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Abstract The comparison theorem is proved for stochastic functional differential equations
whose drift term satisfies the quasimonotone condition and diffusion term is independent of
delay. Application is given to stochastic neutral networks with delays.

Keywords Comparison theorem · Stochastic functional differential equations ·
Quasimonotone condition · Stochastic neutral network

1 Introduction

The study of comparison results for stochastic differential equations started with Skorohod
[20]. After that, comparison theorems for solutions of two one-dimensional Itô’s stochastic
ordinary differential equations with the same diffusion coefficients were intensively studied,
and many applications, including stochastic optimal control and test for explosions were
presented, see [9–11,19,22,23] and references therein. It is worth to mention that Peng and
Zhu [18] have given a necessary and sufficient condition of the comparison theorem in this
case. Yan [24] gave some conclusion about equations driven by general continuous local
martingale, continuous increasing process and general increasing process but still based on
the same diffusion coefficients. The first comparison theorem for twomulti-dimensional Itô’s
stochastic ordinary differential equations with the same diffusion coefficients was proved by
Geiβ and Manthey [8]. An additional condition called quasimonotone must be imposed
on. It is mainly based on this comparison theorem that Cheushov [5] established stochastic
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monotone dynamical systems and investigated the structure of randomattractor and long-term
behavior for some special quasimonotone stochastic ordinary differential equations.

In contrast to the theory of stochastic ordinary differential equations, the theory of sto-
chastic partial differential equations lacks an important tool, namely, we do not have a well-
applicable Itô’s formula. One technique to handle the difficulties arising from the missing
Itô’s formula is comparison technique. Pardoux and his collaborators [3,7] began with the
study of comparison theorem for parabolic stochastic partial differential equations. Kote-
lenez [14] was the first one to consider comparison theorem for a wide class of parabolic
stochastic partial differential equations with Lipschitz drift and diffusion coefficient. Man-
they and Zausinger [15] extended Kotelenez’s result to the case that drift coefficient allows
to be polynomial growth using a different method. Applying the method in [15], Assing
[2] generalized Manthey and Zausinger’s result to systems of parabolic stochastic partial
differential equations by a method of approximation.

As far as we know, there is very few comparison theorem for stochastic functional dif-
ferential equations. The only one we have found was presented in [25] for scalar stochastic
functional differential equation. They also claimed that “so far, there is no result for compari-
son theorem on stochastic differential delay equation” in the introduction of their work. If one
tries to investigate monotone random dynamical systems generated by stochastic functional
differential equations, he has to prove a comparison theorem as in the paper [8]. Besides,
such a comparison theorem has its own independent interest. Motivated by these, we will
prove a comparison theorem for stochastic functional differential equations under quasi-
monotone condition and other regular conditions. To achieve this, we need to prove a global
existence and uniqueness theorem under weaker conditions. This comparison theorem lays
the foundation to investigate deep long-term dynamical behavior of quasimonotone stochas-
tic functional differential equations, which has been thoroughly exploded in deterministic
functional differential equations in [21].

2 Preliminaries

Let (Ω,F, {Ft }t≥0,P) be a complete filtered probability space satisfying the usual conditions.
Fix an arbitrary τ > 0 and two positive integers d and r .

Consider the following two systems of stochastic functional differential equations(SFDEs)
in the sense of Itô:

⎧
⎨

⎩

dxi (t) = fi (t, x(t), xt )dt +
r∑

j=1
σi j (t, x(t))dW

j
t , i = 1, 2, . . . , d,

x(θ) = φ(θ), θ ∈ J � [−τ, 0], φ ∈ C(J,Rd),

(2.1)

and
⎧
⎨

⎩

dx̂i (t)7 = f̂i (t, x̂(t), x̂t )dt +
r∑

j=1
σi j (t, x̂(t))dW

j
t , i = 1, 2, . . . , d,

x̂(θ) = ψ(θ), θ ∈ J, ψ ∈ C(J,Rd)

(2.2)

where x(t) = (x1(t), . . . , xi (t), . . . , xd(t)), x̂(t) = (̂x1(t), . . . , x̂i (t), . . . , x̂d(t)), xt (θ) =
x(t + θ), x̂t (θ) = x̂(t + θ), θ ∈ J = [−τ, 0],Wt (ω) = (W 1

t (ω), . . . ,Wr
t (ω)) is

an r−dimensional {Ft }t≥0-adapted Wiener process with values in R
r , C � C(J,Rd) is

the Banach space of all continuous functions φ : J → R
d with the sup-norm ‖φ‖ =

sup{|φ(s)|, s ∈ J } and | · | denotes the Euclidean norm.
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We make the following hypotheses:

(H1) The drift terms f = ( f1, . . . , fd), f̂ = ( f̂1, . . . , f̂d) : R+ × R
d × C → R

d are
continuous and the inequality fi (t, φ(0), φ) < f̂i (t, ψ(0), ψ) is fulfilled whenever φ ≤C ψ

and φi (0) = ψi (0) holds for some i and t ≥ 0, φ, ψ ∈ C, the notation ≤C is given in the
next section.

(H2) The drift term satisfies global Lipschitz condition, that is, there exists a constant
L > 0 such that for each i = 1, 2, . . . , d,

| fi (t, x, φ) − fi (t, x
′, ψ)|2 ≤ L

(|x − x ′|2 + ‖φ − ψ‖2)

for all t ≥ 0, x, x ′ ∈ R
d and φ,ψ ∈ C.

(H3) The diffusion term σ(t, x) = (σi j (t, x)) : R+ × R
d → R

d×r , i = 1, 2, . . . , d, j =
1, 2, . . . , r is continuous and there exists a nondecreasing continuous concave function ρ :
R+ → R+ with ρ(0) = 0, ρ(x) > 0 for x > 0, and

∫

0+ dx
ρ(x) = ∞ such that for each

i = 1, 2, . . . , d,

r∑

j=1

|σi j (t, x) − σi j (t, x
′)|2 ≤ ρ

(|xi − x ′
i |2
)
,

for all t ≥ 0, x, x ′ ∈ R
d .

If ρ(|xi − x ′
i |2) is replaced by ρ(|x − x ′|2), then we use (H3∗) to denote the corresponding

hypothesis.
(H4) The drift and diffusion terms have linear growth, that is, there is a constant γ > 0

such that f = ( f1, . . . , fd) : R+ × R
d × C → R

d , and σ(t, x) = (σi j (t, x)) : R+ × R
d →

R
d×r , i = 1, 2, . . . , d, j = 1, 2, . . . , r satisfy

| f (t, x, φ)|2 ≤ γ
(
1 + |x |2 + ‖φ‖2) and

|σ(t, x)|2 ≤ γ
(
1 + |x |2)

for all t ≥ 0, x ∈ R
d , φ ∈ C.

Theorem 1 Assume that (H2), (H3∗) and (H4) hold for system (2.1). Then the system (2.1)
has a strong solution x(t, φ) for all t > 0, and the strong uniqueness holds. Furthermore
xt (φ) is a C-valued process adapted to {Ft }t≥0 with continuous sample paths.

This proof is presented in appendix and extends Mao’s technique ([16]) for backward
stochastic differential equations to stochastic functional differential equations.

Now we review the general Gronwall inequality in [1], which is useful in the subsequent
sections. Consider the following inequality

u(t) ≤ a(t) +
∫ t

0
λ(t, s)η(u(s))ds, 0 ≤ t ≤ t1, (2.3)

which satisfies the following properties:

(S1) η is continuous and nondecreasing function on [0,∞) and is positive on (0,∞),
(S2) a(t) is continuously differentiable in t and nonnegative on [0, t1], where t1 > 0 is a

constant,
(S3) λ(t, s) is continuous and nonnegative function on [0, t1] × [0, t1].
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Theorem 2 Suppose that (S1)–(S3) hold and u(t) is a continuous and nonnegative function
on [0, t1] satisfying (2.3). Then

u(t) ≤ W−1
[
W (r(t)) +

∫ t

0
max
0≤χ≤t

λ(χ, s)ds
]
, 0 ≤ t ≤ tc, (2.4)

where W (u) �
∫ u
û

dz
η(z) , û > 0 is constant and r(t) is determined by

r(t) � a(0) +
∫ t

0
|a′(s)|ds,

tc ≤ t1 is the largest number such that

W (r(tc)) +
∫ tc

0
max

0≤χ≤tc
λ(χ, s)ds ≤

∫ ∞

û

dz

η(z)
.

The proof can be found in [1].
We apply Theorem 2 to study such an inequality :

u(t) ≤
∫ t

0
λ1ρ(u(s))ds +

∫ t

0
λ2u(s)ds, t ≥ 0. (2.5)

Corollary 3 If ρ satisfies the hypothesis (H3), λ1 and λ2 are two positive constants and u(t)
is a continuous and nonnegative function on [0,∞) satisfying (2.5), then u(t) = 0, t ≥ 0.

Proof Let t1 > 0 be arbitrary and consider the following inequality:

u(t) ≤
∫ t

0
λ1ρ(u(s))ds +

∫ t

0
λ2u(s)ds, 0 ≤ t ≤ t1.

Let λ = max{λ1, λ2} and �(u) = u + ρ(u). Then we have

u(t) ≤
∫ t

0
λ�(u(s))ds, 0 ≤ t ≤ t1.

By Theorem 2, it is easy to see that W (u) = ∫ uû dz
�(z) , r(t) ≡ 0,

u(t) ≤ W−1
[
W (r(t)) +

∫ t

0
λds
]
, 0 ≤ t ≤ tc, (2.6)

where tc is the largest number such that

W (r(tc)) +
∫ tc

0
λds ≤

∫ ∞

û

dz

�(z)
. (2.7)

Since ρ is a concave function with ρ(0) = 0, we have

ρ(z) ≥ ρ(1)z, for 0 ≤ z ≤ 1.

So
∫

0+
dz

�(z)
=
∫

0+
dz

z + ρ(z)
≥ ρ(1)

ρ(1) + 1

∫

0+
dz

ρ(z)
= ∞, (2.8)

which implies that (2.7) is true for tc = t1. Therefore, u(t) = 0 for 0 ≤ t ≤ t1 by (2.6). Since
t1 is arbitrarily chosen, we have u(t) = 0, t ≥ 0. The proof is complete. ��

Before finishing this section, we provide a criterion for stopping times.
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Proposition 4 Suppose that ς is an Ft−stopping time and Q is progressively measurable.
Then

DQ(ω) � inf{s | s > ς(ω), (s, ω) ∈ Q}
is an Ft−stopping time.

Proof Let

Q̃ � ((ς,∞)) � {(s, ω) ∈ R+ × Ω | ς(ω) < s}.
Then we will prove that Q̃ is a predictable set. It suffices to show that IQ̃ is an Ft−adapted
left-continuous process. It is easy to check that the sample path IQ̃(t, ω) is left-continuous
for a fixed ω. Since IQ̃(t, ω) = I{ς<t}(ω) and the filtration {Ft }t≥0 is right-continuous, IQ̃ is
adapted to the filtration {Ft }t≥0.

By the definition of Q̃, it is easy to see that

DQ(ω) = inf{s | (s, ω) ∈ Q ∩ Q̃}.
The direct proof shows that for a fixed t ,

{ω ∈ Ω | DQ(ω) < t} = π(Q ∩ Q̃ ∩ ((0, t) × Ω)) (2.9)

where

π : R+ × Ω → Ω

is the projection mapping.
Since Q is progressively measurable and Q̃ is predictable, Q ∩ Q̃ is progressively mea-

surable, which implies that Q ∩ Q̃ ∩ ([0, t] × Ω) ∈ B([0, t]) × Ft . Thus,

Q ∩ Q̃ ∩ ((0, t) × Ω) = (Q ∩ Q̃ ∩ ([0, t] × Ω))
⋂

((0, t) × Ω) ∈ B([0, t]) × Ft .

It follows from (2.9) and projection theorem that {ω ∈ Ω | DQ(ω) < t} ∈ Ft . This completes
the proof. ��
Corollary 5 Suppose that F(t, ω) : R+ × Ω → R

d is a progressively measurable process
and ς is an Ft−stopping time. If E ∈ B(Rd), then

DE (ω) � inf{s | s > ς(ω), F(s, ω) ∈ E}
is an Ft−stopping time.

Proof Let Q = F−1(E). Then Q is progressively measurable. The conclusion follows
immediately from Proposition 4. ��

3 Comparison Theorems for SFDEs

To obtain the comparison results of SFDEs, we need the partial orders in R
d and C. The

positive cone in R
d , denoted by R

d+, is the set of all d tuples with nonnegative coordinates.
It gives rise to a partial order on R

d in the following way:

x ≤ y ⇐⇒ xi ≤ yi , for i = 1, . . . , d,

x < y ⇐⇒ x ≤ y and xi < yi , for some i ∈ {1, . . . , d},
x � y ⇐⇒ xi < yi , for i = 1, . . . , d.
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Let

C+ = {φ ∈ C : φ(s) ≥ 0, s ∈ J }.
Then C+ is a positive cone of the Banach space C. Hence the partial order on C is given as
follows

φ ≤C ψ ⇐⇒ φ(s) ≤ ψ(s), s ∈ J,

φ <C ψ ⇐⇒ φ ≤C ψ, and φ �= ψ,

φ �C ψ ⇐⇒ φ(s) � ψ(s), s ∈ J.

Now we present our first comparison result.

Theorem 6 Suppose that the drift terms f, f̂ and the diffusion term σ(t, x) satisfy the
hypotheses (H1)–(H4). If φ,ψ ∈ C satisfying φ ≤C ψ , then P({x(t, φ) ≤ x̂(t, ψ), t ≥
0}) = 1 and hence P({xt (φ) ≤C x̂t (ψ), t ≥ 0}) = 1.

Proof Let X̂(t) = x̂(t, ψ) and X (t) = x(t, φ). Then we have

d X̂i (t) = f̂i
(
t, X̂(t), X̂t

)
dt +

r∑

j=1

σi j
(
t, X̂(t)

)
dW j

t , i = 1, 2, . . . , d,

X̂(t) = ψ(t), t ∈ [−τ, 0]
and

dXi (t) = fi (t, X (t), Xt )dt +
r∑

j=1

σi j (t, X (t))dW j
t , i = 1, 2, . . . , d,

X (t) = φ(t), t ∈ [−τ, 0].
By Theorem 1, X (t) and X̂(t) are Ft−adapted continuous processes.

Set Yi (t) = X̂i (t) − Xi (t), i = 1, 2, . . . , d. Then we have

dYi (t) =
[
f̂i (t, X̂(t), X̂t ) − fi (t, X (t), Xt )

]
dt

+
r∑

j=1

(σi j (t, X̂(t)) − σi j (t, X (t)))dW j
t , i = 1, 2, . . . , d.

Now we introduce the following function which was first presented in [4]:

ϕε(y) =

⎧
⎪⎨

⎪⎩

y2, y ≤ 0,

y2 − y3

6ε , 0 < y ≤ 2ε,
2εy − 4

3ε
2, y > 2ε.

It is easy to see that ϕε(y) ∈ C2(R), ϕ′
ε(y) → 2y− uniformly with respect to y, ϕ′′

ε (y) →
2I(y≤0) and ϕε(y) → |y−|2 provided that ε → 0, where y− = y ∧ 0.

Define the stopping times

ΓN � inf
{
t > 0 : |X (t)| > N , |X̂(t)| > N

}
∧ N , forevery N > 0,

Λi � inf
{
t > 0 : Xi (t) > X̂i (t)

}
, i = 1, 2, . . . , d, (3.1)
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and

Λ = Λ1 ∧ · · · ∧ Λd .

Obviously ΓN ↑ ∞ as N ↑ ∞, and either Λi = +∞ or

Xi (Λi ) = X̂i (Λi ) and Xi (t) ≤ X̂i (t), for 0 ≤ t ≤ Λi , i = 1, . . . , d. (3.2)

In order to verify the conclusion, we have to prove that

P({Λ < ∞}) = 0,

it suffices to show that P({Λ < ΓN }) = 0 for every N > 0.
For i = 1, 2, . . . , d, let

ϑi � inf
{
t > Λi : Zi (t, ω) � fi (t, X (t), Xt ) − f̂i (t, X̂1(t), . . . , X̂i−1(t), X̂i (t) − Y−

i (t),

X̂i+1(t), . . . , X̂d(t), X̂1,t , . . . , X̂i−1,t , X̂i,t − Ỹ−
i,t , X̂i+1,t . . . , X̂d,t ) > 0

}
, (3.3)

where Y−
i (t) = Yi (t) ∧ 0 and Ỹ−

i,t (θ) = Ỹ−
i (t + θ) = Y−

i (t),−τ ≤ θ ≤ 0. It is easy to see
that the sample path for Zi (t, ω) is continuous for a fixed ω. By monotone class theorem,
one can verify that Zi (t, ω) is Ft−adapted. Then applying Corollary 5, we get that ϑi is an
Ft−stopping time.

We claim that

Λi < ϑi on {Λi = Λ < ∞}, i = 1, 2, . . . , d.

By the definition of ϑi ,Λi ≤ ϑi holds for every i = 1, 2, . . . , d . Again by the definition of
ϑi , together with the continuity of fi and f̂i , i = 1, 2, . . . , d and the pathwise continuity of
Xand X̂ we have

fi (ϑi , X (ϑi ), Xϑi ) − f̂i (ϑi , X̂1(ϑi ), . . . , X̂i−1(ϑi ), X̂i (ϑi ) − Y−
i (ϑi ), X̂i+1(ϑi ),

. . . , X̂d(ϑi ), X̂1,ϑi , . . . , X̂i−1,ϑi , X̂i,ϑi − Ỹ−
i,ϑi

, X̂i+1,ϑi , . . . , X̂d,ϑi ) ≥ 0. (3.4)

In order to prove this claim, let us assume the contrary. Then ϑi = Λi on {Λi = Λ < ∞}.
Since Xi (Λi ) = X̂i (Λi ), we have Y

−
i (ϑi ) = 0, Ỹ−

i,ϑi
(θ) = 0,−τ ≤ θ ≤ 0. In view of (3.2)

and the hypothesis (H1), it is easy to see that

fi (ϑi , X (ϑi ), Xϑi ) − f̂i (ϑi , X̂1(ϑi ), . . . , X̂i−1(ϑi ), X̂i (ϑi ) − Y−
i (ϑi ),

X̂i+1(ϑi ), . . . , X̂d(ϑi ), X̂1,ϑi , . . . , X̂i−1,ϑi , X̂i,ϑi − Ỹ−
i,ϑi

, X̂i+1,ϑi , . . . , X̂d,ϑi ) < 0

on {Λi = Λ < ∞}, which contradicts (3.4). Hence this claim holds.
By (3.3) and the above claim, it can be seen that for all s ∈ [Λi , ϑi ]

fi (s, X (s), Xs) − f̂i (s, X̂1(s), . . . , X̂i−1(s), X̂i (s) − Y−
i (s), X̂i+1(s),

. . . , X̂d(s), X̂1,s, . . . , X̂i−1,s, X̂i,s − Ỹ−
i,s, X̂i+1,s . . . , X̂d,s) ≤ 0 (3.5)

on {Λi = Λ < ∞}.
Now our purpose is to prove that for every N > 0,P({Λ < ΓN }) = 0. To this end, we

assume that
P({Λ < ΓN }) > 0

for some N . It follows that there exists an i ∈ {1, 2, . . . , d} such that

P(A) > 0

where A = {Λi = Λ < ΓN }.
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Since Yi (t), i = 1, 2, . . . , d is a continuous semimartingale ([17]), applying the Itô
formula, we have

ϕε(Yi ((Λ + t) ∧ ϑi ∧ ΓN ))

= ϕε(Yi (Λ ∧ ϑi ∧ ΓN ))

+
∫ (Λ+t)∧ϑi∧ΓN

Λ∧ϑi∧ΓN

ϕ′
ε(Yi (s))[ f̂i (s, X̂(s), X̂s) − fi (s, X (s), Xs)]ds

+
∫ (Λ+t)∧ϑi∧ΓN

Λ∧ϑi∧ΓN

ϕ′
ε(Yi (s))

r∑

j=1

(σi j (s, X̂(s)) − σi j (s, X (s)))dW j
s

+
∫ (Λ+t)∧ϑi∧ΓN

Λ∧∧ϑiΓN

1

2
ϕ′′

ε (Yi (s))
r∑

j=1

(σi j (s, X̂(s)) − σi j (s, X (s)))2ds

� Δ1 + Δ2 + Δ3 + Δ4. (3.6)

Note that IA is FΛ− measurable (see Lemma 1.2.16 in [13]). Hence

E[Δ3 IA] = E[E[Δ3 IA|FΛ]] = E[IAE[Δ3|FΛ]] = 0. (3.7)

In fact, let

Mχ (ω) �
∫ χ

0
ϕ′

ε(Yi (s))
r∑

j=1

(σi j (s, X̂(s)) − σi j (s, X (s)))dW j
s .

Then Mχ (ω) is a continuous martingale. Thus

E[Δ3|FΛ] = E[M(Λ+t)∧ϑi∧ΓN − MΛ∧ϑi∧ΓN |FΛ]
= E[M(Λ+t)∧ϑi∧ΓN |FΛ] − MΛ∧ϑi∧ΓN

= E[M(Λ+t)∧ϑi∧ΓN |FΛ∧ϑi∧ΓN ] − MΛ∧ϑi∧ΓN = 0.

We have used the optional sampling theorem (see [13]) in the last equality and (ii) of Problem
1.2.17 in [13] in the second equality. This proves (3.7).

Multiplied by the indicator function IA to the two sides of (3.6), and then taking expectation
and setting ε → 0, we obtain that

E
(
|Y−

i ((Λ + t) ∧ ϑi ∧ ΓN )|2 IA
)

= E IA

∫ (Λ+t)∧ϑi∧ΓN

Λ∧ϑi∧ΓN

2
(
Y−
i (s)

)[
f̂i (s, X̂(s), X̂s) − fi (s, X (s), Xs)

]
ds

+E IA

∫ (Λ+t)∧ϑi∧ΓN

Λ∧ϑi∧ΓN

I{Yi (s)≤0}
r∑

j=1

(
σi j (s, X̂(s)) − σi j (s, X (s))

)2
ds

� E IAΣ1 + E IAΣ2. (3.8)
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Relation (3.5) and y− ≤ 0 imply that

IAΣ1 = IA

∫ (Λ+t)∧ϑi∧ΓN

Λ∧ϑi∧ΓN

2(Y−
i (s))

[
f̂i (s, X̂(s), X̂s) − f̂i (s, X̂1(s), . . . , X̂i−1(s),

X̂i (s) − Y−
i (s), X̂i+1(s), . . . , X̂d(s), X̂1,s, . . . , X̂i−1,s, X̂i,s − Ỹ−

i,s, X̂i+1,s, . . . , X̂d,s)
]
ds

+IA

∫ (Λ+t)∧ϑi∧ΓN

Λ∧ϑi∧ΓN

2(Y−
i (s))

[
f̂i (s, X̂1(s), . . . , X̂i−1(s), X̂i (s) − Y−

i (s), X̂i+1(s),

. . . , X̂d(s), X̂1,s, . . . , X̂i−1,s, X̂i,s − Ỹ−
i,s, X̂i+1,s, . . . , X̂d,s) − fi (s, X (s), Xs)

]
ds

≤ IA

∫ (Λ+t)∧ϑi∧ΓN

Λ∧ϑi∧ΓN

2(Y−
i (s))

[
f̂i (s, X̂(s), X̂s) − f̂i (s, X̂1(s), . . . , X̂i−1(s), X̂i (s)

−Y−
i (s), X̂i+1(s), . . . , X̂d(s), X̂1,s, . . . , X̂i−1,s, X̂i,s − Ỹ−

i,s, X̂i+1,s, . . . , X̂d,s)
]
ds.

By the global Lipschitz condition for the drift f̂ , there exists a constant L∗ > 0 such that

IAΣ1 ≤ IA

∫ (Λ+t)∧ϑi∧ΓN

Λ∧ϑi∧ΓN

2|Y−
i (s)| × L∗(|Y−

i (s)| + ‖Ỹ−
i,s‖
)
ds. (3.9)

Since Ỹ−
i,s(θ) = Y−

i (s),−τ ≤ θ ≤ 0, by (3.9) we have

IAΣ1 ≤ IA

∫ (Λ+t)∧ϑi∧ΓN

Λ∧ϑi∧ΓN

4L∗|Y−
i (s)|2ds. (3.10)

From (H3) it follows that

IAΣ2 = IA

∫ (Λ+t)∧ϑi∧ΓN

Λ∧ϑi∧ΓN

I{Yi (s)≤0}
r∑

j=1

(
σi j (s, X̂(s)) − σi j (s, X (s))

)2
ds

≤ IA

∫ (Λ+t)∧ϑi∧ΓN

Λ∧ϑi∧ΓN

I{Yi (s)≤0} × ρ
(
|Yi (s)|2

)
ds

≤ IA

∫ (Λ+t)∧ϑi∧ΓN

Λ∧ϑi∧ΓN

ρ
(
|Y−

i (s)|2
)
ds. (3.11)

By (3.8), (3.10) and (3.11), we have

E
(|Y−

i ((Λ + t) ∧ ϑi ∧ ΓN )|2 IA
) ≤ E IA

∫ (Λ+t)∧ϑi∧ΓN

Λ∧ϑi∧ΓN

4L∗|Y−
i (s)|2ds

+E IA

∫ (Λ+t)∧ϑi∧ΓN

Λ∧ϑi∧ΓN

ρ
(
|Y−

i (s)|2
)
ds

≤ E
∫ t

0
4L∗|Y−

i

(
(s + Λ) ∧ ϑi ∧ ΓN

)
|2 IAds

+E
∫ t

0
ρ
(
|Y−

i ((s + Λ) ∧ ϑi ∧ ΓN )|2
)
IAds

≤
∫ t

0
4L∗E

(
|Y−

i ((s + Λ) ∧ ϑi ∧ ΓN )|2 IA
)
ds

+
∫ t

0
ρ
(
E(|Y−

i ((s + Λ) ∧ ϑi ∧ ΓN )|2 IA)
)
ds
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where the last inequality has applied the Jensen inequality because of the concavity of ρ.
Note that t → E |Y−

i ((Λ+t)∧ϑi ∧ΓN )|2 is continuous (see Remark 14) and using Corollary
3, we have

E
(
|Y−

i ((Λ + t) ∧ ϑi ∧ ΓN

)
|2 IA) = 0,

which implies that

Xi

(
(Λ + t) ∧ ϑi ∧ ΓN ) ≤ X̂i ((Λ + t) ∧ ϑi ∧ ΓN

)
a.s. P

for every t ≥ 0 on {Λi = Λ < ΓN }. It follows from the continuity of Xi (t), X̂i (t) that

Xi

(
(Λ + t) ∧ ϑi ∧ ΓN ) ≤ X̂i ((Λ + t) ∧ ϑi ∧ ΓN

)
, 0 ≤ t < ∞ a.s. P

on {Λi = Λ < ΓN }. This contradicts (3.1), which shows that P({Λ < ΓN }) = 0 for every
N > 0. Hence we have P({Λ = ∞}) = 1. Therefore

P

(
{X (t) ≤ X̂(t), t ≥ 0}

)
= 1,

i.e.,

P

(
{x(t, φ) ≤ x̂(t, ψ), t ≥ 0}

)
= 1,

which shows that

P

(
{xt (φ) ≤C x̂t (ψ), t ≥ 0}

)
= 1.

The proof is complete. ��
Now we give a condition which makes it possible to replace < in (H1) by ≤. For this

purpose we review the following definition given in [21].

Definition 7 A mapping g : R+ × R
d × C → R

d is called quasi-monotonously increasing,
if for every i = 1, 2, . . . , d

gi
(
t, φ(0), φ

)
≤ gi

(
t, ψ(0), ψ

)
,

wherever φ ≤C ψ with φi (0) = ψi (0) and t > 0.

Theorem 8 If either drift term f to system (2.1) or f̂ to system (2.2) is quasi-monotonously
increasing, then the condition (H1) of Theorem 6 can be replaced by

(H1∗) The function fi : R+ ×R
d ×C → R and f̂i : R+ ×R

d ×C → R, i = 1, 2, . . . , d
are continuous and satisfy the following condition: fi (t, φ(0), φ) ≤ f̂i (t, φ(0), φ) for every
φ ∈ C, t ≥ 0.

Proof Assume that the drift coefficient f to system (2.1) is quasi-monotonously increasing,
a similar argument holds if the drift coefficient f̂ to system (2.2) is quasi-monotonously
increasing. Let ζ > 0 be arbitrarily chosen and define

f ζ
i � fi − ζ, i = 1, 2, . . . , d.

Consider the following auxiliary system
⎧
⎨

⎩

dxi (t) = f ζ
i (t, x(t), xt )dt +

r∑

j=1
σi j (t, x(t))dW

j
t , i = 1, 2, . . . , d,

x(θ) = φ(θ), θ ∈ J, φ ∈ C(J,Rd).

(3.12)
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By the hypotheses (H2)–(H4) and Theorem 1, system (3.12) has a unique strong solu-
tion X ζ (t), t ≥ 0. From (H1∗) and the quasi-monotonicity of f it follows that the pair
( f ζ

i , f̂i ), i = 1, 2, . . . , d, satisfies (H1). Hence, applying Theorem 6, we get that

X ζ
i (t) ≤ X̂i (t) for all t ≥ 0, a.s. P

for i = 1, 2, . . . , d. Choose a strictly decreasing sequence ζn, n ≥ 1 with limn→∞ ζn = 0.
By the same arguments as above we have

X ζ1
i (t) ≤ X ζ2

i (t) ≤ · · · ≤ X̂i (t) for all t ≥ 0, a.s. P

as well as

X ζ1
i (t) ≤ X ζ2

i (t) ≤ · · · ≤ Xi (t) for all t ≥ 0, a.s. P

for i = 1, 2, . . . , d. Define

Xi (t) � lim
n→∞ X ζn

i (t), (3.13)

for t ≥ 0, i = 1, 2, . . . , d. Then

Xi (t) ≤ X̂i (t) for all t ≥ 0, a.s. P

for i = 1, 2, . . . , d. To complete the proof, we shall show that X(t) is a modification of the
solution X (t). By the strong solution uniqueness it suffices to check that X(t) satisfies (2.1)
a.s. P for every t ≥ 0.

First we prove that X ζn (t) converges to X(t) uniformly on t ∈ [0, T ] almost surely as
n → ∞. In terms of the Hölder inequality and (3.12) we have

sup
0≤χ≤t

|X ζn+1(χ) − X ζn (χ)|2 = sup
0≤χ≤t

∣
∣
∣χ(ζn − ζn+1)

−→e

+
∫ χ

0

(
f (s, X ζn+1(s), X ζn+1

s ) − f (s, X ζn (s), X ζn
s )
)
ds

+
∫ χ

0

(
σ(s, X ζn+1(s)) − σ(s, X ζn (s))

)
dWs

∣
∣
∣
2

≤ 3d(ζn − ζn+1)
2T 2

+3
( ∫ t

0
| f (s, X ζn+1(s), X ζn+1

s ) − f (s, X ζn (s), X ζn
s )|ds

)2

+3 sup
0≤χ≤t

∣
∣
∣

∫ χ

0
(σ (s, X ζn+1(s)) − σ(s, X ζn (s)))dWs

∣
∣
∣
2

≤ 3d(ζn − ζn+1)
2T 2

+3T
∫ t

0

∣
∣
∣ f (s, X ζn+1(s), X ζn+1

s ) − f (s, X ζn (s), X ζn
s )

∣
∣
∣
2
ds

+3 sup
0≤χ≤t

∣
∣
∣

∫ χ

0
(σ (s, X ζn+1(s)) − σ(s, X ζn (s)))dWs

∣
∣
∣
2
,
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where −→e = (1, 1, . . . , 1)τ is a d dimensional vector. According to (H2) and (H3) and the
Burkholder–Davis–Gundy inequality, for t ∈ [0, T ], we have
E sup

0≤χ≤t
|Xζn+1(t)−Xζn (χ)|2 ≤ 3d(ζn − ζn+1)

2T 2

+3TE
( ∫ t

0
| f (s, Xζn+1(s), X

ζn+1
s )− f (s, Xζn (s), Xζn

s )|2ds
)

+3E sup
0≤χ≤t

∣
∣
∣

∫ χ

0
(σ (s, Xζn+1(s)) − σ(s, Xζn (s)))dWs

∣
∣
∣
2

≤ 3d(ζn − ζn+1)
2T 2

+3TdLE
( ∫ t

0
(|Xζn+1(s) − Xζn (s)|2 + ‖Xζn+1

s − Xζn
s ‖2)ds

)

+ 12E
∫ t

0

∣
∣
∣σ(s, Xζn+1(s)) − σ(s, Xζn (s))

∣
∣
∣
2
ds

≤ 3d(ζn − ζn+1)
2T 2

+6TdL
∫ t

0

(
E sup

0≤χ≤s
|Xζn+1(χ) − Xζn (χ)|2

)
ds

+12d
∫ t

0
ρ
(
E sup

0≤χ≤s
|Xζn+1(χ) − Xζn (χ)|2

)
ds

≤ 3d(ζn − ζn+1)
2T 2

+(6TdL + 12d)

∫ t

0
�
(
E sup

0≤χ≤s
|Xζn+1(χ) − Xζn (χ)|2

)
ds.

Note that t → E sup0≤χ≤t |X ζn+1(χ) − X ζn (χ)|2 is continuous (see Remark 14) and hence
by Theorem 2, we have

E sup
0≤χ≤t

∣
∣
∣X ζn+1(χ) − X ζn (χ)

∣
∣
∣
2 ≤ W−1

[
W (r(t)) + (6TdL + 12d)t

]
, 0 ≤ t ≤ tc,

where W (u) = ∫ u
û

dz
�(z) , û is any given positive constant, r(t) = 3d(ζn − ζn+1)

2T 2, and
tc ≤ T is the largest number such that

W (r(tc)) + (6TdL + 12d)tc ≤
∫ ∞

û

dz

�(z)
, (3.14)

By (2.8) it is easy to see that (3.14) holds if n is sufficiently large, i.e., there exists N1 > 0
such that if n ≥ N1, then (3.14) holds. Hence, as n ≥ N1, tc = T . Then

E sup
0≤t≤T

∣
∣
∣X ζn+1(t) − X ζn (t)

∣
∣
∣
2 ≤ W−1

[
W (r(T )) + 6dLT 2 + 12dT

]
. (3.15)

Furthermore, since
∫

0+ 1
�(z)dz = ∞, there exist μn, n ≥ 1 such that for every n, μn < 1

8n

and
∫ 1

8n
μn

1
�(z)dz = 6dLT 2 + 12dT . Let r(T ) = μn, then ζn − ζn+1 =

√
μn

3dT 2 , and hence

ζn =∑∞
k=n

√
μk

3dT 2 , n ≥ 1. Moreover by (3.15) we have that for n ≥ N1,

E sup
0≤t≤T

∣
∣
∣X ζn+1(t) − X ζn (t)

∣
∣
∣
2 ≤ 1

8n
.
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By Chebyshev’s inequality we have

∞∑

n=N1

P

(
sup

0≤t≤T
|X ζn+1(t) − X ζn (t)| > 2−(n+1)

)
≤

∞∑

n=N1

4
1

2n
< ∞.

Then Borel–Cantelli Lemma implies that there exists an eventΩ∗ ∈ F with P(Ω∗) = 1 such
that for every ω ∈ Ω∗ there is an integer N2(ω) ≥ N1 satisfying that

sup
0≤t≤T

∣
∣
∣X ζn+1(t) − X ζn (t)

∣
∣
∣ ≤ 2−(n+1), n ≥ N2(ω).

Consequently

sup
0≤t≤T

∣
∣X ζn+p (t) − X ζn (t)

∣
∣ ≤ 2−n, p ≥ 1, n ≥ N2(ω),

that is, X ζn (s) converges to X(s) uniformly on [0, T ] almost surely. The continuity of X(s)
follows.

Now define

TN � inf
{
t > 0 :‖ Xt ‖> N or ‖X ζ1

t ‖ > N
} ∧ N , forevery N > 0.

In terms of (3.13) and Lebesgue’s Theorem on dominated convergence, we have

t∧TN∫

0

f ζn
i

(
s, X ζn (s), X ζn

s

)
ds →

t∧TN∫

0

fi
(
s,X(s),Xs

)
ds, a.s. P,

and

E

t∧TN∫

0

∣
∣σi j (s, X

ζn (s)) − σi j (s,X(s))
∣
∣2ds → 0,

as n → ∞.

Thus, by Proposition 3.2.10 in [13], we have

t∧TN∫

0

σi j (s, X
ζn (s))dW j

s
L2−→

t∧TN∫

0

σi j (s,X(s))dW j
s

as n → ∞. Then taking a subsequence if necessary, we obtain that

lim
n→∞ X ζn

i (t ∧ TN ) = φi (0) +
∫ t∧TN

0
fi (s,X(s),Xs)ds +

r∑

j=1

∫ t∧TN

0
σi j (s,X(s))dW j

s ,

that is,

Xi (t ∧ TN ) = φi (0) +
∫ t∧TN

0
fi (s,X(s),Xs)ds +

r∑

j=1

∫ t∧TN

0
σi j (s,X(s))dW j

s .

Note that as N ↑ ∞, TN ↑ ∞. Setting N ↑ ∞, from the path continuity of X(t) we
conclude that

123



14 J Dyn Diff Equat (2017) 29:1–24

Xi (t) = φi (0) +
∫ t

0
fi (s,X(s),Xs)ds +

r∑

j=1

∫ t

0
σi j (s,X(s))dW j

s .

The proof is complete. ��

4 Application

As an application of our comparison theorem, we will show that the solutions of a class of
stochastic neutral networks with delays possess monotonicity and sublinearity. Consider the
following stochastic neutral networks described byStratonovich type of stochastic differential
equations with delay:
⎧
⎪⎨

⎪⎩

dxi (t) = [− ai xi (t) +
d∑

j=1
bi j h j (x j (t − τi j ))

]
dt +

r∑

k=1
σik xi (t) ◦ dWk

t ,

xi (θ) = φi (θ), θ ∈ J � [−τ, 0], τ = max
1≤i, j≤d

τi j , φ ∈ C � C(J,Rd+), i = 1, 2, . . . , d,

(4.1)

where the activation functions satisfy the following:

(A1) hi ∈ C1(R), hi (0) = 0, i = 1, 2, . . . , d,

(A2) lim
s→∞

hi (s)
s = 0, i = 1, 2, . . . , d,

(A3) 0 < h′
i (s) ≤ 1, i = 1, 2, . . . , d,

(A4) bi j > 0 for all i, j = 1, 2, . . . , d.

Theorem 9 Besides (A1)–(A4), we further assume that the system (4.1) satisfies
(A5) each hi (s) is a sublinear function from R+ into R in the sense that

λhi (s) ≤ hi (λs) for all 0 < λ < 1 and s > 0.

Then the system (4.1) has a unique strong solutionΦ(t, φ) for t ≥ 0, whereφ = (φ1, . . . , φd).
Moreover, it generates a monotone random dynamical system, which means that

φ ≤C ψ �⇒ Φ(t, φ) ≤C Φ(t, ψ), t ≥ 0

and Φ(t, φ) is sublinear in the sense that for every φ ≥ 0,

λΦ(t, φ) ≤C Φ(t, λφ), for all t ≥ 0 and 0 ≤ λ ≤ 1.

Proof First, we shall illustrate the strong solutions for (4.1) generate a random dynamical
system by the conjugacy technique (see Imkeller and Schmalfuss [12]).

Denote by z(ω) the random variable in R
r such that

z(t, ω) := z(θtω) = (z1(t, ω), z2(t, ω), ..., zr (t, ω))

is Stationary Ornstein-Uhlenbeck Process in R
r which solves the equations

dzk = −μzkdt + dWk
t , μ > 0, k = 1, . . . , r.

Let us first introduce a conjugate transformation:

T (ω, y) = (y1.eσ
1 (ω), . . . , yd .e

σ
d (ω)

)
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where

eσ
i (ω) = exp

{
zσi (ω)

}
, zσi (ω) =

r∑

j=1

σi j z j (ω).

Applying Itô formula to the function yi (t, ω) = xi (t, ω)exp{−zσi (θtω)}, we transform the
system (4.1) into

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dyi (t)
dt = −ai yi (t) + μyi (t)zσi (θtω) + exp{−zσi (θtω)}×
d∑

j=1
bi j h j (y j (t − τi j )exp{−zσj (θt−τi j ω)})

y(θ) = φ(θ), θ ∈ J � [−τ, 0], i = 1, . . . , d.

(4.2)

For each i , define
⎧
⎪⎨

⎪⎩

Fi (ω, φ) := −aiφi (0) + μzσi (ω)φi (0) + exp{−zσi (ω)}×
d∑

j=1
bi j h j (φ j (−τi j )exp{−zσj (θ−τi j ω)}). (4.3)

Then it follows from (A1) and (A3) that

(C1) Fi (ω, 0) ≡ 0;
(C2) Fi satisfies the global Lipschitz condition in the sense that for any φ,ψ ∈ C,

|Fi (ω, φ) − Fi (ω,ψ)| ≤ Li (ω) ‖ φ − ψ ‖

where Li (ω) = ai +μ|zσi (ω)|+exp{−zσi (ω)}×
d∑

j=1
bi jexp{−zσj (θ−τi j ω)}. The system (4.2)

can be written as a type of Random Functional Differential Equations:
{ dy(t)

dt = F(θtω, yt )
y0 = φ ∈ C.

(4.4)

One can shows that the solutions for (4.4) satisfying (C1) and (C2) generate a random dynam-
ical system by the fundamental theory of deterministic functional differential equations, we
omit the detail.

Stratonovich stochastic differential equation (4.1) can be rewritten in the Itô form
⎧
⎨

⎩

dxi (t) = f i (xi (t), x1(t − τi1), . . . , xd(t − τid))dt +
r∑

k=1
σik xi (t)dWk

t ,

xi (θ) = φi (θi ), i = 1, 2, . . . , d,

(4.5)

where f i = fi (xi (t), x1(t − τi1), . . . , xd(t − τid)) + 1
2

r∑

k=1
σ 2
ik xi (t) with

fi (xi (t), x1(t − τi1), . . . , xd(t − τid)) = −ai xi (t) +
d∑

j=1

bi j h j (x j (t − τi j )).

Then we only need to prove that the results in Theorem 9 hold for system (4.5). It is obvious
that under (A1)–(A4), the global existence and uniqueness strong solution Φ(t, φ) of the
system (4.5) can be obtained by Theorem 1. In addition, observe that the drift terms of
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equation (4.5) is quasi-monotonously increasing. Then monotonicity of the solutions of the
system (4.5) is obtained by applying Theorem 8.

The idea to prove sublinearity of the solution of the equations (4.1) follows from [5]. Let
xλ
i (t) = λΦi (t, φ). Then

⎧
⎨

⎩

dxλ
i (t) = f λ

i

(
xλ
i (t), xλ

1 (t − τi1), . . . , xλ
d (t − τid)

)
dt +

r∑

k=1
σik xλ

i (t) ◦ dWk
t ,

xλ
i (θ) = λφi (θi ), i = 1, 2, . . . , d,

where

f λ
i

(
xλ
i (t), xλ

1 (t − τi1), . . . , x
λ
d (t − τid)

) = −ai x
λ
i (t) +

d∑

j=1

λbi j h j
(
λ−1xλ

j (t − τi j )
)
.

Using (A5), it is easy to see that for every φ = (φ1, . . . , φd) ≥ 0, i = 1, . . . , d,

f λ
i

(
φi (0), φ1(−τi1), . . . , φd(−τid)

) ≤ fi
(
φi (0), φ1(−τi1), . . . , φd(−τid)

)
,

which implies that (H1∗) in Theorem 8 holds. The last paragraph shows that the comparison
theorem is still valid for Stratonovich type of stochastic functional differential equation.Again
by the quasi-monotonicity of the drift terms of the system (4.1), we can apply Theorem 8 to
deduce the sublinearity for Φ(t, φ). The proof is complete. ��
Remark 10 Chueshov and Scheutzow [6] obtained comparison principle under the assump-
tions that the drift terms are decomposed into a non-delay part and a delay part and the
non-delay drift terms are at least continuously differentiable and diffusion terms are at least
twice continuously differentiable. When the drift terms are replaced by this non-delay drift
part, the SDEs generate a stochastic flow of diffeomorphisms in R

d , which helps them to
represent the SFDEs as a random FDEs. Our comparison result can apply to the case that the
diffusion terms are even not non-Lipschitz (see Example 11). Thus the corresponding SDEs
only generate a stochastic flow of hemeomorphisms, rather than diffeomorphisms in R

d .
However, the comparison principle in Chueshov and Scheutzow [6] is valid for more general
noise, exactly, they considered SFDEs driven by a Kunita-type martingale field. Their idea
is to represent the SFDEs as a random FDE, while our technique is to combine the method
of [4] and stopping times with the nonlinear Gronwall inequality.

Example 11 Let d = r = 1 and consider the following two stochastic delay differential
equations.

{
dx(t) = 1

2 x(t − τ)dt + σ(x(t))dWt ,

x(θ) = φ(θ), θ ∈ J � [−τ, 0], φ ∈ C(J,R),
(4.6)

and
{
dx̂(t) = [ 12 x̂(t − τ) + 1]dt + σ (̂x(t))dWt ,

x̂(θ) = ψ(θ), θ ∈ J, ψ ∈ C(J,R),
(4.7)

where σ(x) =
{

1
2 |x | 4

√
ln 1

|x | , |x | ≤ 1
e ,

1
2e , |x | > 1

e .

First it is obvious that the assumptions (H1), (H2) and (H4) hold for systems (4.6) and
(4.7), and then it is easy to see that for every x, x ′ ∈ R,

|σ(x) − σ(x ′)|2 ≤ ρ
(|x − x ′|2),
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where ρ : R+ → R+ and ρ(x) =
{

1
2 x
√

ln 1
x , x ≤ 1

e ,
1
2e , x > 1

e .
Note that ρ(0) = 0,

∫

0+ dx
ρ(x) =

∞, and ρ(x) is a nondecreasing continuous concave function, hence (H3) holds. Then Theo-
rem 6 can apply to the equations (4.6) and (4.7). However, since σ is not differentiable at the
origin and comparison principle in Chueshov and Scheutzow [6] needs the diffusion term σ

to be at least twice continuously differentiable, their comparison principle cannot applied to
the systems (4.6) and (4.7).
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Appendix: The Proof of Theorem 1

The idea for the proof is partially borrowed from [16].
Since ρ is concave with ρ(0) = 0, there are two positive constants a1, a2 such that

ρ(x) ≤ a1x + a2 for x ≥ 0. (5.1)

As before, �(x) � x + ρ(x) for x ≥ 0.

Lemma 12 For any T > 1 and ξ ∈ L2(Ω,C(I,Rd)), where I is an interval, let

C̃1(ξ) � 3
[
(1 + γ T 2)E ‖ ξ ‖2 +γ T 2 + 4γ T

]
e6γ T (T+2),

C1 � 3γ T (T + 4)e6γ T (T+2),

C2 � 4d(T L + 2),

C3 � C2�(4C̃1(ξ)).

Then T1 � 4C1
C2(4C1+4C1a1+a2)

, depending only on T and ρ rather than on ξ , satisfies that

C2�(C3T1) ≤ C3. (5.2)

Proof T̃1 � 4C̃1(ξ)

C2(4C̃1(ξ)+4C̃1(ξ)a1+a2)
. Then T1 < T̃1 < 1. Since � is increasing on [0,∞), it

suffices to show that

C2�
(
C3T̃1

) ≤ C3 = C2�
(
4C̃1(ξ)

)
.

Equivalently, (C3T̃1) ≤ 4C̃1(ξ), i.e.,

C2�
(
4C̃1(ξ)

)
T̃1 ≤ 4C̃1(ξ).

By (5.1),

C2�
(
4C̃1(ξ)

)
T̃1 ≤ C2T̃1

(
4C̃1(ξ) + 4C̃1(ξ)a1 + a2

) = 4C̃1(ξ).

This proves (5.2). ��
From now on, fix T > 1 and let k be an integer with T

k < T1. Denote by

Ji �
[ iT

k
− τ,

iT

k

]
and Ii �

[ iT

k
,
(i + 1)T

k

]
for i = 0, 1, . . . , k − 1.
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Consider the stochastic functional differential equations

⎧
⎪⎨

⎪⎩

x(t) = ξ
( iT
k

)+
t∫

iT
k

f
(
s, x(s), xs

)
ds + ∫ tiT

k
σ
(
s, x(s)

)
dWs, t ∈ Ii

x(θ) = ξ(θ), θ ∈ Ji .

(5.3)

Proposition 13 Let ξ ∈ L2(Ω,C(Ji ,Rd)) be {Ft }t∈Ji adapted. Then (5.3) has a solution
x ∈ L2(Ω,C([ iTk − τ,

(i+1)T
k ],Rd)) adapted to {Ft }t∈Ji∪Ii and with initial process ξ .

Proof To prove the existence of solution to (5.3), let us construct the following sequence of
successive approximations by setting

⎧
⎪⎨

⎪⎩

xn(t) = ξ
( iT
k

)+
t∫

iT
k

f
(
s, xn−1(s), xn−1

s

)
ds + ∫ tiT

k
σ
(
s, xn−1(s)

)
dWs, t ∈ Ii

xn(θ) = ξ(θ), θ ∈ Ji ,

(5.4)

for n ≥ 1, and

{
x0(t) = ξ

( iT
k

)
, t ∈ Ii

x0(θ) = ξ(θ), θ ∈ Ji .

For every t ∈ Ii , by (5.4) and the Hölder inequality we have

sup
iT
k ≤χ≤t

|xn(χ)|2 ≤ sup
iT
k ≤χ≤t

(

3|ξ( iT
k

)|2 + 3|
χ∫

iT
k

f (s, xn−1(s), xn−1
s )ds|2

+ 3|
∫ χ

iT
k

σ(s, xn−1(s))dWs |2
)

≤ 3
∣
∣
∣ξ

(
iT

k

) ∣
∣
∣
2 + 3

(
t − iT

k

)
t∫

iT
k

∣
∣ f (s, xn−1(s), xn−1

s )
∣
∣2ds

+ 3 sup
iT
k ≤χ≤t

∣
∣
∣

∫ χ

iT
k

σ(s, xn−1(s))dWs

∣
∣
∣
2
.

By the Burkholder–Davis–Gundy inequality we have

E sup
iT
k ≤χ≤t

|xn(χ)|2 ≤ 3E
∣
∣
∣ξ

(
iT

k

) ∣
∣
∣
2 + 3

(
t − iT

k

)
E
(

t∫

iT
k

| f (s, xn−1(s), xn−1
s )|2ds

)

+ 12E
∫ t

iT
k

∣
∣
∣σ(s, xn−1(s))

∣
∣
∣
2
ds.
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It follows from (H4) and t − iT
k ≤ T for t ∈ Ii that

E sup
iT
k ≤χ≤t

|xn(χ)|2 ≤3E

∣
∣
∣
∣ξ(

iT

k
)

∣
∣
∣
∣

2

+3γ

(

t− iT

k

)

⎛

⎜
⎜
⎝

t∫

iT
k

(1+E |xn−1(s)|2+E‖xn−1
s ‖2)ds

⎞

⎟
⎟
⎠

+ 12γ
∫ t

iT
k

(
1 + E |xn−1(s)|2) ds

≤ 3
[
(1 + γ T 2)E‖ξ‖2 + γ T 2 + 4γ T )

]

+ 6γ (T + 2)
∫ t

iT
k

⎛

⎝E sup
iT
k ≤χ≤s

|xn−1(χ)|2
⎞

⎠ ds,

which shows

sup
0≤ j≤n

E sup
iT
k ≤χ≤t

|x j (χ)|2 ≤ 3
[
(1 + γ T 2)E‖ξ‖2 + γ T 2 + 4γ T )

]

+ 6γ (T + 2)
∫ t

iT
k

⎛

⎝ sup
0≤ j≤n

E sup
iT
k ≤χ≤s

|x j (χ)|2
⎞

⎠ ds.

Using the classical Gronwall inequality we get that for t ∈ Ii

sup
0≤ j≤n

E sup
iT
k ≤χ≤t

|x j (χ)|2 ≤ 3
[
(1 + γ T 2)E‖ξ‖2 + γ T 2 + 4γ T )

]
e6γ (T+2)(t− iT

k )

≤ 3
[
(1 + γ T 2)E‖ξ‖2 + γ T 2 + 4γ T )

]
e6γ T (T+2).

In particular,

E sup
t∈Ii

|xn(t)|2 ≤ 3
[
(1 + γ T 2)E‖ξ‖2 + γ T 2 + 4γ T )

]
e6γ T (T+2) = C̃1(ξ), n ≥ 1.

(5.5)

From (5.4) it follows that {xn(t), n ≥ 1, t ∈ Ii } are adapted to (Ft )t∈Ii with continuous
sample paths. Again by (5.4) and the Hölder inequality we get that for any n ≥ 1,m ≥ 1 and
t ∈ Ii

sup
iT
k ≤χ≤t

|xn+m(χ) − xn(χ)|2 ≤ sup
iT
k ≤χ≤t

(
2|

χ∫

iT
k

( f (s, xn+m−1(s), xn+m−1
s ) − f (s, xn−1(s),

×xn−1
s ))ds|2

+ 2|
∫ χ

iT
k

(σ (s, xn+m−1(s))−σ(s, xn−1(s)))dWs |2
)

≤2T

t∫

iT
k

∣
∣ f (s, xn+m−1(s), xn+m−1

s ) − f (s, xn−1(s), xn−1
s )

∣
∣2ds

+ 2 sup
iT
k ≤χ≤t

∣
∣
∫ χ

iT
k

(σ (s, xn+m−1(s)) − σ(s, xn−1(s)))dWs
∣
∣2.
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By (H2), (H3∗), the concavity of ρ and the Burkholder–Davis–Gundy inequality, we have

E sup
iT
k ≤χ≤t

|xn+m(χ) − xn(χ)|2 ≤ 2TdLE

t∫

iT
k

(
|xn+m−1(s)−xn−1(s)|2+‖xn+m−1

s −xn−1
s ‖2

)
ds

+ 8E
∫ t

iT
k

∣
∣
∣σ(s, xn+m−1(s)) − σ(s, xn−1(s))

∣
∣
∣
2
ds

≤ 4TdL

t∫

iT
k

⎛

⎝E sup
iT
k ≤χ≤s

|xn+m−1(χ) − xn−1(χ)|2
⎞

⎠ ds

+ 8d

t∫

iT
k

ρ

⎛

⎝E sup
iT
k ≤χ≤s

|xn+m−1(χ) − xn−1(χ)|2
⎞

⎠ ds

≤C2

t∫

iT
k

�

⎛

⎝E sup
iT
k ≤χ≤s

|xn+m−1(χ) − xn−1(χ)|2
⎞

⎠ ds, (5.6)

where C2 = 4TdL + 8d . The above inequality and (5.5) show that

E sup
iT
k ≤χ≤t

∣
∣xn+m(χ) − xn(χ)

∣
∣2 ≤ C3

(
t − iT

k

)
, (5.7)

where C3 � C2�(4C̃1(ξ)).

Define two sequences of functions {ϕn(t)} and {ϕ̃n,m(t)} on Ii as follows:

ϕ1(t) = C3

(

t − iT

k

)

,

ϕn+1(t) = C2

∫ t

iT
k

�(ϕn(s))ds, n ≥ 1,

ϕ̃n,m(t) = E sup
iT
k ≤χ≤t

|xn+m(χ) − xn(χ)|2, n ≥ 1,m ≥ 1.

We claim that for every n ≥ 1 and m ≥ 1,

0 ≤ ϕ̃n,m(t) ≤ ϕn(t) ≤ ϕn−1(t) ≤ · · · ≤ ϕ1(t), t ∈ Ii . (5.8)

First of all, By (5.2), the assumption T
k < T1 and the monotonicity for �, we have for any

t ∈ Ii ,

C2�

(

C3(t − iT

k
)

)

≤ C3. (5.9)

In view of (5.7) and (5.6), we have

ϕ̃1,m(t) = E sup
iT
k ≤χ≤t

∣
∣x1+m(χ) − x1(χ)

∣
∣2 ≤ C3

(

t − iT

k

)

= ϕ1(t).

ϕ̃2,m(t) = E sup
iT
k ≤χ≤t

∣
∣x2+m(χ) − x2(χ)

∣
∣2
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≤ C2

t∫

iT
k

�

⎛

⎝E sup
iT
k ≤χ≤s

|x1+m(χ) − x1(χ)|2
⎞

⎠ ds

≤ C2

t∫

iT
k

� (ϕ1(s)) ds = ϕ2(t).

But by (5.9) we also have

ϕ2(t) = C2

∫ t

iT
k

�(ϕ1(s))ds ≤ ϕ1(t).

Now we have already shown that for t ∈ Ii ,

ϕ̃2,m(t) ≤ ϕ2(t) ≤ ϕ1(t).

Next we assume that (5.8) holds for some n ≥ 2, then by (5.6)

ϕ̃n+1,m(t) ≤ C2

t∫

iT
k

�

⎛

⎝E sup
iT
k ≤χ≤s

|xn+m(χ) − xn(χ)|2
⎞

⎠ ds

≤ C2

t∫

iT
k

�(ϕn(s))ds = ϕn+1(t)

≤ C2

t∫

iT
k

�(ϕn−1(s))ds = ϕn(t),

that is, (5.8) holds for n + 1 as well. Consequently by induction (5.8) must hold for n ≥ 1.
Now our purpose is to prove

E sup
t∈Ii

∣
∣
∣xl(t) − xn(t)

∣
∣
∣
2 → 0 (5.10)

as l, n → ∞. Note that for every n ≥ 1, ϕn(t) is increasing on Ii and for each t, ϕn(t)
is monotonically nonincreasing as n → ∞. Hence we can define the function ϕ(t) by
ϕn(t) ↓ ϕ(t). It is easy to see that ϕ(t) is continuous and increasing on Ii . By the definition
of ϕn(t) and ϕ(t) we have

ϕ(t) = C2

∫ t

iT
k

�(ϕ(s))ds, t ∈ Ii .

The proof of Corollary 2.3 shows that ϕ(t) = 0, t ∈ Ii . Clearly ϕn(
(i+1)T

k ) ↓ 0 as n → ∞.

Hence for any ε > 0, there exists an integer N ≥ 1 such that ϕn(
(i+1)T

k ) < ε whenever
n > N . For any m ≥ 1 and n > N , the above claim deduces that

E sup
t∈Ii

∣
∣xn+m(t) − xn(t)

∣
∣2 = ϕ̃n,m

(
(i + 1)T

k

)

≤ ϕn

(
(i + 1)T

k

)

< ε.
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So (5.10) holds. It follows that

lim
n,l→∞ E sup

t∈Ji
⋃

Ii

∣
∣
∣xn(t) − xl(t)

∣
∣
∣
2 = 0. (5.11)

For each x(t) ∈ L
2(Ω,C(Ji

⋃
Ii ,Rd)), define ‖x‖� � (E supt∈Ji

⋃
Ii |x(t)|2) 1

2 . Then the

space L2(Ω,C(Ji
⋃

Ii ,Rd)) is a Banach space. Consequently by (5.11) there exists x(t) ∈
L
2(Ω,C(Ji

⋃
Ii ,Rd)) such that

lim
n→∞ E sup

t∈Ji
⋃

Ii

|xn(t) − x(t)|2 = 0.

For any δ > 0, by Chebyshev’s inequality we have

lim
n→∞P

(

sup
t∈Ji

⋃
Ii

|xn(t) − x(t)| ≥ δ

)

= 0.

By the definition of limit, there is a subsequence {nk}∞k=1 satisfying that

P

(

sup
t∈Ji

⋃
Ii

|xnk (t) − x(t)| ≥ 1

k

)

≤ 1

2k
, k ≥ 1.

The Borel–Cantelli Lemma shows that xnk (t) converges to x(t) uniformly on Ji
⋃

Ii almost
surely. It follows that x(t), t ∈ Ii has continuous sample paths and is adapted to {Ft }t∈Ii .
Moreover, simply computation shows that

E sup
t∈Ii

∣
∣
∣
∣
∣

∫ t

iT
k

(
f (s, xn−1(s), xn−1

s ) − f (s, x(s), xs)
)
ds +

∫ t

iT
k

(
σ(s, xn−1(s))

−σ(s, x(s))

)

dW (s)

∣
∣
∣
∣
∣

2

→ 0

as n → ∞. Letting n → ∞, we conclude that x(t), t ∈ Ii satisfies system (5.3). This
completes the proof. ��
Proof of Theorem 2.1 For anyφ ∈ C and T > 1, applying Proposition 13with i = 0, ξ = φ,
we get the solution x = x(t) for (2.1) on I0, which is adapted to {Ft }t∈I0 . Then again using
Proposition 13 with i = 1, ξ = x T

k
, we have a solution for (5.3) on I1 adapted to {Ft }t∈I1 . In

this way, we have extended the solution for (2.1) to the interval I0
⋃

I1. Repeatedly applying
Proposition 13 with ξ = x iT

k
for i = 2, . . . , k − 1 in order, we obtain that the existence for

the strong solution for (2.1) on the interval [0, T ], which is adapted to {Ft }t∈[0,T ]. Since T
is arbitrary, the global strong solution exists. Lemma II.2.1 in [17] guarantees that xt (φ) is a
C-valued process adapted to {Ft }t≥0 with continuous sample paths.

Finally we finish the proof of the uniqueness of solution to system (2.1). To this end, we
assume that {x(t), t ≥ 0} and {x∗(t), t ≥ 0} are solutions to system (2.1). Using the above
similar arguments, we have

E sup
0≤t≤T

|x(t) − x∗(t)|2 = 0.

This shows that {x(t), t ≥ 0} and {x∗(t), t ≥ 0} are modifications of one another, and thus
are indistinguishable. This completes the proof. ��
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Remark 14 Using Fatou Lemma and (5.5) one has

E sup
0≤t≤T

|x(t)|2 ≤ C̃1(φ).

Hence by the pathwise continuity of x(t) andLebesgue’s Theoremon dominated convergence
one concludes that t → E sup0≤χ≤t |x(χ)|2 is continuous.

NoteWe independently obtain the comparison theorem for SFDEs. This result was first pre-
sented in the Second International Conference on Recent Advances in Random Dynamical
Systems, which held in Nanjing Normal University on June 20–23, 2011, and then in sev-
eral international conferences. We submitted it to Stochastic Analysis and Applications on
October 24, 2011 and withdrew the submission on August 18, 2014.
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