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Abstract We consider an extended three-dimensional Bonhoeffer–van der Pol oscillator
which generalises the planar FitzHugh–Nagumo model from mathematical neuroscience, and
which was recently studied by Sekikawa et al. (Phys Lett A 374(36):3745–3751, 2010) and
by Freire and Gallas (Phys Lett A 375:1097–1103, 2011). Focussing on a parameter regime
which has hitherto been neglected, and in which the governing equations evolve on three
distinct time-scales, we propose a reduction to a model problem that was formulated by Krupa
et al. (J Appl Dyn Syst 7(2):361–420, 2008) as a canonical form for such systems. Based
on results previously obtained in Krupa et al. (2008), we characterise completely the mixed-
mode dynamics of the resulting three time-scale extended Bonhoeffer–van der Pol oscillator
from the point of view of geometric singular perturbation theory, thus complementing the
findings reported in Sekikawa et al. (2010). In particular, we specify in detail the mixed-
mode patterns that are observed upon variation of a bifurcation parameter which is naturally
obtained by combining two of the original parameters in the system, and we derive asymptotic
estimates for the corresponding parameter intervals. We thereby also disprove a conjecture of
Tu (SIAM J Appl Math 49(2): 331–343, 1989), where it was postulated that no stable periodic
orbits of mixed-mode type can be observed in an equivalent extension of the Bonhoeffer–van
der Pol equations.
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School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, James
Clerk Maxwell Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK
e-mail: Nikola.Popovic@ed.ac.uk

123



956 J Dyn Diff Equat (2014) 26:955–987

Mathematics Subject Classification (2010) 34D15 · 34E13 · 34E17 · 34E20 · 34C26 ·
37G15

1 Introduction

In this article, we consider the three-dimensional Bonhoeffer–van der Pol oscillator, a known
extension of the classical planar FitzHugh–Nagumo equations from mathematical neuro-
science [9], which was studied most recently by Sekikawa et al. [17] and by Freire and
Gallas [7]. Specifically, we are concerned with the following system of equations:

εẋ = x(1 − x2) + y + z, (1a)

ẏ = −x − k1 y + B0, (1b)

ż = k3(−x − k1z + B0); (1c)

here, we have retained the notation of [17], with ε the ‘small’ singular perturbation parameter
and three additional parameters which are denoted by B0, k1, and k3.

Equation (1) is known to display rich dynamics on at least two different time-scales
due to the presence of the small parameter ε [7,17]. Here, we focus on the stable mixed-
mode oscillatory behaviour [3] that was reported both numerically and experimentally—by
construction of an equivalent electrical circuit—in [17]; in the follow-up article [7], the
resulting mixed-mode patterns were organised systematically in terms of Farey trees, as
well as of more general Stern-Brocot trees. In both studies, the two parameters B0 and k3

were identified as crucial for the unfolding of the bifurcation structure of (1); in particular,
Sekikawa et al. [17] observed mixed-mode dynamics close to a pair of (supercritical) Hopf
bifurcations which occur in (1) for B0 ≈ ± 1

2 , where, additionally, k3 was assumed to be
close to one. (We note that there is a symmetry (x, y, z, B0) → (−x,−y,−z,−B0) in
Eq. (1), allowing us to restrict our study to the regime where B0 > 0 or, rather, to consider
B0 ≈ 1

2 only.) Mixed-mode oscillations (MMOs) are typically found in dynamical systems
that evolve on multiple scales, and that are hence ‘fast-slow;’ see [3] and the references
therein for details. Due to the oftentimes complex nature of these systems, the presence
of MMOs is frequently established only numerically; almost equally often, it is proven by
applying geometric singular perturbation theory [6,10]. The latter approach crucially relies
on a separation of scales to achieve a (partial) dimension reduction, thus allowing for a
semi-analytical treatment in many cases. One downside of the geometric approach, however,
is that, strictly speaking, it is only valid in the limit as ε → 0, where ε defines the scale
separation in the system. Fortunately, the analysis frequently does extend to ‘reasonable’
values of ε > 0; in fact, numerical evidence presented in Sect. 4 below suggests that the
results obtained in this article may remain valid for ‘moderately large’ ε(=0.1).

Our aim here is to analyse Eq. (1) from the point of view of geometric singular perturbation
theory, focussing on a parameter regime that has not been considered in previous work [7,17]:
we will show that, for 0 � k3 � 1, Eq. (1) evolves on three distinct time-scales, and we
will describe in detail the corresponding mixed-mode dynamics, thus complementing the
findings of Sekikawa et al. [17]. Specifically, it follows from (1c) that z is a ‘super-slow’
variable then; in fact, in the limit of k3 = 0, z is constant, i.e., the system reduces to a van
der Pol-like oscillator that can undergo a ‘classical’ canard explosion [5,12], transitioning
from a stable equilibrium to relaxation oscillation via a family of canard cycles as z is varied.
(Similarly, a reduction to a planar FitzHugh–Nagumo system is feasible when k3 = 1: after
introduction of y + z as a new variable, it becomes apparent that the (x, y + z)-equations
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decouple.) It is hence reasonable to assume that a canard phenomenon underlies the mixed-
mode dynamics which is generated by Eq. (1) when k3 is non-zero, but small. In fact, the
so-called ‘generalised canard mechanism’ [1] has been proposed as a unified generating
mechanism for mixed-mode behaviour in singularly perturbed systems of equations such
as (1): typically, MMOs are characterised by an alternation of small-amplitude oscillations
(SAOs) that are followed by large excursions, or large-amplitude oscillations (LAOs). The
former can frequently be shown to be due to (local) flow past a canard point, while the latter
can be described by a (global) relaxation-like return mechanism. Periodic mixed-mode type
orbits consisting of k SAOs and L LAOs are identified with the signature Lk ; knowledge
of the possible signatures in a given system, in combination with estimates for the relevant
parameter intervals, characterises completely the mixed-mode dynamics of the system.

In our case, with 0 � k3 � 1, such a characterisation is conveniently achieved by reducing
Eq. (1) to the simplified three time-scale model

εv̇ = −z + f2v
2 + f3v

3, (2a)

ż = v − w, (2b)

ẇ = ε(μ − g1z), (2c)

which was proposed in [14] as representative for that type of system. Here, f2, f3, and
g1 denote fixed parameters, ε is assumed to be a small parameter, as above, and μ is the
bifurcation parameter that unfolds the mixed-mode dynamics of (2).

While no comprehensive theory exists for perturbative scenarios that involve more than
one singular parameter, in the seminal article [14], Krupa et al. characterised the mixed-mode
dynamics that is generated by Eq. (2). The authors then argued that their model is prototypical,
in that it reflects the dynamical properties of three time-scale systems with similar local
structure, as described in their article. While the analysis of [14] does not translate verbatim
to the context of the extended Bonhoeffer–van der Pol oscillator, Eq. (1), as we encounter
additional terms in the reduced equations that are not present in (2), we nevertheless reach
analogous conclusions on the resulting mixed-mode dynamics. Our study hence underpins
the claim made in [14], namely, that Eq. (2) truly represents a canonical form. (We remark
that a reduction of the so-called Wilson–Calloway model for the dopaminergic neuron [23]
to (2) can be found in the related article [15]; our analysis will be similar in spirit to theirs.)

Finally, we note that the extended Bonhoeffer–van der Pol oscillator has been considered
as a three time-scale system before, in [21], albeit in a slightly different formulation. Based
on detailed asymptotics—which, incidentally, bears some resemblance to our approach—
and numerical simulation, the author of that article was led to conclude the likely absence
of stable periodic orbits of mixed-mode type in the system. Applying geometric singular
perturbation theory, we disprove that conjecture rigorously.

This article is organised as follows. In Sect. 2, we study Eq. (1) in the standard two time-
scale form of geometric singular perturbation theory, with one fast variable x and two slow
variables (y, z). In Sect. 2.1, we describe the singular flow that is obtained for ε = 0 in (1).
Then, in Sect. 2.2, we locate so-called ‘folded equilibria,’ which are crucial to the generation
of canard-induced SAOs in the observed mixed-mode time series, and we identify a ‘folded
saddle-node of type II’ (FSN II) [13,19] as the ‘organising centre’ for the dynamics. In
Sect. 2.3, we introduce a local formulation for Eq. (1) close to that folded equilibrium;
moreover, we define the bifurcation parameter μ—a combination of k1 and B0—which
unfolds the mixed-mode dynamics of (1). Finally, in Sect. 2.4, we apply standard geometric
theory [6,10] to approximate the global return mechanism which resets the flow to the SAO
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regime after passage through the fold region, and which hence accounts for the LAO portion
of the resulting mixed-mode time series.

In Sect. 3, we perform a proper three-scale analysis of the transformed ‘localised’ version
of (1) obtained in Sect. 2, under the additional assumption that k3 = O(ε). (For simplicity, and
in agreement with the parameter regime considered in [17], we will assume k3 = 0.1 = ε.)
In Sect. 3.1, we study the local dynamics near the folded saddle-node identified in Sect. 2.2
by means of a ‘blow-up’ transformation [5,12] which uncovers the near-integrable structure
of the equations, thus desingularising the flow there. Next, we describe the entry into, and the
exit from, the fold region, which completes our analysis of the local dynamics. In Sect. 3.2,
we then combine the resulting asymptotic estimates with our description of the global return,
thus obtaining an approximation for the first-return map of the three time-scale Bonhoeffer–
van der Pol oscillator. In Sect. 3.3, we discuss the bifurcation structure of that map, with a
particular focus on secondary (‘bifurcating’) canards and sectors of rotation; then, in Sect. 3.4,
we outline a reduction to an essentially one-dimensional map, which we analyse in accordance
with [14,15].

Finally, in Sect. 4, we discuss our findings, and we illustrate them numerically; moreover,
we present potential pointers for future research.

2 Two Time-Scale Analysis

Assuming, for the time being, that the parameter k3 in Eq. (1c) does not scale with ε, we
may interpret the equations in (1) as a fast-slow system in standard form that evolves on two
distinct time-scales, the ratio of which is given by the singular perturbation parameter ε.

2.1 Reduced Flow

Setting ε = 0 in (1) and considering the resulting reduced equations, we find the (two-
dimensional) critical manifold

S0 := {
(x, y, z)

∣
∣ y = ϕ(x, z) = −x(1 − x2) − z, (x, y, z) ∈ D ⊂ R

3},

where D := [−x0, x0] × [−y0, y0] × [−z0, z0] is a compact subset of R
3 with z0 >

√
3

9 ,

y0 > 2
√

3
9 + z0, and x0 > 2

√
3

3 ; the corresponding layer dynamics is given by horizontal

fibres in the x-direction, with y and z fixed. Solving ∂ϕ
∂x (x, z) = −(1 − 3x2) = 0 for x ,

one then readily verifies that S0 is normally hyperbolic except at the two fold lines �± :=
{
(x, y, z)

∣
∣ x = ±

√
3

3 , y = −z∓ 2
√

3
9 , z ∈ [−z0, z0]

}
, with z0 as above. Hence, it follows that

the manifold S0 can be written as the union of three sheets, S0 = Sa−
0 ∪Sr

0 ∪Sa+
0 , with Sa±

0

attracting and Sr
0 repelling; here, Sa−

0 , Sr
0 , and Sa+

0 are defined by x < −
√

3
3 , x ∈ (−

√
3

3 ,
√

3
3 ),

and x >
√

3
3 , respectively, with y and z varying accordingly. (An illustration of the resulting

geometry—albeit in a transformed coordinate frame, to be introduced in Sect. 2.3 below—
can be found in Fig. 1; here, we remark that the assumptions on x0, y0, and z0 in the definition
of the set D above are made precisely to encapsulate that geometry.) For ε > 0 sufficiently
small, we then denote the corresponding sheets of the slow manifold Sε by Sa−

ε , Sr
ε , and

Sa+
ε , respectively.

Next, we recall that we have opted to consider only the regime where B0 > 0 in (1); then,
it is easy to verify that the ‘left’ fold line �− is always of jump type in that regime, with a slow
flow that is pointed in the direction of increasing y. As is well known, geometric singular
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Fig. 1 Geometry of Eq. (6)

perturbation theory [6,10] can be combined with the desingularisation technique known as
‘blow-up’ [4,12] to describe the flow near �−; see also [20], where the resulting relaxation
dynamics is studied from a geometric point of view.

The flow near the ‘right’ fold �+, on the other hand, is more involved; in particular, we
argue that the presence of a (singular) Hopf bifurcation [8] near �+ for B0 ≈ 1

2 suggests
the occurrence of complicated canard-type dynamics there, i.e., the existence of solutions
that cross from the attracting sheet Sa+

ε to the repelling sheet Sr
ε , staying near the latter

for extended periods of time before being repelled away. To describe the corresponding
dynamics, we first verify the presence of ‘folded equilibria’ [19,22] in (1), which are a
necessary prerequisite for the existence of canard trajectories.

2.2 Folded Equilibria

To determine the folded equilibria of Eq. (1), we proceed as in [15, Sect. 2.4]: we set ε = 0
in (1a) and then differentiate the relation ϕ(x, z) − y = 0 with respect to time τ , obtaining
ẏ = ∂ϕ

∂x ẋ + ∂ϕ
∂z ż = −(1−3x2)ẋ − ż. Substituting for ẏ and ż from (1b) and (1c), respectively,

we have

−(1 − 3x2)ẋ = −x + k1[x(1 − x2) + z] + B0 + k3(−x − k1z + B0).

Appending Eq. (1c) and desingularising the resulting system by multiplication of the right-
hand sides with a factor of ∂ϕ

∂x , we find the projection of the reduced flow on S0 onto the
(x, z)-plane in a neighbourhood of �+:

ẋ = −x + k1[x(1 − x2) + z] + B0 − k3(x + k1z − B0), (3a)

ż = k3(x + k1z − B0)(1 − 3x2). (3b)
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Now, ‘folded equilibria’ of Eq. (1) [15] correspond to equilibrium points (x+, z+) of (3) that
satisfy ∂ϕ

∂x (x+, z+) = 0, and that are hence located at

x+ =
√

3

3
and z+ = 3

√
3(1 − √

3B0)(1 + k3) − 2
√

3k1

9k1(1 − k3)
. (4)

(‘Regular’ equilibria of (3), i.e., equilibria that do not lie on �+, are found by requiring that
x + k1z − B0 = 0 and −x + k1[x(1 − x2) + z] + B0 = 0 hold simultaneously.) For future
reference, we note that z+ depends on the parameters k1, k3, and—most importantly—B0.

Since, moreover, ∂ϕ
∂x < 0 for −

√
3

3 < x <
√

3
3 , the desingularisation leading to (3) effectively

reverses the direction of the flow on Sr
0 , allowing for the existence of canard trajectories that

can pass from Sa+
0 to Sr

0 via the folded equilibrium at P+ = (x+, z+); see again [19,22] for
details.

We claim that the point P+ undergoes a saddle-node bifurcation on the fold line �+ for
some critical value B∗

0 of the parameter B0:

Lemma 1 The folded equilibrium P+ = (x+, z+), with x+ and z+ defined as in Eq. (4),

undergoes a saddle-node bifurcation of type II as B0 passes through B∗
0 ≡

√
3

9 (3 − k1).

Proof Linearising Eq. (3) about P+, we obtain

J =
[ −(1 + k3) k1(1 − k3)

−4
√

3k3
3
√

3−√
3k1−9B0

9(1−k3)
0

]

for the Jacobian of the reduced flow at (x+, z+), as given in (4). Since the trace of J is
−(1 + k3), while the determinant is of the order k3, we deduce that one of the eigenvalues of
J equals −1 + O(k3), while the other is O(k3). Solving det J = 0 for B0, we find that the

latter eigenvalue equals zero for 3− k1 −3
√

3B0 = 0, which yields B0 =
√

3
9 (3− k1) ≡ B∗

0 ,
as claimed.

Finally, it is straightforward to verify that the eigendirection corresponding to the zero
eigenvalue for B0 = B∗

0 is transverse to the fold line �+, i.e., that P+ is a folded saddle-node
of type II; see [19] for details. (In fact, one calculates that the eigenvalue-eigenvector pairs
of J for B0 = B∗

0 are given by {−(1 + k3), (1, 0)} and {0, (k1
1−k3
1+k3

, 1)}, respectively.) �
Remark 1 Alternatively, one can determine B∗

0 by considering the (2, 1)-entry of the Jacobian
J : B∗

0 is precisely the value of B0 for which that entry equals zero. �
In sum, one hence obtains the following picture for the projected reduced flow of Eq. (1):

when B0 > B∗
0 , a stable node equilibrium exists on the ‘right’ (attracting) sheet Sa+

0 of
S0, while P+ is a folded saddle; for B0 = B∗

0 , that equilibrium coalesces with P+ in a
transcritical bifurcation of a saddle and a node, i.e., the point P+ undergoes a saddle-node
bifurcation on the fold �+. (In fact, one can show that P+ is both a regular and a folded
equilibrium in that case.) Finally, when B0 < B∗

0 — which is the regime we are interested
in—P+ is a folded node, while a saddle equilibrium is found on the ‘middle’ (repelling)
sheet Sr

0 of S0.

2.3 Local Formulation

In this subsection, we rewrite Eq. (1) in a form that is more suitable for the following analysis;
to that end, we perform a series of coordinate changes which transform (1) into an equivalent
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set of equations that is centred on the ‘right’ fold line �+. We begin by translating the folded
equilibrium at P+ to the origin by introducing the new variables

v = −(x − x+), p = y + z − (y+ + z+) = y + z + 2

9

√
3, and q = z − z+;

here, x+ and z+ are defined as in Eq. (4), while the constant in the definition of p is obtained
by solving 0 = x+(1 − x2+) + y+ + z+, as found from (1a), for y+ + z+. (The change of
sign in the definition of v additionally reflects the critical manifold S0 about the q-axis, thus
bringing it into a more familiar configuration; clearly, that reflection reverses the location of
the two sheets Sa±

ε , with Sa+
ε becoming the ‘left’ attracting sheet and Sa−

ε the ‘right’ one.)
The system of equations resulting from the above transformation is given by

εv̇ = √
3v2 − v3 − p, (5a)

ṗ = (1 + k3)v + k1(1 − k3)q − k1 p, (5b)

q̇ = k3(v − k1q − μ), (5c)

where μ = 2
1−k3

(B∗
0 − B0) denotes a new parameter, with B∗

0 defined as in the statement of
Lemma 1.

Finally, to reduce these equations to a form that is as close as possible to the canonical
system in (2), we rescale q by introducing the new variable w = −k1q , and we abuse notation
slightly, relabelling p as z for consistency with [14]:

εv̇ = √
3v2 − v3 − z, (6a)

ż = (1 + k3)v − (1 − k3)w − k1z, (6b)

ẇ = k1k3(μ − w − v). (6c)

For future reference, we remark that the critical manifold S0 is given by z = f (v) :=√
3v2 − v3 in the context of Eq. (6); the corresponding reduced geometry of (1) in the

singular limit of ε = 0 is sketched in Fig. 1.

2.4 Global Return Mechanism

Before considering in detail the local dynamics of (6) in a neighbourhood of the fold line
�+, we discuss the global return mechanism which reinjects the flow into the fold region
after relaxation has occurred. As in [14, Sect. 2.1], we first define two sections, a section
�in : {v = −ρ} through the attracting sheet Sa+

0 and a section �out : {v = δ} across
the fast foliation of S0, with ρ, δ > 0 small, but fixed, and |z| and |w| bounded; see Fig. 2
for an illustration. The global return from �out to �in under the flow of (6) can then be
approximated to leading order via the slow evolution of v along the attracting sheets Sa−

0
and Sa+

0 of the critical manifold S0, as illustrated in Fig. 3; in particular, one may neglect the
transition from �+ to Sa−

0 and from �− to Sa+
0 , respectively, under the corresponding layer

flow, as was also done in [14, Sect. 2.5].
Thus, we have the following result on the leading-order asymptotics of the map 
ret :

�out → �in, the proof of which closely follows [14, Sect. 2.5] and [15, Sect. 3.3]:

Lemma 2 Let w0 > 0 be sufficiently small; then, the w-component of the global return map

ret : �out → �in satisfies

ŵ := 
ret(w) = w + k1k3

[
3
(

1 − 1

2
k1

)
μ − 1

2

√
3k1

]
(7)

to leading order in k3 and ε, for any w ∈ [−w0, w0] ⊂ �out.

123



962 J Dyn Diff Equat (2014) 26:955–987

Fig. 2 Sections for the flow of (6)

Fig. 3 Geometry of global return

Proof We consider the projection of the reduced flow corresponding to Eq. (6) onto the
critical manifold S0, the accuracy of which will be sufficient for deriving the leading-order
approximation for 
ret considered here; cf. also [14, Sect. 2.5]. Proceeding as in Sect. 2.2,
i.e., noting that z = f (v) implies ż = f ′(v)v̇ and desingularising the resulting (v,w)-system
by multiplication with a factor of − f ′(v), which is positive on the two attracting sheets Sa±

0
of S0, we find
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v̇ = −(1 + k3)v + (1 − k3)w + k1 f (v), (8a)

ẇ = −k1k3 f ′(v)(μ − v − w). (8b)

Next, we note that w = O(1) in the parameter regime which is of interest to us, as 0 � k3 � 1
then, whereas v = O(1) and z = O(1) during the global return phase. (Specifically, numerical
evidence suggests that one may assume w = O(k3) throughout; see also Assumption 1
below.) Hence, approximating (8a) by v̇ ≈ −v + k1 f (v) and neglecting the w-dependence
in (8b), we obtain

dw

dv
= k1k3

f ′(v)(μ − v)

v − k1 f (v)
, (9)

to lowest order in k3 and ε. Now, we observe that, with k1 fixed, the condition |k1
f (v)
v

| < 1
is certainly satisfied for v in some appropriately chosen (compact) interval. (In fact, for
k1 = 0.35, as in [17], it suffices to take v ∈ [v∗

max, v0], where v∗
max and v0 are defined below,

as | f (v)
v

| ≤ 4
3 on that interval.) Hence, we may approximate 1

v−k1 f (v)
≈ 1

v
[1 + k1

f (v)
v

],
which implies

dw

dv
= k1k3

f ′(v)

v
(μ − v)

[
1 + k1

f (v)

v

]
. (10)

Finally, following [14,15], we define

G(v∗, v, μ) := k1

v∫

v∗

f ′(σ )

σ
(μ − σ)

[
1 + k1

f (σ )

σ

]
dσ ;

then, we may write the leading-order solution to (10) as ŵ = w + k3[G(v0, vmax, μ) +
G(v∗

max,−ρ,μ)], where the limits of integration are defined as vmax = 2
3

√
3, v∗

max = − 1
3

√
3,

and v0 = √
3, with ρ as in the definition of the section �in above. (Here, we have adopted

the notation of [14], where vmax is the value of v for which f attains its local maximum,
v∗

max < 0 is defined by the requirement that f (v∗
max) = f (vmax), and v0 > 0 is the second,

non-trivial zero of f ; cf. again Fig. 3.) Replacing G(v∗
max,−ρ,μ) with G(v∗

max, 0, μ), as was
done in [14, Sect. 2.5], and evaluating the resulting integrals, we find (7), as claimed, which
completes the proof. �
Remark 2 While 
ret is a function of the two variables z and w, it reduces to a one-
dimensional map (in w) to the order considered here, by Eq. (7). Hence, we have opted
to suppress the z-dependence of 
ret in our notation. �

In particular, given Lemma 2, we may approximate the critical value μc of μ beyond
which the flow of (6) exhibits pure relaxation oscillation: requiring that ŵ = w in (7), as in
[14, Sect. 2.5], i.e., solving the term in square brackets therein for μ, we have

Corollary 1 The critical μ-value μc for which mixed-mode dynamics ceases to exist in

Eq. (6) is given by μc = 1
3

√
3k1

2−k1
, to lowest order in k3 and ε.

Evaluating μ for k1 = 0.35, as in [17], we obtain μc = 0.070
√

3 ≈ 0.12247, which is in
good agreement with numerical simulation; see Sect. 4 below. (In fact, explicit integration
of (9), and evaluation at the same limits as in the proof of Lemma 2, yields μc ≈ 0.09769,
which is well within O(k2

3, k3ε) of the estimate given in Corollary 1, as expected.)
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Remark 3 For future reference, we note that Eq. (7) yields an approximation for 
ret which
is accurate up to an O(ε2 ln ε)-error when k3 = ε, as is assumed in the following section.
In fact, projecting the flow of (6) onto the slow manifold Sε instead of onto S0, one can
show that the error incurred by Eqs. (8) and (9) is of the order O(ε2) when w = O(ε),
while an O(ε2 ln ε)-contribution is introduced through passage past the fold line �−; see [20,
Theorem 1] for details. �

3 Three Time-Scale Analysis

Given the parameter regime studied by Sekikawa et al. [17], with k1 = 0.35 and ε = 0.1, it
seems reasonable to set k3 = ε in Eq. (6); then, the variable w will vary on a third (‘super-
slow’) time scale, as (6c) implies ẇ = O(ε) throughout. (Since, clearly, v = O(1) and
z = O(1) during relaxation, cf. the proof of Lemma 2 as well as Fig. 3, it follows that the
variables v and z will remain ‘fast’ and ‘slow,’ respectively.)

Hence, replacing k3 with ε and writing κ instead of k1 for compactness, we obtain the
system of equations

εv̇ = √
3v2 − v3 − z, (11a)

ż = v − w − κz + ε(v + w), (11b)

ẇ = εκ(μ − w − v) (11c)

from (6) which, together with the corresponding fast system

v′ = √
3v2 − v3 − z, (12a)

z′ = ε[v − w − κz + ε(v + w)], (12b)

w′ = ε2κ(μ − w − v), (12c)

will be the starting point for our study of the three time-scale Bonhoeffer–van der
Pol oscillator. (Here, the prime denotes differentiation with respect to the fast time
t = τ

ε
.)

In the remainder of this article, we will characterise the mixed-mode dynamics that is
induced by the flow of Eq. (11); as we will show below, the resulting asymptotics will
be very similar ‘qualitatively’ to the picture painted in [14], even if some of the specifics
of the analysis will differ. Following [14,15], we will restrict the parameter μ—which we
have identified as the relevant bifurcation parameter above—to some interval (μ,μ) on
which stable ‘mixed’ MMO dynamics can unfold in (11). Since we will not consider the
‘pure’ relaxation (LAO) regime in (11), where μ > μc, we must have μ � μc. How-
ever, we will also disregard the purely oscillatory (SAO) regime that is obtained for μ

close to zero: as numerical simulation implies the occurrence of a (singular) Hopf bifur-
cation [8] O(ε)-close to the fold at �+—and, hence, the onset of small-amplitude oscillatory
dynamics—for μ ≡ μH ≈ 0.02072, it follows that μ � μH must hold; see Sect. 4 below for
details.

It remains to show that the interval (μ,μ) is non-empty: since μc = O(ε) in the parameter
regime considered here, as stated in Sect. 2.4 above, while μH = O(ε2), we may conclude
that the width of (μ,μ) is of the order O(εα) for some 1 < α < 2 and, hence, that non-trivial
mixed-mode dynamics will be observed in (11) as μ is varied in that interval; cf. also the
discussion towards the end of [14, Sect. 2.2].
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3.1 Local Dynamics

In this subsection, we consider Eq. (11) locally, in a neighbourhood of �+. To that end,
we first analyse the dynamics of (11)—or, equivalently, of (12)—in the fold region itself,
by introducing an appropriate rescaling of the variables (v, z, w) near �+; then, we study
the mechanisms which govern the entry of the flow into that region and the exit from it,
respectively.

3.1.1 Fold Region

To describe the dynamics of Eq. (12) in a neighbourhood of the fold line �+, we rescale the
vector field there by writing

v = √
εv̄, z = εz̄, w = √

εw̄, and t̄ = √
εt. (13)

Substituting into (12) and simplifying, we obtain the desingularised system of equations

v̄′ = √
3v̄2 − z̄ − √

εv̄3, (14a)

z̄′ = v̄ − w̄ − κ
√

εz̄ + ε(v̄ + w̄), (14b)

w̄′ = εκ[μ − √
ε(w̄ + v̄)]; (14c)

as pointed out in [14], in the context of Eq. (2), the scale separation between v and z has
been eliminated by the rescaling in (13). (Here, the prime now denotes differentiation with
respect to the new time t̄ ; however, for simplicity of notation, we will frequently omit the bar
in the following, writing again t instead.)

Based on numerical evidence (data not shown), we expect that w = O(ε) in Eq. (12),
uniformly in t ; see also the proof of Lemma 2 above. Correspondingly, we will henceforth
make the following assumption on w̄ = w√

ε
, which may be verified a posteriori for the

parameter regime considered here; details can be found in [14, Sect. 2.2].

Assumption 1 Let ε ∈ [0, ε0], with ε0 > 0 sufficiently small; then, w̄ = O(
√

ε) as ε → 0+
in (14), uniformly in t̄ .

In the singular limit, i.e., for ε = 0, Eq. (14) reduces to the planar system

v̄′ = √
3v̄2 − z̄,

z̄′ = v̄ − w̄, (15)

in which w̄ is a (constant) parameter. The resulting flow is well-understood, as it underlies
the study of classical two-dimensional canard explosion [5,12]. In particular, Eq. (15) is
integrable for w̄ = 0, with a constant of motion of the form

H(v̄, z̄) = 1

2
e−2

√
3z̄

(
− v̄2 +

√
3

3
z̄ + 1

6

)
; (16)

see also [14, Eq. (2.5)]. Thus, level curves for (15) are defined by H(v̄, z̄) = h, with h real;
the singular solution corresponding to h = 0, which is given by

γ̄ 0
0 (t) = (v̄0

0, z̄0
0)(t) =

(√
3

6
t,

√
3

12
t2 −

√
3

6

)
, (17)

cf. [14, Eq. (2.6)], separates the closed level curves of H that are obtained for h > 0 from the
open ones, which are characterised by h < 0. (Clearly, the former yield periodic solutions
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(a) (b)

Fig. 4 Dynamics of Eq. (14). a ε = 0, b ε > 0

to Eq. (15), while the latter correspond to trajectories that leave the fold region; see [14] for
details.) The geometry of (14) in the singular limit is illustrated in Fig. 4(a).

As in [14, Sect. 2.2], we introduce the following notation: we write � for the plane v = 0,
with (z, w) in some compact subset of R

2; see again Fig. 2. Then, � denotes that same plane
in the rescaled coordinates defined in (13), while �− stands for the half-plane � ∩ {z̄ < 0}.
Remark 4 Here and in the following, � will denote any object in the original (v, z, w)-
coordinates, while the equivalent ‘blown-up’ object in (v̄, z̄, w̄)-space will be written as
�.

In our analysis, we will sometimes parametrise trajectories of (15) by their unique h-
value; thus, we will write z̄h for the corresponding (unique) value of z̄ in �−. Moreover,
denoting by γ̄ h

ε (t) the solution to (14) which contains the point (0, z̄h, w̄), we will assume
that the time parametrisation is such that γ̄ h

ε (0) lies in �+ = �\�−, as shown in Fig. 4(b).
Let T h±(w̄) denote the times for which γ̄ h

ε (T h±(w̄)) ∈ �−, where we note that, clearly,
T h−(w̄) < 0 < T h+(w̄); see again Fig. 4(b). Then, we write T h(w̄) := T h+(w̄)− T h−(w̄) for the
return time to �− under the flow of Eq. (14); for brevity, we define T h := T h+(0). Finally,
one can show as in [14, Lemma A.2] that

T h = √−2 ln h + O(1); (18)

the above estimate will prove useful, since it implies T h = O(
√− ln ε) whenever h = O(εM )

for some M > 0, as will be the case throughout the remainder of this section.
An approximation for the transition map 
 : �− → �−, which describes the dynamics of

(14) in the small-amplitude regime, can then be obtained in analogy to [14, Proposition 2.2];
we merely outline the derivation here, focussing on points at which the corresponding proof
requires modification:

Proposition 1 Let ε ∈ [0, ε0], with ε0 > 0 sufficiently small, and suppose that h = O(εM )

for some M > 0. Then, the transition map 
 : �− → �− for (14) is of the form

(ĥ, ˆ̄w) :=
(h, w̄)=(
h+√

εdh√
ε
+w̄dh

w̄+O[(√ε+w̄)2], w̄+εκμT h(w̄)+O(ε
√

ε)
)
, (19)
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where

dh√
ε

=
T h∫

−T h

∇ H(γ̄ h
0 (t)) · ( − v̄h

0 (t)3,−κ z̄h
0(t)

)T
dt (20)

and

dh
w̄ =

T h∫

−T h

∇ H(γ̄ h
0 (t)) · (0,−1)T dt. (21)

Proof The expression for the h-component of 
 is obtained via an adaptation of the argument
in [14, Sect. 2.2]: due to the presence of an additional term of the order O(

√
εz̄), Eq. (14b)

is not in the form of the extended system formulated in [14, Eq. (2.8)]. However, denoting
by ĥ the image of h under 
, we still have

ĥ − h = H(0, z̄ĥ) − H(0, z̄h) =
T h+(w̄)∫

T h−(w̄)

d

dt
H(γ̄ h

ε (t)) dt

∼
T h+(w̄)∫

T h−(w̄)

∇ H(γ̄ h
0 (t)) · (v̄′, z̄′)T

∣
∣
∣
γ̄ h

0 (t)
dt = √

εdh√
ε
+ w̄dh

w̄;

thus, the only difference to the proof of [14, Proposition 2.2] lies in the definition of the
coefficient dh√

ε
in (20), as was also the case in the corresponding Eq. (45a) of [15]. (In fact,

a straightforward calculation shows that the contribution from the z̄-dependent term in (14b)
to that coefficient is non-zero.)

Similarly, the derivation of the w̄-component of 
 has to be adapted slightly, as we
cannot simply integrate Eq. (14c). Instead, we express v̄ from (14b) and substitute into (14c),
obtaining

w̄′ = −2κε
√

εw̄ + εκ[μ − √
εz̄′(t)] + O(ε2). (22)

The solution of the corresponding homogeneous equation is given by w̄h = C e−2κε
√

εt . By
variation of constants, we find C ′(t) = εκ(μ − √

εz̄′)e2κε
√

εt and, hence,

C(t) = μ

2
√

ε

(
e2κε

√
εt − e2κε

√
εT h−(w̄)

) − κε
√

ε

t∫

T h−(w̄)

z̄′(s)e2κε
√

εs ds

after integration. (Here, T h−(w̄) is defined as above; in particular, we cannot simply translate
the initial time to zero, as Eq. (22) is non-autonomous.) The full solution to (22) can then be
expressed as

w̄(t) = Ce−2κε
√

εt + μ

2
√

ε

(
1 − e−2κε

√
ε[t−T h−(w̄)])

−κε
√

ε

t∫

T h−(w̄)

z̄′(s)e2κε
√

εs ds · e−2κε
√

εt . (23)
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Writing w̄ for the initial value of w̄(t) to determine C = w̄e2κε
√

εT h−(w̄) in (23), evaluating
the resulting expression at T h+(w̄)—i.e., after the return to �− has been completed—and

expanding the exponential term via e−2κε
√

εt = 1 − 2κε
√

ε t + O(ε3t2), we find

ˆ̄w = w̄[1 − 2κε
√

εT h(w̄)] + εκμT h(w̄) − κε
√

ε

T h+(w̄)∫

T h−(w̄)

z̄′(t)e2κε
√

εt dt · e−2κε
√

εT h+(w̄)

+O(ε2). (24)

(Here, we recall that T h(w̄) = T h+(w̄) − T h−(w̄) denotes the return time to �−, as before.)
Since w̄ = O(

√
ε), and since we may assume T h(w̄) = O(

√− ln ε), see also Eq. (18), we
can neglect the 2κε

√
εw̄T h(w̄)-term in (24). Hence, it remains to estimate the integral term

therein: integrating by parts, we obtain

T h+(w̄)∫

T h−(w̄)

z̄′(t)e2κε
√

εt dt · e−2κε
√

εT h+(w̄)

= z̄(t)e2κε
√

εt
∣
∣
∣
T h+(w̄)

T h−(w̄)
· e−2κε

√
εT h+(w̄) − 2κε

√
ε

T h+(w̄)∫

T h−(w̄)

z̄(t)e2κε
√

εt dt · e−2κε
√

εT h+(w̄).

Now, taking into account that z̄ = O(1) in the fold region, as well as that the exponential
factor multiplying the second (integral) term on the right-hand side is bounded by one, the
contribution from the latter is clearly of higher order; the first (boundary) term gives

z̄(t)e2κε
√

εt
∣
∣
∣
T h+(w̄)

T h−(w̄)
· e−2κε

√
εT h+(w̄) =

[
z̄(T h+(w̄))e2κε

√
εT h+(w̄) − z̄(T h−(w̄))e2κε

√
εT h−(w̄)

]

× e−2κε
√

εT h+(w̄)

= z̄(T h+(w̄)) − z̄(T h−(w̄)) + O(ε
√

εT h±(w̄))

to leading order, since any exponential factors that occur can again be approximated by 1 +
O(ε

√
εT h±(w̄)), and since z̄(T h±(w̄)) = O(1). Finally, we claim that z̄(T h+(w̄))− z̄(T h−(w̄)) =

O(
√

ε), which is easily verified by considering the constant of motion H , as defined in
Eq. (16): assuming that H(0, z̄(T h+(w̄))) − H(0, z̄(T h−(w̄))) = O(

√
ε) in �−, one can solve

perturbatively for z̄(T h+(w̄)) in terms of z̄(T h−(w̄)). (Alternatively, one may resort to the
well-known asymptotics of the Lambert W function [16, Sect. 1.5].)

In sum, it follows that the integral term in (24) is of the order O(ε2), which implies
ˆ̄w = w̄ + εκμT h(w̄) + O(ε

√
ε), as claimed, completing the proof. �

3.1.2 Entry Mechanism

Next, we consider the entry of the flow induced by Eq. (12) into the fold region; in other
words, we will approximate the transition between the sections �in and �−, as defined in
Sects. 2.4 and 3.1.1, respectively. Following [14, Sect. 2.3], we introduce an ‘intermediate’

section �
in : {v̄ = −α} (in rescaled coordinates), with 0 < α < ρ small and fixed.

Correspondingly, in the proof of Proposition 2 below, we first study the transition between

�in and �in, followed by that between �
in

and �−:
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Proposition 2 Let (zin, win) ∈ �in; then, for ε ∈ [0, ε0] sufficiently small, the transition
map 
in : �in → �− satisfies

(h−, w̄−) : = 
in(zin, win)

=
(√

εd−√
ε
+ win

√
ε

d−
w̄ + O[(√ε + w̄)2], win

√
ε

+ win
√

3κμ
√

ε ln ε + O(
√

ε)
)
,

(25)

where

d−√
ε

=
0∫

−∞
∇ H(γ̄ 0

0 (t)) · ( − v̄0
0(t)3,−κ z̄0

0(t)
)T

dt and

d−
w̄ =

0∫

−∞
∇ H(γ̄ 0

0 (t)) · (0,−1)T dt.

Proof As in the proof of [14, Proposition 2.3], we consider a projectivisation of the flow
of (11); however, due to the z-dependence of Eq. (11b), we cannot a priori discount the
O(ε)-correction to the reduced flow on Sa+

0 in our case. Hence, we write z = z(v,w, ε) =
Z0(v) + εZ1(v,w) + O(ε2), where Z0(v) = −v3 + √

3v2 = f (v). Substituting the above
Ansatz into (11b), noting that ż = ∂ Z0

∂v
v̇ + ε

(
∂ Z1
∂v

v̇ + ∂ Z1
∂w

ẇ
) + O(ε2), and making use of

Eq. (11a), we find

Z1(v,w) = −v − w − κ f (v)

f ′(v)
= −v − w − κ(

√
3v2 − v3)

2
√

3v − 3v2
.

Since, moreover, ż = (
∂ Z0
∂v

+ ε ∂ Z1
∂v

)
v̇ + O(ε

√
ε), as ∂ Z1

∂v
= O(1) and ∂ Z1

∂w
= O(ε− 1

2 ) for
v ∈ [−ρ,−α

√
ε] and w = O(ε), while ẇ = O(ε) due to Eq. (11c), a straightforward

calculation yields the following projection of (11a) onto the slow manifold Sa+
ε :

[2√
3v − 3v2 + O(ε)]v̇ = v − w − κ

[√
3v2 − v3 − ε

v − w − κ(
√

3v2 − v3)

2
√

3v − 3v2

]

+ε(v + w) + O(ε
√

ε).

The corresponding projected system on Sa+
ε that is obtained from (11) is then given by

v̇ = −
{
v − w − κ

[√
3v2 − v3 − ε

v − w − κ(
√

3v2 − v3)

2
√

3v − 3v2

]
+ ε(v + w)

}
, (26a)

ẇ = −εκ(μ − w − v)(2
√

3v − 3v2) (26b)

after desingularisation, i.e., multiplication with a factor of − ∂z
∂v

= −[2√
3v − 3v2 + O(ε)],

which is certainly positive for ε sufficiently small and v ≤ −α
√

ε, as above. (Here, we have
neglected the resulting O(ε2)-correction in (26b), as well as terms of order O(ε

√
ε) and

upwards in (26a), as both are irrelevant to the order considered here.)
Next, we define the new (projective) variable W = w

v
, and we rewrite Eq. (26) in terms

of W to obtain

v̇ = −vF(v, W, κ, ε), (27a)

Ẇ = WF(v, W, κ, ε) − εκ(μ − vW − v)
[
2
√

3 − 3v + O(
√

ε)
]
. (27b)
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(a) (b)

Fig. 5 Illustration of entry and exit mechanisms. a Geometry of Eq. (28), b geometry of Eq. (31)

Since the function F , which is defined as

F(v, W, κ, ε) = 1 − W − κ
[√

3v − v2 − ε
1 − W − κ(

√
3v − v2)

2
√

3v − 3v2

]
+ ε(1 + W ),

is non-zero—and, in fact, positive—for (v, W, κ, ε) sufficiently small, we may perform a
transformation of time in Eq. (27) to cancel a factor of F from the right-hand sides therein.
(Without loss of generality, and with an abuse of notation, we again denote the new rescaled
time by τ .) Next, we expand the resulting equations, taking into account that

Z1(v, W ) ≡ Z1(v, vW ) = 1

2v

[√
3

3
−

(
κ − 1

2

)
v + O(v2)

]
,

to leading order in W , and noting that W = O(
√

ε) due to v ∈ [−ρ,−α
√

ε] and w =
O(ε). Neglecting terms of second order and upwards in (v, W ), we thus have the following
approximation for (27), which is analogous to [14, Eq. (2.25)]:

v̇ = −v, (28a)

Ẇ = (1 − 2
√

3κμε)W − 2
√

3κμε + (3μ + 2
√

3 − 6κμ)κεv. (28b)

Since Eq. (28a) can be integrated explicitly, with v(τ) = −ρe−τ , we may substitute into
(28b) and solve for W (τ ); given the (rescaled) transition time T = ln ρ

α
√

ε
between �in and

�in, we then evaluate the resulting solution to obtain

W (T ) = ρ

α
√

ε
W in(1 + √

3κμε ln ε
) + O(

√
ε),

as sketched in Fig. 5(a). Finally, we make use of the fact that w(T ) = −α
√

εW (T ), as well
as of win = −ρW in, to find w(T ) = win(1 + √

3κμε ln ε) + O(ε).
It remains to consider the transition from �

in
to �−; in analogy to [14], we denote

the corresponding map by 

in

. To that end, we recall the proof of Proposition 1 from the
previous subsection, taking into account that we need to transform between original and
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rescaled (‘blown-up’) coordinates; cf. Eq. (13). Then, it is easy to see that

(h−, w̄−)=
(z̄, w̄)=(√
εd−√

ε
+ w̄d−

w̄ + O[(√ε + w̄)2], w̄ + 2
√

3ακμε + O(ε2)
)
, (29)

where d−√
ε

and d−
w̄ are defined as in the statement of the proposition; see also [14, Eq. (2.30)].

(In particular, one observes that these coefficients correspond to the solution curve γ̄ 0
0 defined

in Eq. (17), as well as that the transition time between �
in

and �− is given by T
in = 2

√
3α,

as in [14].)
Finally, we combine the estimate for w̄− in (29) with the asymptotics of w(T ) derived

above, noting that the condition for (v̄, z̄, w̄) to lie on a trajectory originating in Sa+
ε is, in

fact, expressed by the h−-component of 
(z̄, w̄). Taking into account that w̄ = w√
ε
, we

obtain Eq. (25), as claimed. �

We remark that the term win√
ε

in (25) remains bounded as ε → 0+, since win = O(ε) by

Assumption 1; hence, (h−, w̄−) → (0, 0) in that limit, which is consistent with the definition
of the singular solution γ̄ 0

0 .

Remark 5 It follows from the first part of the proof of Proposition 2 that the flow between
�in and �in can, in fact, be approximated by the reduced dynamics on the critical manifold
Sa+

0 , as was also done in [14, Proposition 2.3]. (Specifically, our expression for w(T ) agrees
with the one obtained there, i.e., the O(ε)-correction due to Z1 turns out to be irrelevant
a posteriori.) Similarly, the second part of that proof implies that our approximation of the

transition between �
in

and �− via the singular (integrable) system in (15) is sufficiently

accurate, as the resulting T
in

-dependent correction to w̄− does not even enter Eq. (25) to the
order considered here.

3.1.3 Exit Mechanism

As in the previous subsection, the analysis of the exit from the fold region is divided into two
portions: first, we consider the transition between the section �− and its image under the
flow of (14) at time T h,out(w̄) := −T −h− (w̄), which we denote by �

out
; then, we study the

transition from �
out

to the section �out defined in Sect. 2.4. (Naturally, we are interested in
h < 0 here, since trajectories with h > 0 cannot leave the fold region, as noted in Sect. 3.1.1.)

We require the following notation: we write Ca
ε and Cr

ε for the intersection curves of Sa+
ε

and Sr
ε with the Poincaré section � that was defined in Sect. 3.1.1. (Here, we remark that

these curves were denoted by C±
ε in [14]; however, due to the fact that the canard phenomenon

is observed at �+ instead of at �− in our case, recall Sect. 2, we had to adapt our notation
accordingly.) Finally, as in [14, Sect. 2.4], we introduce a change of variable in z̄ such that
the curve Cr

ε becomes parallel to the w̄-axis in � when written in terms of the new variable z̃:

Proposition 3 Let (h, w̄) ∈ �−, with h < 0 and h = O(εM ) for some M > 0, and let
ε ∈ [0, ε0] be sufficiently small. Then, the transition map 
out : �− → �out is of the form

(zout, wout) := 
out(h, w̄) = (
εz̃out + O(ε ln ε),

√
εw̄ + ε

√
εκμT h,out(w̄) + O(ε

√
ε)

)
,

(30)
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where z̃out is the z̃-value corresponding to hout = h + √
εdout√

ε
+ w̄dout

w̄ , with

dout√
ε

= −
T h,out(w̄)∫

0

∇ H(γ̄ h
0 (t)) · (−v̄h

0 (t)3,−κ z̄h
0(t))T dt and

dout
w̄ = −

T h,out(w̄)∫

0

∇ H(γ̄ h
0 (t)) · (0,−1)T dt.

Proof As the proof is very similar to that of [14, Proposition 2.4], we merely sketch it here,
emphasising the requisite modifications.

Let (h, w̄) ∈ �−, and let 

out

denote the time-T h,out(w̄) transition map between �− and
the (implicitly defined) section �

out := 

out

(�−). Then, it follows immediately from the
near-integrability of Eq. (14) that

(hout, w̄out) : = 

out

(h, w̄) = (
h + √

εdout√
ε

+ w̄dout
w̄ + O[(√ε + w̄)2], w̄

+ εκμT h,out(w̄) + O(ε
√

ε)
)
,

where dout√
ε

and dout
w̄ are defined as in the statement of the proposition; see also the proof of

Proposition 1.
The second part of the transition—from �

out
to �out—is studied via a change of variables,

with z = v2 Z , which can be considered as a ‘phase-directional’ chart in ‘blown-up’ phase
space; see again [14] for details. Rewriting (12) in terms of (v, Z , w) and rescaling time by
dividing out a (positive) factor of �(v, Z) = v2(−Z + √

3 − v) from the right-hand sides
of the resulting equations, we obtain

v′ = 1, (31a)

Z ′ = −2
Z

v
+ ε

v�(v, Z)

[
1 − w

v
− κvZ + ε

(
1 + w

v

)]
, (31b)

w′ = ε2

�(v, Z)
κ(μ − w − v). (31c)

(With an abuse of notation, the prime now denotes differentiation with respect to the new,
rescaled time.) To leading order, Eqs. (31a) and (31b) are identical to [14, Eqs. (2.45a),
(2.45b)]. Also, as there, vout = O(

√
εT h,out) = O(

√−ε ln ε) and w = O(ε) imply w
v

=
O(

√
ε) and dw

dt = O(ε(ln ε)−1). Expanding �, we then find Z ′ = − 2
v

Z + ε
v3

√
3

3 [1 − κvZ +
O(v, Z)]; moreover, as vZ = O(1), we obtain z(T ) = εz̃out+O(ε ln ε) for the corresponding
leading-order solution, in analogy to [14]. (Here, T denotes the transition time from �out to
�out, as illustrated in Fig 5b)

It remains to consider the evolution of w: to that end, we integrate Eq. (12c) directly.

Expanding the solution and noting that T ≤ 2
√

3
3vout + 1

3 ln ε +O(1), again by [14], we deduce

w(T ) = √
εw̄out + ε2

(
κμT − √

εκw̄outT +
δ∫

vout

v
�(v,0)

dv
)

+ O(ε3)

= √
εw̄ + ε

√
εκμT h,out(w̄) + O(ε

√
ε).
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(As in the proof of [14, Proposition 2.4], one easily sees that the integral term in the above

expression is of higher order, by combining the fact that
∫

v
�(v,0)

dv = −
√

3
3 ln v√

3+v
+ c

with the asymptotics of vout.) Finally, collecting the above estimates, we have Eq. (30), as
claimed. �
3.2 Return Map 


In this subsection, we approximate the ‘composite’ return map 
 that is induced by the flow
of (11) in the three time-scale regime considered here: combining the asymptotic formulae
for 
ret , 
, 
in, and 
out, as obtained in Lemma 2 and Propositions 1 through 3, respectively,
we may write


(h, w̄) =
{


(h, w̄) if h > 0,


in ◦ 
ret ◦ 
out(h, w̄) if h < 0; (32)

for future reference, we note that 
 is defined as a Poincaré map from �−—or, rather, its
‘blown-up’ analogue �−—to itself.

Obviously, the definition of 
 thus depends on the sign of h: for positive h, the point
of intersection of the corresponding trajectory with � lies above Cr

ε , forcing the flow back
into the fold region; for negative h, on the other hand, that point lies below Cr

ε , allowing the
trajectory to leave and undergo relaxation. Correspondingly, in the resulting time series, one
hence obtains an SAO in the former case and an LAO in the latter; since, moreover, the sign
of h may change after each application of 
, iteration of the above procedure generates the
mixed-mode patterns that are observed in Eq. (11). A cartoon illustration of how the segment
12—in which two SAOs are followed by one LAO—is produced by iterating 
 can be found
in Fig. 6.

While the Poincaré map 
 in (32) is a function of the two variables h and w̄, a simplification
can be achieved by eliminating the h-dependence of 
, as in [14, Sect. 3]. The derivation of
the corresponding ‘partially reduced’ map, which is sufficiently accurate for our purposes,
is outlined below.

In a first step, a union of curves C j
ε is inductively defined as follows: we write C j

ε :=

({(h, w̄) ∈ C j−1

ε | h > 0}), with C0
ε ≡ Ca

ε . (Hence, for j ≥ 1, one may simply interpret C j
ε

as the image of Ca
ε under the j th iterate 


j
of 
.) Then, it can be shown as in [14, Sect. 3.1]

that the curve C j
ε may be written as the graph of a function h j (w̄) which is ‘almost linear’ in

w̄, at least for |w̄| sufficiently small; the resulting geometry of these curves is summarised in
Fig. 7. Finally, following [14, Proposition 3.1], it is possible to prove that there exists some
positive integer k such that, for 1 ≤ j ≤ k, 
 j will be exponentially close in ε to the union of
the curves

⋃k
j=1 C j

ε ; in other words, the restriction of 
 to the set
⋃ C j

ε will incur (at most)
an exponentially small error.

Gathering the results of Sects. 2.4 and 3.1.1 through 3.1.3 and assuming (w̄, h j (w̄)) ∈
⋃ C j

ε , we thus have the following approximation for the partially reduced map 
(w̄) ≡

(h j (w̄), w̄):


(w̄) =

⎧
⎪⎨

⎪⎩

w̄ + εκμT h j (w̄)(w̄) + O(ε
√

ε) if h j (w̄) > 0,

w̄ + εκμT h j (w̄),out(w̄) + w̄
√

3κμε ln ε

+√
εκ

[
3(1 − 1

2κ)μ − 1
2

√
3κ

] + O(ε) if h j (w̄) < 0;
(33)

cf. also [14, Eq. (3.5)]. (Here, we have replaced k3 with ε in Eq. (7), by assumption, and
we have again written κ instead of k1; moreover, we note that the error incurred by (7) is of
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Fig. 6 Generation of mixed-mode dynamics by 


Fig. 7 Curves C j
ε for j ≥ 0.

the order O(ε), by Remark 3.) Since, trivially, none of the w̄-independent terms in (33) will
enter the derivative of 
 with respect to w̄, to be considered below, such terms will not be
relevant for the following analysis.
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3.2.1 Derivative of 


Given Eq. (33), we immediately conclude that

d


dw̄
∼

⎧
⎨

⎩
1 + εκμ

dT h j (w̄)(w̄)
dw̄

if h j (w̄) > 0,

1 + εκμ
dT h j (w̄),out(w̄)

dw̄
if h j (w̄) < 0,

(34)

to leading order in ε. Estimates for the derivatives of the transition times T h j (w̄) and T h j (w̄),out

can be obtained verbatim as in [14, Sect. 3.2], as they are based on the asymptotics of the
near-integrable system in (14). (Here, we recall that the only difference to the corresponding
Eq. (2.3) in [14], to the order considered here, is due to the z̄-dependence of (14b). Thus,
the definition of the coefficient dh√

ε
includes an additional contribution from z̄h

0 in our case;
cf. Eq. (20).) In sum, we thus find

dT h j (w̄)(w̄)

dw̄
∼ − 2

h j (w̄)

1
√−2 ln h j (w̄)

( j + 1)d0
w̄

and

dT h j (w̄),out(w̄)

dw̄
∼ 1

h j (w̄)

1
√−2 ln h j (w̄)

( j + 1)d0
w̄.

3.3 Secondary Canards and Sectors of Rotation

Following [14, Sect. 1], we define the strong canard �ε(≡ �0
ε ) as the trajectory of Eq. (12)

which lies in the the transverse intersection of the attracting sheet Sa+
ε and the repelling sheet

Sr
ε of the slow manifold Sε , for ε positive and sufficiently small. (As discussed in Sect. 3.1.1,

�ε is to lowest order described by the ‘special’ solution γ̄ 0
0 in the fold region, cf. (17), which

organises the flow of the rescaled Eq. (14) in the singular limit.) Clearly, the strong canard
corresponds to a ‘critical’ value w̄c

0 of w̄ which equals, in fact, the w̄-coordinate of the point of
intersection of the curves Ca

ε and Cr
ε defined in Sect. 3.2; details can be found in [14, Sect. 1].

Similarly, for j ≥ 1, we may define w̄c
j as the w̄-coordinate of the point of intersection of C j

ε

with Cr
ε ; see again Fig. 7. The corresponding trajectory of (12) is called the j th secondary

canard �
j
ε , and undergoes j SAOs (‘loops’) in the fold region before relaxation; recall Fig. 1,

where the trajectories �
j
ε are sketched for j = 0, 1. Correspondingly, we call the w̄-interval

(w̄c
j , w̄

c
j−1) the j th sector of rotation, and we denote it by RS j [14, Sect. 3.3].

To estimate w̄c
0 to leading order in ε, we follow [14], demanding that ĥ = h; recall

Proposition 1. Approximating ±T h ∼ ±T 0 = ±∞ in Eqs. (20) and (21) and evaluating
∇ H at γ 0

0 , as defined in (17), we find d0√
ε

= 1
48 (1 + 2κ)

√
2πe and d0

w̄ = − 1
2
√

3

√
2πe—see

also [14, Eq. (2.18)]—and, hence,

w̄c
0 = −

d0√
ε

d0
w̄

√
ε + O(ε) =

√
3

24
(1 + 2κ)

√
ε + O(ε). (35)

Numerical simulation (data not shown) suggests excellent agreement with the above estimate
for w̄c

0, even for the ‘large’ value of ε = 0.1 considered here. (Specifically, taking κ = 0.35,
as before, we find w̄c

0 ∼ 2651
68330

√
3 ≈ 0.03880.)

The other key quantity of interest, apart from the critical value w̄c
0 of w̄, concerns the

width of the sectors of rotation RS j , as defined above. To obtain the corresponding estimate,
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we need to account for additional terms in the expansion for the transition map 
 introduced
in Sect. 3.1.1. (In fact, by combining the resulting two estimates, we may approximate the
critical w̄-values {w̄c

j } for j = 1, . . . , k.)
Thus, we now consider the partially decoupled truncated system of equations

v̄′ = √
3v̄2 − z̄ − √

εv̄3 + √
εF(0, 0) + w̄G(0, 0), (36a)

z̄′ = v̄ − w̄ − κ
√

εz̄ + ε(v̄ + w̄), (36b)

w̄′ = εκμ, (36c)

which is defined in analogy to [14, Eq. (3.15)]. We note that Eq. (36) differs from the
‘rescaled’ system in (14) in two points: first, w̄(t) is not assumed to be constant; rather,
Eq. (14c) is approximated by w̄′ ∼ εκμ, which yields w̄(t) ∼ w̄ + εκμt after integration,
where w̄ is some initial value. Second, the inclusion of higher-order terms in

√
ε and w̄

in the v̄-equation—which are multiplied by appropriately defined functions F(w̄,
√

ε) and
G(w̄,

√
ε), respectively, that are, to leading order, evaluated at (w̄,

√
ε) = (0, 0)—is due to

the transformation to the new variable z̃; see Sect. 3.1.3 and [14, Proposition 2.4] for details.
Finally, let 
0 denote the ‘reduced’ transition map for the system that is obtained by

appending w̄′ = 0 to Eqs. (36a) and (36b). Then, one has the following result; cf. also [14,
Proposition 3.2]:

Proposition 4 Let 
 : �− → �− denote the return map for (14), and let ε ∈ [0, ε0] be
sufficiently small. Then,


(h, w̄) =
(

Ph
0(h, w̄) + εκμK(h) + O(ε
√

ε)

w̄ + 2εκμT h + O(ε
√

ε)

)
, (37)

where Ph̄ is the projection onto the h̄-coordinate, with Ph
0(h, w̄) = ĥ as in Proposition 1,
and

K(h) =
T h∫

−T h

∇ H(γ̄ h
0 (t)) · (

G(0, 0),−1
)T

(t + T h) dt.

(In particular, one can show that K(h) = 2d0
w̄T h +O(1), where d0

w̄ is defined as in Eq. (21);
see [14, Lemma A.5].)

Proof As in the proof of [14, Proposition 3.2], one considers the partially decoupled truncated
equations

v̄′ = √
3v̄2 − z̄ − √

εv̄3 + √
εF(0, 0) + (w̄ + εκμt)G(0, 0),

z̄′ = v̄ − w̄ − εκμt − κ
√

εz̄ + ε(v̄ + w̄ + εκμt). (38)

Since the above system agrees with [14, Eq. (3.17)] to leading order—apart from the addi-
tional κ

√
εz̄-term, which, however, only affects the definition of dh√

ε
, as seen in the proof of

Proposition 1—we find

Ph
 ∼ Ph
0 + εκμK(h) + ε

T h∫

−T h

∇ H(γ̄ h
0 (t)) · (0, v̄h

0 ) dt.

Here, we have neglected terms of second order and upwards in (ε, w̄); moreover, we note
that any contribution coming from terms involving F(0, 0) and G(0, 0) evaluates to zero by
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symmetry: as in the proof of [14, Proposition 2.2], we have (v̄h
0 , z̄h

0)(−t) = (−v̄h
0 , z̄h

0)(t)
on γ̄ h

0 . Finally, making again use of the oddness of v̄h
0 , one can show that the integral term

in the above expression vanishes. In sum, one hence obtains the refined expansion for 
 in
Eq. (37), as claimed, which completes the proof. �

Given the result of Proposition 4, as well as Eq. (18), one can show as in [14, Proposi-
tion 3.3] that the width of the j th sector of rotation RS j is approximately given by

�w̄ := w̄c
j − w̄c

j−1 ∼ −2εκμ
√−2 ln ε. (39)

The above estimate is confirmed by numerical simulation (data not shown) and implies, in
particular, that all sectors of rotation are of the same width to leading order for ε fixed, as well
as that the sector RS j is located ‘to the left’ of RS j−1 for any j ≥ 1 due to �w̄ < 0; see [14,
Sect. 3.3] for details. (Undoing the rescaling in (13), one finds �w = O(ε

√−ε ln ε) for the
corresponding estimate in terms of the original w-variable.) Consequently, it follows again
as in [14, Sect. 3.3] that we will always observe a finite number of SAOs in any mixed-mode
time series of (12); cf. also Sect. 4 below.

3.4 Reduced Return Map �

The final step in our analysis of the return map 
 consists in a further reduction to a simplified,
one-dimensional map � : Ca

ε → Ca
ε , which can be defined as follows [14, Sect. 3.4]: for

k ≥ 0,

�(w̄) = Pw̄

(

in ◦ 
ret ◦ 
out ◦ 


k
(h0(w̄), w̄)

)
if (h0(w̄), w̄) ∈ RSk .

(Here, Pw̄ denotes the projection onto the w̄-coordinate, as before.) While the map � is hence
defined on the single curve Ca

ε instead of on a union of curves
⋃ C j

ε , and while it is unimodal
on each of the sectors of rotation RSk , it has discontinuities at the boundaries between these
sectors. The dynamics of � was studied in detail in Sect. 3.6 of [14]; here, we merely sketch
the derivation of some of its properties that are relevant to us.

One such property concerns the derivative of � (with respect to w̄) on RSk ; the resulting
estimate will allow us to characterise the contraction, or expansion, under �. Making use of
the definition of 
in, 
ret, 
out, and 
, in combination with the Chain Rule and the fact that
h j (w̄ j ) = O(ε

√− ln ε), we conclude as in [14, Lemma 3.5] that

�′(w̄) = 1 − εκμd0
w̄

1√−2 ln ε

( k−1∑

j=0

2( j + 1)

h j (w̄ j )
+ k + 1

hk(w̄k)

)
∼ 1 − ωk(ν)

4 ln ε
; (40)

see, in particular, [14, Eqs. (3.32), (3.33)]. Here, w̄ j is the j th iterate of some initial w̄-value
w̄0 under 
, and the auxiliary function ωk is defined as

ωk(ν) =
k−1∑

j=0

1

k − j − ν
− 1

2ν
,

where ν ∈ [0, 1] for k ≥ 1, while ν > 0 when k = 0.
Given the above estimate for �′, one can, for instance, show that the map � has a

(local) minimum in each sector RSk , i.e., at some w̄-value w̄k
min. Moreover, one may write

�(w̄k
min) = �min + O(ε), with
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Fig. 8 Reduced return map �

�min ∼ w̄c
0 + √

ε
[G(v0, vmax, μ) + G(v∗

max, 0, μ)
] + εκμT h(w̄0

min),out

∼ √
ε
[
3κ

(
1 − 1

2
κ
)
μ − 1

2

√
3
(
κ2 − 1

6
κ − 1

12

)]
+ εκμ

√−2 ln ε;

recall Eqs. (35), (7), (33), and (18), where the latter implies, in particular, T h ∼ √−2 ln ε.
Hence, it follows that � assumes the same minimum value (to leading order) for any k =
0, 1, 2, . . . ; cf. [14, Eq. (3.36)]. A qualitative illustration of the map � is given in Fig. 8.

Next, we investigate the existence and stability of ‘regular’ mixed-mode periodic orbits
with signature 1k ; specifically, we estimate the width of the corresponding μ-interval
(μk, μk). In analogy to [14, Theorem 3.7], we obtain

Proposition 5 Let K > 0 be arbitrary, but fixed; then, there is some (small) ε0 > 0 such
that, for k = 1, . . . , K and ε ∈ [0, ε0], the periodic orbit of type 1k exists and is stable when
μ ∈ (μk, μk), with

�μk := μk − μk ∼ − μkκ√
2Dμ

√
ε√− ln ε

νk
0∫

νk−2

ωk(ν) dν. (41)

Here, νk−2 and νk
0 are defined by ωk(ν

k−2) = 8 ln ε and ωk(ν
k
0 ) = 0, respectively, and

Dμ = d

dμ

[G(v0, vmax, μ) + G(v∗
max, 0, μ)

]

is found by differentiating Eq. (7) with respect to μ.

Proof The proof of Eq. (41) is based on the observation that periodic orbits with signature 1k

correspond to fixed points of �, i.e., to solutions of �(w̄, μ) = w̄. The stability of those points
follows from the second estimate for �′ in Eq. (40), as one can show that |�′(w̄, μ)| < 1 if

123



J Dyn Diff Equat (2014) 26:955–987 979

and only if ν ∈ (νk−2, ν
k
0 ) in ωk , with νk−2 and νk

0 as defined above. Implicit differentiation
then gives

dμ

dw̄
= −

∂
∂w̄

�(w̄, μ) − 1
∂

∂μ
�(w̄, μ)

∼
1

4 ln ε
ωk(ν)

Dμ

√
ε

;

here, we have again used (40) as well as the estimate ∂
∂μ

�(w̄, μ) ∼ Dμ

√
ε.

Finally, applying the Fundamental Theorem of Calculus, we find

�μk =
w̄(μk )∫

w̄(μk )

dμ

dw̄
dw̄ ∼ �w̄k

4Dμ

√
ε ln ε

∫ νk
0

νk−2

ωk(ν) dν.

Approximating �w̄k by �w̄ ∼ −2εκμ
√−2 ln ε, recall Eq. (39), we obtain (41), as

claimed. �
(The restriction to k ≤ K in the statement of Proposition 5 is due to the fact that our

asymptotics is not uniform in k with respect to ε; see [14, Proposition 3.4].) Since the
remainder of the analysis presented in [14, Sect. 3.6] carries over mutatis mutandis to the
context of Eq. (12), we do not retrace it here. Rather, we emphasise that the resulting mixed-
mode dynamics, which will be discussed in detail in Sect. 4 below, is qualitatively equivalent
to that of the canonical Eq. (2).

4 Discussion

In this article, we have studied mixed-mode oscillatory behaviour in a three-dimensional
extended Bonhoeffer–van der Pol oscillator whose dynamics evolves on three distinct time-
scales, thus complementing results previously obtained in [17]. To that end, we have trans-
formed the governing equations into a form that is close to a simplified ‘prototypical’ model
system which was proposed by Krupa et al. [14]; in the process, we have identified one bifur-
cation parameter that unfolds the mixed-mode dynamics generated by Eq. (1), expressing
it as a function of two of the original parameters in the system. (An alternative approach,
which was suggested recently (Kuehn C, 2013, Personal communication) and which we are
currently considering, involves ‘mapping’ (1) onto a prototypical model proposed by Koper
[11]; see also [3] for details.) We have sketched how the analysis of [14] can be adapted to
the present context, which has allowed us to characterise the mixed-mode patterns that will
‘generically’ occur in (1), as well as to estimate the relevant parameter intervals. Recalling
that the signature Lk encodes the segment consisting of k SAOs and L LAOs, and consulting
Sect. 3.6 of [14], we may conclude that,

(i) for L = 1, orbits contain segments of the form

(a) 1k (possibly repeated some number of times),
(b) 1k−1 (possibly repeated some number of times), and
(c) 1k−2, preceded by 1k and followed by 1k−1 or 1k ;

(ii) for L = 2, only segments of the type 21 or 22 will occur;
(iii) for L ≥ 2, only segments of the form L1 will be observed;

see Theorem 3.10, Proposition 3.11, and Corollary 3.12 of [14]. (For a detailed interpretation,
and discussion, of the resulting mixed-mode dynamics, the reader is referred to [14, Sect. 4]
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and [15, Sect. IV].) The above predictions are supported by numerical simulation, which
was performed in Maple for the parameter regime considered by Sekikawa et al. [17]—
with ε = 0.1, k1 = 0.35, and B0 close to 1

2 in (1)—under the additional assumption that
k3 = 0.1(=ε). (Specifically, we have simulated the corresponding transformed system of
equations in (12) for values of μ close to μc, where we recall that κ ≡ k1.) Throughout,
we have set the initial condition to (v, z, w)(0) = (0, 0,−0.01), unless explicitly stated
otherwise; moreover, we have illustrated the resulting time series starting at time t = 103,
after all transients have subsided.

As expected, we observe the unfolding of an entire family of non-trivial MMOs upon
variation of the parameter μ: in Fig. 9(a), we still have relaxation, while (periodic) orbits
with signature L1 for L = 6, 4, 3, and 2—the latter two of which are separated by a ‘mixed’
pattern of the form 3121—occur with decreasing μ, as shown in Fig. 9(b)–(f).

Then, as μ is decreased further, a transition is observed towards L = 1, beginning with
the 2111-type pattern displayed in Fig. 10(a). That pattern is followed by stable orbits of type
1k , k = 1, 2, . . ., which are again interspersed with mixed patterns of the form 1k(1k−1)�; see
Fig. 10(b)–(f) and Fig. 11(a)–(f) for representative examples. (In fact, it follows from items (i)
through (iii) above that the signatures 1k and 1k1k−1 will dominate the mixed-mode dynamics
of (1), with a transition that is roughly of the form · · · → 1k → 1k1k−1 → 1k−1 → · · · ,
in accordance with our findings.) Finally, it is obvious from Fig. 12(a), (b) that the ‘highest’
1k-type pattern—at least with the chosen initial condition, and to the accuracy considered
here—is achieved for k = 8, after which point pure SAO dynamics of type 01 takes over,
in agreement with our claim that only a finite number of SAOs can occur in any given
mixed-mode time series in (12).

Remark 6 Our numerics suggests that some variation in k1 and k3 does not qualitatively alter
our conclusions on the mixed-mode dynamics of Eq. (1) as long as the condition k3 = O(ε)

is satisfied; examples can be found in Fig. 13(a) and (b).

While the above observations are of a qualitative nature, it is nevertheless possible to
obtain some insight into the quantitative properties of the mixed-mode dynamics of Eq. (12)
from our analysis. On the basis of Proposition 5, one can thus show that, for each k ≥ 1 and ε

sufficiently small, the width of the μ-interval corresponding to stable 1k-type dynamics will

be of the order O[√ε(− ln ε)− 1
2 ]. Specifically, approximating the integral term in Eq. (41)

as in [14, Sect. 3.6], one finds

�μk = μkκ√
2Dμ

√
ε√− ln ε

[
ln(

√− ln ε) + O(1)
]
.

Evaluating the above estimate for k1(= κ) = 0.35, ε = 0.1, andμ = μc and noting that Dμ =
0.86625

( = 693
800

)
then, we obtain �μk ≈ 0.00545[0.41702 +O(1)], which agrees well with

the corresponding numerical values of �μk of about 0.004 to 0.005 that were inferred visually
by simulating Eq. (12) for varying values of μ, as above, and by recording the observed mixed-
mode patterns. (The degree of agreement seems particularly encouraging given the ‘large’
value of ε = 0.1 considered here.) In sum, numerical simulation hence suggests that the μ-
interval on which the mixed-mode dynamics of Eq. (12) unfolds is approximately given by
(μ,μ) ≈ (0.0465, 0.1125), which implies, in particular, �μ ≈ 0.0660. Finally, it is worth
noting that our numerical estimates for μ and μ satisfy μH < μ < μ < μc, as predicted.
(Here, μH and μc are defined as at the beginning of Sect. 3.)

The parameter regime considered in this article motivated a simple scaling of k3 with ε;
in fact, we set k3 = ε. More generally, however, one could interpret k3—or even k1k3—as
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Fig. 9 Mixed-mode dynamics of Eq. (12) for varying values of μ. a μ = 0.1125: 10, b μ = 0.11: 61, c
μ = 0.1075: 41, d μ = 0.105: 31, e μ = 0.1025: 3121, f μ = 0.1: 21

an effective small parameter that is independent of ε; correspondingly, Eq. (6) could then
be studied as a true two-parameter singular perturbation problem. While geometric singu-
lar perturbation theory [6,10] has matured as a field, however, the mathematics of such
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Fig. 10 Mixed-mode dynamics of Eq. (12) for varying values of μ. a μ = 0.095: 2111, b μ = 0.09: 11, c
μ = 0.085: 12(11)4, d μ = 0.08: 1211, e μ = 0.075: 12, f μ = 0.07: 1312

problems remains rudimentary; hence, we decided not to pursue that line of enquiry here.
Still, further investigation into whether our results can be extended accordingly seems war-
ranted, as preliminary analysis has revealed interesting dynamics in a similar generalisation
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Fig. 11 Mixed-mode dynamics of Eq. (12) for varying values of μ. a μ = 0.065: 13, b μ = 0.06: 14, c
μ = 0.0575: 1514, d μ = 0.055: 15, e μ = 0.0525: 16, f μ = 0.05: 17

of the canonical Eq. (2). In particular, co-existence of mixed-mode oscillatory behaviour and
delayed passage through Hopf bifurcation [13] has been observed, and will be elaborated on
in an upcoming publication. Intuitively, such dynamics is due to a change in the strength of
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Fig. 12 Mixed-mode dynamics of Eq. (12) for varying values of μ. a μ = 0.0475: 18, b μ = 0.0465: 01

the global return mechanism: when ε = O(k3), w is not necessarily reset to a neighbourhood
of the strong canard �ε; rather, the corresponding return point may lie well away from the
folded equilibrium P+ in that case.

Remark 7 We note that we chose to fix the parameter k1, rather than to scale it with ε, as
was also done in [17]—in spite of the fact that k1 = O(

√
ε). That choice complicates our

analysis slightly, as it necessitates a correction to the return map 
 in the fold region that
was not present in [14]; recall the proof of Proposition 1. However, it seems in keeping with
the assumptions made in [17].

The ‘folded saddle-node of type II’ [19] uncovered in Eq. (1) has also been studied in
connection with a so-called ‘singular Hopf bifurcation;’ see [8] and the references therein
for details. Roughly speaking, such bifurcations are observed in an ε-neighbourhood of a
fold curve (for sufficiently small values of ε), and have been suggested as an alternative
mechanism for generating mixed-mode dynamics; the relationship between folded saddle-
node equilibria and singular Hopf bifurcation has been investigated in detail in [2]. In our
case, it is straightforward to show that (1) has an equilibrium point at P∗ = (x∗, y∗, z∗), with
y∗ = z∗ = − 1

2 x∗(1 − x2∗); following the procedure outlined in [8, Sect. 3.1], one can verify
that P∗ undergoes a Hopf bifurcation if the characteristic polynomial of the corresponding
Jacobian,

λ3 + 1

ε

[
εk1(1 + k3) − (1 − 3x2∗)

]
λ2 + 1

ε

[
εk2

1k3 + (1 − k1 + 3k1x2∗)(1 + k3)
]
λ

+1

ε
k1k3

[
2 − k1(1 − 3x2∗)

]

≡ λ3 + a2(x∗, k1, k3, ε)λ
2 + a1(x∗, k1, k3, ε)λ + a0(x∗, k1, k3, ε) = 0,

satisfies a1 > 0 and a1a2 = a0. The former condition holds in the parameter regime consid-
ered here, while the latter is met for the unique value xH ≈ 0.56801 of x∗ ≡ x∗(k1, k3, ε).
Finally, solving for the corresponding B0-value in (1), we find BH

0 ≈ 0.50067 which,
incidentally, is equivalent to the value for μH obtained in Sect. 3, in the context of (11).
(Similarly, one can show that the critical μ-value μc defined in Sect. 2.4 corresponds to
Bc

0 = 0.26
√

3 ≈ 0.45488 and, hence, that the mixed-mode dynamics of the three time-scale
Bonhoeffer–van der Pol oscillator will unfold approximately over the interval (Bc

0, BH
0 ).)
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Fig. 13 Effect of varying k1 and k3 on the dynamics of Eq. (12). a k1 = 0.5, k3 = 0.1, and μ = 0.075: 14,
b k1 = 0.35, k3 = 0.05, and μ = 0.110: 21(11)2

Since, however, the asymptotics obtained in this article is, by definition, only valid in an
‘intermediate’ μ-regime—away from both ‘pure’ SAO and LAO dynamics—we do not con-
sider mixed-mode behaviour that may be induced by a singular Hopf bifurcation in (1).

While our analysis is mostly precise, as we have systematically accounted for the orders of
any terms omitted in the process, a fully rigorous study would have to rely on the ‘blow-up’
technique, or geometric desingularisation [5,12]. In fact, the discussion in Sect. 3.1 could
equally be recast in terms of a ‘rescaling’ chart that covers the fold region and two ‘phase-
directional’ charts which describe the entry and exit mechanisms, respectively, as is routinely
done in the application of blow-up; see again [5,12] for but two examples. However, in the
interest of keeping our presentation accessible, and in following [14] and [15], we have opted
to formulate our results in terms of equivalent coordinate rescalings and projectivisations,
and thereby to sacrifice some rigour.

Our approach has its inherent limitations, of course: thus, for instance, the asymptotics
of the return map 
 derived in Sect. 3—as well as of its one-dimensional reduction �—
breaks down at the boundaries between sectors of rotation; see [14, Sect. 4] for details.
While we have hence excluded a neighbourhood of the corresponding secondary canards
�

j
ε from our analysis, it is there that complicated mixed-mode patterns can arise due to

‘jumps’ between non-adjacent sectors and period-doubling bifurcation, both of which may
yield chaotic dynamics. In fact, the proof of Proposition 1 already assumes that the flow of
Eq. (14) stays away from the strong canard �ε, which is reflected in our assumption that
h = O(εM ) is small, but not exponentially so. Dynamics resulting from a violation of that
condition is illustrated in Fig. 14, where a stable mixed-mode pattern is shown to co-exist
with a canard cycle undergoing period doubling; the latter is realised for initial w-values
close to the ‘critical’ value wc

0 = √
εw̄c

0 of w, with w̄c
0 defined as in (35), which implies that

the corresponding h-value must be near-exponentially small.
Period-doubling in the extended Bonhoeffer–van der Pol oscillator has been studied in

detail in [7]; in the process, the mixed-mode dynamics that is generated upon variation of
the two parameters k3 and B0 was described numerically in a number of regimes, down
to k3 = 0.2. However, and in contrast to standard convention, mixed-mode patterns were
organised in terms of ‘isospike diagrams,’ i.e., distinguished in terms of the total number of
‘spikes’ within a period, rather than their signature Lk ; interestingly, it was shown that the
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Fig. 14 Co-existence of type-16 MMO (red) and canard cycle after period doubling (black) for μ = 0.051.
a Orbits in (v, z, w)-space, b Time series of v(t)

underlying hierarchical structure is well-represented by a Stern-Brocot tree, instead of the
Farey tree which is usually invoked in that context. In particular, and in agreement with [17],
period-doubling cascades were found to be interspersed with chaotic phases which unfold
over very narrow B0-intervals; the latter may well correspond to the boundaries between our
sectors of rotation. Further investigation is necessary to establish fully how their results relate
to those obtained in this article.

Finally, in a recent study by Shimizu et al. [18], the dynamics of a modification of Eq. (1)
was considered subject to a weak periodic perturbation close to Hopf bifurcation. In analogy
to the approach developed here, a one-dimensional reduction was obtained for the return
map that is induced by the resulting flow; however, that reduced map was not found to
be unimodal, as in our case, but circle-like. A novel type of bifurcation, termed ‘MMO-
incrementing bifurcation’ (MMOIB), was reported by the authors; moreover, highly complex,
intermittently chaotic mixed-mode patterns that include rare bursts over long time intervals
were observed in the corresponding time series. It would seem worthwhile to explore whether
the geometric framework applied in this article can be extended to the modified Bonhoeffer–
van der Pol oscillator studied in [18].
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