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Abstract Turing reaction–diffusion systems have been used to model pattern formation in
several areas of developmental biology. Previous biomathematical Turing system models
employed static domains which failed to incorporate the growth that inherently occurs as an
organism develops. To address this shortcoming, we incorporate an exponentially growing
domain into a Turing system, allowing one to more realistically model biological pattern
formation. This Turing system can generate patterns on an exponentially growing domain in
any of the eleven coordinate systems in which the Helmholtz equation is separable, making
the system incredibly flexible and giving one the capability to mathematically model pattern
formation on a geometrically diverse group of domains. Linear stability analysis is employed
to generate mathematical conditions which ensure such a system can generate patterns. We
apply the exponentially growing Turing system to a prolate spheroidal domain and conduct
numerical simulations to investigate the system’s pattern-generating behavior. We find that
the addition of growth to a Turing system causes a significant change in the pattern-generating
behavior of the system. While a static domain Turing system converges to a final pattern,
an exponentially growing domain Turing system produces transient patterns that continually
evolve and increase in complexity over time.
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1 Introduction

In 1952, A.M. Turing developed a system of reaction–diffusion equations to describe for-
mation of chemical gradient patterns on the developing embryo [15]. Since Turing’s classic
paper, research has been conducted on applying these “Turing systems” to model pattern
formation associated with developmental biology phenomena such as leopard spots, zebra
stripes, and more [11]. Recently, evidence has been found in mice to support the plausibility
of using a Turing system to model biological pattern formation [13].

Let u(X, t) and v(X, t) be the concentrations at position X and time t of an activa-
tor morphogen and an inhibitor morphogen, respectively, on a static domain. Consider the
reaction–diffusion system

∂u

∂t
= du∇2u + f (u, v),

∂v

∂t
= dv∇2v + g(u, v),

⎫
⎪⎪⎬

⎪⎪⎭

(1)

where f (u, v), g(u, v) are the reaction kinetics and du, dv > 0 are the diffusion coefficients
for the activator and inhibitor, respectively. System 1 is called a Turing system and is capable
of generating spatially inhomogeneous patterns when it possesses a spatially uniform steady
state (u0, v0) which is linearly stable in the absence of diffusion but unstable in the presence
of diffusion; these properties are often referred to as the Turing criteria. Turing systems
require that the diffusion coefficient of the inhibitor be greater than that of the activator, so
that du < dv [11]. The resulting “short range activation, long range inhibition” [6] is observed
in numerous biological phenomena, such as organogenesis in transplants [6] and hair follicle
development in mice [13].

Previous biomathematical Turing system models utilized static domains; that is, the
domain upon which the Turing system produced patterns did not change in size. A growing
domain Turing system may be a more realistic way to model pattern formation in biological
phenomena since it incorporates the growth that inherently occurs as an organism develops.
In this paper, we extend previous static domain Turing system research [11,14] by investigat-
ing the role of an exponentially growing domain in a Turing system. Mathematical conditions
whose satisfaction ensures the system will exhibit the characteristic pattern-generating Turing
behavior will be derived. Finally, numerical results will be implemented with BVM kinetics
[3].

2 Growing Domain Turing System Framework

Plaza et al. [12] constructed a general framework in which domain growth can be incorporated
into a Turing reaction–diffusion system. Let St ⊂ R

3 be a two-dimensional regular growing
surface with position vector X = X (ζ, η, t) upon which two chemical substances u =
u (X, t) and v = v (X, t) are reacting and diffusing. If Du, Dv are the diffusion coefficients
of u, v, respectively, then after nondimensionalization System 1 becomes

ut = DΔsu − ∂t (ln (h1h2)) u + ω f (u, v) ,

vt = Δsv − ∂t (ln (h1h2)) v + ωg (u, v) ,

}

(2)
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where

Δsφ = 1

h1h2

[(
h2

h1
φζ

)

ζ

+
(

h1

h2
φη

)

η

]

(3)

is the Laplace–Beltrami operator on St (φ = u, v), h1 = ∣
∣Xζ

∣
∣, h2 = ∣

∣Xη

∣
∣, D = Du/Dv ∈

(0, 1), ω > 0 is the domain scale parameter, and f, g are the dimensionless reaction kinetics.
The term −∂t (ln (h1h2)) φ in each equation of System 2 models dilution of the morphogen
concentration due to the growth of the domain [12]. The domain scale parameter ω is used
to control the strength of the reaction terms versus that of the diffusion and dilution terms.
Reaction terms create peaks of morphogen concentration, while diffusion and dilution terms
smooth out peaks of concentration. The interplay between peak creation and peak smoothing
results in pattern formation. System 2 provides a general framework for a Turing reaction–
diffusion system on a growing domain St . The growth of St is isotropic with growth function
ρ (t) when X (ζ, η, t) = ρ (t) X0 (ζ, η) [12].

For this investigation, we let St be an exponentially growing domain in one of the eleven
coordinate systems in which the Helmholtz equation is separable [18]. We define the position
vector X on St as

X (ζ, η, t) = ρ (t)

⎛

⎝
x0 (ζ, η)

y0 (ζ, η)

z0 (ζ, η)

⎞

⎠ = ρ (t) X0 (ζ, η) ,

where t ≥ 0, ρ (t) = eRt is the growth function with growth rate R > 0, and X0 parameterizes
the domain at t = 0. As discussed above, defining X in this way gives isotropic domain
growth. It then follows that

h1 = ∣
∣Xζ

∣
∣ = ρ (t)

∣
∣∂ζ X0

∣
∣

and

h2 = ∣
∣Xη

∣
∣ = ρ (t)

∣
∣∂ηX0

∣
∣ ,

so the dilution term becomes

−∂t (ln (h1h2)) φ = − ∂

∂t

(
ln

(
ρ2

∣
∣∂ζ X0

∣
∣
∣
∣∂ηX0

∣
∣
))

φ

= −2
ρ̇

ρ
φ,

where φ = u, v and ˙(·) denotes the time derivative ∂
∂t (·). Since ρ (t) = eRt , it follows that

−∂t (ln (h1h2)) φ = −2Rφ.

Thus, a Turing system on an exponentially growing domain takes the form

ut = DΔsu − 2Ru + ω f (u, v) ,

vt = Δsv − 2Rv + ωg (u, v) ,

}

(4)

where u = u (ζ, η, t), v = v (ζ, η, t). Note that setting R = 0 transforms System 4 into a
nondimensional static domain reaction–diffusion system [11]; this will be discussed in more
detail in Sect. 6.
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3 Deriving Turing Conditions: Linear Stability Analysis

It is desirable to determine mathematical conditions that System 4 must satisfy in order to sat-
isfy the two Turing criteria and hence be able to generate Turing patterns. These mathematical
conditions shall hereupon be referred to as Turing conditions. One should note the difference
between the Turing criteria described in Sect. 1, which describe the system’s behavior in the
presence and absence of diffusion, and Turing conditions, which are mathematical equations
whose satisfaction implies compliance with the Turing criteria. Linear stability analysis has
been widely used to derive Turing conditions for static domain Turing systems [11,15]. For
this paper, we will apply linear stability analysis to the growing domain System 4 following
the methods of [7].

3.1 First Turing Criterion: Linear Stability in the Absence of Diffusion

Notice that the Laplace–Beltrami operator in Eq. 3 can be rewritten as

Δsφ = 1

ρ2 Δ†φ,

where

Δ†φ = 1
∣
∣∂ζ X0

∣
∣
∣
∣∂ηX0

∣
∣

⎡

⎣

(∣
∣∂ηX0

∣
∣

∣
∣∂ζ X0

∣
∣
φζ

)

ζ

+
(∣

∣∂ζ X0
∣
∣

∣
∣∂ηX0

∣
∣
φη

)

η

⎤

⎦ .

This allows System 4 to be rewritten as

ut = D

ρ2 Δ†u − 2Ru + ω f (u, v) ,

vt = 1

ρ2 Δ†v − 2Rv + ωg (u, v) .

⎫
⎪⎬

⎪⎭
(5)

In the absence of diffusion, System 5 becomes

ut = −2Ru + ω f (u, v) ,

vt = −2Rv + ωg (u, v) .

}

(6)

Assume System 5 has a spatially uniform steady state (u0, v0) which remains a steady state
in the absence of diffusion; that is, (u0, v0) is the solution to

0 = −2Ru0 + ω f (u0, v0) ,

0 = −2Rv0 + ωg (u0, v0) .

}

(7)

Define

w (t) =
(

u (t) − u0

v (t) − v0

)

=
(

εu

εv

)

(8)

to be a perturbation from the steady state (u0, v0), where 0 < |εu | , |εv| � 1. Using Eq. 8,
System 6 can be rewritten as

wt =
(

ut

vt

)

=
(−2Ru + ω f (u, v)

−2Rv + ωg (u, v)

)

=
(−2R (u0 + εu) + ω f (u0 + εu, v0 + εv)

−2R (v0 + εv) + ωg (u0 + εu, v0 + εv)

)

. (9)
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System 6 can be analyzed by linearizing the nonlinear kinetics functions f and g about the
steady state (u0, v0). A Taylor expansion of ut from Eq. 9 about (u0, v0) gives

ut = −2Ru0 + ω f (u0, v0) + εu
∂
∂u (−2Ru + ω f (u, v)) |(u0,v0)

+ εv
∂
∂v

(−2Ru + ω f (u, v)) |(u0,v0) + O
(
ε2

)
.

(10)

Since (u0, v0) is a steady state of System 6, Eq. 10 can be rewritten as

ut ≈ εu (−2R + ω fu (u0, v0)) + εvω fv (u0, v0) , (11)

where fu = ∂ f
∂u and fv = ∂ f

∂v
. Similarly,

vt ≈ εuωgu (u0, v0) + εv (−2R + ωgv (u0, v0)) . (12)

Equations 8–12 imply

ut ≈ −2Rεu + ω [εu fu (u0, v0) + εv fv (u0, v0)] ,

vt ≈ −2Rεv + ω [εu gu (u0, v0) + εvgv (u0, v0)] ,

and

wt = −2Rw + ωAw, (13)

where

A =
(

fu fv
gu gv

)

(u0,v0)

. (14)

Consider solutions to Eq. 13 of form w (t) = ceλt , where c represents constants. Linear
stability of (u0, v0) in the absence of diffusion implies w → 0 as t → ∞, which occurs
precisely when Re λ < 0. Substituting w (t) = ceλt into Eq. 13 yields

λceλt = ωAceλt − 2Rceλt . (15)

Dividing Eq. 15 through by eλt gives the eigenvalue equation

λc = ωAc − 2Rc,

= Ãc,

where

Ã = ωA − 2RI =
(

ω fu − 2R ω fv
ωgu ωgv − 2R

)

(u0,v0)

.

The characteristic equation of Ã,

det
(

Ã − λI
)

=
∣
∣
∣
∣
ω fu − 2R − λ ω fv

ωgu ωgv − 2R − λ

∣
∣
∣
∣ = 0, (16)

implies that the eigenvalues λ of Ã satisfy the characteristic polynomial

λ2 − λtr Ã + det Ã = 0, (17)

where

tr Ã = ω ( fu + gv) − 4R and

det Ã = ω2 ( fu gv − fvgu) − 2Rω ( fu + gv) + 4R2.
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Since Eq. 17 has solutions

λ1,2 = 1

2
tr Ã ± 1

2

√
(

tr Ã
)2 − 4 det Ã,

it then follows that Re λ will always be negative when

tr Ã < 0 and (18a)

det Ã > 0, (18b)

which are the two mathematical conditions required for System 4 to satisfy the first Turing
criterion.

3.2 Second Turing Criterion: Diffusion-Driven Instability

System 5 can be linearized around the steady state (u0, v0) to yield

wt = DMΔ†w − 2Rw + ωAw, (19)

where w is the perturbation from the steady state (u0, v0) defined in Eq. 8 and

DM = 1

ρ2

(
D 0
0 1

)

.

Let the solutions w to Eq. 19 be of form

w (X, t) =
∑

k

ckeλt Yk (X) , (20)

where Yk are solutions to the Helmholtz equation on St (that is, they satisfy ΔYk +k2Yk = 0
on St ) and ck are the Fourier coefficients, which depend on the initial conditions. Substituting
Eq. 20 into Eq. 19 implies

∑

k

ckλeλt Yk = DM

∑

k

ckeλtΔ†Yk − 2R
∑

k

ckeλt Yk + ωA
∑

k

ckeλt Yk,

which, after dividing through by eλt can be rewritten as
∑

k

ck
(
λYk − DMΔ†Yk + 2RYk − ωAYk

) = 0. (21)

The fact that Yk satisfy the Helmholtz equation allows Eq. 21 to be rewritten as
∑

k

ck
(
λYk + DM k2Yk + 2RYk − ωAYk

) = 0.

Since we desire nontrivial w, it follows that

λYk + DM k2Yk + 2RYk − ωAYk = 0,

which can be rewritten in the form of an eigenvalue equation,

λYk = (−DM k2 − 2RI + ωA
)

Yk,

leading to the characteristic equation

det
(

Ã − DM k2 − λI
)

= 0. (22)
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If we allow k2 = 0, then Eq. 22 reduces to Eq. 16, which is exactly the first Turing criterion
(no diffusion) problem. Thus, for diffusion-driven instability we consider only k2 > 0.

When evaluated, the determinant in Eq. 22 can be rewritten as

λ2 + λ

[
k2

ρ2 (1 + D) − tr Ã

]

+ h
(
k2) = 0, (23)

where

h
(
k2) = D

ρ4

(
k2)2 + k2

ρ2 [2R (1 + D) − ω ( fu + Dgv)] + det Ã.

Notice that h
(
k2

)
is a quadratic equation in k2 and that its constant term equals det Ã. Solving

for λ yields

λ1,2 = −1

2

(
k2

ρ2 (1 + D) − tr Ã

)

±1

2

√
(

k2

ρ2 (1 + D) − tr Ã

)2

− 4h
(
k2

)
. (24)

Diffusion-driven instability of steady state (u0, v0) occurs when Re λ > 0, which is satisfied
when either

k2

ρ2 (1 + D) − tr Ã < 0 (25)

or

λ = −1

2

(
k2

ρ2 (1 + D) − tr Ã

)

+1

2

√
(

k2

ρ2 (1 + D) − tr Ã

)2

− 4h
(
k2

)
(26)

and

h
(
k2) < 0. (27)

From Eq. 18a, −tr Ã > 0. Recall that ρ2, D, k2 > 0 which implies k2

ρ2 (1 + D) > 0. It then
follows that Eq. 25 cannot be satisfied if the first Turing criterion is to be satisfied as well.
Thus, in order to satisfy the second Turing criterion, Eqs. 26 and 27 must hold. A necessary
condition to satisfy h

(
k2

)
< 0 is

2R (1 + D) − ω ( fu + Dgv) < 0 (28)

since D
ρ4

(
k2

)2
> 0, k2

ρ2 > 0, and det Ã > 0 (by Eq. 18b). Equation 28 is the first mathe-
matical condition that must hold to achieve diffusion-driven instability, and the third math-
ematical condition overall for System 4 to be a Turing system. Notice that this is a neces-
sary but not sufficient condition, as the positive square root coefficient of Eq. 24 must be
selected. Another reason that Eq. 28 is necessary but not sufficient for h

(
k2

)
< 0 is that

k2

ρ2 [2R (1 + D) − ω ( fu + Dgv)] must not only be negative but also greater in magnitude

than D
ρ4

(
k2

)2 + det Ã. Also notice that setting D = 1 in Eq. 28 gives

4R − ω ( fu + gv) < 0,
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which directly contradicts Eq. 18a. Thus, for System 4 to be a Turing system, D must satisfy
D 
= 1, which is also true of static domain Turing systems [11].

In order to ensure h
(
k2

)
< 0 and thus Re λ > 0, we derive a fourth Turing condition. For

h
(
k2

)
< 0 to be satisfied, it must be that hmin = min

[
h
(
k2

)]
< 0, since h

(
k2

)
is an upward-

opening parabola. To this end, differentiate h
(
k2

)
with respect to k2 and set the derivative to

zero to find that hmin occurs at

k2 = k2
min = − ρ2

2D
[2R (1 + D) − ω ( fu + Dgv)] ,

so

hmin = h
(
k2

min

) = R2

[

4 − (1 + D)2

D

]

+ Rω

[
1

D
(1 + D) ( fu + Dgv) − 2 ( fu + gv)

]

+ ω2
[

( fu gv − fvgu) − 1

4D
( fu + Dgv)

2
]

.

Hence, to satisfy h
(
k2

)
< 0, it must be that

R2

[

4 − (1 + D)2

D

]

+ Rω

[
1

D
(1 + D) ( fu + Dgv) − 2 ( fu + gv)

]

+ ω2 ( fu gv − fvgu) <
ω2

4D
( fu + Dgv)

2 , (29)

which is the second mathematical condition required for diffusion-driven instability and the
fourth and final mathematical condition required for System 4 to be a Turing system.

3.3 Summary of Turing System Conditions on an Exponentially Growing Domain

The four mathematical conditions required for the exponentially growing domain reaction–
diffusion System 4 to be a Turing system are:

ω ( fu + gv) − 4R < 0,

ω2 ( fu gv − fvgu) − 2Rω ( fu + gv) + 4R2 > 0,

2R (1 + D) − ω ( fu + Dgv) < 0,

R2
[
4 − (1+D)2

D

]
+ ω2 ( fu gv − fvgu)

+Rω
[ 1

D (1 + D) ( fu + Dgv) − 2 ( fu + gv)
]

< ω2

4D ( fu + Dgv)
2 ,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(30)

where the first two conditions give linear stability in the absence of diffusion and the second
two conditions give diffusion-driven instability. Recall that the third condition is necessary
but not sufficient, as it requires

λ = −1

2

(
k2

ρ2 (1 + D) − ω ( fu + gv) + 4R

)

+1

2

√
(

k2

ρ2 (1 + D) − ω ( fu + gv) + 4R

)2

− 4h
(
k2

)

and

h
(
k2) < 0.
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4 Exponentially Growing Domain Turing System with BVM Kinetics

The phenomenological BVM kinetics [3] have been used to study pattern formation in a num-
ber of areas of biology, including fish pigmentation [2,3] and sea urchin podia development
[1]. The static domain nondimensional Turing reaction–diffusion system with nondimen-
sional BVM kinetics [1,16] is given by

∂u
∂t = D∇2u + ω

(
u + av − Cuv − uv2

)
,

∂v
∂t = ∇2v + ω

(
bv + hu + Cuv + uv2

)
,

}

(31)

where D = Du/Dv ∈ (0, 1) is the ratio of diffusion coefficients, ω > 0 is the domain
scale parameter, and a, b, C, h are kinetics parameters. The parameter C controls the relative
strength of cubic and quadratic interactions; for large C quadratic interactions dominate, while
for small C cubic interactions dominate [8]. On a static domain, the nondimensional BVM
system tends to produce spotted patterns when quadratic interactions are present (C > 0)
and striped patterns when quadratic interactions are nonexistent or very minimal (C = 0 or
C near zero) [3,4].

We insert nondimensional BVM kinetics into our exponentially growing domain System 4,
yielding

ut = DΔsu − 2Ru + ω
(
u + av − Cuv − uv2

)
,

vt = Δsv − 2Rv + ω
(
bv + hu + Cuv + uv2

)
.

}

(32)

4.1 Ensuring the Origin is the Only Steady State

Traditional use of BVM kinetics in static domain Turing systems sets parameter values so
that (0, 0) is the only spatially uniform steady state of the system. It is desirable to accomplish
this for the exponentially growing domain System 32 as well. However, adding growth to a
reaction–diffusion system adds the dilution term which must be considered when finding the
steady state(s) of System 32. Recall that the steady state of any Turing system must remain a
steady state in the absence of diffusion. A steady state (u, v) = (u0, v0) of System 32 must
then satisfy

0 = −2Ru0 + ω
(
u0 + av0 − Cu0v0 − u0v

2
0

)
, (33a)

0 = −2Rv0 + ω
(
bv0 + hu0 + Cu0v0 + u0v

2
0

)
, (33b)

from which it follows that

v0 = −u0 (−2R + ω + ωh)

−2R + ωa + ωb
(34)

if −2R + ωa + ωb 
= 0. Requiring −2R + ω + ωh = 0, which implies

h = 2R

ω
− 1, (35)

ensures that v0 = 0 is the only possible v coordinate of the steady state. Substituting v0 = 0
into Eq. 33b yields

0 = ωhu0.

As ω > 0, requiring h 
= 0 ensures that u0 = 0.
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In summary, in order for (0, 0) to be the only steady state of System 32, it must be that

−2R + ωa + ωb 
= 0,

h = 2R

ω
− 1 
= 0, and

ω 
= 2R,

⎫
⎪⎬

⎪⎭
(36)

where the third equation follows readily from the second.

4.2 Selecting Parameters

The numerous parameters of System 32 must have values that satisfy each of the following:

1. The Turing system diffusion coefficient requirement 0 < Du < Dv (for nondimensional
BVM kinetics, this means 0 < D < 1),

2. The conditions required to make (0, 0) the only steady state given by System 36, and
3. The four mathematical Turing conditions in 30.

It is important to note that ensuring D satisfies D < 1 places a restriction on the BVM
parameter b. Since it is desirable to be able to quickly change System 32 to a static domain
system by setting the growth parameter R equal to zero, the system’s parameters must satisfy
the four static domain Turing conditions as well as the four growing domain Turing conditions
in 30. Consider the first and third growing domain Turing conditions,

ω ( fu + gv) − 4R < 0 and

2R (1 + D) − ω ( fu + Dgv) < 0.

Setting the growth rate R = 0 causes these conditions to simplify to the first and third static
domain Turing conditions [11],

fu + gv < 0 and (37)

fu + Dgv > 0. (38)

Notice that Eqs. 37 and 38 imply that fu, gv must have opposite signs and D 
= 1 [11]. Since
D < 1 for System 32, BVM kinetics parameters must be selected such that fu > 0 and
gv < 0. Nondimensional BVM kinetics have partial derivatives

fu = 1, fv = a, gu = h = 2R

ω
− 1, and gv = b,

where all partial derivatives have been evaluated at the unique steady state (0, 0). Therefore,
one must select b < 0 when choosing BVM parameter values for System 32.

Next, one must select values of ω, R, h, a, b (with ω, R > 0 and b < 0) such that (0, 0)

is the only steady state of the system as discussed in Sect. 4.1. Finally, one must then select
values of the remaining parameters C and D (with D < 1) such that the four mathematical
Turing conditions in 30 are satisfied. Applying the conditions in 30 to System 32 gives

ω (1 + b) − 4R < 0,

ω2 (a + b) − 2Rω (1 + a + b) + 4R2 > 0,

2R (1 + D) − ω (1 + Db) < 0, and
ω2 (a + b) + R2

(
2 − 1

D − D
)

+Rω
( 1

D − b − 1 + Db − 2a
)

<
ω2

4D
(1 + Db)2 .

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(39)
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5 Application: Exponentially Growing Prolate Spheroid

To illustrate the effects of incorporating exponential growth into a Turing system, we imple-
ment System 4 on an exponentially growing prolate spheroidal domain. This extends previous
research which analyzed a Turing system on a static prolate spheroidal domain [14].

5.1 Prolate Spheroid Domain

A prolate spheroid is obtained by rotating an ellipse around its major axis. Prolate spheroidal
coordinates are defined by

x = f

2

√(
1 − η2

) (
ξ2 − 1

)
cos 2πζ,

y = f

2

√(
1 − η2

) (
ξ2 − 1

)
sin 2πζ,

z = f

2
ηξ,

where ξ is the radial term with ξ > 1, η = cos θ ∈ [−1, 1] where θ is the polar angle,
ζ = φ

2π
∈ [0, 1) where φ is the azimuthal angle, and f is the interfocal distance where

f = 2
√

a2 − b2 and a, b are the semimajor and semiminor axes, respectively, of the ellipse
[5]. The radial term ξ is inversely proportional to the prolate spheroid’s eccentricity E such
that E = 1

ξ
. It then follows that fixing the value of ξ fixes the shape of the prolate spheroid.

Prolate spheroids for differing values of f and ξ are depicted in Fig. 1; notice that increasing
the value of ξ given a fixed value of f causes the spheroid to become more spherical in
shape, while increasing the value of f given a fixed value of ξ increases the overall size of
the spheroid without altering its shape [5].

System 4 can represent a Turing system on an exponentially growing prolate spheroid
simply by parameterizing the system with the proper position vector X and by computing the
Laplace–Beltrami operator Δs . We define the position vector X on an exponentially growing
prolate spheroid as

X (ζ, η, t) = ρ (t)

⎛

⎜
⎜
⎝

f0
2

√(
ξ2 − 1

) (
1 − η2

)
cos 2πζ

f0
2

√(
ξ2 − 1

) (
1 − η2

)
sin 2πζ

f0
2 ξη

⎞

⎟
⎟
⎠ , (40)

where t ≥ 0, ρ (t) = eRt is again the growth function with R > 0, and f0 is the interfocal
distance of the domain at t = 0. Parameterizing the prolate spheroid in this way gives
isotropic growth.

Computing the Laplace–Beltrami operator Δs on an exponentially growing prolate spher-
oid requires h1 = ∣

∣Xζ

∣
∣ and h2 = ∣

∣Xη

∣
∣ from Eq. 3. It follows from Eq. 40 that

Xζ = ρ (t)

⎛

⎜
⎜
⎝

−π f0

√(
ξ2 − 1

) (
1 − η2

)
sin (2πζ)

π f0

√(
ξ2 − 1

) (
1 − η2

)
cos (2πζ)

0

⎞

⎟
⎟
⎠
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Fig. 1 Prolate spheroids for different values of f and ξ

and

Xη = ρ (t)

⎛

⎜
⎜
⎝

− f0
2 η

√
ξ2−1
1−η2 cos 2πζ

− f0
2 η

√
ξ2−1
1−η2 sin 2πζ

f0
2 ξ

⎞

⎟
⎟
⎠ .

Thus

h1 = ∣
∣Xζ

∣
∣ = √

Xζ · Xζ = (
ρ2 (t) π2 f 2

0

(
ξ2 − 1

) (
1 − η2

)) 1
2

= ρ (t) π f0

√(
ξ2 − 1

) (
1 − η2

)
.

(41)
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Similarly,

h2 = ρ (t)
f0

2

√

ξ2 − η2

1 − η2 . (42)

It then follows that Eq. 3 becomes

Δs = 1

π2ρ2 f 2
0

(
1 − η2

) (
ξ2 − 1

)φζζ + 4
(
1 − η2

)

ρ2 f 2
0

(
ξ2 − η2

)φηη

−4η
(
2ξ2 − η2 − 1

)

ρ2 f 2
0

(
ξ2 − η2

)2 φη. (43)

With the position vector defined in Eq. 40 and the Laplace–Beltrami operator defined in
Eq. 43, System 4 now defines a Turing system on an exponentially growing prolate spheroid.
Applying the linear stability analysis in Sect. 3 where the Yk are prolate spheroidal harmonics
[5] allows the Turing conditions in 30 to describe the Turing parameter space for the prolate
spheroidal system. We select BVM kinetics for our growing prolate spheroidal system, so
that System 32 along with Eqs. 40, 43 define a Turing system with BVM kinetics on an
exponentially growing prolate spheroidal domain. This system shall be the system of interest
for the remainder of the investigation.

5.2 Numerical Results

System 32 on an exponentially growing prolate spheroid was numerically implemented in
Fortran using a forward time, central space finite difference scheme [10]. Parameter values
for BVM kinetics and diffusion coefficient D were selected from the literature [2,9] and were
as follows:

D = 0.516, a = 1.112, b = −1.01, C = 0.

An initial interfocal distance of f0 = 2 was selected and the radial term ξ = 1.3141 was
fixed to give the initial domain a surface area of 4π , equivalent to the surface area of the unit
sphere. Fixing the value of ξ also fixed the domain shape by fixing the eccentricity of the
prolate spheroid. Simulations varied only in the growth rate parameter R and domain scale
parameter ω, where R and ω were selected to satisfy the BVM Turing conditions in 39 as well
as System 36 to ensure (0, 0) was the only steady state of the system. Initial conditions for u
and v consisted of random values φ ∈ [−0.5, 0.5] along the equator of the domain (η = 0)

and zero elsewhere. Due to Turing systems’ characteristic sensitivity to initial conditions [17],
the random values were seeded so that all simulations shared the same initial conditions.

We observed that the patterns produced by System 32 on an exponentially growing prolate
spheroid continually evolve as time progresses; that is, the system does not converge to one
final pattern (see Figs. 2, 3, 4). This observation of transient patterns is consistent with obser-
vations in the literature for a Turing system on other growing domains [12]. This contrasts
with patterns created by static domain Turing systems in which the system converges to one
final pattern [11]. Thus, the addition of growth to a Turing system causes a significant change
in the system’s behavior.

We observed that the patterns produced by System 32 on an exponentially growing prolate
spheroid often fluctuate between a striped pattern and a spotted pattern (see Fig. 2), though
striped patterns were more prevalent due to our choice of BVM parameter C . We also observed
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Fig. 2 Evolution of transient Turing patterns given by System 32 on a prolate spheroid with f0 = 2, ξ =
1.3141, R = 0.01, and ω = 138.3

that the patterns increase in complexity over time; that is, the number of spots/stripes increases
as elapsed time t progresses (see Fig. 3).

When varying the growth rate R, we observed that increasing R leads to more complex
patterns (more stripes or more spots) at any given elapsed time of a simulation (compare Fig. 2
with Fig. 3). Increasing the domain scale parameter ω also yields more complex patterns at
any given elapsed simulation time (compare Fig. 3 with 4). Another effect observed by
increasing R or ω was a higher frequency of pattern change. In other words, the pattern
evolves faster and changes from one pattern to another more quickly when a larger R or ω

value is selected.
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Fig. 3 Turing patterns given by System 32 on a prolate spheroid with f0 = 2, ξ = 1.3141, R = 0.05, and
ω = 138.3. Observe that the the number of stripes/spots increases over time

6 Discussion

A strength of the exponentially growing domain Turing system in 4 is that it can be used to
construct a Turing system on any of the eleven coordinate systems in which the Helmholtz
equation is separable, such as the sphere [7]. This gives System 4 great flexibility and the
potential to be used for mathematical modeling on a geometrically diverse group of domains.
A further strength is that setting the growth rate to R = 0 completely reduces System 4 to
the static domain Turing system [11],

ut = D∇2u + ω f (u, v) ,

vt = ∇2v + ωg (u, v) .

}

(44)
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Fig. 4 Turing patterns given by System 32 on a prolate spheroid with f0 = 2, ξ = 1.3141, R = 0.05, and
ω = 69.15. Notice how the patterns at each respective value of t are less complex compared to those in Fig. 3

Setting R = 0 reduces the four growing domain Turing conditions in 30 to the four static
domain Turing conditions

tr A = fu + gv < 0, (45a)

det A = fu gv − fvgu > 0, (45b)

fu + Dgv > 0, (45c)

det A <
1

4D
( fu + Dgv)

2, (45d)

where all partial derivatives are evaluated at (u0, v0) and A is defined as in Eq. 14 [11].
Furthermore, if BVM kinetics are selected, setting R = 0 gives h = −1 (see Eq. 35), which
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is the required h value needed to preserve the uniqueness of steady state (0, 0) for static
domain BVM Turing systems [2,16].

Two important differences are noted when comparing the first two Turing conditions for
the growing domain reaction–diffusion System 4 to those of System 44. Comparing Eqs. 18a
to 45a shows that while the static case requires that the quantity ( fu + gv) be strictly negative,
the growing case could allow for positive values of ( fu + gv) due to the −4R term (recall
that ω, R > 0). This allows for the Turing parameter space of the growing domain System 4
to be larger than that of the static domain System 44. Furthermore, Eq. 18b implies

ω2 ( fu gv − fvgu) > 2R [ω ( fu + gv) − 2R] > 2R [ω ( fu + gv) − 4R] = 2R tr Ã,

showing that for the growing domain System 4, the quantity ( fu gv − fvgu) need only be
greater than some negative number (Eq. 18a requires that tr Ã < 0). On the the other hand,
the corresponding static domain Turing condition, given by Eq. 45b, again has a stricter
requirement, forcing ( fu gv − fvgu) to be strictly positive. This again allows for the Turing
parameter space of a growing domain system to be larger than that of a static domain system.

Numerical simulations of System 32 on an exponentially growing prolate spheroidal
domain show that incorporating growth into a Turing system evokes an important change
in the pattern-generating behavior of the system. Whereas static domain Turing systems
converge to a final pattern as elapsed time t progresses, a growing domain Turing system
generates transient patterns that continually evolve from one increasingly complex pattern to
another. Furthermore, the overall complexity of the pattern produced by the system (number
of stripes/spots) at a given t and the rate at which the transient patterns evolve can be moder-
ated by altering certain system parameters. Increasing the growth rate R or the domain scale
parameter ω not only increases the number of stripes/spots in the generated pattern at any
given elapsed time t but also increases the rate of transient pattern evolution.

It would be interesting to compare the patterns produced by an exponentially growing
Turing system on a prolate spheroidal domain with patterns generated by the system on other
exponentially growing domains. It would also be interesting to see if similar results would
be obtained by implementing other growth functions, such as linear or logistic growth, into
the growing domain Turing system framework discussed in Sect. 2. We expect growth rate
and domain scale to play critical roles in other domains as well.
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