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Abstract We show that a non-wandering dynamical system with the shadowing property
is either equicontinuous or has positive entropy and that in this context uniformly positive
entropy is equivalent to weak mixing. We also show that weak mixing together with the
shadowing property imply the specification property with a special kind of regularity in
tracing (a weaker version of periodic specification property). This in turn implies that the set
of ergodic measures supported on the closures of orbits of regularly recurrent points is dense
in the space of all invariant measures (in particular, invariant measures in such a system form
the Poulsen simplex, up to an affine homeomorphism).
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1 Introduction

The notion of shadowing property (also known under the name of pseudo-orbit tracing prop-
erty) was introduced in the fundamental works of Anosov and Bowen on hyperbolic aspect of
differentiable dynamics. It was later discovered that this notion can lead to many interesting
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results in the study of measure theoretic and topological properties of dynamical systems on
compact metric spaces. These studies are now among classical results of ergodic theory and
qualitative theory of dynamical systems (see [3,8]).

In [16] Moothathu proved that in every non-wandering dynamical system with the shad-
owing property the set of minimal points is dense and recently this result was extended in
[17], by showing that the set of regularly recurrent points is also dense. If a non-wandering
dynamical system with the shadowing property is sensitive, various types of minimal subsys-
tems are present in the dynamics, such as sensitive almost 1–1 extension of odometers and
minimal subsystems with positive entropy. In fact, every non-empty open subset contains
an extension of the full shift for some power of the action. It is shown in [16] that for a
dynamical system with the shadowing property, a sensitive point from the non-wandering
set is an entropy point and we will show that there is a full shift factor for some power of the
action in every neighborhood of a sensitive point. As an immediate consequence we obtain
a kind of dichotomy: a non-wandering dynamical system with the shadowing property is
either equicontinuous or has positive entropy. We also obtain a few equivalent conditions for
positive entropy in systems with the shadowing property. It is known (see [14]) that for a
continuous map f : [0, 1] → [0, 1] weak mixing is equivalent to uniformly positive entropy
of all orders. In the present paper we show that the same equivalence is true for non-trivial
systems with the shadowing property.

It was first proved by Bowen that if a weakly mixing system has the shadowing property,
then it satisfies the specification property and if additionally the system is positively expansive,
then it satisfies the periodic specification property (e.g. see [8, Proposition 23.20]). We will
combine this result with the above mentioned technique from [17] to show that if a dynamical
system with the shadowing property is weakly mixing then it has the specification property
with some regularity in tracing.

It is shown in [20] that if a dynamical system satisfies the periodic specification property,
then the set of atomic measures which are uniformly distributed on the periodic orbits is
dense in the set of invariant measures. This classical result was later extended by various
authors in many different settings, including maps on the unit interval [13] where there is no
chance for any kind of expansiveness. It is also known that positively expansive systems with
the shadowing property have dense sets of periodic points. But there are also weakly mixing
systems with the shadowing property and without periodic points (e.g. see Example 5.6),
therefore they are not positively expansive. While there is no possibility to obtain the same
result (e.g. on the structure of the sets of invariant measures) in general setting, some part
of qualitative behavior survives if we drop the positive expansiveness assumption. To be
specific, we show that if a weakly mixing system has the shadowing property, then the set of
ergodic invariant measures supported on the closures of orbits of regularly recurrent points is
dense in the set of invariant measures. Since extreme points of invariant measure are exactly
the ergodic measures, invariant measures in such a system form the Poulsen simplex, up to
an affine homeomorphism. For more details about the Poulsen simplex and its connections
with dynamical systems, we refer the reader to [11,15].

2 Preliminaries

Throughout this paper, let N, N0 and R denote the set of all positive integers, non-negative
integers and real numbers, respectively. Let (X, d) be a metric space. Open and closed balls
of radius r > 0 centered at a point x in X are denoted by B(x, r) and B(x, r), respectively.
A subset A of X is residual if it is a dense Gδ set.
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2.1 Topological Dynamics

A dynamical system is a pair (X, f ), where X is a compact metric space with a metric d and
f : X → X is a continuous map.

The orbit of a point x ∈ X is the set Orb(x, f ) = { f n(x) : n ∈ N0}. The set of limit
points of the orbit Orb(x, f ) is called the ω-limit set of x , and is denoted by ω(x, f ).

A subset D of X is f -invariant (or simply invariant) if f (D) ⊂ D. A non-empty closed
invariant subset D of X is minimal, if Orb(x, f ) = D for every x ∈ D. A point x ∈ X is
minimal if it is contained in some minimal subset of X .

A point x ∈ X is periodic with least period n if n is the smallest positive integer satisfying
f n(x) = x ; recurrent if for every neighborhood U of x there exists k ∈ N such that
f k(x) ∈ U ; regularly recurrent if for every open neighborhood U of x , there exists k ∈ N

such that f kn(x) ∈ U for all n ∈ N0. It is well known that a point x ∈ X is minimal if and
only if for every open neighborhood U of x , there exists N > 0 such that f k(x) ∈ U for some
k ∈ [n, n + N ] and every n ∈ N0. Note that every periodic point is regularly recurrent, every
regularly recurrent point is minimal and every minimal point is recurrent (but not vice-versa).
Denote by P( f ), R( f ), M( f ) and R R( f ), respectively, the set of all periodic, recurrent,
minimal and regularly recurrent points of f . We say that x ∈ X is a non-wandering point if
for every neighborhood U of x , there exists k ∈ N such that f k(U ) ∩ U �= ∅. The set of all
non-wandering points of f is denoted as �( f ). Observe that �( f ) is closed and f -invariant.
If �( f ) = X , the system is said to be non-wandering.

We say that f is transitive if for every pair of non-empty open subsets U and V of X
there is k ∈ N such that f k(U ) ∩ V �= ∅; weakly mixing if f × f is transitive; strongly
mixing if for every pair of non-empty open sets U and V of X there is an N > 0 such that
f n(U ) ∩ V �= ∅ for all n ≥ N . We say that x ∈ X is a transitive point if ω(x, f ) = X . It
is well known that a dynamical system (X, f ) is transitive if and only if the set of transitive
points is residual in X .

A dynamical system (X, f ) is equicontinuous if for every ε > 0, there is δ > 0 with
the property that d(x, y) < δ implies d( f n(x, ), f n(y)) < ε for every n ∈ N and every
x, y ∈ X . A point x ∈ X is equicontinuous if for every ε > 0, there is δ > 0 with the
property that d(x, y) < δ implies d( f n(x, ), f n(y)) < ε for every n ∈ N and every y ∈ X .
By the compactness of X , a system (X, f ) is equicontinuous if and only if every point in X
is equicontinuous.

A dynamical system (X, f ) is sensitive if there exists δ > 0 such that for any non-empty
open subset U of X , we have diam( f n(U )) > δ for some n ∈ N. A point x ∈ X is sensitive
if it is not equicontinuous, that is there exists δ > 0 such that for any neighborhood U of x
there is n > 0 such that diam( f n(U )) > δ. Clearly, if (X, f ) is sensitive then every point
x ∈ X is sensitive.

Let (X, f ) and (Y, g) be two dynamical systems. If there is a continuous surjection π :
X → Y with π ◦ f = g ◦ π , then we say that π is a factor map, the system (Y, g) is a factor
of (X, f ) or (X, f ) is an extension of (Y, g). We say that (X, f ) is almost 1–1 extension
of (Y, g) if Z = {x ∈ X : π−1(π(x)) = {x}} is residual in X . If π is a homeomorphism,
then we say that π is a conjugacy and dynamical systems (X, f ) and (Y, g) are conjugate.
Conjugate dynamical systems can be considered the same from the dynamical point of view.

2.2 Shifts and Odometers

For any integer d ≥ 1, the space {0, 1, . . . , d}N0 is a Cantor space with respect to the
product topology. We write elements of {0, 1, . . . , d}N0 as α = a0a1a2 . . .. The shift map
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σ : {0, 1, . . . , d}N0 → {0, 1, . . . , d}N0 is defined by the condition that σ(α)n = αn+1 for
n ∈ N0. It is not hard to check that σ is a continuous surjection. The dynamical system
({0, 1, . . . , d}N0 , σ ) is called the full shift.

Let s = (s j )
∞
j=1 be a sequence of positive integers such that s j divides s j+1. Let

X ( j) = {0, 1, . . . , s j − 1} and Xs = {x ∈ ∏∞
j=1 X ( j) : x j+1 ≡ x j (mod s j )}. Let

f : Xs → Xs, x �→ y, where y j = x j + 1 (mod s j ) for each j = 1, 2, . . .. The dynam-
ical system (Xs, f ) is called an odometer (or an adding machine) defined by the sequence
s = (s j )

∞
j=1. Some authors require that the sequence (s j )

∞
j=1 starts with at least two and

is strictly increasing, but lack of such restrictions has no formal consequences other than
admitting (as odometers) periodic orbits including the trivial one. It is clear that (Xs, f )

is minimal and equicontinuous, and every point in Xs is regularly recurrent. In the further
parts of the paper we will refer to the fact (e.g. see [9, Theorem 5.1]) that the orbit closure
Orb(x, f ) of any regularly recurrent point x ∈ X is an almost 1–1 extension of an odometer.
See the survey [9] by Downarowicz for more details on odometers.

2.3 The Shadowing Property

Let (X, f ) be a dynamical system. Fix any ε > 0 and δ > 0. A sequence {xn}∞n=0 in X is a
δ-pseudo orbit if d( f (xn), xn+1) < δ for all n = 0, 1, 2, . . .. A point x ∈ X is ε-tracing a
pseudo-orbit {xn}∞n=0 if d( f n(x), xn) < ε for all n = 0, 1, . . .. We say that the system (X, f )

(or the map f ) has the shadowing property (or pseudo-orbit tracing property) if for every
ε > 0 there is δ > 0 such that every δ-pseudo orbit of f is ε-traced by some point in X .

If x, y ∈ X then an ε-chain of length n > 1 (a finite ε-pseudo orbit) form x to y
is any sequence x1, . . . , xn such that x1 = x, xn = y and d( f (xi ), xi+1) < ε for i =
1, 2, . . . , n − 1. We say that (X, f ) is chain mixing if for every ε > 0 there is M > 0 such
that for any two points x, y ∈ X and any n ≥ M there is an ε-chain of length n from x to y.

The following facts highlight strong connections between the non-wandering set and the
shadowing property.

Theorem 2.1 [3,16] If f has the shadowing property, then f |�( f ) also has the shadowing
property.

Additionally, in dynamical systems with the shadowing property there are many minimal
points.

Theorem 2.2 [16] Let (X, f ) be a non-wandering dynamical system with the shadowing
property. Then the set M( f ) of minimal points is dense in X.

Theorem 2.3 [17] Let (X, f ) be a non-wandering dynamical system with the shadowing
property. Then the set R R( f ) of regularly recurrent points is dense in X.

The following fact can be easily deduced from known results. We present a proof here for
completeness.

Proposition 2.4 Let (X, f ) be a non-wandering system. If (X, f ) is equicontinuous then
M( f ) = X (i.e. X is a union of minimal equicontinuous systems). If additionally (X, f ) has
the shadowing property then R R( f ) = X (and each minimal subsystem is conjugated to an
odometer).

Proof Fix a point x ∈ X . Then it is not hard to see that x is a recurrent point (see [2]). This
implies (e.g. again by [2]) that (Orb(x, f ), f ) is an equicontinuous minimal subsystem of
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(X, f ). By [16] any equicontinuous surjective dynamical (X, f ) has the shadowing property
if and only if X is totally disconnected. Then (Orb(x, f ), f ) is either a finite set (a periodic
orbit) or a Cantor set, and then it is conjugate to an odometer (see [1] or [18]). In each case
x is regularly recurrent. 
�

3 Dichotomy Results for Dynamical Systems with the Shadowing Property

It is shown in [16] that for a dynamical system with the shadowing property, a sensitive point
from the non-wandering set is an entropy point (see [22] for the definition). In fact, we can
show that there is a full shift factor in every neighborhood of a sensitive point.

Proposition 3.1 Let (X, f ) be a dynamical system with the shadowing property. If u ∈ X
is a sensitive point of (�( f ), f ), then for every neighborhood U of u, there exists a positive
integer m, a subsystem (Y, f m) of (X, f m) with Y ⊂ U and a factor map π : (Y, f m) →
({0, 1}N0 , σ ).

Proof Since u is a sensitive point, there is a positive number λ with the property that for
any neighborhood V of u, we have diam( f n(V ∩ �( f ))) > λ for some n ∈ N. Pick
a positive number ε < λ/8 such that B(u, 3ε) ⊂ U . By Theorem 2.1 (�( f ), f ) also
has the shadowing property. Let δ be a constant provided for ε > 0 by the shadowing
property of f |�( f ). By the definition of λ, there exists a positive integer r and two points
v1, v2 ∈ �( f ) ∩ B(u, δ/4) such that d( f r (v1), f r (v2)) > λ. By Theorem 2.2 (�( f ), f )

has a dense set of minimal points, the same is true for (�( f ) × �( f ), f × f ). By the
continuity of f r , there exists a minimal point (w1, w2) of (�( f ) × �( f ), f × f ) such that
d(v1, w1) < δ/4, d(v2, w2) < δ/4 and d( f r (v1), f r (w1)) < ε, d( f r (v2), f r (w2)) < ε.
Then d(w1, w2) < δ and d( f r (w1), f r (w2)) > λ−2ε > 4ε. By the recurrence of (w1, w2)

there exists a positive integer m > r such that d(w1, f m(w1)) < δ/4 and d(w2, f m(w2)) <

δ/4. Define two finite sequences as follows

η(0) = (w1, f (w1), . . . , f m−1(w1)),

η(1) = (w2, f (w2), . . . , f m−1(w2)).

Let W0 = B( f r (w1), ε) and W1 = B( f r (w2), ε). Then W0 and W1 are non-empty closed
subsets, and dist (W0, W1) > ε.

For every α = a0a1 . . . an . . . ∈ {0, 1}N0 , we set

Yα =
{

x ∈ B(u, 2ε) : f mi (x) ∈ B(u, 2ε) and f mi+r (x) ∈ Wai for i = 0, 1, . . .
}

.

It is clear that every Yα is a closed subset of X , and Yα ∩Yβ = ∅ for α �= β. We first show that
every Yα is not empty. Let yα be a point ε-tracing the δ-pseudo orbit η(a0)η(a1) · · · η(an) · · · .
Then it is easy to verify that yα ∈ Yα .

Let Y = ⋃
α∈{0,1}N0 Yα . Then Y ⊂ U . We show that (Y, f m) is a subsystem of (X, f m).

Let {yn} be a sequence in Y and yn → y as n → ∞. For every yn , there exists αn such
that yn ∈ Yαn . By the compactness of {0, 1}N0 , without loss of generality we assume that
αn → α ∈ {0, 1}N0 . Then y ∈ Yα , which implies that Y is closed. Now we show that Y
is f m-invariant. Let y ∈ Y . Then there exists an α = a0a1 . . . an . . . ∈ {0, 1}N0 such that
y ∈ Yα . By the definition of Yα, f mi (y) ∈ B(u, 2ε) and f mi+r (y) ∈ Wai for i = 0, 1, . . ..
Then f mi ( f m(y)) ∈ B(u, 2ε) and f mi+r ( f m(y)) ∈ Wai +1 for i = 0, 1, . . ., that is f m(y) ∈
Yσ(α) ⊂ Y .
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Now define a map π : Y → {0, 1}N0 by π(Yα) = {α} for every α ∈ {0, 1}N0 . Then π is a
factor map between (Y, f m) and ({0, 1}N0 , σ ). 
�
Remark 3.2 Consider the map f : [0, 1] → [0, 1], x �→ x2. It is well known that if an
interval map has fixed points only at endpoints then it has the shadowing property (e.g. see
[6, Lemma 4.1]). Then ([0, 1], f ) has the shadowing property. It is clear that 1 is a sensitive
point, but �( f ) = {0, 1}, and therefore we cannot apply Proposition 3.1 to f in this case.

Let h(X, f ) denote the topological entropy of (X, f ). We refer the reader to the text-
books [8] or [21] for basic properties of topological entropy. By Proposition 3.1, we have the
following dichotomy on non-wandering systems with the shadowing property. Note that this
result is also essentially contained in [16, Corollary 5(i)].

Theorem 3.3 Let (X, f )be a non-wandering dynamical system with the shadowing property.
Then either (X, f ) is equicontinuous or (X, f ) has positive entropy.

Proof If (X, f ) is not equicontinuous, then there exists a sensitive point in X . Since (X, f )

is non-wandering, �( f ) = X . Then by Proposition 3.1, there exists a positive integer m, a
subsystem (Y, f m) of (X, f m) and a factor map π : (Y, f m) → ({0, 1}N0 , σ ). Therefore,
h(X, f ) = 1

m h(X, f m) ≥ 1
m h({0, 1}N0 , σ ) > 0. 
�

Lemma 3.4 Let (X, f ) be a dynamical system. If there exists a positive integer m and
a subsystem (Y, f m) of (X, f m) such that (Y, f m) is an extension of ({0, 1}N0 , σ ), then
(�( f )\R( f )) ∩ Y �= ∅, (R( f )\M( f )) ∩ Y �= ∅ and (M( f )\R R( f )) ∩ Y �= ∅.

Proof Let π : (Y, f m) → ({0, 1}N0 , σ ) be the factor map. Using Kuratowski–Zorn Lemma
there is a closed and f m-invariant set 
 ⊂ Y such that π(
) = {0, 1}N0 and if Z ⊂ 
 is a
closed and f m-invariant subset such that π(Z) = {0, 1}N0 then Z = 
. Let q ∈ {0, 1}N0 be a
point with dense orbit under σ and fix y ∈ π−1(q)∩
. There is an increasing sequence {ni }
such that limi→∞ σ ni (q) = q and we can also assume, passing to a subsequence if necessary,
that the limit limi→∞ f mni (y) = z exists. But then if we put Z = Orb(z, f m) ⊂ ω(y, f m)

then q ∈ π(Z) and so π(Z) = {0, 1}N0 . It immediately implies that y ∈ ω(y, f m) = 
,
and hence (
, f m) is transitive. Since the orbit of y is dense in (
, f m) and ({0, 1}N0 , σ )

is not minimal, we see that y ∈ R( f )\M( f ). If we take, α = 1000 . . . ∈ �(σ)\R(σ ), then
π−1(α) ⊂ �(
, f m)\R( f m) ⊂ �( f )\R( f ), since R( f ) = R( f m). Finally, if (Z , σ ) is a
weakly mixing minimal system in ({0, 1}N0 , σ ) (e.g. a Chacón flow) and z is any minimal
point in π−1(Z) then z ∈ M( f m)\R R( f m) = M( f )\R R( f ). 
�

It is shown in [17] that the set of regularly recurrent points is dense if (X, f ) is a non-
wandering system with the shadowing property. If the system (X, f ) is also sensitive, then
M( f )\R R( f ) is dense in X . We can improve the conclusion as follows (Example 3.6 below
shows that while every sensitive system has a dense set of sensitive points, the converse is
not true).

Proposition 3.5 Let (X, f ) be a non-wandering system with the shadowing property.
If (X, f ) has a dense set of sensitive points, then sets �( f )\R( f ), R( f )\M( f ) and
M( f )\R R( f ) are dense in X.

Proof Fix a non-empty open subset U of X . There exists a sensitive point u ∈ U . By
Proposition 3.1, there exists a positive integer m, a subsystem (Y, f m) of (X, f m) with Y ⊂ U
and a factor map π : (Y, f m) → ({0, 1}N0 , σ ). Then the result follows by Lemma 3.4. 
�
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Example 3.6 Let T : [0, 1] → [0, 1] be the standard tent map, that is T (x) = 1 − |1 − 2x |.
Let

X = {(0, 0)} ∪
∞⋃

k=1

{ 1
k

} × [
0, 1

k

]
,

be endowed with metric induced by the Euclidean metric and put

f
( 1

k , x
) =

⎧
⎨

⎩

( 1
k , 1

k T (kx)
)
, for k > 0

(0, 0), otherwise
.

Then this map has the shadowing property. Simply, if we fix ε > 0 then there is δ > 0
such that if ( 1

k , x), ( 1
s , y) ∈ X and 1

k >
√

ε then either k = s or | 1
k − 1

s | > δ. This
immediately implies that for any δ-pseudo-orbit ξ = {zn}∞n=0 = {( 1

kn
, xn)}∞n=0 we either

have that ξ ⊂ [0,
√

ε] × [0,
√

ε] or kn = kn+1 for every n ≥ 0. But in the first case (0, 0)

is an ε-tracing point for ξ and in the second case we can use the shadowing property of T
(after appropriate rescaling of the sequence {xn}∞n=0). This proves that f has the shadowing
property but it is also clear that f is equicontinuous at (0, 0).

Now we can provide a series of conditions equivalent, for systems with the shadowing
property, to positive entropy.

Theorem 3.7 Let (X, f ) be a dynamical system with the shadowing property. Then the
following conditions are equivalent:

(1) (X, f ) has positive entropy;
(2) there exists a sensitive transitive subsystem (M, f ) of (X, f );
(3) there exists a sensitive point in (�( f ), f );
(4) there exists a positive integer m, a subsystem (Y, f m) for f m and a factor map π :

(Y, f m) → ({0, 1}N0 , σ );
(5) �( f )\R( f ) is not empty;
(6) R( f )\M( f ) is not empty;
(7) M( f )\R R( f ) is not empty.

Proof (1) ⇒ (2) By the variation principle of topological entropy, there exists an ergodic
invariant Borel probability measure μ on X such that the measure-theoretic entropy of
μ is positive. Denote by M the support of μ. By [10], (M, f ) is either sensitive or
equicontinuous (it is so called E-system, i.e. transitive map with fully supported measure).
Then the only possibility is that (M, f ) is sensitive, since it has positive entropy.
(2) ⇒ (3) Let x ∈ M . Then x is a sensitive point of (M, f ). Since M ⊂ �( f ), x is also
a sensitive point of (�( f ), f ).
(3) ⇒ (4) follows from Proposition 3.1.
(4) ⇒ (1) follows by h(X, f ) = 1

m h(X, f m) ≥ 1
m h({0, 1}N0 , σ ) > 0.

(4) ⇒ (5, 6, 7) Applying Lemma 3.4, we obtain that �( f )\R( f ), R( f )\M( f ), and
M( f )\R R( f ) are non-empty.

Finally, observe that if (X, f ) has zero topological entropy, then (�( f ), f ) also has zero
entropy by the variational principle. By Theorem 3.3, (�( f ), f ) must be equicontinuous
since (�( f ), f ) also has the shadowing property by Theorem 2.1. In particular, in this
situation we have �( f ) = R( f ) = M( f ) = R R( f ) by Proposition 2.4, which proves
(5) ⇒ (1), (6) ⇒ (1) and (7) ⇒ (1) completing the proof. 
�
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4 Weakly Mixing Systems with the Shadowing Property

Recall that a dynamical (X, f ) is called weakly mixing if (X × X, f × f ) is transitive. By the
well known Furstenberg Intersection Lemma, if (X, f ) is weakly mixing, then (Xn, f (n)) is
transitive for all n ∈ N, where Xn = X × X ×· · ·× X (n-times) and f (n) = f × f ×· · ·× f
(n-times).

It is shown in [14] that for a continuous map f : [0, 1] → [0, 1] weak mixing is equivalent
to uniformly positive entropy of all orders. The main result of this section is that the similar
result also holds for non-trivial systems with the shadowing property.

Definition 4.1 [4,12] A dynamical system (X, f ) is said to have uniformly positive entropy
of all orders if for every n ≥ 2, any cover of X by n non-dense open sets has positive entropy.

A system with uniformly positive entropy of all orders is a topological analogue of the
Kolmogorov system in ergodic theory, so such a system is also called a topological K system.

Definition 4.2 [4,12] A dynamical system (X, f ) is said to have the strong Property P if for
any n ≥ 2 and any non-empty open subsets U0, U1, . . . , Un−1 of X there exists an integer
N such that whatever k ≥ 2, whatever s = (s(1), s(2), . . . , s(k)) ∈ {0, 1, . . . , n − 1}k , there
exists x ∈ X with x ∈ Us(1), f N (x) ∈ Us(2) . . . , f (k−1)N x ∈ Us(k).

For i ∈ {0, 1, . . . , d}, denote by C[i] the cylinder set defined by i , that is

C[i] =
{

x ∈ {0, 1, . . . , d}N0 : x0 = i
}

.

Theorem 4.3 Let (X, f ) be a non-trivial non-wandering system with the shadowing prop-
erty. Then the following conditions are equivalents:

(1) (X, f ) is weakly mixing;
(2) For every d ≥ 1 and every non-empty open subsets U0, U1, . . . , Ud of X, there exists a

positive integer m ∈ N, a subsystem (Y, f m) of (X, f m) and a factor map π : (Y, f m) →
({0, 1, . . . , d}N0 , σ ) such that π−1(C[i]) ⊂ Ui for i = 0, 1, . . . , d;

(3) (X, f ) has the strong Property P;
(4) (X, f ) has uniformly positive entropy of all orders.

Proof (1) ⇒ (2) Choose points zi ∈ Ui for i = 0, 1, . . . , d such that zi �= z j for i �= j .
Let λ < mini �= j d(zi , z j ) with B(zi , λ) ⊂ Ui for i = 0, 1, . . . , d . Let ε < 1

8λ and let δ > 0
such that every δ-pseudo orbit of f is ε-traced by some point in X . Choose a transitive point
(u0, u1, . . . , ud) in (Xd+1, f (d+1)) with maxi �= j d(ui , u j ) < 1

4δ. Then there exists a positive
integer r such that d( f r (ui ), zi ) < 1

4ε for i = 0, 1, . . . , d , and a positive integer m > r such
that d( f m(ui ), ui ) < 1

4δ for i = 0, 1, . . . , d .
Define d + 1 finite sequences as follows

η(0) = (
u0, f (u0), . . . , f m−1(u0)

)
,

η(1) = (
u1, f (u1), . . . , f m−1(u1)

)
,

. . .

η(d) = (
ud , f (ud), . . . , f m−1(ud)

)
.

Let W0 = B( f r (u0), ε), W1 = B( f r (u1), ε), . . . , Wd = B( f r (ud), ε). Then W0, W1, . . . ,

Wd are non-empty closed subsets, and dist (Wi , W j ) > ε for i �= j . Clearly Wi ⊂
B(z1, 2ε) ⊂ B(z1, λ) ⊂ Ui .
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If α = a0a1 · · · an · · · ∈ {0, 1, . . . , d}N0 , we set Yα = {x ∈ X : f mi (x) ∈ Wai for i =
0, 1, . . .}. Then Yα is a closed subset of X . We should show that Yα is not empty. Let yα be a
point ε-tracing the δ-pseudo orbit η(a0)η(a1) · · · η(an) · · · . Then f r (yα) ∈ Yα . This shows
that Yα is not empty. Let Y = ⋃

α∈{0,1,...,d}N0 Yα and let π : Y → {0, 1, . . . , d}N0 , π(Yα) =
α. Then Y is closed and π is a factor map between (Y, f m) and ({0, 1, . . . , d}N0 , σ ). Finally,
note that π−1(C[i]) = ⋃

α∈{0,1,...,d}N0 Yiα ⊂ Ui for i = 0, 1, . . . , d .
(2) ⇒ (3) Fix n ≥ 2 and non-empty open subsets U0, U1, . . . , Un−1 of X . Then there

exists a positive integer m ∈ N and a subsystem (Y, f m) and a factor map π : (Y, f m) →
({0, 1, . . . , n − 1}N0 , σ ) such that π−1(C[i]) ⊂ Ui for i = 0, 1, . . . , n − 1.

For each k ≥ 2, and s = (s(1), s(2), . . . , s(k)) ∈ {0, 1, . . . , n − 1}k , if z ∈
{0, 1, . . . , n−1}N0 has s as its prefix, then for each x ∈ π−1(z) we have x ∈ π−1(C[s(1)]) ⊂
Us(1), f m M (x) ∈ π−1(C[s(2)]) ⊂ Us(2), . . . , f (k−1)m M x ∈ π−1(C[s(k)]) ⊂ Us(k).

(3) ⇒ (4) follows from [12, Theorem 7.4].
(4) ⇒ (1) follows from [4, Propsition 2]. 
�

Definition 4.4 A dynamical system (X, f ) is positively expansive (with an expansive con-
stant β > 0) if for any x, y ∈ X with x �= y there is n > 0 such that d( f n(x), f n(y)) > β.

Remark 4.5 If a dynamical system (X, f ) is positively expansive with expansive constant
β, then for every pseudo-orbit ξ there is at most one point (β/2)-tracing ξ . Then it is easy
to see that in the Proof of Theorem 4.3, every Yα is a singleton, and as a consequence π is a
conjugacy.

The following fact highlights an important property of (positively) expansive systems (see
[3, Theorem 3.4.4.]).

Theorem 4.6 (Topological Decomposition Theorem) Let (X, f ) be a positively expansive
dynamical system with the shadowing property and assume that f surjective. Then the fol-
lowing properties hold:

(1) �( f ) contains a finite sequence of pairwise disjoint f -invariant closed subsets Bi (1 ≤
i ≤ l) such that �( f ) = ⋃l

i=1 Bi and each subsystem (Bi , f ) is transitive (sets Bi are
called basic sets).

(2) For every basic set B there is an integer a > 0 and a finite sequence of pairwise dis-
joint f a-invariant closed sets Ci ⊂ B (0 ≤ i < a) such that B = ⋃a−1

i=0 Ci , f (Ci ) =
Ci+1 (mod a) and each subsystem (Ci , f a) is strongly mixing (sets Ci are called elemen-
tary sets).

Theorem 4.7 Let (X, f ) be a non-wandering system with the shadowing property, where
X has no isolated points. If (X, f ) is positively expansive, then for every d ≥ 1 and every
non-empty open subset U of X, there exists a positive integer m ∈ N and a subsystem (Y, f m)

with Y ⊂ U and a conjugacy map π : (Y, f m) → ({0, 1, . . . , d}N0 , σ ).

Proof Let U be a non-empty open subset of X . By the Topological Decomposition Theorem,
there is an elementary set C such that U ∩ C �= ∅. Since X has no isolated points, so does
C . There exists a > 0 such that (C, f a) is strongly mixing. It is easy to see that (C, f a)

is also positively expansive and has the shadowing property. Then the result follows from
Theorem 4.3 and Remark 4.5. 
�
Remark 4.8 In Theorem 4.7, we assume that X has no isolated points. If fact, for every non-
wandering dynamical system (X, f ), we easily obtain that X has at most countably many
isolated points and every isolated point in X must be periodic.
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5 Specification Property

Let (X, f ) be a dynamical system. We say that f satisfies the periodic specification property
if for any ε > 0 there exists M > 0 such that for any k ≥ 2, any k points x1, x2, . . . , xk ∈ X ,
any non-negative integers 0 ≤ a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk with ai − bi−1 ≥ M for
each i = 2, 3, . . . , k and any integer p ≥ M + bk − a1, there exists a periodic point z ∈ X
with f p(z) = z and d( f j (z), f j (xi )) < ε for all ai ≤ j ≤ bi and 1 ≤ i ≤ k. We say that f
satisfies the specification property if the point z in the periodic specification property is not
requested to be periodic (hence no condition on p).

It was proved first by Bowen (see [8]) that if (X, f ) is a weakly mixing system with the
shadowing property, then it satisfies the specification property. Moreover, if (X, f ) is also
positively expansive, then it satisfies the periodic specification property. It is shown in [17]
that every non-wandering system with the shadowing property has a dense set of regularly
recurrent points. We combine these above results and show that every weak mixing system
with the shadowing property also has the following version of specification property. The
proof is inspired by Lemma 3.1 in [17].

Theorem 5.1 Let (X, f ) be a weakly mixing system with the shadowing property. For any
ε > 0 there exists M > 0 such that for any k ≥ 2, any k points x1, x2, . . . , xk ∈ X, any
non-negative integers 0 ≤ a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk with ai − bi−1 ≥ M
for each i = 2, 3, . . . , k and any p ≥ M + bk − a1, there exists z ∈ R R( f ) such that
d( f j (z), f np+ j (z)) < ε for every n, j ≥ 0 and d( f np+ j (z), f j (xi )) < ε for all ai ≤ j ≤
bi , 1 ≤ i ≤ k and n ≥ 0.

Proof First note that we may assume that a1 = 0. Simply, if z′ is a point obtained for
a′

i = ai − a1, b′
i = bi − a1 and x ′

i = f a1(xi ) then z = f p−a1(z′) is a desired point.
Let λ0 = ε/8 and let δ > 0 be such that every δ-pseudo-orbit is λ0/8-traced. Since f is

weakly mixing, by results of [19] it is chain mixing, that is, there is M > 0 such that for any
two points x, y ∈ X and any n ≥ M there is a δ-chain of length n from x to y.

Now fix k, p and sequences xi , ai , bi as in the statement of theorem (with M fixed above).
There is a periodic δ-pseudo-orbit

ξ = (z0, . . . , z p−1, z0, . . . z p−1, z0, . . .)

such that z j = f j (xi ) for i = 1, . . . , k and all ai ≤ j ≤ bi . Let q0 be a point which is
λ0/8-tracing ξ . Let y0 be any minimal point in the set ω(q0, f p). For any i ≥ 0 there is
τ > 0 such that d( f i (y0), f τp+i (q0)) < λ0/8. Then

d( f i (y0), ξi ) ≤ d( f i (y0), f τp+i (q0)) + d(ξi , f τp+i (q0)) < λ0/8 + λ0/8 ≤ λ0/4,

which implies that y0 is λ0/4-tracing ξ .
Denote λr = ε/8r+1 for r = 0, 1, 2, . . . and m0 = p. Now we will apply arguments

inspired by the proof of Lemma 3.1 in [17], and construct an increasing sequence {mr }∞r=0
of natural numbers and a sequence {yr }∞r=0 of points of X such that for every r = 0, 1, 2, . . .

we have

(1) mr divides mr+1;
(2) yr is a minimal point and d( f imr + j (yr ), f j (yr )) <

λr+1
2 for any i, j ≥ 0;

(3) d( f j (yr ), f j (yl−1)) ≤ ∑r
i=l λi for 1 ≤ l ≤ r and every j ≥ 0.

Before we proceed with the construction, let us first assume that we have already con-
structed a sequence of points {yr } satisfying (1)–(3). Let z be a limit point of the sequence
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{yr }. For every j ≥ 0 there is s > 0 such that d( f j (z), f j (yis )) < ε/8 and then (applying
condition (3)) we obtain that

d
(

f j (z), ξ j
) ≤ d

(
ξ j , f j (y0)

) + d
(

f j (y0), f j (yis )
) + d

(
f j (yis ), f j (z)

)

≤ ε

8
+

is∑

i=1

λi + ε

8
≤ ε

4
+

∞∑

i=1

λi <
ε

2
.

In particular, for any n ≥ 0 we have

d
(

f j (z), f np+ j (z)
) ≤ d

(
f j (z), ξ j

) + d
(
ξ j , f np+ j (z)

)

= d
(

f j (z), ξ j
) + d

(
ξnp+ j , f np+ j (z)

)

< ε.

Similarly, for every r ≥ 1 and every j ≥ 0 there is s > r such that d( f jmr (z), f jmr (yis )) <

λr and d(z, yis ) < λr . Clearly is ≥ s. Additionally, observe that (3) implies

d
(
yis , yr

) ≤
is∑

i=r+1

λi ,

d
(

f jmr (yis ), f jmr (yr )
) ≤

is∑

i=r+1

λi

and by (2) we also have that d( f jmr (yr ), yr ) <
λr+1

2 which gives the following

d
(

f jmr (z), z
) ≤ d

(
f jmr (z), f jmr (yis )

) + d
(

f jmr (yis ), f jmr (yr )
)

+ d
(

f jmr (yr ), yr
) + d

(
yr , yis

) + d
(
yis , z

)

≤ λr + 2
is∑

i=r+1

λi + λr+1

2
+ λr ≤ 3

∞∑

i=r

λi .

But limr→∞
∑∞

i=r λi = 0, hence z ∈ R R( f ).
To complete the proof, we need to perform a construction of the sequences {mr } and {yr }

satisfying (1)–(3). Fix s ≥ 0 and suppose that mr , yr are constructed for every 0 ≤ r ≤ s. We
will show, how ms+1 and ys+1 can be constructed. Let α > 0 be such that every α-pseudo-
orbit is λs+2/8-traced. Since ys is minimal for f , it is also minimal for f ms , in particular,
there is a positive integer ms+1 divisible by ms such that d( f ms+1(ys), ys) < α. Take a
periodic α-pseudo-orbit

γ = (
ys, f (ys), . . . , f ms+1−1(ys), ys, f (ys), . . . , f ms+1−1(ys), ys, . . .

)

and let qs+1 be a point which is λs+2/8-tracing γ . Let ys+1 be any minimal point
in the set ω(qs+1, f ms+1). If we fix any i, j ≥ 0 then there is τ > 0 such that
d( f ims+1+ j (ys+1), f (i+τ)ms+1+ j (qs+1)) < λs+2/8 and d( f j (ys+1), f τms+1+ j (qs+1)) <

λs+2/8. But then

d
(

f ims+1+ j (ys+1), f j (ys+1)
)

< d
(

f ims+1+ j (ys+1), γτms+1+ j
) + d

(
γτms+1+ j , f j (ys+1)

)

= d
(

f ims+1+ j (ys+1), γ(i+τ)ms+1+ j
) + d

(
γτms+1+ j , f j (ys+1)

)

<
λs+2

8
+ λs+2

8
+ λs+2

8
+ λs+2

8
= λs+2

2
,
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which proves (2). Similarly, fix any 1 ≤ l ≤ s + 1 and any j ≥ 0, there is τ > 0 such
that d( f j (ys+1), f τms+1+ j (qs+1)) < λs+2/8. There is 0 ≤ t < ms+1 and i ≥ 0 such that
j = ims+1 + t and then

d
(

f j (ys+1), f j (yl−1)
) ≤ d

(
f j (ys+1), γτms+1+ j

) + d
(
γτms+1+ j , f j (yl−1)

)

≤ d
(

f j (ys+1), γτms+1+ j
) + d

(
γt , f j (ys)

) + d
(

f j (ys), f j (yl−1)
)

≤ λs+2

8
+ λs+2

8
+ d

(
f t (ys), f ims+1+t (ys)

) +
s∑

i=l

λi

≤ λs+2

4
+ λs+1

2
+

s∑

i=l

λi <

s+1∑

i=l

λi ,

which proves (3) and ends the proof. 
�
As an easy consequence of Theorem 5.1 we obtain a classical result, proved first by Bowen

(see [8]).

Corollary 5.2 If (X, f ) is weakly mixing, positively expansive and has the shadowing prop-
erty, then it has the periodic specification property.

Proof Fix ε < β where β is an expansive constant. The only thing which we need to extend
in Theorem 5.1 to obtain periodic specification property is that z is a periodic point with
period p. But if ε < β then in Theorem 5.1 for every j ≥ 0 we have

d
(

f j (z), f j+p(z)
) ≤ ε < β.

Hence z = f p(z) completing the proof. 
�
Given a compact metric space X , denote by C(X, R) the set of all continuous functions

ξ : X → R. If we endow it with the norm ‖ξ‖ = supx∈X |ξ(x)| then it becomes a Banach
space.

Let M(X) be the set of all Borel probability measures on X and fix a dense sequence
{ξi }∞i=1 ⊂ C(X, R). Then the metric

D(μ, ν) =
∞∑

i=1

| ∫X ξi dμ − ∫
X ξi dν|

2i (‖ξi‖ + 1)

for μ, ν ∈ M(X) is compatible with the weak-∗ topology on M(X). We denote by M f (X) ⊂
M(X) the set of all invariant measures for (X, f ). The support of a measure μ ∈ M(X),
denoted by supp(μ), is the smallest closed subset C of X such that μ(C) = 1. If μ is an
invariant measure for (X, f ), then it is clear that supp(μ) is f -invariant.

Let x ∈ X be a periodic point with periodic p. Then it corresponds to an invariant measure
μx which has mass 1/p as each of the points x, f (x), . . . , f p−1(x). We denote the set of
these measures by P(p). The following fact was first proved by Sigmund (see [20]).

Theorem 5.3 If (X, f ) satisfies the periodic specification property and if � ∈ N, then⋃
p≥� P(p) is dense in M f (X).

While there are known examples of weakly mixing systems with the shadowing property
that have no periodic points (e.g. see Example 5.6), we can prove that the assertion of
Theorem 5.3 can be preserved to some extent. Strictly speaking, we can show that if a
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weakly mixing system has the shadowing property, then the set of ergodic invariant measures
supported on the closures of orbits of regularly recurrent points is dense in the set of invariant
measures.

Definition 5.4 Denote by ET
f (X) the set of ergodic measures μ ∈ M f (X) for (X, f ) such

that the support of μ is the closure of the orbit of a regularly recurrent point.

Denote by Q( f ) the set of quasi-regular points with respect to f , that is the set of points
x such that the limit

ξ∗(x) = lim
n→∞

1

n

n−1∑

j=0

ξ
(

f j (x)
)

exists for every ξ ∈ C(X, R). It can be proved that Q( f ) is a Borel set and that μ(Q( f )) = 1
for every μ ∈ M f (X) (e.g. see [3]).

The proof of the following fact is in main part the same as original Sigmund’s argument in
the proof of Theorem 5.3. The final argument is made by application of Theorem 5.1. Since it
could be hard to present rigorous explanation of the proof without detailed reference to [20],
we decided to provide a complete proof. It makes the paper complete (and hence accessible
to the reader), and at the same time fits into approach presented by various authors before,
when proving variants of Sigmund’s result (e.g. see [13]).

Corollary 5.5 Let (X, f ) be a weakly mixing system with the shadowing property. Then
ET

f (X) is a dense subset of M f (X).

Proof Fix any μ ∈ M f (X) and its open neighborhood U. By the definition of metric D
there is ε > 0 and a finite set F ⊂ C(X, R), such that ‖ξ‖ ≤ 1 for all ξ ∈ F and

W =
⎧
⎨

⎩
ν ∈ M f (X) :

∣
∣
∣
∣
∣
∣

∫

X

ξdμ −
∫

X

ξdν

∣
∣
∣
∣
∣
∣
< ε for all ξ ∈ F

⎫
⎬

⎭
⊂ U.

By Birkhoff Ergodic Theorem and the fact that μ(Q( f )) = 1 we have for each ξ ∈ F
∫

Q( f )

ξdμ =
∫

Q( f )

ξ∗dμ.

It is clear that ξ∗|Q( f ) is Borel and supx∈Q( f ) |ξ∗(x)| ≤ 1 for all ξ ∈ F . Let P = {P1, . . . , Ps}
be a partition of Q( f ) into non-empty Borel sets such that ξ∗|Pi has oscillation bounded by
ε/4 for all ξ ∈ F and i = 1, . . . , s (i.e. supx∈Pi

ξ∗(x) − inf y∈Pi ξ∗(y) ≤ ε/4).
For each j = 1, . . . , s, choose a point y j ∈ Ps and observe that

∣
∣
∣
∣
∣
∣
∣

∫

Pj

ξ∗dμ − μ(Pj )ξ
∗(y j )

∣
∣
∣
∣
∣
∣
∣

≤ ε

4
μ(Pj )

which immediately implies that
∣
∣
∣
∣
∣
∣
∣

∫

Q( f )

ξdμ −
s∑

j=1

μ(Pj )ξ
∗(y j )

∣
∣
∣
∣
∣
∣
∣

≤ ε

4
.
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There is δ > 0 such that if d(z1, z2) < δ then |ξ(z1) − ξ(z2)| < ε/8, provided that ξ ∈ F
and z1, z2 ∈ X . Let M be provided by Theorem 5.1 for δ/4.

Directly from the definition of Q( f ) we can find N > 0 such that for any ξ ∈ F and
j = 1, . . . , s we have

∣
∣
∣
∣
∣

1

N

N−1∑

i=0

ξ
(

f i (y j )
)

− ξ∗(y j )

∣
∣
∣
∣
∣
<

ε

8
.

In particular we have
∣
∣
∣
∣
∣
∣
∣

∫

Q( f )

ξdμ − 1

N

s∑

j=1

N−1∑

i=0

μ(Pj )ξ
(

f i (y j )
)

∣
∣
∣
∣
∣
∣
∣
≤ 3ε

8
. (5.1)

Fix a positive integer m such that 1
m < ε

8s . There exist positive integers n1, . . . , ns such that
for j = 1, . . . , s we have

n j

m
≤ μ(Pj ) <

n j + 1

m
.

Putting m j = n j or m j = n j + 1 we can present
∑s

j=1 m j = m and clearly we also have

∣
∣
∣μ(Pj ) − m j

m

∣
∣
∣ ≤ 1

m
≤ ε

8s
.

Therefore
∣
∣
∣
∣
∣
∣

1

N

s∑

j=1

N−1∑

i=0

(
μ(Pj ) − m j

m

)
ξ
(

f i (y j )
)
∣
∣
∣
∣
∣
∣
≤ ε

8N

N−1∑

i=0

∣
∣
∣ξ

(
f i (y j )

)∣∣
∣ ≤ ε

8

which combined with (5.1) implies that
∣
∣
∣
∣
∣
∣
∣

∫

Q( f )

ξdμ − 1

N

s∑

j=1

N−1∑

i=0

m j

m
ξ
(

f i (y j )
)

∣
∣
∣
∣
∣
∣
∣

≤ ε

2
. (5.2)

Increasing N if necessary, we may assume that 2M/N < ε/8.
Since f is weakly mixing, it is onto and hence for every a > 0 and j there is x j such that

f a(x j ) = y j . For r = 1, . . . , m we put ar = (r −1)(N + M), br = ar + N −1 and let xr be

such that f ar (xr ) = y j where 1 ≤ j ≤ s is the largest number such that
∑ j−1

i=1 m j ≤ r − 1.
Put p = m(N + M). Then

∣
∣
∣
∣
∣
∣

1

p

m∑

r=1

br∑

i=ar

ξ
(

f i (xr )
) − 1

N

s∑

j=1

N−1∑

i=0

m j

m
ξ
(

f i (y j )
)
∣
∣
∣
∣
∣
∣
≤ M

N + M
<

ε

16
. (5.3)

Let z be provided by Theorem 5.1 for δ/4, the sequences ar , br , points xr and p. Put

 = ω(z, f ) and take an ergodic measure ν on 
. Since ν is ergodic, there exists a point
q ∈ 
 such that

lim
n→∞

1

n

n−1∑

i=0

ξ
(

f i (q)
) =

∫




ξdν =
∫

Q( f )

ξdν
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for each ξ ∈ F . Taking forward iteration of q if necessary, we may assume that q ∈ ω(z, f p).
For every j ≥ 0, there exists τ > 0 such that d( f j p, f τp+ j (z)) < δ/4, and then

d
(

f j (q), f j (z)
) ≤ d

(
f j (q), f τp+ j (z)

) + d
(

f τp+ j (z), f j (z)
)

< δ/4 + δ/4 = δ/2.

Therefore d( f i (q), f i (xr )) < δ for all ar ≤ i ≤ br and 1 ≤ r ≤ m,
Choose an integer T > 0 such that for each ξ ∈ F we have

∣
∣
∣
∣
∣
∣
∣

1

pT

pT −1∑

i=0

ξ
(

f i (q)
) −

∫

Q( f )

ξdν

∣
∣
∣
∣
∣
∣
∣
<

ε

8
.

By the choice of p, we have d( f np+i (q), f i (q)) ≤ δ for all i, n ≥ 0, and hence
∣
∣
∣
∣
∣
∣
∣

1

p

p−1∑

i=0

ξ
(

f i (q)
) −

∫

Q( f )

ξdν

∣
∣
∣
∣
∣
∣
∣
≤ ε

8
+

∣
∣
∣
∣
∣
∣

1

p

p−1∑

i=0

ξ
(

f i (q)
) − 1

pT

pT −1∑

i=0

ξ
(

f i (q)
)
∣
∣
∣
∣
∣
∣
<

ε

4
.

(5.4)

By our construction we have
∣
∣
∣
∣
∣
∣

1

p

m∑

r=1

br∑

i=ar

(
ξ( f i (q)) − ξ( f i (xr ))

)
∣
∣
∣
∣
∣
∣
≤ m Nε

8p
≤ ε

8
, (5.5)

and finally
∣
∣
∣
∣
∣
∣

1

p

m∑

r=1

br +M∑

i=br +1

ξ
(

f i (q)
)
∣
∣
∣
∣
∣
∣
≤ Mm

p
≤ ε

16
. (5.6)

Now, combining the above calculations (5.2)–(5.6), we obtain that
∣
∣
∣
∣
∣
∣

∫

X

ξdμ −
∫

X

ξdν

∣
∣
∣
∣
∣
∣
<

ε

2
+ ε

16
+ ε

8
+ ε

16
+ ε

4
≤ ε.

This shows that ν ∈ W completing the proof. 
�

We finish our considerations with a few simple examples. Note that if a dynamical system
is positively expansive, then Theorem 5.5 is a consequence of Theorem 5.3 by Corollary 5.2.
The same is also true for other types of expansiveness, e.g. expansive homeomorphism or c-
expansive surjections as defined in [3]. We leave details to the reader. A large class of systems
with the shadowing property which are not positively expansive can be found within the class
of dynamical systems on the unit interval, e.g. in the family of tent maps (e.g. see [7]). In these
maps, however, another argument can be used to prove the periodic specification property
(see Buzzi’s proof of Blokh’s classical result in [5]), so ergodic measures in Theorem 5.5 are
in fact supported on these points, since Theorem 5.3 works.

To obtain a system which satisfies assumption of Theorem 5.5 but not of Theorem 5.3 we
need a little more work. To do so, we can perform the following standard construction.
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Example 5.6 Let (Xn, fn) be a strongly mixing system with the shadowing property but
without points of period n. For example it can be a subshift of finite type defined by a graph
with two distinct cycles of length n+1 and n+2 starting from the same vertex. Assume that the
metric on (Xn, dn) satisfies diam(Xn) ≤ 1. If we take an infinite Cartesian product (X, F) =
(
∏∞

n=1 Xn,
∏∞

n=1 fn) with the standard product metric d(x, y) = ∑∞
n=1 2−ndn(xn, yn) then

it generates a topology compatible with the Thikhonov topology, in particular it is compact.
The map (X, F) is strongly mixing and has the shadowing property as a product of maps
with the same properties. But it cannot have periodic points, because for any x ∈ X and
n ∈ N we have Fn(x)n = f n(xn) �= xn .

In the above example the set consisting of regularly recurrent points whose orbits closures
form subsystems conjugate to odometers is dense.

Question 1 Can we ensure in Theorem 5.1 that z ∈ R R( f ) is such that Orb(z, f ) is an
odometer (up to conjugacy), not only its almost 1–1 extension?

Note that if we can prove in Theorem 5.1 that z is not only regularly recurrent but also
equicontinuous (in its orbit closure), then immediately Question 1 has a positive answer.
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