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Abstract In this paper we are mainly interested in the bifurcation phenomena for a class of
planar piecewise smooth differential systems, where a new phenomenon, i.e. sliding hetero-
clinic bifurcation, is found. Furthermore we will show that the involved systems can present
many interesting bifurcation phenomena, such as the (sliding) heteroclinic bifurcation, slid-
ing (homoclinic) cycle bifurcation and semistable limit cycle bifurcation and so on. The
system can have two hyperbolic limit cycles, which are bifurcated in one way from a semi-
stable limit cycle, and in another way from a heteroclinic cycle and a sliding cycle. In the
proof of our main results, we will use the geometric singular perturbation theory to analyze
the dynamics near the sliding region.

Keywords Piecewise smooth systems · Sliding heteroclinic bifurcation · Sliding cycle
bifurcation · Semistable limit cycle bifurcation · Singular perturbation
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1 Introduction

Piecewise smooth dynamical systems have been widely applied to model real systems, such
as the automatical control, the mechanical systems with dry frictions, biology, economics and
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so on (see e.g. [2,4,8,16,17] and [19] and the references therein). These kinds of systems can
have richer dynamical phenomena than the smooth ones (see e.g. [5–15,21,22] and [25] and
the references therein). For example the sliding phenomena has appeared only in non–smooth
dynamical systems. In [12] and [13] Gannakopoulos and Pliete have studied the existence
of sliding cycles and sliding homoclinic cycles for a planar relay control feedback systems
which is modelled by a piecewise linear system. These kinds of systems have also many
applications in engineering such as Coulomb friction, valve oscillators and so on, see e.g.
[18] and [24]. In [3] Battelli and Fečkan studied the homoclinic trajectories of discontinuous
systems. Recently in [23] we have investigated the sliding homoclinic and sliding cycle
bifurcations. We proved that a sliding homoclinic cycle can be bifurcated into a sliding cycle
and a sliding cycle can be bifurcated into a limit cycle.

In this paper we find a new bifurcation phenomenon in piecewise smooth differential
systems, which we call the sliding heteroclinic cycle bifurcation. We should mention that
the sliding vector fields appearing in this paper have some singularities in the interior of
the sliding section. The appearance of the singularities inside the sliding region will bring
some difficulties in the study of the sliding bifurcation phenomena. In Sect. 3 we will use the
geometric singular perturbation theory to study the dynamics of system (4) near the sliding
region. This method was developed in [5,20].

Consider a planar piecewise smooth vector field with discontinuity on the y axis

X (x, y) =
{

Xr (x, y), (x, y) ∈ Gr ,

Xl(x, y), (x, y) ∈ Gl ,
(1)

where Xi = ( fi , gi ) ∈ Ck(R2) with k ∈ N ∪ {∞}, i ∈ {r, l}, and

Gr = {(x, y) ∈ R
2 : x > 0}, Gl = {(x, y) ∈ R

2 : x < 0}.
Associated to (1) we define a set–valued map in R

2 by

X F (x, y) =
⎧⎨
⎩

{Xl(x, y)}, (x, y) ∈ Gl ,

co{Xr (0, y), Xl(0, y)}, (x, y) ∈ Y,
{Xr (x, y)}, (x, y) ∈ Gr ,

where Y denotes the set of points on the y axis, and

co{Xr (0, y), Xl(0, y)}={v(y) ∈ R
2 : v(y)=αXr (0, y)+(1−α)Xl(0, y), α ∈ [0, 1]}, (2)

is the convex hull of the vectors Xr (0, y) and Xl(0, y). We get the differential inclusion
(

ẋ
ẏ

)
∈ X F (x, y), (x, y) ∈ R

2, (3)

where the dot denotes the derivative with respect to the time t .
In what follows we will specify the function α in y for which the vector v given in (2)

is uniquely defined in terms of Xr and Xl . Consequently X F (x, y) will be a well defined
vector field in R

2, which is called the Filippov system [11].
According to Filippov [11], a solution of (1) or of the Filippov system is an absolutely

continuous function (x(t), y(t)) defined on an interval I ⊂ R which satisfies (ẋ(t), ẏ(t)) ∈
X F (x(t), y(t)) for almost all t ∈ I .

For a Filippov system there may appear three kinds of subregions of Y , which are extremely
important in the study of the dynamics of piecewise smooth differential systems (see [5,9,
22]):
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(a) A sewing region is a subset M1 ⊂ Y on which fr · fl > 0. In this case, if a trajectory
of (1) can meet M1, it must pass through M1 transversally. Recall that fr and fl are the
first components of Xr and Xl , respectively.

(b) A sliding region is a subset of M on which fr · fl ≤ 0. More precisely,

– If fr < 0 and fl > 0, the sliding region is called attracting or an attracting region,
denoted by M2. If the vector fields meet M2, they will point inward to M2. On the
attracting region any orbit remains being tangent to M2.

– If fr > 0 and fl < 0, the sliding region is called repulsive or an escaping region,
denoted by M3. On the escaping region the trajectories may stay on it for a while,
and also may leave it at some time. In this case the solution is not unique.

On the sewing region the vector fields X F are defined directly from Xr and Xl by choosing
either α ≡ 0 or α ≡ 1 if either fr < 0 or fr > 0. On the sliding region (see e.g., [5]) a sliding
vector field associated to X , denoted by Xs , is tangent to Mi for i = 2, 3 and is defined at
q ∈ Mi by Xs(q) = m −q with m being the point on Y where the segment joining q + Xr (q)
and q + Xl(q) is tangent to Mi . For distinguishing the two cases, the sliding vector field on
M3 will be called the escaping vector field; and the one on M2 is also called a sliding vector
field. Depending on the vector fields on the discontinuity Y , there occur two possible things:
when an orbit meets Y it either crosses Y or stays on it for a while. The latter is called sliding
phenomena. If an orbit has a segment on the sliding region, we call it a sliding orbit, or an
orbit with sliding motion.

A limit cycle of the piecewise smooth vector field X is a closed orbit, and in some neigh-
borhood of which other orbits are either all positively approach it or all negatively approach
it. This definition follows from that of smooth vector fields, see e.g. [26]. A sliding cycle is
a closed orbit with sliding motion, see Fig. 1a. A sliding–zero cycle is a closed orbit having
a unique point of the sliding region, see Fig. 1b. We mention that the unique point of the
sliding region on a sliding–zero cycle should be one of the end points of the sliding region.
By the very definition a limit cycle is neither a sliding cycle nor a sliding–zero cycle. Closed
orbits are central nested if they surround the same singularity.

A sliding heteroclinic orbit (or cycle) is a heteroclinic one with sliding motion, see Fig.
1c. A sliding–zero heteroclinic orbit (or cycle) is a heteroclinic one which possesses an end
point of the sliding region, see Fig. 1d. Of course, the saddles in Fig. 1c, d can be located in
the different sides of the y axis.

A piecewise smooth dynamical system with a parameter α has a sliding cycle bifurcation
at α = α0 if the system has a sliding–zero cycle when α = α0, while for 0 < |α−α0| � 1 the
sliding–zero cycle disappears, instead there appears a limit cycle in its small neighborhood
when α varies in one direction, and there appears a sliding cycle when α goes in another
direction.

The system with a parameterα has a sliding heteroclinic bifurcation atα = α0 if the system
has a sliding (or sliding–zero) heteroclinic cycle when α = α0, while for 0 < |α − α0| � 1
the sliding (or sliding–zero) heteroclinic cycle disappears, instead there appears a sliding (or
sliding–zero) cycle in its small neighborhood when α varies in one direction, and there is
neither sliding heteroclinic orbits nor sliding cycles in its suitable neighborhood when α goes
in another direction.

A sliding Hopf bifurcation is the phenomena that the system has a small sliding cycle for
either 0 < α − α0 � 1 or 0 < α0 − α � 1, and the sliding cycle shrinks to a singularity
when α = α0.

In this paper we investigate a class of piecewise smooth differential systems which can
present sliding heteroclinic cycle. As we know, this is a new phenomena that we first find.
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(a)

(c) (d)

(b)

Fig. 1 The sliding phenomena a sliding cycle b sliding–zero cycle c sliding heteroclinic d sliding–zero
heteroclinic

The known sliding phenomena are sliding cycles and sliding homoclinic cycles, see e.g. [23].
Furthermore we show that these kinds of systems can also present the sliding cycle bifurcation,
the sliding heteroclinic cycle bifurcation and the multiplicity 2 limit cycle bifurcation and so
on. The sliding heteroclinic cycle bifurcation is also a kind of new bifurcation phenomenon
that we first find. In the study of these results we will use the theory of singular perturbation
to study the dynamics of the piecewise smooth differential systems near the sliding region.

Consider the following piecewise smooth differential systems with non–smoothness
appearing on the y axis (

ẋ
ẏ

)
=

(
F1(x, y)
F2(x, y)

)
(4)

with (
F1(x, y)
F2(x, y)

)
=

(
y − x − b1

−px − b2

)
� Xl(x, y), for (x, y) ∈ Gl , (5)

and

(
F1(x, y)
F2(x, y)

)
=

⎛
⎝

(
1

3
− 2x

)
y

−3x2 − x + y2

⎞
⎠ � Xr (x, y), for (x, y) ∈ Gr , (6)

where b1, b2, p are real parameters. In what follows we call Eq. (4) with (5) the left system
of (4) and Eq. (4) with (6) the right system of (4). We should mention that the left system
(5) is a linear one, which appeared in [12] and [13] for modelling the existence of sliding
cycles of piecewise smooth linear systems. The right system (6) is a quadratic Hamiltionian
one with the Hamiltonian

H(x, y) =
(

1

6
− x

)
y2 + x2

2
+ x3,

which is given in [1] as one of the full classification of the cubic Hamiltonians.
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(a) (b)

Fig. 2 The phase portrait of the subsystems of (4) a phase portrait of the left system b phase portrait of the
right system

For studying the dynamics of system (4), we need the set–valued vector field in R
2

X (x, y) =
⎧⎨
⎩

{Xl(x, y)}, (x, y) ∈ Gl ,

co{Xr (0, y), Xl(0, y)}, (x, y) ∈ Y,
{Xr (x, y)}, (x, y) ∈ Gr ,

(7)

with co being defined in (2).
This paper is organized as follows. In the next section we will state our main results.

Section 3 is a preparation to the proof of our main result, where we make use of the theory of
singular perturbation to study the dynamics of system (4) near the sliding region. The proof
of our main results will be given in Sect. 4. The last section is an appendix, which illustrates
the conditions of our main results.

2 Statement of the Main Results

For stating our main results we need some basic facts on the left and right systems of (4). In
order for the system to present sliding phenomena, we require that the left system has a focus.
So we need b2 > 0 and p > 1

4 , which implies that the left system has a unique singularity

Fl = (− b2
p ,− b2

p + b1) in Gl , which is a focus, see Fig. 2a.
The right system of (4) has four singularities in the full plane: O(0, 0) a center and three

saddles S1 = (− 1
3 , 0), S2 = ( 1

6 ,
1
2 ) and S3 = ( 1

6 ,− 1
2 ). Set x̃ = x − 1

6 , ỹ = y + 1
2 . Then

system (4) with (6) becomes

ẋ = x − 2xy, ẏ = −2x − y − 3x2 + y2, (8)

where we still use x and y to represent x̃ and ỹ. System (8) has the phase portrait given in
VULPE 10 of [1]. Hence the right system of (4) has the phase portrait Fig. 2b.

For b1 > 0, we can check that system (4) has the (repulsive) sliding region M3 = {(0, y) ∈
M | 0 ≤ y ≤ b1}. We now establish the sliding vector field on M3. By the very definition,
the sliding vector field Xs = αXr (0, y) + (1 − α)Xl(0, y) should be tangent to the y axis,
it implies that

α
y

3
+ (1 − α)(y − b1) = 0, for α ∈ [0, 1].

So we have

α = b1 − y

b1 − 2
3 y
.
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This shows that the sliding vector field on M3 is

Xs =
(

0,
y(b1 y − y2 − b2

3 )

b1 − 2
3 y

)
.

We remark that the sliding vector field Xs is well defined on M3.
The following properties about the sliding vector field Xs can be checked easily, the details

are omitted.

Proposition 1 For the sliding vector field Xs with b1, b2 > 0, the following hold.

(a) In any case Xs has the singularity O = (0, 0), which is stable.

(b) If b2 = 3b2
1

4
, Xs has another singularity S =

(
0,

b1

2

)
, which is semi–stable.

(c) If b2 <
3b2

1

4
, except O the sliding vector field Xs has another two singularities

S+ =
⎛
⎝0,

b1 +
√

b2
1 − 4b2

3

2

⎞
⎠ and S− =

⎛
⎝0,

b1 −
√

b2
1 − 4b2

3

2

⎞
⎠ ,

which are stable and unstable respectively.

According to the above analysis, for studying the existence of sliding heteroclinic phe-
nomena we need the following basic assumptions on the values of the parameters of (4):

(A) b1 > 0, b2 > 0 and p > 1/4.

Our first result shows the existence of the sliding heteroclinic bifurcation, of the sliding
cycle bifurcation and of the multiplicity 2 limit cycle bifurcation for the piecewise smooth
differential systems (4).

Theorem 2 Suppose that system (4) satisfies the basic assumption (A) and 0 < b1 <
1
3 .

Then there exist 0 < bh
2 < bsc

2 < bm
2 < ∞ together with the assumption

3b2
1

4 < bh
2 for which

the following statements hold.

(a) If b2 > bm
2 , system (4) has a heteroclinic orbit connecting Fl and S3, and has no closed

orbit.
(b) If b2 = bm

2 , system (4) has a unique limit cycle of multiplicity 2, which is stable from
outside and is unstable from inside.

(c) If bsc
2 < b2 < bm

2 , system (4) has two hyperbolic limit cycles, which are central nested.
The inner one is unstable and contains the sliding region in its interior enclosed by the
limit cycle.

(d) If b2 = bsc
2 , system (4) has the stable hyperbolic limit cycle and a sliding–zero cycle.

They are central nested. The inner sliding–zero cycle contains the sliding region in its
interior limited by the cycle.

(e) If bh
2 < b2 < bsc

2 , system (4) has the stable hyperbolic limit cycle and a unique sliding
cycle, which are central nested.

(f) If b2 = bh
2 , system (4) has the sliding cycle and a heteroclinic cycle.

(g) If
3b2

1
4 < b2 < bh

2 , system (4) has the sliding cycle, and has neither homoclinic nor
heteroclinic orbits.
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(h) If b2 = 3b2
1

4 , for the different choice of b1 ∈ (0, 1
3 ) system (4) may have either a sliding

cycle or a sliding homoclinic cycle, which consists of the sliding motion and the regular
orbit arcs of both the left and right subsystems of (4).

Furthermore, there exists a b̂2 ∈ (0, 3b2
1

4 ) for which we have

(i) If b̂2 < b2 <
3b2

1
4 , for the different choice of b1 ∈ (0, 1

3 ) system (4) may have either a
sliding cycle or a sliding homoclinic cycle or a sliding heteroclinic oribits, which consists
of the sliding motion and the regular orbit arcs of both the left and right subsystems of
(4).

(j) If 0 < b2 ≤ b̂2, system (4) may have either a sliding cycle or a sliding homoclinic cycle
or a sliding heteroclinic oribits, which consists of the sliding motion and the regular orbit
arc of only the left subsystems of (4).

Figure 3 shows all the topological structures of system (4) around the sliding region.

In Theorem 2 we have an addition assumption
3b2

1
4 < bh

2 . Lemmas 10 and 11 in Appendix
shows that there does exist b1 >

1
3 such that the additional condition holds. Of course, it is

possible that there is b1 >
1
3 such that

3b2
1

4 ∈ [bh
2 ,∞). But we will not pursue these analysis

because the computation is tedious and the idea is similar to the present ones.
From Theorem 2 and its proof we can get easily the following results. Its proof will be

omitted.

Corollary 3 Under the assumptions of Theorem 2 system (4) has a heteroclinic bifurcation
at b2 = bh

2 , where a unique limit cycle is bifurcated from the heteroclinic cycle. At b2 = bsc
2

there appears a sliding–zero bifurcation, where a limit cycle is bifurcated from the sliding–
zero cycle and the system will have two limit cycles. At b2 = bm

2 there appears a multiple
two limit cycle bifurcation. In the cases (e), ( f ) and (g) of Theorem 2, system (4) undergoes
a sliding Hopf bifurcation at b1 = 0.

We remark that the sliding Hopf bifurcation happens, because in the cases (e), ( f ) and (g)
of Theorem 2, bh

2 and bsc
2 are multiplication of b1 by positive functions in p, when b1 → 0

we have b2 → 0, the sliding cycle together with the focus Fl shrinks to O .
The second result provides the conditions for the existence of sliding cycle and sliding

heteroclinic orbits.

Theorem 4 Assume that system (4) satisfies (A) and b1 >
1
3 . Let t0 be the largest negative

root of cos(ωt0)+ 1
2ω sin(ωt0) = exp

( t0
2

)
and let

b∗
2 = exp

(
t0
2

)
ω( 1

3 + b1)

sin(ωt0)
with ω =

√
4p − 1

2
.

Suppose
3b2

1
4 < b∗

2 , the following statements hold.

(a) If b2 > b∗
2 , system (4) has a heteroclinic orbit connecting S3 and Fl , which has no sliding

motion. The system has neither closed orbits nor homoclinic orbits.
(b) If b2 = b∗

2 , system (4) has a unique sliding heteroclinic cycle connecting S2 and S3, and
has infinitely many sliding heteroclinic orbits connecting S3 and Fl . The system has no
closed orbits.
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(c) If
3b2

1
4 < b2 < b∗

2 , system (4) has a unique sliding cycle. And the system has neither
other closed orbits nor homoclinic and heteroclinic orbits which connect two finite
singularities.

(d) If b2 = 3b2
1

4 , for the different choice of b1 system (4) can have either a unique sliding
cycle or a sliding homoclinic cycle to the saddle–node S of the sliding vector field. These

(a)

(d)

(f) (g)

(h)

(e)

(b) (c)

Fig. 3 The topological structures of trajectories in Theorem 2 a b2 > bm
2 b b2 = bm

2 c bsc
2 < b2 < bm

2 d

b2 = bsc
2 e bh

2 < b2 < bsc
2 f b2 = bh

2 g
3b2

1
4 < b2 < bh

2 h b2 = 3b2
1

4 < bh
2 i b̂2

2 < b2 <
3b2

1
4 j b2 ≤ b̂2
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(j)

(i)

Fig. 3 continued

sliding cycles consist of the sliding motion and the orbit arcs of both the left and right
subsystem of (4).

(e) If b̃2 < b2 <
3b2

1
4 , system (4) can have either a sliding cycle or a sliding homoclinic cycle

to S+ or a sliding heteroclinic orbit from S− to S+. These sliding orbits are composed
of the sliding motion and the orbit arcs of both the left and right subsystem of (4).
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(f) If 0 < b2 ≤ b̃2, system (4) can have either a sliding homoclinic orbit from S− to S+ or
a sliding homoclinic cycle to S+ or a sliding cycle. These sliding orbits are formed by
the sliding motion and the orbit arc of only the left subsystem of (4).

Figure 4 shows all the topological structures of system (4) around the sliding region.

In Theorem 4, there is the additional assumption
3b2

1
4 < b∗

2. Lemma 12 in Appendix shows

that this assumption can be realized. Of course, it is also possible that
3b2

1
4 ∈ [b∗

2,∞) for
some b1 >

1
3 and p > 1

4 . We will not study these cases in this paper because the computation
is tedious and the idea is similar.

We note that in the last theorem system (4) has the sliding heteroclinic bifurcation at
b2 = b∗

2. Figure 4 illustrates the topological structures of the trajectories of system (4)
involved in Theorem 4.

From Theorems 2 and 4 and their proofs, we get easily the following two results.

Corollary 5 Let b∗
2 be that defined in Theorem 4. Assume that system (4) satisfies (A),

b1 = 1
3 and

3b2
1

4 < b∗
2 . Then the statements (a) to ( f ) of Theorem 4 hold.

As the comments stated after Theorems 2 and 4, we will not consider the cases
3b2

1
4 ∈

[b∗
2,∞).

Corollary 6 System (4) has at most two closed orbits, and the maximum number can be
achieved. The two ones may be either both hyperbolic limit cycles, or one hyperbolic limit
cycle and a sliding (sliding − zero) cycle.

3 Dynamics Near the Sliding Region Via Singular Perturbation Theory

In this section, we will study the local structure of trajectories of system (4) near the sliding
region via the geometrical singular perturbation theory, see e.g [10]. The results of this
section will be used in the proof of our main results. Before studying system (4), we first give
a general description for piecewise smooth vector fields (1) on how to transforming (1) near
the sliding region to a singular perturbation problem. We should mention that our approach
is based on the techniques developed in [5].

Let ε ≥ 0 be sufficiently small. A singular perturbation problem in R
2 is a differential

system which can be written as

x ′ = dx

dτ
= f (x, y, ε), y′ = dy

dτ
= εg(x, y, ε), (x, y) ∈ R

2, (9)

or equivalently, after the time rescaling t = ετ ,

ε ẋ = ε
dx

dt
= f (x, y, ε), ẏ = dy

dt
= g(x, y, ε), (x, y) ∈ R

2, (10)

where f, g are smooth in their variables. We note that for ε > 0 systems (9) and (10)
are the same. Systems (9) and (10) are called respectively the fast and slow systems of the
singular perturbation problem. The set SM = {(x, y) : f (x, y, 0) = 0} is called the slow
manifold of the singular perturbation problem. We say that p ∈ SM is normally hyperbolic
if ∂ f

∂x (p, 0) �= 0. By the Fenichel’s geometric singular perturbation theory [10] the slow
manifold will be preserved and it is invariant by the flow of (10) for 0 < ε � 1.
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(a) (b) (c)

(d)

(e)

Fig. 4 The topological structures of trajectories in Theorem 4 a b2 > b∗
2 b b2 = b∗

2 c
3b2

1
4 < b2 < b∗

2 d

b2 = 3b2
1

4 e b̃2 < b2 <
3b2

1
4 f b2 ≤ b̃2
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(f)

Fig. 4 continued

Consider the piecewise smooth vector field (1). Let φ : R → R be a C∞ transition
function satisfying φ(x) = −1 for x ≤ −1, φ(x) = 1 for x ≥ 1, φ(0) = 0 and φ′(x) > 0
if x ∈ (−1, 1). The φ–regularization of the vector field X defined in (1) is a 1-parameter
family of Ck vector fields Xε defined in R

2 for k ∈ N ∪ {∞} by

Xε =
(

1

2
+ φε(x)

2

)
Xr +

(
1

2
− φε(x)

2

)
Xl ,

where φε(x) = φ( x
ε
) for ε > 0.

The trajectories of Xε in R
2 satisfy the differential system

ẋ = fr + fl

2
+ φ

( x

ε

) fr − fl

2
,

ẏ = gr + gl

2
+ φ

( x

ε

) gr − gl

2
,

ε̇ = 0, (11)

for ε > 0, where fr and fl are the first components of Xr and Xl and gr and gl are the second
components of Xr and Xl , respectively. Observe that system (11) is not defined at ε = 0.
Taking the directional blow-up β : R

3 → R
3 given by (x, y, ε) = β(x̄, y, ε) = (x̄ε, y, ε),

system (11) can be written in

ε ˙̄x = fr + fl

2
+ φ(x̄)

fr − fl

2
,

ẏ = gr + gl

2
+ φ(x̄)

gr − gl

2
,

ε̇ = 0. (12)

Clearly, system (12) is a singular perturbation one, and is well–defined at ε = 0.
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In addition we take the polar coordinate blow-up

α : [0,∞)×
[
π

4
,

3π

4

]
× R −→ R

3

(r, θ, y) −→ (x, y, ε) = (r cos θ, y, r sin θ).

Then (11) can be written in

θ ′ = − sin θ

(
fr + fl

2
+ φ(cot θ)

fr − fl

2

)
,

y′ = r

(
gr + gl

2
+ φ(cot θ)

gr − gl

2

)
,

r ′ = r cos θ

(
fr + fl

2
+ φ(cot θ)

fr − fl

2

)
, (13)

where we have used the time rescaling dt = rdτ , and the prime denotes the derivative with
respect to τ . We mention that the interval of θ is different from that of [5], because φ(cot θ)
is constant on either (0, π4 ) or ( 3π

4 , π), and is not defined at θ = 0 and π .
We note that system (13) is not a singular perturbation one, but instead of r we use the

first integral r sin θ = c of (13) as a new variable, then system (13) can be written in an
equivalent way as a singular perturbation one. For this reason, in what follows we will say
(13) a singular perturbation system.

Since θ ∈ [
π
4 ,

3π
4

]
, so r sin θ = 0 if and only if r = 0. Consequently, the parameter value

ε = 0 corresponds to r = 0. As shown in [5] the directional blow-up and the polar blow-up
are essentially the same. In fact, it follows from the map G : [0,∞)× [

π
4 ,

3π
4

] × R → R
3

given by G(r, θ, y) = (cot θ, y, r sin θ) satisfying β ◦G = α and det
(

∂G
∂(r,θ,y)

)
= csc θ �= 0.

More information on the method of blowing up for families of vector fields can be found in
[7] and [6].

The fast flow of (13) on S1+ × R = {(cos θ, sin θ, y) : θ ∈ [
π
4 ,

3π
4

]
, y ∈ R)} is given by

the solutions of

θ ′ = − sin θ

(
fr + fl

2
+ φ(cot θ)

fr − fl

2

)
, y′ = 0. (14)

The slow flow of (13) is given by the solutions of

0 = fr + fl

2
+ φ(cot θ)

( fr − fl)

2
, ẏ =

(
gr + gl

2
+ φ(cot θ)

gr − gl

2

)
. (15)

According to Theorem 2.2 of [22], we know that the sliding region (0, b1) of the discontinuous
vector fields X given in (1) is homeomorphic to the slow manifold

{
(θ, y) ∈ (0, π)× (0, b1) : sin θ

(
fr + fl

2
+ φ(cot θ)

fr − fl

2

)
= 0

}
.

The sliding vector field Xs is topologically equivalent to the reduced problem (15) on the
slow manifold.
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We now turn to the concrete system (4). Corresponding to the general singular perturbation
system (13), we have the following singular perturbation system

r θ̇ = − sin θ

[
( 4

3 − 2r cos θ)y − (r cos θ + b1)

2
+ φ(cot θ)

b1 + r cos θ − ( 2
3 + 2r cos θ)y

2

]
,

ẏ = y2 − r(p + 1) cos θ − b2 − 3r2 cos2 θ

2
+ φ(cot θ)

r(p − 1) cos θ + b2 − 3r2 cos2 θ + y2

2
,

ṙ = cos θ

[
( 4

3 − 2r cos θ)y − (r cos θ + b1)

2
+ φ(cot θ)

b1 + r cos θ − ( 2
3 + 2r cos θ)y

2

]
. (16)

The slow manifold of (16) is{
(θ, y) ∈

[
π

4
,

3π

4

]
× R : 2y

3
− b1

2
+ φ(cot θ)

(
b1

2
− y

3

)
= 0

}
,

which can be written in

y(θ) = b1(1 − φ(cot θ))
4
3 − 2

3φ(cot θ)
, θ ∈

[
π

4
,

3π

4

]
. (17)

The reduced flow is

2y

3
− b1

2
+ φ(cot θ)

(
b1

2
− y

3

)
= 0, ẏ = y2 − b2

2
+ φ(cot θ)

y2 + b2

2
.

That is, on the slow manifold we have

ẏ = b1 y2 − y3 − b1
3 y

b1 − 2
3 y

, (18)

which is the same as the sliding vector field Xs . This implies that if φ1 and φ2 are different
transition functions then the phase portrait in the blow up loci (16) are the same.

The fast flow is given by the solutions of the system

θ ′ = − sin θ

[
2y

3
− b1

2
+ φ(cot θ)

(
b1

2
− y

3

)]
, y′ = 0. (19)

Clearly the fast vector field satisfies θ ′ > 0 for {(θ, y) : θ ∈ [π4 , 3π
4 ], 0 < y < y(θ)}, and

θ ′ < 0 for {(θ, y) : θ ∈ [π4 , 3π
4 ], y(θ) < y < b1}, where y(θ) is given in (17).

Notice that (θ, y) = ( π4 , 0) and (θ, y) = ( 3π
4 , b1) are not normally hyperbolic for the

slow manifold, because

∂

∂θ

(
2y

3
− b1

2
+ φ(cot θ)

(
b1

2
− y

3

))∣∣∣∣
( π4 ,0) or ( 3π

4 ,b1)

= 0.

In order to study the dynamics of the fast flow near (θ, y) = ( π4 , 0), we take an additional
blow-up at this point given by

θ = s cosψ + π

4
, y = s sinψ, (20)

with s ≥ 0 and ψ ∈ [−π
2 ,

π
2 ]. Then we get from (19) that

s′ = − cosψ sin
(

s cosψ + π

4

)
H(s, ψ), ψ ′ = sinψ

s
sin

(
s cosψ + π

4

)
H(s, ψ),

123



J Dyn Diff Equat (2013) 25:1001–1026 1015

(a) (b) (c)

Fig. 5 Phase portrait of the fast and slow dynamics of system (16) a b2 >
3b2

1
4 b b2 = 3b2

1
4 c b2 <

3b2
1

4

where

H(s, ψ) = 2s

3
sinψ − b1

2
+ φ

(
cot

(
s cosψ + π

4

)) (
b1

2
− s sinψ

3

)
.

Since

lim
s→0

ψ ′ =
√

2

6
sin2 ψ,

it implies that for s > 0 suitably small, the function ψ is increasing for ψ ∈ (−π
2 ,

π
2 ).

Analogously, for studying the dynamics of (19) at the point (θ, y) = ( 3π
4 , b1), we take

the following transformation

θ = s cosψ + 3π

4
, ȳ = s sinψ + b1, (21)

where s ≥ 0 and ψ ∈ [π2 , 3π
2 ]. A direct calculation shows that

s′ = − cosψ sin

(
s cosψ + 3π

4

)
G(s, ψ), ψ ′ = 1

s
sinψ sin

(
s cosψ + 3π

4

)
G(s, ψ),

where

G(s, ψ) = 2

3
s sinψ + b1

6
+ φ

(
cot

(
s cosψ + 3π

4

)) (
b1

6
− s

3
sinψ

)
.

Since

lim
s→0

ψ ′ =
√

2

2
sin2 ψ,

for s > 0 suitably small, the function ψ is increasing for ψ ∈ ( π2 , 3π
2 ).

Combining the above results with Proposition 1, if ε = 0, i.e r = 0, we have the phase
portraits of the fast and slow dynamics of the singular perturbation problem (16), which are
shown in Fig. 5, where the double arrow means that the trajectories are the ones of the fast
system, and the single arrow means that the trajectories are the ones of the slow system.

In Fig. 5b, the sliding vector field (18) has a saddle–node in the interior of the sliding
region, and in Fig. 5c the sliding vector field (18) has a stable and an unstable singularities
inside the sliding region, the trajectories of the sliding vector field can slide only on the
segments separated by these singularities.

From Fig. 5 and the Fenichel’s geometric singular perturbation theory we can get the
following
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Proposition 7 A positive orbit of (4) starting at a point of the sliding region can either slide
along the sliding region until reaching a singularity, or leave the sliding region at any time
from its left or right side.

4 Proof of the Main Results

4.1 Proof of Theorem 2

Under the assumption (A), the left system of (4) has the focus Fl , and the right system has
three saddles and a center O , the latter is located on Y . Recall that the right system has the
analytic Hamiltonian

H(x, y) = (1 − 6x)y2

6
+ x2

2
+ x3.

So, any orbit of the right system must be contained in the level curve of H(x, y). At S1 the
Hamiltonian H has the value hs = 1

54 . The level curve H = hs has two branches intersecting
the y axis at the points P+ = (0, 1

3 ) and P− = (0,− 1
3 ). These two branches are also one

of the separatrices of S2 and S3, respectively. We denote by �+
r and �−

r the separatrices of
S2 and S3 which pass through P+ and P−, respectively. Of course, �+

r and �−
r are also the

separatrices of S1.
Since 0 < b1 <

1
3 , the sliding region is located in between P− and P+. If system (4) has

a closed orbit, it must intersect the y axis and the orbit arc on the left hand side of the y axis
should be located in between �+

r and �−
r .

Suppose that system (4) has a closed orbit or a heteroclinic cycle, denoted by �h . Its right
half part should be contained in the level curve H(x, y) = h for some h ∈ R. Let C = (0, y+)
with y+ > 0 and D = (0, y−) with y− < 0 be the two intersection points of �h with the y
axis. Then we have y+ = −y−.

We now study the orbits of the left system. The orbit of system (4) in Gl starting at
A = (0, s1) at t = 0 is given by

x+(t) = exp

(
− t

2

) [
b2

p
cos(ωt)+ 2ps1 − 2pb1 + b2

2pω
sin(ωt)

]
− b2

p
,

y+(t) = exp

(
− t

2

) [
ps1 − b1 p + b2

p
cos(ωt)+ ps1 − 2b2 p − b1 p + b2

2pω
sin(ωt)

]

−b2

p
+ b1,

where ω =
√

4p−1
2 . Denote by �A this orbit. Assume that after a certain time t1 > 0, the

orbit �A arrives at y axis at B = (0, s2). Then s2 ≥ b1 and A is located under B and

x+(t1) = 0, y+(t1) = s2. (22)

Of course, we ask the t1 > 0 to be the minimum time for which (22) holds. From the
expression of x+(t) we get that sin(ωt1) �= 0. The following result due to Gannakopoulos
and Pliete [12] will be used in the proof of Theorem 2.
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Lemma 8 The intersection points A = (0, s1) and B = (0, s2) with s1 < s2 of an orbit of
the left system of (4) with the y axis at the time t1 > 0 satisfy

s1 = −b2ω

p sin(ωt1)

[
cos(ωt1)+ sin(ωt1)

2ω
− exp

(
t1
2

)]
+ b1,

s2 = b2ω

p sin(ωt1)

[
cos(ωt1)− sin(ωt1)

2ω
− exp

(
− t1

2

)]
+ b1.

(23)

Recall that the sliding region is located in between O and P+. So, the closed orbits (if
exist) may have three possibilities: a sliding cycle, a sliding–zero cycle, or a limit cycle
containing the sliding region in its interior enclosed by the limit cycle, see Fig. 1.

If system (4) has a limit cycle or a sliding–zero cycle or a heteroclinic cycle, we must
have A = D and B = C . These require that

s1 = −s2 and s2 ∈
[

b1,
1

3

]
.

The condition s1 = −s2 is equivalent to that the functional equation

b2 = 2b1 p sin(ωt1)

sin(ωt1)− ω exp( t1
2 )+ ω exp(− t1

2 )
(24)

has roots in t1 with t1 > 0 for given b1, b2 and p satisfying the assumptions of the theorem.
We now study the number of roots of (24) in t1 > 0. Set s = ωt1 and v = 1

2ω , and define

q(s) = sin s − ω exp(vs)+ ω exp(−vs), f (s) = sin s

q(s)
.

Recall from [23] that q(s) < 0 for s ∈ (0,∞) and it is decreasing. Equation (24) becomes
the following functional equation in s > 0

b2 = 2b1 p f (s). (25)

Since b1, b2 > 0, we get from [23] that s ∈ (π, 2π) (mod2π) and the equation

exp(vs)(cos s − v sin s)− 1 = 0,

has a unique root in (π, 2π), denoted by s0. Next we investigate the number of roots of
equation (25) in s ∈ (π, s0). Since b1, b2, p > 0, we get from (25) that

f (s) > 0.

If s = s0, it follows from the second equation of (23) that s2 = b1. For any fixed b1, p,
set bsc

2 = 2b1 p f (s0). So if s = s0 and b2 = bsc
2 , we have s2 = −s1 = b1. Consequently

system (4) has a sliding–zero cycle, which passes through the points (0,−b1) and (0, b1).
Next we consider the existence of closed orbits passing through (0, s2)with s2 ∈ (b1,

1
3 ).

In this case we have s ∈ (π, s0). We will prove the existence of closed orbits and that if the
closed orbits exist, they must be limit cycles. By (23) we have

s2 = b2ω

p sin s
(cos s − v sin s − exp(−vs))+ b1. (26)

The function s2 in s is decreasing for s ∈ (π, s0), and lim
s→π+ s2 = ∞. This shows that

there exists a unique sh ∈ (π, s0) such that s2(sh) = 1
3 ; s2(s) >

1
3 if s ∈ (π, sh); and

s2(s) ∈ (
b1,

1
3

)
if s ∈ (sh, s0).
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Set bh
2 = 2b1 p f (sh). The above proof shows that if b2 = bh

2 , system (4) has a heteroclinic
cycle connecting S2 and S3, which contains the sliding region in its interior.

For s ∈ (π, sh), since s2(s) >
1
3 it is not possible to have closed orbits or sliding cycles

or heteroclinic cycles, which are composed of both the left and the right orbits. Hence, to
investigate the existence of closed orbits is equivalent to find the miximal number of roots
of the functional Eq. (25) in (sh, s0) ⊂ (π, s0). For this purpose, we study the graph of the
function f (s).

Some calculations show that f (π) = 0, f (s0) > 0 and

f ′(s) = ω(− exp(sv)+ exp(−sv)) cos s + ωv(exp(sv)+ exp(−sv)) sin s

(sin s − ω exp(sv)+ ω exp(−sv))2
. (27)

From 1 − exp(−vs0)(cos s0 + v sin s0) = 1 − (cos s0 + v sin s0)(cos s0 − v sin s0) =
sin2 s0(v

2 + 1) > 0 we have

f ′(s0) = −ω[1 − exp(−vs0)(cos s0 + v sin s0)]
(sin s0 − ω exp(s0v)+ ω exp(−s0v))2

< 0.

Since f ′(π) > 0, there exists an s∗ ∈ (π, s0) such that f ′(s∗) = 0. We claim that s∗ is the
unique extreme point of f in (π, s0). Indeed, set

u(s) = (− exp(sv)+ exp(−sv)) cos s + v(exp(sv)+ exp(−sv)) sin s. (28)

We have

u′(s) = (1 + v2)(exp(vs)− exp(−vs)) sin s < 0 for s ∈ (π, s0). (29)

So s∗ is the unique zero point of f ′(s), and that f (s) is strictly increasing on (π, s∗) and is
strictly decreasing on (s∗, s0). This proves the claim and so s∗ is the maximum point of f in
(π, s0).

Set bm
2 = 2b1 p f (s∗), we have bsc

2 < bm
2 . Without loss of generality we assume that

bh
2 < bsc

2 . Otherwise, the case bsc
2 ≤ b2 can be similarly studied. The following result

presents the root of Eq. (25) in s.

Proposition 9 The functional Eq. (25) in s has a unique root if bh
2 < b2 < bsc

2 ; two roots
with one of which is the s0 if b2 = bsc

2 ; two roots if bsc
2 < b2 < bm

2 ; a multiple two root if
b2 = bm

2 ; and no roots if b2 > bm
2 .

We mention that each root of Eq. (25), except s0, corresponds to a closed orbit without
sliding motion of system (4). Since the closed orbit is isolated, it is a limit cycle. We next
study the stability of the limit cycles of the piecewise smooth differential system (4). For
doing so, we need to compute the derivative of the Poincaré map defined on the y axis of
system (4). Define

Pr : [0,+∞) −→ (−∞, 0]
to be the map induced by the flow of the right Hamiltonian system, which maps the points
on the positive y axis to the negative y axis, and define

Pl : (−∞, 0] −→ [0,+∞),

to be the map induced by the left linear flow, which maps the negative y axis to the positive
y axis. Then the Poincaré map of system (4) defined on the y axis is

P = Pr ◦ Pl : (−∞, 0] → (−∞, 0].
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The derivative of the Poincaré map P with respect to s1 is

d P

ds1
− 1 = d Pr

d Pl

d Pl

ds1
− 1 = −d Pl

ds1
− 1 = −ds2/ds

ds1/ds
− 1

= (exp(−vs)− exp(vs)) cos s + v(exp(−vs)+ exp(vs)) sin(s)

(cos s − v sin s) exp(vs)− 1
.

Recall that s0 is the unique root of (cos s − v sin s) exp(vs) − 1 = 0. For s < s0, we have
(cos s − v sin s) exp(vs)− 1 < 0 and u(s0) < 0. Hence

d P

ds1
|s=s0 = lim

s→s0−
d P

ds1
= +∞;

It follows from the property of the function u(s) defined in (28) and l(s) < 0 for s ∈ (π, s0)

that

d P

ds1
> 1 for s ∈ (s∗, s0]; d P

ds1
= 1 for s = s∗; and 0 ≤ d P

ds1
< 1 for s ∈ (π, s∗).

Combining the above proof and Proposition 7, we get the following facts:

(a) If b2 > bm
2 , system (4) has a heteroclinic orbit connecting S3 and Fl , see Fig. 3a.

(b) If b2 = bm
2 , system (4) has a limit cycle of multiplicity two, which is semistable. Here

the multiplicity 2 limit cycle bifurcation happens, see Fig. 3b.
(c) If bsc

2 < b2 < bm
2 , system (4) has two hyperbolic limit cycles. The outside one is stable,

and the inside one is unstable. The unstable limit cycle contains the sliding region in its
interior, see Fig. 3c.

(d) If b2 = bsc
2 , system (4) has the stable limit cycle and a sliding–zero cycle. The two

cycles are central nested, and the inner sliding–zero cycle passes through the upper end
point of the sliding region {(x, y) ∈ M | y ∈ [0, b1]}. Here the sliding cycle bifurcation
happens, see Fig. 3d.

(e) If bh
2 < b2 < bsc

2 , system (4) has the stable limit cycle and a sliding cycle. The limit
cycle surrounds the sliding cycle, see Fig. 3e.

(f) If b2 = bh
2 , system (4) has the sliding cycle and a heteroclinic orbit. The sliding cycle is

located in the interior of the region limited by the heteroclinic orbit. Here a heteroclinic
bifurcation happens, see Fig. 3f.

(g) If
3b2

1
4 < b2 < bh

2 , system (4) has a unique closed orbit, which is the sliding cycle, see
Fig. 3g.

Finally we consider the case 0 < b2 ≤ 3b2
1

4 , in which the sliding vector field has singu-
larities in the interior of the sliding region. The above proof of this theorem shows that for
b2 < bh

2 , we have −s1 < s2 if s1 < 0. Recall that (0, s1) is the starting point of an orbit of
the left system of (4), and that (0, s2) is the first intersection point of the orbit from (0, s1).
Hence system (4) has neither closed orbits including limit cycles and sliding–zero cycles nor
heteroclinic cycles passing through S2 and S3.

Now the possible interesting orbits are the sliding ones. A sliding orbit should pass through
(0, b1) and is tangent to the y axis at this point. From Lemma 8 we must have s = s0, and so
s2 = b1. It follows that s1 > −b1.

Assume that b2 = 3b2
1

4 . We will show that for the different choice of b1 ∈ (0, 1
3 ), all the

possibilities s1 < − b1
2 , s1 = − b1

2 and s1 < − b1
2 can be realized.
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From Lemma 8 and the fact that s0 is the unique root of cos s − v sin s − exp(−vs) = 0
in (π, 2π), we get that s1 < − b1

2 is equivalent to

b1

p
> 2K (s0),

where

K (s) = sin s

ω(cos s + v sin s − exp(vs))
.

We claim that

K (s0) <
2

3
.

Indeed, direct calculations show that

K (s0)− 2

3
= 2 sin s+2ω exp(vs)−2ω cos s

3ω(cos s+v sin s − exp(vs))

∣∣∣∣
s=s0

= 2ω(v sin s0+exp(vs0)− exp(−vs0))

3ω(cos s0 + v sin s0 − exp(vs0))
.

For s ∈ [π, s0], we have

(v sin s + exp(vs)− exp(−vs))′ = v cos s + v(exp(vs)+ exp(−vs)) ≥ 2v + v cos s > 0.

So, v sin s0+exp(vs0)−exp(−vs0) ≥ exp(vπ)−exp(−vπ) > 0. Note that cos s0+v sin s0−
exp(vs0) < 0, the claim follows.

In addition, K (s) is strictly monotone increase for s ∈ [π, s0] and K (π) = 0, we have
0 < K (s0) <

2
3 .

Since 0 < b1 <
1
3 and p > 1

4 , we have b1
p ≤ 4

3 . By the definition, K (s) is independent of

b1. So for the suitable choice of the values of b1 and p, denoted by b0
1 and p0 respectively, we

can have 2K (s0) <
b0

1
p0 , i.e. s1 < − b0

1
2 . These facts and Proposition 7 imply that system (4)

has a sliding cycle, which consists of the right part of the level curve of H(x, y) = H(0, s1),
the orbit arc from (0, s1) to (0, b1) of the left system and the sliding motion from (0, b1) to
(0,−s1). The phase portrait is given in Fig. 3(h1).

For the given p0, we can choose b1 < b0
1 such that 2K (s0) = b1

p0 and 2K (s0) >
b1
p0 .

Hence we can have s1 = − b1
2 and s1 > − b0

1
2 , respectively. In the former, system (4) has a

sliding homoclinic cycle, which consists of the right part of the level curve of H(x, y) =
H(0,−b1/2), the orbit arc from (0,−b1/2) to (0, b1) of the left system and the sliding
motion from (0, b1) to (0, b1/2). In the latter, system (4) has a sliding homoclinic cycle,
which consists of the sliding motion from (0, b1

2 ) down to (0,−s1), the right part of the level
curve of H(x, y) = H(0, s1), the orbit arc from (0, s1) to (0, b1) of the left system and the
sliding motion from (0, b1) to (0, b1

2 ). Consequently we have the phase portrait given in Fig.
3(h2), (h3), respectively.

We now consider the case 0 < b2 <
3b2

1
4 , under which the sliding vector field has the two

hyperbolic singularities S+ and S−. The former is stable and the latter is unstable.
For the different choice of b1 in the last case (h), it follows from Lemma 8 that we can

determine a b2, denoted by b̂2, depending on b1 and p such that s1 = 0. So for b̂2 < b2 <
3b2

1
4 ,

by the continuation of solutions with respect to the parameters of the system we can get the
five phase portraits given in Fig. 3i. In Fig. 3(i1), (i2) we have respectively the sliding cycle
and the sliding homoclinic cycle, which are composed of the left orbit, sliding motion and
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the right orbit. In Fig. 3(i3)–(i5) we have three different types of sliding heteroclinic orbits,
which connect the two singularities on the sliding region.

For 0 < b2 ≤ b̂2, we have 0 ≤ s1 < b1. With the decreasing of b2 from b̂2 to 0 we can
have respectively the phase portraits (j1) to (j5) given in Fig. 3j. In (j1), (j2) and (j3) we have
sliding heteroclinic orbits connecting S+ and S−, which consist of the left orbit arc and the
sliding motion. In (j4) and (j5) we have respectively a sliding homoclinic cycle and a sliding
cycle. Of course, in all phase portraits of Fig. 3j we also have a heteroclinic orbit, which
connects S2 and one of the singularities on the sliding region.

We complete the proof of Theorem 2.

4.2 Proof of Theorem 4

For simplicity we will use the notations given in the proof of Theorem 2. Denote by �+
r and

�−
r the orbit arcs of the separatrices from the saddles S2 and S3 to P+ and P− on the y axis,

respectively. Since b1 >
1
3 , it follows that P+ is located in the interior of the sliding region.

Let �l be the negative orbit of the left system starting at (0, b1) at the time t = 0. Then
�l will return back to the y axis. Let (x−

l (t), y−
l (t)) for t < 0 be the expression of the orbit

�l . Some computations show that

x−
l (t) = b2

p
exp

(
− t

2

) [
cos(ωt)+ 1

2ω
sin(ωt)

]
− b2

p
,

y−
l (t) = b2

p
exp

(
− t

2

) [
cos(ωt)− 2p − 1

2ω
sin(ωt)

]
− b2

p
+ b1,

Assume that it is at a time t0 < 0 that �l firstly returns back to the y axis. Let (0, y−
l ) be the

intersection point of �l with the y axis. Then the time t0 satisfies

cos(ωt0)+ 1

2ω
sin(ωt0) = exp

(
t0
2

)
, y−

l = −b2
sin(ωt0)

ω
exp

(
− t0

2

)
+ b1. (30)

Clearly the first equation of (30) has negative solutions. Moreover, by the assumption t0 is
the largest negative solution of the first equation in t of (30). Since y−

l < b1, it follows
that sin(ωt0) > 0, i.e. ωt0 ∈ (−2π,−π)mod (2π). In what follows, we simply say ωt0 ∈
(−2π,−π). For any fixed b1, p, b2 satisfying (A), set

b∗
2 = exp

(
t0
2

) (
1

3
+ b1

)
ω

sin(ωt0)
.

(a) If b2 > b∗
2, then y−

l < − 1
3 . The separatrix �−

r from S3 passes through P− will go to the
focus Fl of the left subsystem. We have Fig. 4a.

(b) If
3b2

1
4 < b2 = b∗

2, then y−
l = − 1

3 . Denote by �0 the sliding motion on M3 from (0, b1)

down to (0, 1
3 ) of the sliding vector field Xs , and by �∗ the separatrix connecting S2 and S3.

Then we get from Proposition 7 that � = �l ∪�0 ∪�+
l ∪�∗ ∪�−

l form a sliding heteroclinic
cycle, see Fig. 4b. Moreover it follows from the previous proof that system (4) has no closed
orbits. This proves statement (b).

(c) If
3b2

1
4 < b2 < b∗

2, we get from the second equation of (30) that y−
l > − 1

3 . Then �l

together with the level curve passing through (0, y−
l ) of the Hamiltonian H(x, y) and the

sliding motion on M3 from (0, b1) down to
(
0,−y−

l

)
of the sliding vector field Xs form a

sliding cycle, see Fig. 4c. Furthermore, it follows from the structure of the trajectories of
the left and right systems that system (4) has neither other closed orbits nor heteroclinic and
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homoclinic orbits. Of course, we do not consider the heteroclinic ones going to infinity. This
proves statement (c).

(d) If b2 = 3b2
1

4 , then y−
l > − 1

3 . We will show that for the different choice of b1 ∈ ( 1
3 ,∞),

all the possibilities y−
l < (=,>)− b1

2 can appear. These are equivalent to

b1 > (=, <) 2ω

sin(ωt0)
exp

(
t0
2

)
.

That is, b1
3 + b2

1 > (=, <) 2b∗
2.

For b1 ≥ 2
3 , we have 3

2 b2
1 ≥ b1

3 + b2
1. Since 3

4 b2
1 < b∗

2, it follows that 2b∗
2 >

b1
3 + b2

1. This
proves the existence of the third possibility.

For b1 ∈ ( 1
3 ,

2
3 ), by the definition of b∗

2 the inequality 2b∗
2 ≤ b1

3 + b2
1 is equivalent to

b1 ≥ 2 exp

(
t0
2

)
ω

sin(ωt0)
. (31)

Recall that ω = √
4p − 1 and ωt0 ∈ (−2π,−π). So if we choose p > 1

4 with p − 1
4 � 1,

i.e. ω sufficiently small, we will have −t0 large enough because ωt0 ∈ (−2π,−π). This

proves that for the suitable choice of p and b1, if b2 = 3b2
1

4 , we can have y−
l < (=,>)− b1

2 .

In the case y−
l < − b1

2 we have a sliding cycle consisting of the sliding motion and the
orbit arcs of both the left and right subsystems of (4), see Fig. 4(d1).

In the case y−
l ≥ − b1

2 we have a sliding homoclinic cycle to S, which consists of the
sliding motion and the orbit arcs of both the left and right subsystems of (4), see Fig. 4(d2),
(d3). Now we have also a sliding heteroclinic orbit to S and S2.

From the second equation of (30), it follows that there exists a b̃2 ∈ (0,
3b2

1
4 ) for which

y−
l = 0.

(e) b̃2 < b2 <
3b2

1
4 . We have − 1

3 < y−
l < 0. The sliding vector field Xs has the two

hyperbolic singularities S+ and S−. Similar to the proof of the last statement (d) and the
statement (i) of Theorem 2, we can get the dynamics of system (4) as shown in Fig. 4e,
where the system can have either a sliding cycle, or a sliding homoclinic cycle to S+, or a
sliding heteroclinic orbit to S+ and S−, which are composed of the sliding motion and the
orbit arcs of both the left and right subsystem of (4). Note that in the phase portrait Fig. 4(e2)
we have also a sliding heteroclinic orbit connecting S+ and S2. In Fig. 4(e3)–(e5) the system
has a sliding heteroclinic orbit to S− and S2.
( f ) b2 ≤ b̃2. We have y−

l ≥ 0. The sliding vector field Xs has also the singularities S+ and
S−. Similar to the proof of the case (d) and the statement ( j) of Theorem 2, we can get the
dynamics of system (4) as shown in Fig. 4f, where the system can have either a sliding cycle,
or a sliding homoclinic cycle to S+, or a sliding heteroclinic orbit to S+ and S−, which are
composed of the sliding motion and the orbit arc of only the left subsystem of (4). Note that
the phase portraits given in Fig. 4(f1)–(f3) have also a sliding heteroclinic orbit connecting
S− and S2. Figure 4(f4) has a sliding heteroclinic orbit to S+ and S2.

We complete the proof of the theorem.

5 Appendix

In this appendix, we will show that the additional conditions of Theorem 2, of Theorem 4
and of Corollary 5 can be realized.
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Lemma 10 There exists a b1 ∈ (0, 1
3 ) such that for b2 ≥ 3b2

1
4 we have

3b2
1

4 < bh
2 .

Proof By the definition we have

bh
2 = 2b1 p sin s

sin s − ω exp(vs)+ ω exp(−vs)

∣∣∣∣
s=sh

,

where sh ∈ (π, s0) ⊆ (π, 2π) satisfying

b2ω (cos s − v sin s − exp(−vs))

p sin s
+ b1 = 1

3
.

��
We turn to show that

3

4
b1

(
1

3
− b1

)
<

2b2ω(cos s − v sin s − exp(−vs))

sin s − ω exp(vs)+ ω exp(−vs)

∣∣∣∣
s=sh

. (32)

Choose b2 ≥ 3
4 b2

1, then
3b1(

1
3 −b1)

4b2
≤ 1

3b1
− 1. So we only need to prove that there exists a

b1 ∈ (0, 1
3 ) such that

3b1 > C(sh), (33)

where

C(s) = sin s − ω exp(vs)+ ω exp(−vs)

ω(2 cos s − exp(vs)− exp(−vs))
.

We claim that for s ∈ [π, s0),

C(s) ∈ (0, 1).

Indeed, for the function q(s) = sin s − ω exp(vs) + ω exp(−vs), we have q ′(s) = cos s −
1
2 (exp(vs)+ exp(−vs)) ≤ 0 for s ∈ [π, 2π ]. This shows that

q(s) ∈ [ω exp(−2πv)− ω exp(2πv), ω exp(−πv)− ω exp(πv)], s ∈ [π, 2π]. (34)

In addition, 2 cos s − exp(vs)− exp(−vs) ≤ 2 cos s −2 ≤ 0 for s ∈ [π, 2π]. Hence we have

C(s) > 0, s ∈ [π, 2π].
The rest is to show

C(s) < 1, s ∈ [π, s0].
Since

C(s)− 1 = sin s − 2ω cos s + 2ω exp(−vs)

ω(2 cos s − exp(vs)− exp(−vs))
,

we shall show that

sin s − 2ω cos s + 2ω exp(−vs)

ω(2 cos s − exp(vs)− exp(−vs))
< 0. (35)

Observe that

((sin s − 2ω cos s) exp(vs)+ 2ω)′ = (v + 2ω) sin s exp(vs) ≤ 0.
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So for s ∈ (π, s0), we have

(sin s − 2ω cos s) exp(vs)+ 2ω ≥ (sin s0 − 2ω cos s0) exp(vs0)+ 2ω

= 1

v
((v sin s0 − 2ωv cos s0) exp(vs0)+ 2ωv) .

From Lemma 8, we know that exp(vs0)(cos s0−v sin s0) = 1 and exp(vs)(cos s−v sin s)−1
is increasing in s. So for s ∈ (π, s0), we have exp(vs)(cos s − v sin s) − 1 < 0, and
consequently (sin s − 2ω cos s) exp(vs) + 2ω > 0, where we have used the fact 2ωv = 1.
This proves (35) and consequently the lemma.

Lemma 11 There exists a b1 ∈ (0, 1
3 ) such that for b2 <

3b2
1

4 we also have
3b2

1
4 < bh

2 .

Proof We can choose b2 >
1
4 b2

1, then
3b1(

1
3 −b1)

4b2
< 1−3b1

b1
. By the inequality (32), we only

need to prove that there exists a b1 ∈ (0, 1
3 ) such that

b1 >
sin s − ω exp(vs)+ ω exp(−vs)

2ω cos s + 2 sin s + ω exp(−vs)− 3ω exp(vs)

∣∣∣∣
s=sh

. (36)

We claim that for s ∈ [π, s0),

B(s) := sin s − ω exp(vs)+ ω exp(−vs)

2ω cos s + 2 sin s + ω exp(−vs)− 3ω exp(vs)
∈

(
0,

1

3

)
.

��
Set

q(s) = sin s − ω exp(vs)+ ω exp(−vs),

η(s) = 2ω cos s + 2 sin s + ω exp(−vs)− 3ω exp(vs).

Then for s ∈ [π, s0), we have q(s) < 0 and

η(s) = 2ω(cos s + 2v sin s − exp(−vs))+ 3ω(exp(−vs)− exp(vs)) < 0.

Hence we have B(s) > 0 for s ∈ [π, s0). The rest is to show B(s) < 1
3 .

Rewrite η(s) as

η(s) = 3 sin s − 3ω exp(vs)+ 3ω exp(−vs)+ 2ω(cos s − v sin s − exp(−vs)).

For s ∈ [π, s0), we have cos s − v sin s − exp(−vs) < 0. Hence

η(s) < 3 sin s − 3ω exp(vs)+ 3ω exp(−vs) < 0.

It follows that B(s) < 1
3 for s ∈ (π, s0). The lemma follows.

Lemma 12 There exits a b1 ≥ 1
3 such that

3b2
1

4 < b∗
2 , where

b∗
2 = exp

(
t0
2

)
ω( 1

3 + b1)

sin(ωt0)
, ωt0 ∈ (−2π,−π)

and t0 is the largest root of the equation

cos(ωt0)+ 1

2ω
sin(ωt0) = exp

(
t0
2

)
.
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Proof Set

g(b1) =
3b2

1
4

1
3 + b1

.

Then for b1 ≥ 1
3 we have

g′(b1) =
b1
2 + 3b2

1
4

( 1
3 + b1)2

> 0,

and consequently g(b1) ≥ 1
8 and the minimum is taken at b1 = 1/3. ��

Since t0 < 0 and ωt0 ∈ (−2π,−π), we have

ω exp
( t0

2

)
sin(ωt0)

≥ ω exp(
t0
2
) > ω exp

(
−π
ω

)
.

So if

ω exp
(
−π
ω

)
≥ 1

8
,

(for instance by choosing ω =
√

4p−1
2 = 2, the assumption holds) there exists a b1 ≥ 1

3 such
that

g(b1) <
ω exp

( t0
2

)
sin(ωt0)

,

and consequently
3b2

1
4 < b∗

2. This proves the lemma.
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