ψ(s)ds

+
∫ T

0
〈ε ṗε(s), q〉ψ(s)ds +

∫ T

0
〈ε2üε(s), ϕ〉ψ(s)ds −

∫ T

0
〈 f ε(s), ϕ〉ψ(s)ds

−
∫ T

0
〈gε(s), ϕ〉Γ1ψ(s)ds ≤

∫ T

0
H(−q)ψ(s)ds, (5.22)

for every (ϕ, η, q) ∈ A(0). It is easily seen that, if ψ has compact support, thanks to (5.17b)
the term

∫ T

0
〈ε2üε(s), ϕ〉ψ(s)ds = −ε2

∫ T

0
〈u̇ε(s), ϕ〉ψ̇(s)ds

vanishes as ε → 0, and the same is true for the term
∫ T

0
〈ε ṗε(s), q〉ψ(s)ds

thanks to (5.17d).
By (2.2c) we have

ε2
∫ T

0
‖A1ėεA1

‖2
L2 ds ≤ ε2β1

∫ T

0
Q1(ė

ε
A1
)ds.

By (5.17c) this shows that

εA1ėεA1
→ 0 strongly in L2([0, T ]; L2(Ω; M

n×n
sym )), (5.23)

as ε → 0. This implies that the term
∫ T

0
〈εA1ėεA1

(s), η〉ψ(s)ds

vanishes as ε → 0.
Since (ϕ, η, q) ∈ A(0), by (3.23) we can write

∫ T

0
(〈 f ε(s), ϕ〉 + 〈gε(s), ϕ〉Γ1)ψ(s)ds =

∫ T

0
〈�ε(s), η + q〉ψ(s)ds,
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and, thanks to (5.5i), we obtain that the last expression tends to

∫ T

0
〈�(s), η + q〉ψ(s)ds =

∫ T

0
(〈 f (s), ϕ〉 + 〈g(s), ϕ〉Γ1)ψ(s)ds.

So from (5.19) and (5.22) we get

−
∫ T

0
H(q)ψ(s)ds ≤

∫ T

0
〈A0e(s), η〉ψ(s)ds −

∫ T

0
〈 f (s), ϕ〉ψ(s)ds

−
∫ T

0
〈g(s), ϕ〉Γ1ψ(s)ds ≤

∫ T

0
H(−q)ψ(s)ds,

and thanks to the arbitrariness of ψ we conclude that

− H(q) ≤ 〈A0e(t), η〉 − 〈 f (t), ϕ〉 − 〈g(t), ϕ〉Γ1 ≤ H(−q), (5.24)

for a fixed (ϕ, η, q) ∈ A(0) and for a.e. t ∈ [0, T ]. The fact that A(0) is separable allows us
to prove that for a.e. t ∈ [0, T ] inequalities (5.24) hold for every (ϕ, η, q) ∈ A(0).

Let us define σ(t) := A0e(t). For each q ∈ L2(Ω; M
n×n
D ), since (0, q,−q) ∈ A(0), we

see that
− H(−q) ≤ 〈σ(t), q〉 ≤ H(q), (5.25)

which says that σD(t) ∈ ∂H(0) = K(Ω) (see (2.20)). Moreover, since for each ϕ ∈
H1
Γ0
(Ω; R

n) we have (ϕ, Eϕ, 0) ∈ A(0), from (5.24) we obtain

〈σ(t), Eϕ〉 − 〈 f (t), ϕ〉 = 〈g(t), ϕ〉Γ1 for allϕ ∈ H1
Γ0
(Ω; R

n). (5.26)

From this we get divσ(t) = f (t) a.e. in Ω , and [σ(t)ν] = g(t) on Γ1. Therefore,
(u(t), e(t), p(t)) satisfies condition (c) of Remark 4. This implies that for a.e. t ∈ [0, T ],
(u(t), e(t), p(t)) satisfies the minimality condition (4.3) for all (ϕ, η, q) ∈ AB D(w(t)). We
now set S := {0} ∪ {t ∈ (0, T ] : (4.3) is satisfied} and we define u(0) := u0 and e(0) := e0.
Since p(0) = p0 by (5.6f) and (5.18), we deduce from (5.6c) that condition (4.3) is also
satisfied for t = 0.

Since t �→ p(t) has bounded variation from [0, T ] into Mb(Ω ∪Γ0; M
n×n
D ), it is globally

bounded and there exists a countable set N ⊂ [0, T ] such that for every t ∈ [0, T ] \ N

p(s) → p(t) strongly in Mb(Ω ∪ Γ0; M
n×n
D ) as s → t. (5.27a)

By the minimality property of (u(s), e(s), p(s)) for s ∈ S we can apply [6, Theorem 3.8]
and for every t ∈ S \ N we obtain

e(s) → e(t) strongly in L2(Ω; M
n×n
sym ) as s → t, (5.27b)

u(s) → u(t) strongly in B D(Ω) as s → t. (5.27c)

By the continuity of the embedding B D(Ω) ↪→ L
n

n−1 (Ω; R
n) we also get

u(s) → u(t) strongly in L
n

n−1 (Ω; R
n) as s → t. (5.27d)

In order to prove the energy balance (4.4) we fix t ∈ S \ (N ∪ {0}). For every k let
0 = tk

0 < tk
1 < ... < tk

k = t be elements of (S \ N ) ∪ {0} such that maxi (tk
i − tk

i−1) → 0 as
k → ∞. Then, since (u(tk

i ) − (w(tk
i ) − w(tk

i−1)), e(tk
i ) − (Ew(tk

i ) − Ew(tk
i−1)), p(tk

i )) ∈
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AB D(w(tk
i−1)) by (4.3), we have

Q0(e(t
k
i−1))− 〈 f (tk

i−1), u(tk
i−1)〉 − 〈g(tk

i−1), u(tk
i−1)〉Γ1 ≤ Q0(e(t

k
i ))

− 〈A0e(tk
i ), Ew(tk

i )− Ew(tk
i−1)〉 + Q0(Ew(t

k
i ))− Ew(tk

i−1))

− 〈 f (tk
i−1), u(tk

i )− (w(tk
i )− w(tk

i−1))〉
− 〈g(tk

i−1), u(tk
i )− (w(tk

i )− w(tk
i−1))〉Γ1 + H(p(tk

i )− p(tk
i−1)).

Employing the integration by parts formula (3.16) and then summing up over i = 1, . . . , k,
we obtain

Q0(e(t))−Q0(e0)+
k∑

i=1

H(p(tk
i )− p(tk

i−1))+
k∑

i=1

Q0(Ew(t
k
i )−Ew(tk

i−1))

≥
k∑

i=1

〈A0e(tk
i ), Ew(tk

i )−Ew(tk
i−1)〉+〈�(t), e(t)−Ew(t)〉−〈�(0), e(0)−Ew(0)〉

+ 〈�D(t), p(t)〉 − 〈�D(0), p(0)〉 −
k∑

i=1

〈�(tk
i )− �(tk

i−1), e(tk
i )〉

+
k∑

i=1

〈�(tk
i )− �(tk

i−1), Ew(tk
i )〉 −

k∑

i=1

〈�D(t
k
i )− �D(t

k
i−1), p(tk

i )〉. (5.28)

By (3.27), (3.28), (5.4d), (5.5f), (5.5g), and (5.27) we can apply Lemmas 6 and 7, with S
replaced by S \ (N ∪ {0}), and we obtain that the four Riemann sums in the right-hand side
of (5.28) converge to

∫ t

0
〈σ, Ew〉ds,

∫ t

0
〈�̇, e〉ds,

∫ t

0
〈�̇, Ew〉ds,

∫ t

0
〈�̇D, p〉ds.

Moreover we see that
∑k

i=1 Q0(Ew(tk
i ) − Ew(tk

i−1)) tends to 0 as k → ∞, thanks to the
absolute continuity of t �→ Ew(t). Therefore, passing to the limit in (5.28) we obtain

Q0(e(t))+ DH (p; 0, t)− 〈�(t), e(t)− Ew(t)〉 − 〈�D(t), p(t)〉
≥ Q0(e0)− 〈�(0), e(0)− Ew(0)〉 − 〈�D(0), p(0)〉 +

∫ t

0
〈σ, Eẇ〉ds

−
∫ t

0
〈�̇, e − Ew〉ds −

∫ t

0
〈�̇D, p〉ds, (5.29)

for a.e. t ∈ [0, T ], where σ = A0e.
We want to show that actually equality holds. In order to prove the opposite inequality we

consider Eq. (5.13).
Thanks to the semicontinuity of Q0(·), by (5.19) we have

∫ b

a
Q0(e(t))dt ≤ lim inf

ε→0

∫ b

a
Q0(e

ε(t))dt (5.30)
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for all 0 < a < b < T . We claim that
∫ b

a

(
DH (p; 0, t)− 〈�D(t), p(t)〉 + 〈�D(0), p0〉 +

∫ t

0
〈�̇D, p〉ds

)
dt

≤ lim inf
ε→0

∫ b

a

( ∫ t

0
H( ṗε)ds −

∫ t

0
〈�εD, ṗε〉ds

)
dt, (5.31)

for all 0 < a < b < T . This, together with (5.30), implies
∫ b

a

(
Q0(e(t))+ DH (p; 0, t)− 〈�D(t), p(t)〉 + 〈�D(0), p0〉 +

∫ t

0
〈�̇D, p〉ds

)
dt

≤ lim inf
ε→0

∫ b

a

(
Q0(e

ε(t))+ ε2

2
‖u̇ε(t)− ẇε(t)‖2

L2 + ε

∫ t

0
Q1(ė

ε
A1
)ds

+ ε

∫ t

0
‖ ṗε‖2

L2 ds +
∫ t

0
H( ṗε)ds −

∫ t

0
〈�εD, ṗε〉ds

)
dt

= lim inf
ε→0

∫ b

a

( ∫ t

0
〈σ ε, Eẇε〉ds + 〈�ε(t), eε(t)− Ewε(t)〉

− 〈�ε(0), eε(0)− Ewε(0)〉 −
∫ t

0
〈�̇ε, eε − Ewε〉ds

− ε2
∫ t

0
〈ẅε, u̇ε − ẇε〉ds + Q0(e

ε
0)+ ε2

2
‖vε0 − ẇε(0)‖2

L2

)
dt =: L , (5.32)

where the first equality follows from (5.13) after an integration by parts in time.
Using (5.4f), (5.4g), (5.4i), (5.6g), and (5.17b) it is easily seen that

ε2
∫ b

a

( ∫ t

0
〈ẅε, u̇ε − ẇε〉ds

)
dt → 0, (5.33a)

ε2‖vε0 − ẇε(0)‖2
L2 → 0, (5.33b)

while
∫ b

a

( ∫ t

0
〈σ ε, Eẇε〉ds

)
dt →

∫ b

a

( ∫ t

0
〈σ, Eẇ〉ds

)
dt, (5.33c)

Q0(e
ε
0) → Q0(e0), (5.33d)

∫ b

a
〈�ε(t), eε(t)− Ewε(t)〉dt →

∫ b

a
〈�(t), e(t)− Ew(t)〉dt, (5.33e)

〈�ε(0), eε(0)− Ewε(0)〉 → 〈�(0), e(0)− Ew(0)〉, (5.33f)
∫ b

a

( ∫ t

0
〈�̇ε, eε − Ewε〉ds

)
dt →

∫ b

a

( ∫ t

0
〈�̇, e − Ew〉ds

)
dt, (5.33g)

thanks to (5.4e), (5.4h), (5.5i), (5.6e), (5.19), and (5.23). This implies that
∫ b

a

(
Q0(e(t))+ DH (p; 0, t)− 〈�D(t), p(t)〉 + 〈�D(0), p0〉 +

∫ t

0
〈�̇D, p〉ds

)
dt

≤ L =
∫ b

a

( ∫ t

0
〈σ, Eẇ〉ds + Q0(e0)+ 〈�(t), e(t)− Ew(t)〉

− 〈�(0), e(0)− Ew(0)〉 −
∫ t

0
〈�̇, e − Ew〉ds

)
dt. (5.34)
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From the arbitrariness of a and b and from (5.29) for a.e. t ∈ [0, T ] we obtain (4.6), which
is equivalent to (4.4).

It remains to prove claim (5.31). This will be done by adapting the proof of [6, Theorem
4.5]. Let ϕ : [0,+∞) → R be a nonnegative C∞ function such that φ(s) = 0 for s ≤ 1 and
φ(s) = 1 for s ≥ 2. For δ > 0 we define ψδ(x) := φ( 1

δ
dist(x, Γ1)) for x ∈ Ω̄ .

Since H is positively 1-homogeneous and satisfies (3.34) we have that
∫ t

0
H(ψδ ṗε)ds −

∫ t

0
〈�εD, ṗεψδ〉ds ≤

∫ t

0
H( ṗε)ds −

∫ t

0
〈�εD, ṗε〉ds. (5.35)

Integrating by parts with respect to time and using then (3.17), this is equivalent to
∫ t

0
H(ψδ ṗε)ds −

∫ t

0
〈�̇ε, (eε − Ewε)ψδ〉ds +

∫ t

0
〈 ḟ ε, ψδ(u

ε − wε)〉ds

−
∫ t

0
〈�̇ε, (uε − wε)� ∇ψδ〉ds − 〈[�εD(t) · pε(t)], ψδ〉 + 〈[�εD(0) · pε(0)], ψδ〉

≤
∫ t

0
H( ṗε)ds −

∫ t

0
〈�εD, ṗε〉ds. (5.36)

The lower semicontinuity of the variation, together with (3.31) and (5.18), implies

DH (ψδ p; 0, t) ≤ lim inf
ε→0

∫ t

0
H(ψδ ṗε(s))ds. (5.37)

By (3.23), (5.4e), (5.5h), (5.5i),(5.6d), and (5.6e), using Lemma 4 we obtain

〈[�εD(0) · pε(0)], ψδ〉 → 〈[�D(0) · p(0)], ψδ〉. (5.38)

For what concerns the term 〈[�εD(t) · pε(t)], ψδ〉, we fix 0 ≤ a < b ≤ T and integrate on
[a, b] with respect to time. Using (3.17) we write

∫ b

a
〈[�εD · pε], ψδ〉ds = −

∫ b

a
〈�ε · (eε − Ewε), ψδ〉ds

+
∫ b

a
〈 f ε, ψδ(u

ε − wε)〉ds −
∫ b

a
〈�ε, (uε − wε)� ∇ψδ〉ds,

where we have used the fact thatψδ is zero in a neighborhood of Γ1. The last three terms pass
to the limit thanks to (5.4e), (5.5h), (5.5i), (5.19), and (5.20). Therefore, using again (3.17)
we obtain ∫ b

a
〈[�εD · pε], ψδ〉ds →

∫ b

a
〈[�D · p], ψδ〉ds. (5.39)

We now integrate in (5.36) with respect to time. By (5.4e), (5.5h), (5.5i), (5.19), (5.20),
and (5.37)-(5.39) we get

∫ b

a

(
DH (ψδ p; 0, t)−

∫ t

0
〈�̇ · (e − Ew),ψδ〉ds +

∫ t

0
〈 ḟ , ψδ(u − w)〉ds

−
∫ t

0
〈�̇, (u − w)� ∇ψδ〉ds − 〈[�D(t) · p(t)], ψδ〉 + 〈[�D(0) · p(0)], ψδ〉

)
dt

≤ lim inf
ε→0

∫ b

a

( ∫ t

0
H( ṗε)ds −

∫ t

0
〈�εD, ṗε〉ds

)
dt. (5.40)

123



J Dyn Diff Equat (2014) 26:915–954 951

Using (3.17) we get

∫ b

a

(
DH (ψδ p; 0, t)−〈[�D(t)·p(t)], ψδ〉+〈[�D(0)·p(0)], ψδ〉+

∫ t

0
〈[�̇D ·p], ψδ〉ds

)
dt

≤ lim inf
ε→0

∫ b

a

( ∫ t

0
H( ṗε)ds −

∫ t

0
〈�εD, ṗε〉ds

)
dt.

Letting δ → 0 and using the semicontinuity of DH we then obtain (5.31). This concludes
the proof of (4.4) for a.e. t ∈ [0, T ].

Since (4.3) and (4.4) are satisfied for a.e. t ∈ [0, T ], and in particular for t = 0, we
can apply Theorem 5. We obtain that p : [0, T ] → Mb(Ω ∪ Γ0; M

n×n
D ) is absolutely

continuous and we can redefine u(t) and e(t) on a set of times with measure zero so that
u : [0, T ] → B D(Ω) and e : [0, T ] → L2(Ω,Mn×n

sym ) are absolutely continuous and the
function (u, e, p, σ ), with σ(t) = A0e(t), is a quasistatic evolution in perfect plasticity with
initial conditions u0, e0, p0, and boundary condition w on Γ0.

From (5.34) and from the energy balance (4.4) it follows that the inequality in (5.32) is
actually an equality and that the liminf is a limit. So, since

∫ b

a

(ε2

2
‖u̇ε(t)− ẇε(t)‖2

L2 + ε

∫ t

0
Q1(ė

ε
A1
)ds + ε

∫ t

0
‖ ṗε‖2

L2 ds
)

dt ≥ 0,

it follows that equality holds also in (5.30) and (5.31), and that the liminf is a limit also in
these formulas. In particular

∫ T

0
Q0(e

ε(t))dt →
∫ T

0
Q0(e(t))dt, (5.41)

Since eε ⇀ e weakly by (5.19), from (5.41) it follows that

eε → e strongly in L2([0, T ]; L2(Ω; M
n×n
sym )), (5.42)

which gives (5.9) for a suitable subsequence. From this and (5.18) we conclude that

Euε(t) ⇀ Eu(t) weakly* in Mb(Ω ∪ Γ0; M
n×n
sym ), (5.43)

for a.e. t ∈ [0, T ].
Let us fix t for which (5.9) and (5.43) hold. Since uε(t) ∈ A(wε(t)), it follows from (3.1)

that uε(t) is bounded in B D(Ω) uniformly with respect to ε. Up to a subsequence we may
assume that uε(t) converges weakly* in B D(Ω) to a function v. By Lemma 3 it follows that
(v, e(t), p(t)) ∈ AB D(w(t)). Since we have also (u(t), e(t), p(t)) ∈ AB D(w(t)), we deduce
that Ev = Eu(t) in Ω and (w(t) − v)� ν = (w(t) − u(t))� ν Hn−1-almost everywhere
on Γ0. This implies that v = u(t) Hn−1 almost everywhere on Γ0, and applying inequality
(3.1) to v − u(t) we obtain that v = u(t) almost everywhere in Ω . This concludes the proof
of (5.8).
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6 Appendix

This section contains the proof of two technical results concerning the convergence of suitable
Riemann sums for functions with values in Banach spaces.

Lemma 6 Let X be a Banach space, let φ ∈ W 1,1([0, T ]; X), let S ⊂ (0, T ] be a set of full
measure containing T and let ψ : S → X ′ be a bounded weakly* continuous function. For
every k > 0 let {tk

i }0≤i≤k be a subset of S ∪ {0} such that 0 = tk
0 < tk

1 < · · · < tk
k = T and

maxk
i=1 |tk

i − tk
i−1| → 0 as k → +∞. Then

lim
k→∞

k∑

i=1

〈ψ(tk
i ), φ(t

k
i )− φ(tk

i−1)〉 =
∫ T

0
〈ψ(t), φ̇(t)〉dt,

where 〈·, ·〉 denotes the duality product between X ′ and X.

Proof Let ψk : [0, T ] → X ′ be the piecewise constant function defined by ψk(t) = ψ(tk
i )

for tk
i−1 < t ≤ tk

i . Then

k∑

i=1

〈ψ(tk
i ), φ(t

k
i )− φ(tk

i−1)〉 =
∫ T

0
〈ψk(t), φ̇(t)〉dt.

Since ψk(t) ⇀ψ(t) weakly* for every t ∈ S we have 〈ψk(t), φ̇(t)〉 → 〈ψ(t), φ̇(t)〉 for a.e.
t ∈ [0, T ]. The conclusion follows from the Dominated Convergence Theorem.

The next lemma extends the previous result to the case of the duality product introduced
in (3.13).

Lemma 7 Let � be the function introduced in the safe-load condition (3.23)–(3.24) and let
p : [0, T ] → Mb(Ω ∪ Γ0; M

n×n
D ) be a bounded function. Assume that there exists a set

S ⊂ (0, T ] of full measure containing T such that for every t ∈ S the function p is continuous
at t with respect to the strong topology of Mb(Ω ∪ Γ0; M

n×n
D ) and p(t) ∈ ΠΓ0(Ω). For

every k > 0 let {tk
i }0≤i≤k be a subset of S ∪ {0} such that 0 = tk

0 < tk
1 < · · · < tk

k = T and
maxk

i=1 |tk
i − tk

i−1| → 0 as k → +∞. Then

lim
k→∞

k∑

i=1

〈�D(t
k
i )− �D(t

k
i−1), p(tk

i )〉 =
∫ T

0
〈�̇D(t), p(t)〉dt,

where 〈·, ·〉 denotes the duality product introduced in (3.13).

Proof Let pk : [0, T ] → ΠΓ0(Ω) be the piecewise constant function defined by pk(t) =
p(tk

i ) for tk
i−1 < t ≤ tk

i . Using (3.27) and (3.28) we obtain that

k∑

i=1

〈�D(t
k
i )− �D(t

k
i−1), p(tk

i )〉 =
∫ T

0
〈�̇D(t), pk(t)〉dt =

=
∫ T

0
〈�̇D(t), pk(t)− p(t)〉dt +

∫ T

0
〈�̇D(t), p(t)〉dt. (6.1)

By (3.14) we have
∫ T

0
|〈�̇D(t), pk(t)− p(t)〉|dt ≤

∫ T

0
‖�̇D(t)‖L∞‖pk(t)− p(t)‖Mb dt

123



J Dyn Diff Equat (2014) 26:915–954 953

Since ‖pk(t)− p(t)‖Mb → 0 for a.e. t ∈ S by our continuity assumption and t �→ ‖�̇(t)‖L∞
belongs to L1([0, T ]) (see [6, Theorem 7.1]), we obtain

lim
k→∞

∫ T

0
|〈�̇D(t), pk(t)− p(t)〉|dt = 0 (6.2)

by the Dominated Convergence Theorem. The conclusion follows from (6.1) and (6.2).
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