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Abstract The cusp singularity—a point at which two curves of fold points meet—is a pro-
totypical example in Takens’ classification of singularities in constrained equations, which
also includes folds, folded saddles, folded nodes, among others. In this article, we study cusp
singularities in singularly perturbed systems for sufficiently small values of the perturbation
parameter, in the regime in which these systems exhibit fast and slow dynamics. Our main
result is an analysis of the cusp point using the method of geometric desingularization, also
known as the blow-up method, from the field of geometric singular perturbation theory. Our
analysis of the cusp singularity was inspired by the nerve impulse example of Zeeman, and we
also apply our main theorem to it. Finally, a brief review of geometric singular perturbation
theory for the two elementary singularities from the Takens’ classification occurring for
the nerve impulse example—folds and folded saddles—is included to make this article
self-contained.
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1 Introduction

Consider a singularly perturbed system of the form

ẋ = f (x, y)

ε ẏ = g(x, y), x ∈ R
k, y ∈ R

m, (1)

where ε > 0 is small. The small parameter ε measures the relative rates of change of x and
y, and one sees that the smaller ε is the faster y evolves relative to x , as long as g(x, y) �= 0.
In the limit ε = 0, system (1) reduces to the differential–algebraic system

ẋ = f (x, y)

0 = g(x, y), x ∈ R
k, y ∈ R

m . (2)

in which x evolves slowly while the fast variable y adjusts instantaneously to satisfy the
constraint that g vanishes. System (2) provides a leading order approximation to (1) and is
known in singular perturbation theory as either the constrained equation [15] or the reduced
system [8]. Another approximation used in singular perturbation theory, namely the fast
equation, is obtained as follows. Rescaling time in (1) by letting t = ετ , we obtain the
equation

x ′ = ε f (x, y)

y′ = g(x, y), x ∈ R
k, y ∈ R

m, (3)

where ′ denotes the derivative with respect to τ . Setting ε = 0, we obtain the so-called layer
problem [10], in which the systems is reduced to m ODEs for the fast variable y which depend
on the slow variable x as a parameter.

Constrained equations are equivalent to equations without a constraint at points where
Dy g is invertible. Near such points, the constraint g(x, y) = 0 can be eliminated by solving
for y as a function of x . By contrast, points where Dy g is not invertible are called singularities.
The set S0 = {g(x, y) = 0} is referred to as the constraining manifold in [15]; it is the phase
space of (2). In the literature on singular perturbation theory, S0 is also known as the critical
manifold [8], or slow manifold. Note that S0 is the set of equilibria for (3) with ε = 0.
Moreover, transverse to S0, the fast directions are understood as the infinitely fast foliation in
[15], and as the fast fibers in the Fenichel theory, see [8]. The setup of constrained equations
is schematically illustrated in Fig. 1.

One can define a hybrid system using the dynamics of (2) and (3) in the following way.
A point away from S0 moves infinitely fast along a stable fast fiber, following the dynamics
of (3) with ε = 0, until it reaches a stable branch of S0. On S0, the dynamics switches to (2).
If the corresponding solution reaches a singularity or a bifurcation point (loss of stability of
S0), then the dynamics switches back to (3). The relation between the dynamics of (1) with
0 < ε � 1 and the hybrid system described above is well understood away from singularities
by Fenichel theory, but there are still many unanswered questions regarding the flow near
singularities.

Takens [15] developed a local theory of constrained equations using singularity theory.
He classified a number of singularities and found normal forms determining equivalence
classes under topological conjugacy. The motivation for his analysis came from articles by
Zeeman [19] and by Thom [16–18]. A challenging problem is to extend the analysis of [15]
to the context of (1) with 0 < ε � 1. Such an extension has been carried out for all known
singularities in the cases of problems with dimension k ≤ 2 [1,10,13], with the exception
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Fig. 1 The cusp singularity and
the infinitely fast foliation

x

y

z

of the cusp singularity. In this article, the main result is a complete analysis of the cusp
singularity for systems (1) with 0 < ε � 1, and therefore we complete the study of generic
singularities in dimensions k ≤ 2 for problems (1).

In addition to presenting this main result about the cusp singularity, we also apply it to
obtain a complete description of the dynamics of the toy nerve impulse model of Zeeman
[19], in which a cusp singularity plays a central role. We demonstrate that there exist solutions
exhibiting smooth returns, and we think that a quantitative analysis of when this phenomenon
of smooth returns arises will be useful for understanding the dynamics of other problems
exhibiting cusps. Moreover, this model also has a folded saddle singularity, and hence we
will also employ known results on folds and folded saddles from [13] and [14]. Finally,
for completeness, we also present the analysis of the heartbeat model introduced in [19] (a
two variable toy model of a heart cell), which is a simple relaxation oscillator. We note that
more realistic Hodgkin–Huxley-like models of specific neurons and more realistic heartbeat
models have been developed and analyzed. For some of these (see for example [12]), folded
nodes and folded saddle nodes are the central singularities, and the presence of two or more
of these singularities leads to interesting recurrent dynamics.

This article is organized as follows. In Sect. 2, we present the analysis of Zeeman’s models
in the setting of constrained equations. In Sect. 3, we state our main result about cusps
(Theorem 2). This main theorem, which treats almost all orbits that enter the neighborhood
of the cusp, is then proven in Sect. 4. Some initial conditions enter the cusp region from below
a small neighborhood of the cusp point, and we study their dynamics in Sect. 5. Finally, in
Sect. 6, we prove theorems about the dynamics of the heartbeat model (Theorem 3) and about
the dynamics of the nerve impulse model (Theorem 4).

2 Analysis of Zeeman’s Models as Constrained Equations

2.1 The Heartbeat Model

In [19], Zeeman introduced the following elementary model:

ẋ = y − y0

ε ẏ = −(y3 − y + x), (4)
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pa
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y

Fig. 2 Dynamics of the reduced Eq. (6), with pa denoting the stable equilibrium

where y0 is a constant greater than 1/
√

3. It is an excitable dynamical system, [9], and at
the time it was a simple caricature (now surpassed by more realistic models) of electrical
activity in heart muscle. Zeeman constructed the model so that the stable equilibrium has a
relatively small basin of attraction. A suitable perturbation (small in size) makes the system
jump to a different slow manifold, but eventually the trajectory then returns to the stable
equilibrium via a jump return, i.e. a fast transition between the two different stable attracting
slow manifolds.

Setting ε = 0 in (4), we obtain the following constrained equations:

ẋ = y − y0

0 = −(y3 − y + x). (5)

The critical (constraining) manifold S0 is defined by the condition y3 − y + x = 0. This
curve has two fold points at y = ±1/

√
3. We can eliminate the constraint using the fact that

S0 is a graph of x as a function of y, namely x = −y3 + y. Differentiating this relationship
with respect to t , we get ẋ = (1 − 3y2)ẏ. Substituting into (5) and dividing through by the
factor 1 − 3y2, we get the reduced equation

ẏ = 1

1 − 3y2 (y − y0). (6)

Equation (6) has singularities at the fold points y = ±1/
√

3, and the flow is as shown in
Fig. 2.

Analysis of Eq. (4) with 0 < ε � 1 is presented in Sect. 6.
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2.2 The Nerve Impulse Model

Zeeman [19] also introduced the following elementary model for transmembrane voltage in
a nerve cell:

ẋ = −1 − y

ẏ = −2(y + z)

εż = −(x + yz + z3), (7)

as a caricature of the Hodgkin–Huxley equations. An important feature of (7) is the possibility
of smooth return, i.e. after the jump away from the equilibrium the trajectory returns staying
all the time on the slow manifold. In this section we study the constrained version of (7),

ẋ = −1 − y

ẏ = −2(y + z)

0 = x + yz + z3. (8)

In Sect. 6, we extend our analysis to Eq. (7).
The central feature of the constraint surface x + yz + z3 = 0 is the cusp singularity at the

origin, from which two fold lines emanate. It turns out that one of the fold lines also contains
a folded saddle singularity. In the next two sections (Sects. 2.3 and 2.4), we review the results
and the analysis of these singularities in the setting of constrained equations. Subsequently,
in Sects. 2.5 and 2.6, we return to (8) and analyze its singularities in complete detail.

2.3 A Desingularization of Constrained Equations

We consider constrained equations of the general form

ẋ = f1(x, y, z)

ẏ = f2(x, y, z)

0 = g(x, y, z). (9)

Assumption we consider the flow of (9) near a point (x0, y0, z0) satisfying the defining
conditions

g(x0, y0, z0) = 0 (10)

gz(x0, y0, z0) = 0 (11)

Further, we need a non-degeneracy condition, denoted by (A),

(A) g(x,y)(x0, y0, z0) �= 0.

The following result is well known, see for example [13,15] (we include the proof for com-
pleteness).

Lemma 1 Assume (10) and (A). Then, the constrained Eq. (9) can be written in the form

ẏ = f2(ϕ(y, z), y, z)

−gz(ϕ(y, z), y, z)ż = f (ϕ(y, z), y, z) · g(x,y)(ϕ(y, z), y, z). (12)

with x = ϕ(y, z) solving g(x, y, z) = 0.
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Proof Note that (A) implies that either gx (x0, y0, z0) �= 0, gy(x0, y0, z0) �= 0, or both are
nonzero. We assume without loss of generality that gx (x0, y0, z0) �= 0. Since we can solve
the constraint for x , the idea is to use the variables (y, z) to represent (9). (One may also
solve for y as a function of x and z if gy �= 0.) The solution has the form

x = ϕ(y, z), (13)

with

g(ϕ(y, z), y, z) = 0.

Differentiating (13) with respect to t , we derive the expression

ẋ = ϕy ẏ + ϕz ż.

Using implicit differentiation, we obtain

ϕz = − gz

gx
; ϕy = − gy

gx

which implies

− gz

gx
ż = f1 + gy

gx
f2

or

−gz ż = g(x,y) · f.

The result (12) follows. �	
Note that (12) has singularities along the fold line. Using Cramer’s rule to solve for (ẏ, ż),

we can rewrite (12) as follows:

ẏ =
(

− 1

gz

)
(−gz f2)

ż =
(

− 1

gz

)
g(x,y) · f (14)

Cancelling the factor (−1/gz), we obtain the desingularized equation

ẏ = −gz f2

ż = g(x,y) · f (15)

with x determined by the equation x = ϕ(y, z). Away from the fold line, trajectories of (12)
and (15) differ by time parametrization only. The direction of time is reversed in the region
where −gz < 0.

We introduce additional non-degeneracy conditions

(B) g(x,y)(x0, y0, z0) · f (x0, y0, z0) �= 0.

and

(C) gzz(x0, y0, z0) �= 0.

Classification of singular points
Simple fold points are the points for which both (B) and (C) hold.
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Folded equilibria are points for which (B) fails but (C) holds. Folded equilibria occur
generically at isolated points on a fold line. Additional non-degeneracy conditions may
apply, but we do not discuss them here.

Cusp points are points for which (B) holds but (C) fails. Cusp points occur generically at
isolated points of a fold line where two fold lines meet. For a non-degenerate cusp point, the
non-degeneracy condition

(D) gzzz(x0, y0, z0) �= 0

is needed.

2.4 Folds, Folded Saddles, and Cusps in Constrained Equations with Two Parameters

Takens [15] found simple normal forms for a number of constrained equations and proved
a result asserting topological conjugacy between singularities in general position and the
corresponding normal forms [15, Theorem 5.1, p. 178]. In this section, we review the normal
forms given in [15] for the three cases relevant to the nerve impulse model (7): folds, folded
saddles, and cusps.

The normal form for a fold is as follows:

ẋ = ±1

ẏ = 0

0 = −(z2 + x). (16)

(The normal form for a fold with one slow variable is obtained by eliminating the y variable).
Note that both (B) and (C) are satisfied for (16). The dynamics can be understood using
the method outlined in Sect. 2.3. The phase portrait, corresponding to the plus sign in the x
equation, is shown in Fig. 3.

The normal form for a folded saddle is as follows:

ẋ = −y

ẏ = 1

0 = z2 + x . (17)

Note that condition (B) fails but (C) holds. The dynamics can be understood using the method
outlined in Sect. 2.3. The phase portrait is shown in Fig. 4.

Fig. 3 Simple fold point, normal
form (16) with plus sign.
Corresponds to Fig. 3,
Case 5 in [15]

x

y

z
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Fig. 4 Folded saddle,
corresponds to Fig. 3,
Case 9 in [15]

x

y

z

Fig. 5 Dynamics of (18) with
the plus sign, shown in the
three-dimensional x, y, z space
as well as in two different
projections. Corresponds to
Fig. 3, Case 11 in [15]
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y

z

The normal form for a cusp is as follows:

ẋ = 1

ẏ = 0

0 = ±(z3 + yz + x). (18)

The choice of the sign in (18) determines the stability of the sheets of g(x, y, z) = 0 for the
dynamics of the infinitely fast foliation, namely the sheets for which gz < 0 are defined as
stable and the sheets for which gz > 0 are defined as unstable. (This definition is motivated by
the corresponding theory of singularly perturbed equations.) The cusp surface x = x(y, z) is
given by the graph of z3 + yz + x = 0, with x as a function of the base variables y and z. The
graph is triple-valued for y < 0 and single-valued for y > 0. Moreover, in the triple-valued
regime, two of the branches are stable while the middle one is unstable. The normal form
obtained by changing the sign in the last equation of (18) corresponds to the middle branch in
the triple-valued regime being stable and the lower and upper branches unstable. This normal
form is not of interest for our purposes. The dynamics of (18) are depicted in Fig. 5, on the
cusp surface and in two projections. Note that (B) holds, (C) fails, and (D) holds.
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2.5 Singularities for (8)

We now return to (8) and analyze the singularities it possesses. Solving the constraint 0 =
z3 + yz+x for x , we obtain x = −(z3 + yz). Differentiating with respect to t and substituting
−1 − y for ẋ , we obtain

−(3z2 + y)ż − ẏz = −1 − y.

Substituting for ẏ, we obtain

(3z2 + y)ż = (y + 1) + 2(y + z)z.

In combination with the ẏ equation, we obtain the reduced system

ẏ = −2(y + z)

(3z2 + y)ż = (y + 1) + 2(y + z)z. (19)

Finally, desingularization yields

ẏ = −2(y + z)(3z2 + y)

ż = (y + 1) + 2(y + z)z. (20)

The fold line is the parabola y = −3z2. Folded singularities are the equilibria of (20) on the
fold line, i.e. points satisfying the set of equations

0 = y + 3z2

0 = (y + 1) + 2(y + z)z.

By eliminating y, we obtain −6z3 − z2 + 1 = 0. One readily verifies that z = 1
2 is the only

real root, with the corresponding value of y = − 3
4 . Hence, there is one folded singularity,

given by p f = (− 3
4 , 1

2 ). Linearizing (20) about p f , we obtain the matrix

A =
( 1

2
3
2

2 1
2

)
.

Since det A < 0 the point p f is a folded saddle. Further, it is easy to check that the flow of
(19) is away from the fold for 0 < z < 1/2 and towards the fold for z < 0 and for z > 1/2.
Figure 6 shows a computer generated phase portrait of (19).

2.6 Singular Global Return for Zeeman’s Eq. (8)

The full fold line F of Eq. (8) can be parametrized as follows:

F = {(x, y, z) = (2σ 3,−3σ 2, σ ) : σ ∈ R}. (21)

The upper branch, denoted by F+, corresponds to positive values of z, and the lower branch,
F−, corresponds to negative values of z. In this section, we look at the projection of F+
onto F−.

The projection of F+ onto S0 is obtained from (21) as the unique curve on the lower sheet,
F−, of S0 with the property that the x and y coordinates remain unchanged. This curve has
the following parametric representation:

P F+ = {(x, y, z) = (2σ 3,−3σ 2,−2σ) : σ > 0}. (22)

The y and z coordinates on P F+ satisfy the equation y = − 3
4 z2.
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Fig. 6 Phase portrait of the reduced Eq. (19)

The singular return is determined by the trajectories of (20) starting on P F+. Figure
6 shows some of these trajectories, and the dashed curve represents P F+. Some of the
trajectories run into the fold line F and can no longer stay on the constrained surface. Other
trajectories pass to the right of the cusp, making a smooth return. Very important is the forward
trajectory of the projection of p f , which we denote by q f . Note that q f = (− 3

4 ,−1). In
the sequel we will characterize the dynamics of (20). In particular we will show that the
trajectory of q f passes through the lower branch of the fold line F− (see Fig. 6), and thereby
does not correspond to a smooth return (Fig. 7).

Let S0 be the critical manifold for (7) and let

Sa
0 = {(x, y, z) ∈ S0 : ∂g

∂z
(x, y, z) < 0}.

Further, let Sa
0− (resp. Sa

0+) be Sa
0 ∩ {(x, y, z) : z < 0} (resp. Sa

0 ∩ {(x, y, z) : z ≥ 0}).
The manifold Sa

0 is shown in Fig. 8.

Theorem 1 There exist sets V01, V02 and V03 contained in Sa
0+ with the following properties:

(i) All trajectories of (19) starting in V01 remain in V01 and are attracted to the stable
equilibrium pa.

(ii) All trajectories of (19) starting in V02 reach F+, jump to P F+, continue to F− and
jump to V01.

(iii) All trajectories of (19) starting in V03 reach F+, jump to P F+ and continue to V01.

Theorem 1 is a consequence of the following proposition:
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Fig. 7 Phase portrait of the
constrained Eq. (8) on the
constraining manifold and in two
projections

x

y

z

Fig. 8 The manifold Sa
0

p0

x

y

z

Proposition 1 There exists a point q∗ = (y∗, z∗) ∈ P F+, with z∗ < −1 whose forward
trajectory under (20) passes through 0. If q ∈ {(y, z) ∈ P F+ : z ≤ −1} and q �= q∗ then
one of the following cases holds:

z∗ < z < −1 The forward trajectory of q under (20) passes through F−.
z < z∗ The forward trajectory of q under (20) passes to the right of the origin and enters
the second quadrant through the positive z axis.

In the proof of Proposition 1 we will rely on the following fact:

Lemma 2 The function

G(z) = −27

4
z4

(
1 − 3

4
z

)
− 3

2
z3 + 5

4
z2 + 1

is negative for z < −1
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Fig. 9 Graph of the inner product G(z) as a function of z

Proof The function G can be rewritten as follows:

G(z) = −27

4
z4

(
1 − 3

4
z

)
− 3

2
z3 + 5

4
z2 + 1.

First, observe that G(−1) = − 129
16 < 0. Second, observe that

G ′(z) = 405

16
z4 − z

2
[54z2 + 9z − 5].

In this expression, the first term is positive for all z < −1. Also, the term in square brackets
is positive for all z < −1, because both roots of this quadratic lie to the right of -1. Hence,
G ′(z) > 0 for all z < −1, and the lemma is proven.

The graph of G computed using MATHEMATICA is shown in Fig. 9. �	
Proof of Proposition 1 Equation (20) restricted to P F−, i.e., at a point (z,− 3

4 z2), is
given by

ẏ = −9

2
z3

(
1 − 3

4
z

)

ż = −3

2
z3 + 5

4
z2 + 1. (23)

A normal vector to P F− at a point (z,− 3
4 z2) is ( 3

2 z, 1). Computing the inner product of
( 3

2 z, 1) with the vector field (23), we find the function G(z) introduced in the statement of
Lemma 2. By Lemma 2 G(z) < 0 for z < −1. It follows that all the trajectories starting at
points q = (y, z) ∈ P F+ must enter the region bounded by {(y, z) ∈ P F+ : z ≤ −1}, the
segment of the trajectory of q f from q f to the y axis (see Fig. 6) and the y axis. Consider
the trajectory starting at {(y, z) ∈ P F+ : z ≤ −1}. Our goal is to prove that this trajectory
reaches the y axis. Note that ẏ > 0 as long as y + z < 0 so that y initially keeps increasing,
eventually passing the line y +1 = 0. Henceforth, z also must be increasing until either the y
axis, or the line y + z = 0 is reached. After the trajectory has crossed the line y + z = 0 the y
coordinate must be decreasing but y + z must stay positive as long as z is negative. It follows
that eventually the trajectory must reach the y axis. The result follows by monotonicity of
the flow. �	
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3 Singularly Perturbed Cusps—Statement of the Main Theorem

As mentioned, the main technical content of this article is the study of slow passage through
the cusp for 0 < ε � 1 by means of geometric singular perturbation theory. Recall that
the result establishing the equivalence of a system in general position to the normal form
was proved in [15] for ε = 0 only. Rather than considering the normal form, we consider
a general system for the cusp singularity and study its dynamics. We consider systems in
the fast formulation and add the equation ε′ = 0 (this is standard in geometric singular
perturbation theory, see, e.g., [8]),

x ′ = ε f1(x, y, z, ε)

y′ = ε f2(x, y, z, ε)

z′ = g(x, y, z, ε),

ε′ = 0, (24)

satisfying the defining conditions (10), the condition (B), the condition gzz(x0, y0, z0) =
0, which is a violation of (C), and condition (D). We assume without loss of generality
that (x0, y0, z0) = (0, 0, 0). We restate the defining and non-degeneracy conditions (for
convenience of the reader)

g(0, 0, 0, 0) = 0

gz(0, 0, 0, 0) = 0

gzz(0, 0, 0, 0) = 0 (25)

and the nondegeneracy conditions

gzzz(0, 0, 0, 0) �= 0

(gx (0, 0, 0, 0), gy(0, 0, 0, 0)) · f (0, 0, 0, 0) �= 0. (26)

We prove the following result:

Proposition 2 Assume (25) and (26). Then, in a sufficiently large neighborhood of the origin,
(24) can be transformed to new variables in which f1(0, 0, 0, 0) �= 0, f2(0, 0, 0, 0) = 0 and

g(x, y, z, ε) = −x + a1(x, y, ε)z + a2(x, y, ε)z3 + O(z4). (27)

Proof First, we translate the z variable to eliminate the z2 term in g. Next, we note that (26)
implies that (gx (0, 0, 0, 0), gy(0, 0, 0, 0)) �= (0, 0). To fix ideas we assume gx (0, 0, 0, 0) �=
0. We replace x by a new variable,

w = −g(x, y, 0, ε).

After these transformations, (24) becomes

w′ = −ε(gx (w, y, 0, ε), gy(w, y, 0, ε)) · f (w, y, z, ε)

y′ = ε f2(w, y, z, ε)

z′ = g(w, y, z, ε)

ε′ = 0, (28)

with the transformed g now having the form (27). We conclude the proof by letting

y → y + f2(0, 0, 0, 0)

(gx (0, 0, 0, 0), gy(0, 0, 0, 0)) · f (0, 0, 0, 0)
w.

The transformed system (28) now has the desired properties. �	
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An additional non-degeneracy condition is needed concerning (24) for our later analysis,
namely we assume

a1,y(0, 0, 0) �= 0. (29)

Further, we assume

a2(0, 0, 0) < 0, (gx (0, 0, 0, 0), gy(0, 0, 0, 0)) · f (0, 0, 0, 0) < 0. (30)

These assumptions define one of the generic cases, which is the one occurring for the nerve
impulse equation, leading to Fig. 3 Case 11 in [15]. Also, without loss of generality, we
assume a1,y(0, 0, 0) < 0 (if the opposite holds we let y → −y). By scaling the variables,
we make f1(0, 0, 0, ) = 1, a1,y(0, 0, 0) = −1 and gzzz(0, 0, 0, 0) = −1.

Note that, after all the transformations and assumptions, (24) can be written in the following
form:

x ′ = ε(1 + O(x, y, z, ε))

y′ = εO(x, y, z, ε)

z′ = −(z3 + yz + x) + O(ε, xz, yz3, z4). (31)

This is the form of the system with which we work throughout the rest of this section, and
we note that, to leading order, (31) is the same as the fast version of (18).

We are interested in describing the transition between the sections

�in = {(x, y, z) : x = −x0, z > 0},
and

�out = {(x, y, z) : x = x0, },
where x0 > 0 is a small constant. Since we want to study passage near the cusp point, we
consider only the initial conditions which, before the arrival to �in, were attracted to the
slow manifold Sa,ε. This justifies the condition z > 0 in the definition of �in. The sections
of interest are shown in Fig. 10 (see also Fig. 5). Note that by Theorem 5 there exist slow
manifolds S−

ε and S+
ε obtained as small perturbations of the sets

{(x, y, z) ∈ S0 : x ≤ −x0 < 0}
and

{(x, y, z) ∈ S0 : x ≥ x0 > 0}
respectively, with x0 an arbitrary constant.

The following theorem is main result of this article:

Theorem 2 (Cusp)For system (24) with assumptions (25), (26), (29), and (30), there exists
an ε0 > 0 sufficiently small such that for all 0 < ε ≤ ε0, the following statements hold:

(i) The transition map � : �in → �out induced by the flow of (31) is a diffeomorphism
mapping a rectangular neighborhood of S0 into �out .

(ii) The choice of S+
ε can be made in such a way that �(�in ∩ S−

ε ) ⊂ S+
ε .
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in

out

x

y

z

in

out

x

y
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Fig. 10 The extremal sections �in and �out

(iii) The map � is exponentially contracting in the z direction and the derivative in the y
direction is bounded above and below. More precisely,∣∣∣∣∂�

∂z

∣∣∣∣ = O(e−c/ε)

for some positive constant c and there exists a constant K > 0 such that

1

K
≤

∣∣∣∣∂�

∂y

∣∣∣∣ ≤ K .

The proof of Theorem 2 will be given in the next section.

4 Analysis of a Singularly Perturbed Cusp by Means of Geometric Desingularization

Note (x, y, z, ε) = (0, 0, 0, 0) is a degenerate equilibrium with zero as a triple eigenvalue
of (31). In the neighborhood of this equilibrium, the distinction between fast and slow vari-
ables is lost, and the analysis is further complicated by the fact that the two fold lines of
the cusp surface, which themselves are already not normally hyperbolic, meet at the cusp
point. Nevertheless, the system dynamics may be analyzed using the method of geometric
desingularization, also known as the blowup method [2–5,10,11]. Here, the origin is blown
up into a hyper-sphere, and the induced equilibria are either hyperbolic or semi-hyperbolic.
As a result, standard invariant manifold theory may be used to analyze the dynamics of the
transformed vector field.

Let 	 : R
5 → R

4 be defined by

x = r3 x̄, y = r2 ȳ, z = r z̄, ε = r5ε̄. (32)

Let S3 ≡ {(x̄, ȳ, z̄, ε̄)|x̄2 + ȳ2 + z̄2 + ε̄2 = 1}, and let ρ0 be determined by the relation
ε0 = ρ5

0 . Then, define B = S3 × [0, ρ0]. The blow-up transformation (32) is the restriction
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y

K

K +

K
K en

K ex

x

z

Fig. 11 The domains of the charts Ken, K , K−, K+, and Kex in the original variables

of 	 to B. Let X denote the original vector field (24) and let X̄ be defined by 	∗X̄ = X,
where 	∗ is induced by 	. Vector field X̄ is (smoothly) conjugate to X on S3 × (0, ρ0] and is
0 on S3 ×{0}. The essence of the blow-up method is to rescale X̄ in such a way that the limit
of the rescaled version of X̄ on S3 × {0} is non-trivial and contains vital information about
the flow of X . In fact, in order to highlight different features of the flow, one uses different
scalings in different parts of B. For this reason the blow up of X is sometimes referred to as
a local vector field.

Our principal objective is to study the blow-p of X on B. As is common in differential
geometry when working with spheres, it is convenient to employ charts, rather than spherical
coordinates. Hence, we introduce the following hyperplanes in R

5, which will serve as charts
for different parts of B:

Ken : {x̄ = −1};
K : {ε̄ = 1};
K− : {ȳ = −1};
K+ : {ȳ = 1};
Kex : {x̄ = 1}. (33)

In these charts, we track trajectories as they enter a neighborhood of the origin, pass through
it, and exit it. Therefore, we refer to them as the entry –, rescaling –, and exit charts. In Fig. 11,
we show the domain of the charts Ken, K , K−, K+, and Kex in the original variables. The
union of these domains is a neighborhood of the cusp point which is uniform (independent
of ε) in the x and y directions but in the z direction shrinks to O(ε1/3) near the cusp. All
trajectories which are attracted to the left branch of the slow manifold for ε and y sufficiently
small (with the bound on y independent of ε) must pass through this neighborhood, entering
through the domain of the entry chart and exiting through the domain of the exit chart.

We will define a number of sections of the flow in the charts; the first being the equivalent
of �in in Ken. All the subsequently defined sections are determined by the flow in the charts.
First, we define an ‘out’ section in Ken, which gives an ‘in’ section in K . Next, we define an
‘out’ section in K , etc...

We begin in Sect. 4.1 where we study the passage of trajectories through chart Ken, which
in terms of the original vector field corresponds to entering a small fixed neighborhood of
the cusp point and continuing until x = O(ε1/3), y = O(ε1/2) and z = O(ε). Then, in
Sects. 4.2 and 4.3, we study the dynamics in chart K , which corresponds to the dynamics in
a neighborhood of size O(ε1/3) × O(ε1/2) × O(ε) for (31); the distinguished limit of the
dynamics near the cusp point is identified herein. Finally, in Sect. 4.4, we analyze the system
dynamics in the exit chart Kex which corresponds to moving from O(ε1/3)× O(ε1/2)× O(ε)
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to a uniformly bounded distance away from the origin (for the variables (x, y, z)), and in
Sect. 4.5 we prove Theorem 2.

Remark The scalings in (32) were found by requiring that all of the terms in the transformed
vector field involve the same power of r .

4.1 Dynamics in the Entry Chart Ken

In the section, we analyze the dynamics of (31) in the entry chart Ken and use the subscript 1
on the variables (dropping the overbars) in order to indicate that the analysis is for this chart.
This notational convention extends to the variables in the other charts, as is customary.

Recall the definition of chart Ken given by (33). It follows that the rescalings (32) become

x = −r3
1 , y = r2

1 y1, z = r1z1, ε = r5
1 ε1. (34)

We transform (31) to variables (34) and apply a time rescaling, cancelling a factor of r2
1 . The

resulting system is

ṙ1 = −1

3
ε1r1(1 + O(r1))

ẏ1 = 2

3
ε1 y1 + O(r1ε1)

ż1 = −(z3
1 + y1z1 − 1 − 1

3
ε1z1) + O(r1)

ε̇1 = 5

3
ε2

1(1 + O(r1)). (35)

We note that, although the time variable has been rescaled, the overdot has been recycled for
convenience of notation.

We now define the following sections of the flow:

�in
en ≡ {(r1, y1, z1, ε1) | r1 = ρ, z1 > 0} (36)

and

�out
en ≡ {(r1, y1, z1, ε1) | ε1 = δ}, (37)

where ρ = 3
√

x0 and δ is a sufficiently small constant. We note that �in
en is equivalent to �in.

In Fig. 12, we show the sections �in
en and �out

en , suppressing the variable z1.
The goal of the analysis in this section is to describe the transition from �in

1 to �out
en .

System (35) has several properties. The hyperplanes {r1 = 0} and {ε1 = 0} are invariant.
Consequently, the 2D space {r1 = ε1 = 0} is also invariant. The dynamics in this space
organizes the dynamics of the whole system. Restricted to the space {r1 = ε1 = 0}, system
(35) becomes the following planar system with horizontal flow:

ẏ1 = 0

ż1 = −(z3
1 + y1z1 − 1). (38)

Now, we can understand the dynamics of (35) based on the phase portrait of the horizontal
flow of (38). We note that there are two curves of equilibria (shown in blue) determined by the
equation z3

1 + y1z1 − 1 = 0. Further, the flow on the invariant, horizontal lines is as shown in
Fig. 13. The dynamics of (35) depends on the sign of y1, see the second equation of (35) and
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Fig. 12 The sections �in
en and

�out
en , with z1 suppressed

en
out

en
in

y1

r1

ε1

0

η

1
z1

y1

Fig. 13 Dynamics in chart Ken

Fig. 13. As ε1 steadily increases along trajectories, each trajectory starting in �in
en eventually

arrives in �out
en . A calculation shows that if y0 is the value of y in �in

en then y1 = (δ/ε)2/5 y0

in �out
en , since dy1/dε1 = (2/5)(y1/ε1) to leading order, and since y0 = ρ2 y1 and ε = ρ5ε1

on �in
en. Plainly, if y0 does not satisfy the estimate y0 = O(ε2/5) then the value of y1 in �out

en
blows up. In this case, we use different outgoing sections, depending on the sign of y,

�out± ≡ {(r1, y1, z1, ε1) | y1 = ±η}, (39)

where η > 0 is an arbitrary positive number.

4.2 Dynamics in the Rescaling Chart K

In this section, we examine the dynamics in the rescaling chart K and use the subscript 2 on
the variables. The rescalings (32) become
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x = r3
2 x2, y = r2

2 y2, z = r2z2, ε = r5
2 , (40)

We transform (31) using the variables (40) and apply a time rescaling (by a factor of r2
2 ). The

resulting system is

ṙ2 = 0

ẋ2 = 1 + O(r2)

ẏ2 = O(r2
2 )

ż2 = −(z3
2 + y2z2 + x2) + O(r2), (41)

where the overdot denotes the derivative with respect to the rescaled time.
We define the following sections:

�in
2 ≡ {(x2, z2, y2) : x2 = −k̃, z2 > 0} (42)

and

�out
2 ≡ {(x2, z2, y2) : x2 = k̃, z2 < 0}, (43)

where k̃ is a sufficiently large number. The goal of this section is to describe the transition
from �in

2 to �out
2 .

In system (41), the variable r2 is constant along the orbits and y2 varies very slowly.
Consequently, one can understand the dynamics by drawing the phase portrait in the (x2, z2)

plane, with r2 and y2 treated as parameters, r2 ≈ 0. For each fixed, real value of y2, the z2

nullcline is given in the (x2, z2) plane by the cubic curve

x2 = −y2z2 − z3
2. (44)

For any y2 < 0, the cubic nullcline intercepts the z2-axis in three distinct points, whereas it
does so exactly once for any y2 ≥ 0, with a vertical tangency in the transition case of y2 = 0.
In fact, the union of these cubic nullclines (44) over all y2 ∈ IR is precisely the leading order
formula for the cusp surface.

In this chart, x2 and z2 evolve on the same time scale. This reflects the fact that z2 is no
longer fast near the cusp point, and that the distinguished limit is the one in which x2 and z2

are equally slow. Trajectories cross the cusp surface with a horizontal tangency (parallel to
the x2-axis) as they move from left to right. Furthermore, the z2 variable increases to the left
of the associated cubic, while it decreases to the right of it. As a result, for the folded portion
of the cusp surface corresponding to y2 < 0, orbits pierce through both the upper and lower
branches from below to above, locally. The dynamics in the (z2, x2) plane are illustrated for
y2 > 0 and y2 < 0 in Fig. 14. We conclude that all trajectories starting in �in

2 arrive in �out
2

(flowbox theorem).
Finally, we discuss the relation between the sections �out

en and �in
2 . To describe the tran-

sition between these two sections, we need the coordinate change κ12 from Ken to K and its
inverse, κ21 = κ−1

12 . These transformations are given by

κ12 : x2 = −ε
−3/5
1 , y2 = y1ε

−2/5
1 , z2 = z1ε

−1/5
1 , r2 = r1ε

1/5
1 ;

κ21 : y1 = y2x−2/3
2 , z1 = −z2x−1/3

2 , ε1 = −x−5/3
2 , r1 = −r2x1/3

2 .

It now follows that if we define

�in
2 = κ12(�

out
en ),

then k̃ = δ−3/5.
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2
in

2
out

x2

z2

2
in

2
out

x2

z2

19

Fig. 14 Dynamics in chart K . In the top frame, y2 > 0; and in the bottom frame y2 < 0. The dashed curves
denote the z2-nullcline

123



J Dyn Diff Equat (2013) 25:925–958 945

4.3 Dynamics in the Rescaling Charts K− and K+

In this section, we examine the dynamics in the rescaling chart K−. As the dynamics in K+
is much simpler we leave the analysis to the reader (it is possible to use a similar approach
as we use for K− in this section). We use the subscript 2 on the variables (dropping the
overbars), as in Sect. 4.2. Here, the rescalings (32) become

x = r3
2 x2, y = −r2

2 , z = r2z2, ε = r5
2 ε2. (45)

We transform (31) using the variables (45) and apply a time rescaling (by a factor of r2
2 ). The

resulting system is

ẋ2 = ε2(1 + O(r2)) + 3

2
r2x2ε2 O(r2)

ṙ2 = −1

2
r2

2 ε2 O(r2)

ż2 = −(z3
2 − z2 + x2) + 1

2
r2z2ε2 O(r2)

ε̇2 = 5

2
r2ε

2
2 O(r2), (46)

where the overdot denotes the derivative with respect to the rescaled time. Note that r2 = 0
defines an invariant space on which the dynamics are given by

ẋ2 = ε2

ż2 = −(z3
2 − z2 + x2)

ε̇2 = 0. (47)

We assume that |y| ≤ ρ2, which implies η1/2(ε/δ)1/5 < r2 < ρ. As a consequence, we
derive a bound for ε2, namely 0 < ε2 < δ/η5/2. Since we can pick the constant δ/η5/2 to be
arbitrarily small, (47) can be treated as a singularly perturbed problem with a slow variable
x2, a fast variable z2 and a singular parameter ε2. The critical manifold is an S shaped surface
given by the formula x2 = −z3

2 + z2. The dynamics of the reduced equation and the layer
equation are shown in Fig. 15. The dynamics of (47) is very well understood (see [10] and
the references therein). Let �in

2 and �out
2 be sections defined using formulas (42) and (43),

see Fig. 15. The trajectories starting at �in
2 follow the upper branch of the slow manifold

until they arrive at the fold point z2 = 1/
√

3. Subsequently, they jump to the lower branch of
the slow manifold and move further along it until they arrive to �out

2 . It is a straightforward
exercise, left to the reader, to prove that the dynamics of the full system (46) closely follows
the dynamics of (47).

Finally, we discuss the relation between the sections �out− and �in
2 . To describe the tran-

sition between these two sections, we need the coordinate change κ12 from Ken to K− and
its inverse, κ21 = κ−1

12 . These transformations are given by

κ12 : x2 = −(−y1)
−3/2, r2 = (−y1)

1/2r1, 2 = z1(−y1)
−1/2, ε2 = ε1(−y1)

−5/2;
κ21 : r1 = r2(−x2)

1/3, y1 = −(−x2)
−2/3, z1 = z2(−x2)

−1/3, ε1 = ε2(−x2)
−5/3.

It now follows that, if we define

�in
2 = κ12(�

out− ),

then k̃ = η−3/2.
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2
in

2
out

x2

z2

Fig. 15 Slow/fast dynamics of (47); two folds subordinate to a cusp

The analysis for the section K+ is very similar, with the formulas differing by some signs
only. The dynamics in K+ is analogous to the dynamics in K with ȳ2 = 1.

4.4 Dynamics in the Exit Chart Kex

In the section, we analyze the dynamics of (31) in the exit chart Kex. Here, the rescalings
(32) become

x = r3
1 , y = r2

1 y1, z = r1z1, ε = r5
1 ε1, (48)

We transform (31) using the variables (48) and apply a time rescaling, cancelling a factor of
r2

1 . The resulting system is

ṙ1 = 1

3
ε1r1(1 + O(r1))

ẏ1 = −2

3
ε1 y1 + O(r1ε

2
1)

ż1 = −(z3
1 + y1z1 + 1 + 1

3
ε1z1) + O(r1)

ε̇1 = −5

3
ε2

1(1 + O(r1)). (49)

As before, t and the overdot are recycled as the independent variable and the derivative with
respect to this variable, respectively.

Let κ̃12 and κ̃21 be chart transitions between K and Kex analogous to κ12 and κ21. In this
section we study the transition by the flow between �in

ex = κ̃21(�
out
2 ) and

�out
ex ≡ {(r1, y1, z1, ε1) : r1 = ρ}.
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01
z1

y1

Fig. 16 Dynamics in chart Kex

Note that (48) differs only slightly from (34): the only difference is the sign in front of r1.
Similarly the chart transformations κ̃12 and κ̃21 differ very little from κ12 and κ21, namely κ̃12

can be obtained from κ12 by deleting the − sign before ε
−3/5
1 and κ̃21 can be obtained from

κ21 by deleting the − sign before the terms z2x−1/3
2 , x−5/3

2 and r2x1/3
2 . It is easy to check

that �in
ex is alternatively defined by

�in
ex ≡ {(r1, y1, z1, ε1) : ε1 = δ}.

System (49) has analogous properties as (35): the hyperplanes {r1 = 0} and {ε1 = 0} and the
2D space {r1 = ε1 = 0} are also invariant. System (49) restricted to the space {r1 = ε1 = 0}
becomes:

ẏ1 = 0

ż1 = −(z3
1 + y1z1 + 1). (50)

There are two curves of equilibria determined by the equation z3
1 + y1z1 + 1 = 0. The

phase portrait is as follows. Any initial condition starting in �in
ex arrives in �out

ex and the
trajectories are attracted to a codimension one manifold close to the left branch of the curve
z3

1 + y1z1 + 1 = 0, see Fig. 16.

4.5 Proof of Theorem 2

(i) We define transition maps for the flow in the charts and write � : �in → �out as a
composition of such maps. The sequence of transition maps that is needed depends on
the initial conditions. We will consider one such choice in some detail and outline the
proof for the other cases. Let �in→2 : �in

en → �in
2 be the composition of the blow up

restricted to �in, the transition map from �in
en to �out

en and the chart transformation κ12.
Let �2 : �in

2 → �out
2 be the transition map in K . Let �2→out : �out

2 → �out
ex be the

composition of the chart transformation κ̃21 with the map from �in
ex to �out

ex and the ‘blow
down’ restricted to �out

ex . The intermediate maps �in→2,�2 and �2→out are smooth.
The arguments in Sect. 4.1 imply that � = �in→2 ◦ �2 ◦ �2→out for initial conditions
satisfying y0 = O(ε2/5). The domain of �in→2 ◦ �2 ◦ �2→out is an open set in �in

obtained as an intersection of a neighborhood of the cusp with �in and with the set defined
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by the condition |y0| < K ε2/5, for K > 0 an arbitrary but fixed constant. Combining the
information in Sects. 4.1, 4.2 and 4.4 we conclude that �in→2 ◦�2 ◦�2→out is a smooth
diffeomorphism on its domain and its image is contained in a small neighborhood of the
cusp intersected with �out.
Similarly we define maps �in→+,�+,�+→out,�in→−,�− and �−→out. Arguing as
in the case of �in→2 ◦ �2 ◦ �2→out we conclude that �in→+ ◦ �+ ◦ �+→out and
�in→− ◦ �− ◦ �−→out are smooth diffeomorphisms on their domains and their images
are contained in a small neighborhood of the cusp with �out. Moreover, it follows from the
analysis in Sects. 4.1–4.4 that the domains of the three composite maps can be chosen
so that they overlap and their union is an intersection of a neighborhood of the cusp
intersected with �in. Item (i) has thus been proved.

(ii) The manifold S+
ε is not unique. It can be defined uniquely by specifying its boundary

in �out. This boundary can be taken to be �(S−
ε ∩ �in).

(iii) We consider the case when � is given by �in→2 ◦ �2 ◦ �2→out and leave the other
cases to the reader. Note that �2 is neutral in all directions while �in→2 and �2→out are
exponentially contracting in the z1 direction and neutral in the y1 direction (see Figs.
13, 16). �	

5 Analysis for Initial Conditions Lying Below a Neighborhood of the Cusp Point

Here, we study orbits through initial conditions that lie below a neighborhood of the cusp
point. To that end, we define a new section

�bot = {(x, y, z, ε) : z = −ρ, 0 ≤ ε ≤ ε0},

where ρ > 0 and ε0 are positive and small. The initial conditions we study lie on �bot, and
to study the orbits through these initial conditions it is useful to include higher order terms
in the vector field (31),

x ′ = ε(1 + O(x, y, z, ε))

y′ = ε(Cz + O(x, y, z2, ε))

z′ = −(z3 + yz + x) + O(xz, yz3, z4, ε). (51)

5.1 The Main Result of this Section

The main result of this section is:

Proposition 3 On the section �bot, there exists a sufficiently small rectangle Rbot, which
contains the point of intersection of �bot with the critical fiber of the cusp point, such that
the following statements hold:

1. The rectangle Rbot is mapped onto an exponentially thin strip about S+
ε ∩ �out,

2. There exists a strip contained in Rbot on which D� is exponentially large.

The proof of this proposition is given below. As a preliminary step, we introduce one other
useful chart.
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5.2 Chart Kbot

In order to prove Proposition 3, we introduce a new chart in which we may study the approach
to the cusp point along the critical fiber. This chart corresponds to setting z̄ = −1 in (32).

x = r3
b xb, y = r2

b yb, z = −rb, ε = r5
b εb. (52)

In chart Kbot , system (51) becomes (after a time rescaling and with ′ denoting the derivative
with respect to the new time variable):

x ′
b = εb + 3xb Fb(xb, yb, rb, εb) + O(rb)

y′
b = 2yb Fb(xb, yb, rb, εb) + O(rb)

r ′
b = −rb Fb(xb, yb, rb, εb)

ε′
b = 5εb Fb(xb, yb, rb, εb) (53)

with Fb(xb, yb, rb, εb) = 1 + yb − xb + O(rb).
Next, we recall the blow-up in chart K−. The chart-to-chart transformation from Kbot to

K− is given as follows:

x2 = (−yb)
−3/2xb, r2 = (−yb)

1/2rb, z2 = −(−yb)
−1/2, ε2 = (−yb)

−5/2εb. (54)

We are interested in trajectories which ultimately cross the section �2,bot, defined by
z2 = −L , where L is some large number. Under the coordinate change between charts
Kbot and K−, this section corresponds to a section in Kbot defined by yb = − 1

L2 . Denote

this section by �out
bot . We also introduce the section �in

bot defined by rb = ρ. It corresponds to
�bot in chart Kbot. Now, by choosing the rectangle Rbot such that it is sufficiently small then
we know that the function Fb is bounded away from zero and that the transition from �in

bot to
�out

bot is a regular smooth passage near the saddle point (xb, yb, rb, εb) = (0, 0, 0, 0). Hence,
with the suitable choice of Rbot, its image in �2,bot under the coordinate change contains the
set defined by the conditions r2 = 0, x2 = −1/(2

√
3) (and ε2 sufficiently small). This basic

dynamics is central to the proof of the proposition, as we now show.

5.3 Proof of Proposition 3

We first prove part 1 of the proposition. Let �2,int be defined by x2 = 1/(2
√

3) + δ, where
δ > 0 is small. Note that the image of Rbot in�2,int is bounded in the z2 direction. The maximal
distance between different points in the image is approximately equal to the distance between
the two folds of system (47), namely 1/

√
3. Finally, and most importantly, as the orbits travel

from �2,int to �out
2 , there is exponential contraction in the z2 direction. Hence, because the

time of flight between these two sections is long, part 1 of the proposition holds.
To prove part 2, we include more detail about the higher order terms,

x ′
2 = ε2(1 + O(r2)) + 3

2
r2x2ε2 O(r2)

r ′
2 = −1

2
r3

2 ε2(Cz2 + O(r2))

z′
2 = −(z3

2 − z2 + x2) + 1

2
r2z2ε2 O(r2)

ε′
2 = 5

2
r2

2 ε2
2(Cz2 + O(r2)) (55)
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Fig. 17 Trajectories p−(t) and p+(t)) in the coordinate system (x2, r2, z2) with ε2 suppressed

Recall that system (55) for r2 = 0 corresponds to a singularly perturbed system in two
dimensions with parameter ε2 and with S-shaped critical manifold), see Fig. 17. The analysis
we present is local to the critical fiber r2 = ε2 = 0, x2 = −1/(2

√
3). As mentioned, this

critical fiber and its neighborhood (one-sided in r2 and ε2) are contained in the image of
Rbot in �2,bot. By Fenichel theory, there exist three dimensional manifolds Sa,1, Sr and Sa,2,
see Fig. 17. These manifolds exist away from the upper and lower fold surfaces Fu and Fl ,
defined by (x2, y2) = (1/

√
3, 1/(2

√
3)) and (x2, y2) = (−1/

√
3,−1/(2

√
3)), respectively,

and they are close to the fold points in the plane r2 = ε2 = 0.
To prove part 2 of the proposition, we consider two trajectories starting in �2,bot, namely a

trajectory p−(t), with initial condition (x2,−, r2, ε2,−L) and a trajectory p+(t), with initial
condition (x2,+, r2, ε2,−L). We pick p−(t) so that it passes close to Sr , follows it for a time
T = c/ε2, where c is a small constant, and then moves up to Sa,1. We pick p+(t) so that
it passes close to Sr , follows it for time T and then moves up to Sa,2. The trajectories p+
and p− are shown in Fig. 17. Note that, due to the long passage time near Sr , the distance
between p+(0) and p−(0) must be exponentially small.

Let p∗− (respectively p∗+) be the intersection point of the trajectory p−(t) (respectively
p+(t)) with �2,int. We claim that the distance between p∗− and p∗+ is algebraic. To see this,
we note that the evolution of the r2 coordinate along both of the solutions is governed by the
term − 1

2r3
2 ε2Cz2, recall the r ′

2 equation in (55). Note also that during its passage from �2,bot

to �2,int, the trajectory p−(t) (respectively p+(t)) spends the longest time moving along Sa,1

(respectively Sa,2). Moreover, during this passage, the term − 1
2r3

2 ε2Cz2 is of approximately
equal magnitude but of opposite sign for the two trajectories.
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The claim now follows. The exponentially small interval between p−(0) and p+(0) is
expanded to an interval of O(ε). Therefore, somewhere in this interval there must be a point
p such that |D�p| is exponentially large.

6 Application to Zeeman’s Examples

6.1 The Results for the Heartbeat Model (4) with ε > 0

Let Sa,+ = {(x, y) ∈ S0 : y > 1/
√

3} and Sa,− = {(x, y) ∈ S0 : y < −1/
√

3}.
Theorem 3 (Excitable system) For sufficiently small ε > 0 system (4) is excitable, that is,
it has the following properties:

(i) There exists a unique stable equilibrium pa, which eventually attracts all the trajectories.
(ii) There exists an open set V such that every trajectory starting in V is attracted to a

slow manifold near Sa−, passes near the fold (− 2
3
√

3
, 1√

3
) and is attracted to a slow

manifold near Sa+ . The distance from the stable equilibrium to V (the threshold) is equal
to 2

3
√

3
− y0 + y3

0 + o(1).

Proof Consider a trajectory with initial condition (x, y) satisfying x > 2
3
√

3
+ δ, where

δ > 0 is a sufficiently small number. Then for ε sufficiently small this trajectory is attracted
to a Fenichel slow manifold S−

ε , close to Sa,− and must enter a neighborhood of the fold.
According to Theorem 6, this trajectory must exit along the fast fiber and move towards
a Fenichel slow manifold S+

ε , close to Sa,+, which contains the stable equilibrium. The
threshold is clearly bounded above by 2

3
√

3
+ δ − x0, where x0 = y0 − y3

0 is the x coordinate

of pa . The trajectory of (x, y) is shown in Fig. 18.

6.2 The Results for the Nerve Impulse Model (7) with ε > 0

Theorem 4 (Smooth return) For Eq. (7) there exists a slow manifold Sε = S+
ε ∪ S−

ε , with
S+
ε containing the stable equilibrium and S−

ε = Sε ∩ {(x, y, z) : z < 0}. The manifold S+
ε

is the union of non-empty open sets (in relative topology) V1, V2, V3, V4 and V5 such that the
following statements hold:

(i) Sε has compact closure and all the trajectories of the system are eventually attracted to
it.

(ii) The trajectories starting in V1 remain in Sε+ and are attracted to the stable equilibrium.
(iii) The trajectories starting in V2 leave Sε+ through the vicinity of the fold line F+, are

attracted to S−
ε , and subsequently follow the slow flow from S−

ε to S+
ε (smooth return)

and are attracted to the stable equilibrium.
(iv) The trajectories starting in V4 leave Sε+ through the vicinity of the fold line F+, are

attracted to S−
ε , subsequently leave S−

ε through the vicinity of F−, are attracted to S+
ε

(jump return) and finally approach the stable equilibrium.
(v) The trajectories starting in V3 leave Sε+ through the vicinity of the fold line F+, are

attracted to S−
ε , and subsequently pass from S−

ε to S+
ε through a small neighborhood

of the cusp (transition through cusp) and are attracted to the stable equilibrium.
(vi) The measure of V5 is exponentially small (its existence is caused by the canard solution

occurring for folded saddle see statement and proof of Theorem 8).
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Fig. 18 The trajectory of a point (x, y) near the equilibrium pa

Proof Recall Theorem 1 and the manifolds Sa
0 , Sa

0+ and Sa
0− (see also Fig. 8). It is possible to

prove using phase plane methods (Poincaré–Bendixson-like methods) that (19) has a compact
absorbing set R ⊂ Sa

0 , containing the point p f , such that any singular trajectory eventually
enters R and converges to the stable equilibrium. The proof is elementary (but tedious) and
will be left to the reader.

We remove a thin strip around F from R and construct a normally hyperbolic (Fenichel)
slow manifold approximating the remainder of R. This is Sε , with the sets S+

ε and S−
ε , defined

as in the statement of Theorem 4, approximating Sa
0+ ∩ R and Sa

0− ∩ R. Now Theorems 5, 7,
8 and 2 describe how trajectories travel from S+

ε to S−
ε and vice-versa. The sets V1, V2, V3

and V4 are defined by the properties of the trajectories passing through them, for example
V2 is defined as the set of points whose trajectories leave Sε+ through the vicinity of the fold
line F+, are attracted to S−

ε , and subsequently follow the slow flow from S−
ε to S+

ε and are
attracted to the stable equilibrium. Theorem 1 implies that the sets V3 and V4 are non-empty.
The set V5 is defined by all the trajectories entering U2 of Theorem 8. �	

7 Fenichel’s Theorem—Review

Consider a singularly perturbed equation

x ′ = ε f (x, y)

y′ = g(x, y), x ∈ R
k, y ∈ R

m, 0 < ε � 1.

Recall the constraining manifold (or critical manifold) S0 defined by

S0 = {(x, y)|g(x, y) = 0}.
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Suppose S̃0 is an open subset of S0. Then S̃0 is normally hyperbolic if for every (x, y) ∈ cl (S̃0)

the matrix Dy g has no eigenvalues on the imaginary axis.

Theorem 5 (Fenichel)[6,7] If S̃0 is normally hyperbolic then, for ε > 0 and sufficiently
small, there exists a locally invariant manifold Sε close to S̃0 in the C1 topology. The manifold
Sε is diffeomorphic to S̃0, and the flow on Sε is close to the flow of the reduced (constrained)
equation on S̃0.

8 Folds and Folded Saddles for ε > 0—Review

8.1 Simple Folds

In this article, we need the description of the dynamics for folds with one fast and one slow
variable (for the heartbeat model) and for folds with one fast and two slow variables (for the
nerve impulse model). We begin by stating the result for the case of one slow variable and
then introduce the theorem for two slow variables as its generalization. The result we state
is Theorem 2.1 of [10]. We consider the equation

x ′ = ε f (x, y, ε),

y′ = g(x, y, ε), x, y ∈ R

ε′ = 0 (56)

and assume that

g(0, 0, 0) = 0,
∂g

∂y
(0, 0, 0) = 0. (57)

Further, we make non-degeneracy assumptions

∂2g

∂y2 (0, 0, 0) �= 0,
∂g

∂x
(0, 0, 0) �= 0, f (0, 0, 0) �= 0. (58)

In particular, we assume that

∂2g

∂y2 (0, 0, 0) > 0,
∂g

∂x
(0, 0, 0) > 0, f (0, 0, 0) < 0.

These assumptions may be made without loss of generality, and the latter assumption deter-
mines that the direction of the flow is towards the fold (the fold point is a jump point). The
information above is summarized in Fig. 19.

We define the following sections of the flow:

�in = {(ρ2, y), y ∈ R}
and

�out = {(x, ρ), x ∈ R}
Also, we let � : �in → �out be the transition map for the flow of (56).

Theorem 6 (simple fold with one slow variable) [10] For system (56) with assumptions (57)
and (58), there exist ε0 > 0 and a neighborhood U of (0, 0) such that the following assertions
hold for ε ∈ (0, ε0]:

123



954 J Dyn Diff Equat (2013) 25:925–958

Fig. 19 Critical manifold, slow
manifolds, and sections for a
simple fold

S0

Sa
Ε

Sr
Ε

out

in

x

y

1. The manifold Sa,ε passes through �out at a point (h(ε), ρ) where h(ε) = O(ε2/3).
2. The transition map � : �in∩U → �out is a contraction with contraction rate O(e−c/ε),

where c is a positive constant.

8.2 Simple Folds in Problems with Two Slow Dimensions

Consider the equation

x ′ = ε f1(x, y, z, ε)

y′ = ε f2(x, y, z, ε)

z′ = g(x, y, z, ε), x, y, z ∈ R
1, 0 < ε � 1. (59)

Let S0 be the critical manifold, and define the fold line

F = {(x, y, z) ∈ S0 | ∂g

∂z
(x, y, z, 0) �= 0}.

Suppose that (0, 0, 0) ∈ F and conditions (B) and (C) are satisfied. Further, we assume
without loss of generality that

∂2g

∂z2 (0, 0, 0, 0) > 0,
∂g

∂x
(0, 0, 0, 0) > 0. (60)

We define the sections of the flow analogously as in the case of a simple fold. Namely, we
introduce

�in = {(x, y, z) | (x, y, z) = (ρ2, y, z), (y, z) ∈ R
2}
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and

�out = {(x, y, z) | (x, y, z) = (x, y, ρ), (x, y) ∈ R
2}.

Theorem 7 (simple folds in problems with two slow variables) [14] For system (59) with
the general nondegenracy conditions (A), (B), and (C), as well as with condition (60), there
exist ε0 > 0 and a neighborhood U of (0, 0, 0) such that the following assertions hold for
ε ∈ (0, ε0]:

(i) The transition map � : �in ∩ U → �out induced by the flow of (59) is a diffeomor-
phism mapping a neighborhood of S0∩U into �out . Any trajectory starting at Sa,ε∩�in

passes through �out at a point whose distance to the set {(x, y, z+ρ) | (x, y, z) ∈ F∩U }
is O(ε2/3).

(ii) The map � is exponentially contracting in the z direction. More precisely,∥∥∥∥∂�

∂z

∥∥∥∥ = O(e−c/ε),

where c is a positive constant.
(iii) The contraction/expansion of � in the direction of the fold is uniformly bounded; namely,

if v is the tangent vector to the fold at some point (x, y, z) ∈ F ∩ U then there exists a
constant K > 0 such that

1

K
≤ |grad �(x, y, z) · v| ≤ K .

Remark 1 In [14], the statement of the fold Theorem (Theorem 1) is preceded by transfor-
mation to a “normal form,” which has the effect of straightening some of the manifolds.
We have chosen to state the theorem without the preliminary transformation. Our result
can be obtained by a combination of Theorem 1 of [14] and their result on the preliminary
transformation.

We have purposely weakened the statement of item (iii) as the estimate we give is sufficient
for the purposes of this article and the statement becomes simpler. We refer the reader to [14]
for sharper estimates.

8.3 Folded Saddles

We use the notation and definition of the sections of the flow as in Sect. 8.2, as well as the
hypotheses there, with one difference. Namely, we assume that (B) is violated, that is we
assume

f (0, 0, 0, 0) · grad g(0, 0, 0, 0) = 0. (61)

The defining condition for a folded saddle is stated using the desingularized Eq. (15) derived
in Sect. 2.3. Note that condition (61) implies that (0, 0) is an equilibrium of (15). Then,
(0, 0, 0, 0) is a folded saddle and (0, 0) is a saddle type equilibrium of (15). Further, a
non-degeneracy condition is needed on the function

Fc(x, y, z, ε) = f (x, y, z, ε) · g(x, y, z, ε);
namely, if v is a tangent vector to the fold line F at (0, 0, 0, 0) then

grad Fc(0, 0, 0, 0) · v �= 0. (62)
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Fig. 20 Dynamics in chart Kex

in

out

U1U2U3

x

y

z

Note that, for ρ sufficiently small, �in is now naturally divided into the following two regions:

�in+ = {(x, y, z) ∈ �in | Fc(x, y, z, ε) > 0} and

�in− = {(x, y, z) ∈ �in | Fc(x, y, z, ε) < 0}
Then, we have the following theorem:

Theorem 8 (Folded saddle) [13,14] For system (59) with the general assumptions (A) and
(C), as well as (61) and (62), there exist ε0 > 0, a neighborhood U of (0, 0, 0), and open
sets U1, U2 and U3 such that the following assertions hold for ε ∈ (0, ε0]:

(i) U = U1 ∪ U2 ∪ U3, U1 ∩ U3 = ∅, U1 ∪ U2 ⊂ �in+ and U2 is exponentially thin, i.e.
there exists c > 0 such that for every point p ∈ U2 the length of the line segment
{q ∈ U2 q = p + sv for some s ∈ R} is bounded by e−c/ε .

(ii) The transition map� : �in∩U1 → �out induced by the flow of (59) is a diffeomorphism
mapping a neighborhood of S0∩U into �out . Any trajectory starting at Sa,ε∩�in passes
through �out at a point whose distance to the set {(x, y, z + ρ) | (x, y, z) ∈ F ∩ U } is
O(ε2/3).

(iii) The map � is exponentially contracting in the z direction. More precisely,∥∥∥∥∂�

∂z

∥∥∥∥ = O(e−c̃/ε),

where c̃ is a positive constant.
(iv) The contraction/expansion of � in the direction of the fold is algebraic in ε, namely

there exists a constant α > 0 such that if v is the tangent vector to the fold at some point
(x, y, z) ∈ F ∩ U then

εα ≤ ‖grad �(x, y, z) · v)‖ ≤ 1

εα
.

(v) Trajectories starting in U2 turn around before reaching �out and return to Sa,ε.

The sets U1, U2 and U3 are shown in Fig. 20.
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Sketch of the proof Theorem 8 (or a similar version) is not stated in either [13] or [14], but
it follows closely from the results and arguments given in these articles. In this article, we
sketch the proof of the result, referring the reader to [13,14]. Let S0 be the critical manifold
for (59) and let

Sa
0 = {(x, y, z) ∈ S0 | ∂g

∂z
(x, y, z, 0) < 0}

and

Sr
0 = {(x, y, z) ∈ S0 | ∂g

∂z
(x, y, z, 0) > 0}.

Removing a small neighborhood of the fold, we construct normally hyperbolic (Fenichel)
slow manifolds Sa

ε and Sr
ε . In [13], it is proved that for a fixed choice of the Fenichel manifolds

Sa
ε and Sr

ε there exists a unique canard solution, i.e. a solution connecting from Sa
ε to Sr

ε . The
canard solution divides Sa

ε into regions with two types of dynamics: on one side solutions
pass to �out and continue on along the fast direction and on the other side solutions return
to Sa

ε . These regions correspond to U1 and U3. In between there is an exponentially thin
region centered at the canard solution consisting of trajectories that follow Sr

ε in a similar
way as in classical canard phenomenon (canard explosion), see for example [11]. This region
corresponds to U2. We note that the flow in the direction of the fold line is more complicated
due to the saddle structure, which accounts for the weaker version of statement (iii) in
comparison to Theorem 7. �	
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