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Abstract We study the central configurations (cc for short) for four masses arranged on a
common circle (called co-circular cc) in two different situations, namely with no mass inside
and later adding a fifth mass at the center of the circle. In the former, we focus the kite shape
configurations by proving the existence of a one-parameter family of cc which goes from
the kite containing an equilateral triangle up to the square shape. After, by putting a fifth
mass at the center, we feature the planar cc of five bodies as a tensor of corange two see,
“Albouy and Chenciner (Invent Math 131:151–184, 1998)” and we prove that cc is stacked
see, “Hampton (Nonlinearity 18:2299–2304, 2005b)” in a such way that the center of mass
of the four bodies should be the center of the circle. We emphasize that our approach includes
not only the Newtonian force law, but the homogeneous ones with exponent a ≤ −1.
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1 Introduction

It is known that, in the Newtonian N -body problem, the simplest possible motions are those
whose configurations are invariant up to rotation and scaling, and where each body describes
a Keplerian orbit. Only few special configurations of particles are allowed in these motions,
the so called central configurations [16]. More precisely, let E be a finite dimensional vector
space, q1, . . . , qn ∈ E, m1, . . . , mn be n positives numbers, a be a negative real number,
M = ∑

mi be the total mass and qG = 1
M

∑
mi qi be the center of mass of these particles.

Definition 1 A configuration q = (q1, . . . , qN ) ∈ E
N is a central configuration for the

masses m1, . . . , mn if there exists a constant λ ∈ R such that

λ(qi − qG) =
∑

j �=i

m j‖qi − q j‖2a(qi − q j ), (1.1)

for all i = 1 . . . , n. When a = −3/2 we have the Newtonian case and when a = −1 the
vortex case.

Many questions have arisen about the set of central configurations, denoted cc for short. So
far, the main conjecture, still open, is the Chazy–Wintner–Smale conjecture: given N -positive
masses m1, . . . , m N interacting by the Newtonian potential, the set of equivalence classes of
central configurations is finite. In the case N = 3, the central configurations were completely
classified by Euler [9] and Lagrange [14]: for any choice of three positive masses there are
only five distinct affine equivalence classes, two equilateral configurations and three collinear
configurations. For N = 4, the conjecture was proved first in the case of equal masses by
Albouy in [1,2], and in the general case by Hampton and Moeckel in [13] with a proof based
on symbolic and exact integer computations which were carried out by computer. For N = 5
recent progress can be found in [7] and [12].

Another type of question is proving the existence of central configurations with a given
geometric shape. In this direction, there are many works, e.g., [8,10,11,15]. Our present
paper is also included in this list. In fact, we propose to study central configurations of four
masses on a circle in two distinct situations, namely, without and with a fifth mass located at
the center of the circle, regardless of the negative value of the exponent a ∈ (−∞,−1].

We remark that in [8], the authors have considered the problem to describe all co-circular
central configuration of the four body-problem. They carried out a thorough study of this
type of cc, including our result, in which only the Newtonian case was considered. However,
we emphasize that the present work deals with central configurations for homogeneous force
laws. At this point it is important to justify why we take the exponent a varying in the range
(−∞,−1]. Indeed, new phenomena can arise when considering other force laws that are
not inversely proportional to the square of the distance as for example, a flat homographic
solution of the three body-problem with force proportional to the cube of distance (a = −2)

that is not planar and which appear in the §374 bis of [16]. Also, the number of planar cc of
four equal masses which depends on the value of the exponent a: for a = −1/2 and for a
certain value a∗ ∈ (−3/2,−1) one has two planar cc, namely, the square and the equilateral
triangle with a mass at the barycenter while for the Newtonian force law where a = −3/2,
we have one more cc, the isosceles triangle with a mass on the axis of symmetry. In [2], Simó
and Albouy conjectured that there is a unique central configuration of four equal mass with
a given axis of symmetry and no other symmetry, for any a in some interval containing the
exponent −3/2.

We are going to proceed as follows: in Sect. 4, we put four points on a common circle by
imposing that they form a central configuration and we deduce some geometric properties. In
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the Sect. 5, we write the equations defining the kite-shape central configurations. After that,
by setting the exponent a = −1 (vortex problem) in Sect. 5.1, we succeed in solving that
system of equations explicitly. We obtain a one-parameter family of central configurations
which goes from the kite with three masses at the vertices of an equilateral triangle (which
is a central configuration of the restricted 3 + 1 body-problem) up to the square with equal
masses. In Sect. 5.2, for homogeneous force laws with a < −1, we prove the existence of
that same parameterized family of cc, but in an implicit and global way. Finally in Sect. 6,
we consider configurations of four masses on a common circle with a fifth mass located at its
geometric center. By applying the results of Sect. 4, we shown that the central configurations
with that shape are stacked so that the four bodies on the circle form a co-circular central
configuration whose center of mass coincides with the center of the circle. In particular,
if we take a = −3/2 (the Newtonian case) then, by [10], we have that the unique central
configuration of this five body-problem is the square with four equal masses at the corners and
an arbitrary mass at the center. Here, we decided to apply the tensorial approach presented
in [3] aiming to introduce a new way of studying central configurations in the planar five
body-problem. Hampton’s paper [11] has motivated us to work with this tool.

2 General Aspects

If we set si j = ‖qi − q j‖2 and replace qG by its expression, the Eq. (1.1) becomes

∑

j �=i

m j Si j
(
qi − q j

) = 0, (2.1)

where Si j = −sa
i j + λ/M . The constant λ corresponds to the Lagrange multiplier in the

variational point of view and one can show that it is positive for any central configuration as
defined above in (1).

We will work with the tensorial viewpoint in a attempt to obtain an alternative description
for central configurations of the planar five body-problem. This will be important later in
Sect. 6. Further details of the tensorial approach are found in [3,4]. For brevity, we will state
only the main properties of central configurations that arise from this approach and that will
be used in the proof of our results.

In this context, a relative configuration of n points, up to rigid movements, in general
position in a vector space E of dimension d will be a positive tensor β ∈ D ∨ D of range d
where D = R

n/〈(1, . . . , 1)〉. If qi = (qi1, qi2, . . . , qid) then we write β as

β = X1 ⊗ X1 + X2 ⊗ X2 + · · · + Xd ⊗ Xd

where X j = (q1 j , . . . , qnj ) ∈ D is the class of vector whose coordinates are the n projec-
tions of the configuration on the j axis in the space E, and the set {X1, . . . , Xd} is linearly
independent in D.

It is not difficult to see that β admits the following decomposition

β = −1

2

∑

i< j

si j (ei ⊗ e j + e j ⊗ ei ) (2.2)

where ei is the class of the canonical vector ei = (0, . . . , 1, . . . , 0) of R
n . The tensor β is

interpreted as a positive symmetric bilinear form of range d on the dual space D∗ = {x ∈
R

n/
∑

xi = 0} and as such, it has a matrix representation as follows
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β = −1

2

⎛

⎜
⎜
⎜
⎝

0 s12 · · · s1n

s12 0 · · · s2n
...

...
. . .

...

s1n s2n · · · 0

⎞

⎟
⎟
⎟
⎠

.

This representation takes into account the identification

Bil(D∗) = Bil(Rn)/
{
(xi + y j )n×n

}

The set of positive symmetric bilinear forms of range d on D∗ is a differentiable manifold
and it will be denoted here by (D ∨ D)+,d . Details of this geometric model are explained in
either [5] or [15].

Now let �(s) = λ
M s − 1

a+1 sa+1 be a primitive of the function ϕ(s) = −sa
i j + λ

M and
consider the function g : (D ∨ D)+,d → R defined by the rule

g(β) =
∑

i< j

mi m j�(si j ).

As stated in [3], we give the definition of relative central configuration

Definition 2 A relative central configuration of dimension d for the masses m1, . . . , mn is
a positive tensor β ∈ (D ∨ D)+,d such that

β ◦ dg(β) = 0 ∈ D ⊗ D∗ (2.3)

where the symbol ◦ denotes the contraction of tensors.

The connection between the tensorial Eq. (2.3) and the usual definition of cc becomes
clear when we see (2.1) as a product of matrices X · A = 0 where X is a d × n configuration
matrix whose columns are the position vectors qi and A is the n × n matrix with entries:

Ai j = mi Si j (i �= j) A j j = −
∑

i �= j

Ai j .

Multiplying on the left X · A = 0 by Xt and using that the columns of A are in D∗, we obtain
the matrix form of Eq. (2.3). See [3] for details.

By calling the differential dg(β) = α we have that

α =
∑

i< j

∂g

∂si j
dsi j =

∑

i< j

mi m jϕ(si j )ξi j ⊗ ξi j (2.4)

where ξi j = ei − e j ∈ D∗.
At this point, some remarks should be placed

Remark 1 The tensor α is a symmetric bilinear form on the quotient space D and if we denote
its range by r then, the Eq. (2.3) gives us an important estimative

d + r ≤ n − 1.

Sometimes we call the range of α as the co-range of β.

Remark 2 The set
{
ξi j ⊗ ξi j

}
1≤i< j≤n is a basis of the linear space D∗ ∨ D∗ and so, α = 0

if, and only if, ϕ(si j ) = 0 for all pair (i, j), that is,

si j = s0 =
(

λ

M

)1/a

.
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The configuration of n points in which the mutual distances si j are all equal has dimension
n − 1 and generalizes Lagrange (equilateral triangle) for three bodies and Lehmann-Filhès
(regular tetrahedron) for four bodies. This central configuration will be denoted by

β0 = − s0

2

∑

i< j

(
ei ⊗ e j + e j ⊗ ei

)
.

Remark 3 In [3], Albouy proved that a relative central configuration must satisfy the radial
minimization estimate

〈β0, α〉 < 0. (2.5)

3 Dziobek’s Configurations

Let β be a relative central configuration of the n body-problem.

Definition 3 We call β a Dziobek configuration if it has corange one.

Thus, taking into account that α = dg(β) is a symmetric tensor and has range one, the
relative configuration β is a Dziobek configuration if, and only if, there is a real number
η �= 0 and a non null vector 
 ∈ D∗ such that

α = η
 ⊗ 
.

By following [3], this identity and the radial minimization estimate in (2.5) imply that η < 0
and we can take it as being η = −1 to normalize the vector 
 up to multiples.

After some computations in the tensorial notation (see [3]), one sees that the definition (3)
can be rewritten by saying that a relative central configuration β for the masses m1, . . . , mn

is Dziobek iff there exists a non-null vector 
 ∈ R
n such that

∑

k �=i

sik
k =
∑

k �= j

s jk
k, (3.1)

n∑

k=1

�k = 0, (3.2)

−sa
i j + λ

M
= �i

mi

� j

m j
, 1 ≤ i < j ≤ n. (3.3)

The range of a Dziobek configuration satisfies1 rg(β) ≤ n − 2. It is proved in [4], that if
β is a central configuration of dimension exactly n − 2, then β is a Dziobek configuration.
Moreover, the vector 
 in Eqs. (3.1) and (3.2) is unique, up to a factor, and the normalization
of η makes it unique up to orientation. The uniqueness implies that the 
’s coordinates are
proportional to the oriented areas (or volumes) of the simplex of n −1 vertices. For example,
|
1| is proportional to the area (or volume) of the simplex given by the vertices (q2, . . . , qn),
and so on.

Remark 4 In terms of the Dziobek approach, it is clear that the set of variables {. . . , 
 j , . . . ,

si j , . . .} solves the system (3.1)–(3.3) with multiplier λ if and only if, for any c ∈ R
+, the set

(. . . ,
√

c
 j , . . . , c1/asi j , . . .) also solves the same system with multiplier cλ. So, fixing the

1 There are no available examples of Dziobek’s configurations whose range is strictly less than n − 2.
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multiplier λ corresponds to choosing a unique central configuration in the class of homothety.
In what follows, we will take λ = 1 with the aim to eliminate the invariance by homotheties
and we will normalize the total mass by taking M = 1.

4 Central Configurations for Four Bodies on a Circle

In this section, we will consider a central configuration of four bodies with the masses
m1, m2, m3 and m4 arranged on a common circle and derive some geometric properties,
which will be important later. In this case, we have four non collinear points in the plane that
makes the configuration to have dimension exactly two and puts us in position to apply the
Dziobek approach [Eqs. (3.1)–(3.3)]. An interesting question raised by Albouy and cited in
[10] asks: to characterize all the four-body central configurations which lie on a common
circle. In the next section, we will go exactly on this direction, aiming to get a complete
description about a particular symmetric central configuration of four bodies on a common
circle for any gravitational potential, not only for the Newtonian one.

We proceed as follows: by supposing that the points q1, . . . , q4 satisfy the Eqs. (3.1)–
(3.3), which is a system of ten equations, ten variables and four parameters, we impose the
configuration to be co-circular. This is equivalent to making ti =

∑

k �=i
sik
k = 0 for all i

(it is not difficult to prove this fact) and so, we get another equation while one of the masses
becomes dependent variable. Initially, we take m4 in order to be this new variable so that we
must solve a system of 11 equations, 11 variables (s12, s13, . . . , s34,
1, . . . ,
4, m4) and
three parameters (m1, m2, m3).

ti =
∑

k �=i

sik
k = 0, i = 1, . . . , 4 (4.1)

4∑

j=1

� j = 0, (4.2)

−sa
i j + 1 = �i� j

mi m j
, 1 ≤ i < j ≤ 4, (4.3)

which correspond to the equations defining the central configurations of the co-circular four
body-problem with multiplier λ = 1.

A very intuitive result about co-circular central configurations of four points states the
following

Lemma 1 Let (q1, . . . , q4) be a co-circular central configuration of the four body-problem
whose diagonals of the polygon are the segments [q1q2] and [q3q4]. Let R be the radius of
the circle. Then

(a) the center of the circle is in the interior of the convex hull of the four co-circular points.
(b) at least one of the sides must be greater than

√
2R.

Proof Any co-circular configuration is strictly convex and we can label the four points so
that the following distribution of signals holds


3,
4 < 0 < 
1,
2. (4.4)

Also, 
1,
2,
3 and 
4 correspond to the oriented areas of the triangles (234), (431), (124)
and (321), respectively.
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The configuration is assumed to be central, so that, by the Eq. (4.3) and inequalities (4.4)
one has

ϕ(s13), ϕ(s23), ϕ(s24), ϕ(s14) < 0 < ϕ(s12), ϕ(s34)

and since ϕ(s) = −sa + 1 is a increasing function one has

s13, s23, s24, s14 < 1 < s12, s34. (4.5)

In order to prove item (a), we suppose that the center of the circle is not in the interior of the
convex hull of the four points. Then, without loss of generality, we can apply a rotation on
the configuration so that

q1 = (R, 0) and qi = (xi , yi )

where yi ≥ 0 and −R ≤ xi < R,∀i = 2, 3, 4. Let’s write the determinants 
i as


2 =
∣
∣
∣
∣
∣
∣

1 1 1
x4 x3 R
y4 y3 0

∣
∣
∣
∣
∣
∣


3 =
∣
∣
∣
∣
∣
∣

1 1 1
R x2 x4

0 y2 y4

∣
∣
∣
∣
∣
∣


4 =
∣
∣
∣
∣
∣
∣

1 1 1
x3 x2 R
y3 y2 0

∣
∣
∣
∣
∣
∣
.

Once 
2 > 0, we have that

y4(R − x3) > y3(R − x4),

and since both sides are non negative, we have

y2
4 (R − x3)

2 > y2
3 (R − x4)

2.

For all i = 1, . . . , 4 we have satisfied the equations y2
i = R2 − x2

i . After replacing yi and
canceling the terms R − xi , we get

(R + x4)(R − x3) > (R + x3)(R − x4)

which leads us to

R + x4

R − x4
>

R + x3

R − x3
⇒ x4 > x3.

Likewise, the inequalities 
3 < 0 and 
4 < 0 show that

−R ≤ x3 < x2 < x4 < x1 = R

from where it follows that

0 < s14 < s12 < s13 ≤ 4R2.

But, s12 < s13 contradicts (4.5) and the configuration could not be central. Thus, for a
co-circular central configuration, the center of the circle is in the interior of the convex hull.

The proof of item (b) is as follows. The sides of the polygon (q1, . . . , q4) are the bases of
isosceles triangles whose equal sides correspond to the radius R. By assertion a, the respective
angles αi j of each triangle are in the interval (0, π) and their sum is worth 2π . Note that αi j

satisfy (see Fig. 1)

sin
αi j

2
= ri j

2R
,

(
ri j = ‖qi − q j‖

)
.

If all of the lengths ri j <
√

2R, then

0 < sin
αi j

2
<

√
2

2
⇒ 0 < αi j <

π

2
.
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Fig. 1 Proof of Lemma 1

In this case, the sum of all angles would be less than 2π which is a contradiction. The assertion
(b) is proved. ��
Remark 5 A consequence of the above lemma (item b), is that in a co-circular central con-
figuration of four bodies, we should have

ϕ(R2) < ϕ(2R2) < ϕ(si j ) < 0 (4.6)

for some pair of indices.

5 Co-Circular Kite Central Configurations

From now on, we will consider kite-shape central configurations which are not a square.
According to the main result in [6], for any value of a < 0, this type of symmetry is
characterized by the constraints


3 < 
4 < 0 < 
1 = 
2, (5.1)

or equivalently, by m1 = m2 and m3 < m4.
Let four co-circular points (q1, q2, q3, q4) form a kite configuration where the segments

[q1q2] and [q3q4] are the diagonals. Let s13 = s23 = x, s14 = s24 = y, s34 = d and s12 = l
be the square of the mutual distances (see Fig. 2).

The Eqs. (4.1) and (4.2) become

t1 = l
2 + x
3 + y
4 = 0 (5.2)

t2 = l
1 + x
3 + y
4 = 0 (5.3)

t3 = 2x
1 + d
4 = 0 (5.4)

t4 = 2y
1 + d
3 = 0 (5.5)

2
1 + 
3 + 
4 = 0. (5.6)

By adding t3 and t4, we have that d = x + y. From t3 = 0 and t4 = 0, we isolate 
3 and 
4

to insert them into t1 = 0. So, we obtain

dl = 4 x y. (5.7)

Moreover, 
3 < 
4 < 0 implies that x < y.
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Fig. 2 Kite-shape configuration

It’s easy to verify that the Eqs. (5.3)–(5.6) are equivalent to the system

d = x + y (5.8)

dl = 4xy (5.9)

3


1
= − l

2x
(5.10)


4


1
= − l

2y
(5.11)

Note that d (d − l) = (x − y)2 > 0, so d > l as shown in Fig. 2.
Now, we consider the increasing function ϕ : R+ → R given by

ϕ(s) = 1 − sa (a ≤ −1)

and remember that a Dziobek configuration (s12, . . . , s34,
1, . . . , 
4) is central, if and only
if,

mi m jϕ(si j ) = 
i
 j for any i, j.

By imposing that the kite configuration be central and making m1 = m2, we obtain the
following relations

ϕ(l) = 
2
1

m2
1

(5.12)

ϕ(x) = 
1
3

m1m3
(5.13)

ϕ(y) = 
1
4

m1m4
(5.14)

ϕ(d) = 
3
4

m3m4
. (5.15)
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Remark 6 According to the signs of the 
i ’s in (5.1), the Eqs. (5.12)–(5.15) together with
the monotonicity of ϕ provide the inequalities

ϕ(x) < ϕ(y) < 0 < ϕ(l) < ϕ(d),

and consequently,

0 < x < y < s0 < l < d, (5.16)

where s0 = 1 is the unique root of ϕ.

Once the variables 
i can not assume the value zero, we can make the ratios between the
Eqs. (5.12)–(5.15) and we apply the relations (5.8)–(5.11) to simplify them. Thus, we obtain

ϕ(x)

ϕ(l)
= −m1

m3

l

2x
ϕ(y)

ϕ(l)
= −m1

m4

l

2y
ϕ(x)

ϕ(y)
= m4

m3

y

x

ϕ(d)

ϕ(l)
= m2

1

m3m4

l

d
.

The above system suggests the introduction of the function f : R+ → R, f (s) = sϕ(s)
whose derivative is f ′(s) = 1−(1+a)sa ≥ 1 for a ≤ −1. After defining the relative masses
m′

3 = m3/m1 and m′
4 = m4/m1 we get

2m′
3 f (x) + f (l) = 0 (5.17)

2m′
4 f (y) + f (l) = 0 (5.18)

m′
3 f (x) − m′

4 f (y) = 0 (5.19)

m′
3m′

4 f (d) − f (l) = 0 (5.20)

where one sees that the Eqs. (5.17)–(5.19) are linearly dependent. By substituting f (l) =
m′

3m′
4 f (d) into (5.17) and combining it with (5.18) by eliminating m′

4, we arrive to the
following system

4 f (x) f (y) − f (l) f (d) = 0 (5.21)

m′
3 f (x) − m′

4 f (y) = 0 (5.22)

m′
3m′

4 f (d) − f (l) = 0, (5.23)

which, together with (5.8) and (5.9), define the kite-shape central configurations on a circle.

Remark 7 By (5.16) and (5.23) and since f is increasing, we have that the product m′
3m′

4 < 1.

By the same argument, we should have that
m′

3

m′
4

< 1 from (5.22). In what follows, let’s insert

two new parameters p = m′
3m′

4 and q = m′
3

m′
4

, where both of them are in the open interval

(0, 1).
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5.1 Applications to the Vortex Problem, i.e., a = −1

In this case, the solution of (5.21)–(5.23) can be obtained explicitly. In fact, if a = −1, the
function f assumes the form f (s) = s − 1 and the system (5.21)–(5.23) becomes

3x2 + 2xy + 3y2 − 3x − 3y = 0 (5.24)

qx − q − y + 1 = 0 (5.25)

px2 + 2(p − 2)xy + py2 + (1 − p)x + (1 − p)y = 0. (5.26)

Now, in order to find the common solutions of (5.24)–(5.26), we calculate the resultant of
the two polynomials (5.24) and (5.26) with respect to the variable y. We obtain

Res = 4x2 [
4(3 − p)2x2 − 4(3 − p)(4 − p)x + 3(4 − p)

]
.

The positive zeroes of Res

x ′ = 4 − p − √
(1 − p)(4 − p)

2(3 − p)
and x ′′ = 4 − p + √

(1 − p)(4 − p)

2(3 − p)
,

correspond to the values of x for which the above system has a solution. By symmetry, the
other solution of (5.24) and (5.26) is the pair (x ′′, x ′). As x < y we should take x = xx ′ and
y = x ′′. By inserting these expressions into (5.25), we get

q = 2 − p − √
(1 − p)(4 − p)

2 − p + √
(1 − p)(4 − p)

.

Thus, we have the complete solution of the system (5.21)–(5.23) parameterized by p ∈ (0, 1)

x = 4 − p − √
(1 − p)(4 − p)

2(3 − p)
(5.27)

y = 4 − p + √
(1 − p)(4 − p)

2(3 − p)
(5.28)

d = 4 − p

3 − p
, l = 3

3 − p
(5.29)

m′
3 = √

pq = 2 − p − √
(1 − p)(4 − p),

m′
4 =

√
p

q
= 2 − p + √

(1 − p)(4 − p),

M = 1 ⇒ 1

m1
= 2 + m′

3 + m′
4 = 2(3 − p)

⇒ m1 = 1

2(3 − p)
(5.30)

m3 = 2 − p − √
(1 − p)(4 − p)

2(3 − p)
(5.31)

m4 = 2 − p + √
(1 − p)(4 − p)

2(3 − p)
(5.32)

In Fig. 3 we present the evolution of the co-circular kites in the vortex problem according
the parameter p ∈ [0, 1].

This way, we have proved the following result
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Fig. 3 Evolution of the co-circular kites in the vortex problem according the parameter p ∈ [0, 1]

Theorem 2 In the vortex four body-problem, there is a unique one-parameter family of kite
shape co-circular central configurations described by the expressions (5.27)–(5.32).

Remark 8 The Newtonian case, i.e., a = −3/2, is not so friendly, for it produces polynomials
of very higher degrees. Nevertheless, this case will be considered below.

5.2 Applications to Homogeneous Force Law

Here, we consider m′
3 and m′

4 as variables to be obtained from (5.22)–(5.23) and we work
with the system

4 f (x) f (y) − f (l) f (d) = 0 (5.33)

d = x + y (5.34)

l = 4xy

x + y
(5.35)

where f (s) = s − sa+1 with a < −1. Note that the equation

F(x, y) = 4 f (x) f (y) − f

(
4xy

x + y

)

f (x + y) = 0 (5.36)

is symmetric with respect to x and y which means that the trace of the zero level curve of F
is symmetric about the line y = x .

The domain of equation F = 0 will be given by the restrictions in (5.16). There, we have
that 0 < x < y < 1, but by symmetry, we will leave (x, y) ∈ [0, 1] × [0, 1]. Easily, one
verifies three trivial solutions of F(x, y) = 0 which are

A = (1/3, 1), B =
((

2

1 + 2a

)1/a

,

(
2

1 + 2a

)1/a
)

C = (1, 1/3)

The point B corresponds to the square configuration and the points A and C represent the
kite with an equilateral triangle.
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Fig. 4 Region �: the branch
of hyperbola is the graph
of 4xy − x − y = 0 (l = 1)

1,0

0,8

0,8
x

y

0,4

1,0

0,9

0,5

0,7

0,6

0,70,60,50,4

0,9

The three points A, B and C lie in the square [1/3, 1] × [1/3, 1]. For 0 < x < 1/3 we
have that l = 4xy

x+y < 1 for any y ∈ [0, 1]. This would give us f (l) < 0 and the configuration
would not be central according to (5.12). Likewise, we will disregard the range 0 < y < 1/3.

Once that 1 ≤ 4xy

x + y
, we will take the region (see Fig. 4)

� =
{

(x, y) ∈
[

1

3
, 1

]

×
[

1

3
, 1

]

/x + y ≤ 4xy

}

as the domain of F and we will show that F(x, y) = 0 defines a decreasing curve in �

passing through the points A, B and C , regardless of the value of the exponent a < −1.

Proposition 1 For any x ∈ [1/3, 1] there exists a unique y ∈ [1/3, 1] such that F(x, y) = 0.

Proof Remember that f ′(s) ≥ 1, ∀s > 0 and that f (x) ≤ 0 and f (d), f (l) ≥ 0 on �. The
partial derivative of F with respect to y is

∂ F

∂y
= 4 f ′(y) f (x) − f ′(l) f (x + y)

4x2

d2 − f (l) f ′(d),

and then

∂ F

∂y
≤ 4 f (x) − f (d)

4x2

d2 − f (l) ≤ 0,

so ∂y F = 0, if and only if,

f (x) = f (d) = f (l) = 0 ⇔ x = d = l = 1

which is impossible. Thus, we have that ∂y F is a strictly negative continuous function on �.
Given x∗ ∈ (1/3, 1), let y∗ ∈ (1/3, 1) be the unique ordinate such that (x∗, y∗) is on the

curve l = 1. We have the following behavior of the function h(y) = F(x∗, y) on the segment
of the vertical line x = x∗ which goes from the curve l = 1 up to the horizontal line y = 1:

• h′(y) = ∂y F(x∗, y) < 0, i.e., h is a strictly decreasing function
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• h(y∗) = F(x∗, y∗) = 4 f (x∗) f (y∗) > 0

• h(1) = F(x∗, 1) = − f (x∗ + 1) f

(
4x∗

x∗ + 1

)

< 0.

By the continuity of F on the region �, we have that there is y = ξ(x∗) ∈ (y∗, 1) such that
F(x∗, ξ(x∗)) = 0. The monotonicity of h guarantees the uniqueness. ��

Naturally, the graph of the function ξ : [1/3, 1] → [1/3, 1] passes through the points
A, B and C and since

∂ F

∂y
(x, ξ(x)) �= 0

for all x ∈ [1/3, 1], the Implicit Function Theorem ensures that ξ is differentiable. Further-
more, its derivative

ξ ′(x) = −
(

∂ F

∂y

)−1
∂ F

∂x

is negative and this lead us to conclude the following theorem.

Theorem 3 For any value of the exponent a < −1, there is a unique one-parameter family
of kite shape co-circular central configurations of the four body-problem implicitly described
by the Eq. (5.36) which goes from the kite with an equilateral triangle up to the square.

Remark 9 The Eqs. (5.22) and (5.23) give the following expressions for q and p

q(x) = f (ξ(x))

f (x)
, p(x) = f (l(x))

f (x + ξ(x))

which are defined for x ∈ [1/3, 1].
In Fig. 5, we describe the behavior of ξ for the Newtonian case.

Fig. 5 The concave curve is the
graph of ξ for a = −3/2. The
points A and C are the extreme
points on this curve. The point B
is its intersection with the
bisectrix y = x

y

0,9

0,7

0,5

0,7
x

1,0

1,0

0,8

0,6

0,8

0,4

0,90,60,50,4
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Remark 10 In the Ref. [8], the Newtonian case is considered and all the co-circular central
configurations are determined. Using mutual distances as coordinates, it is shown that the
set of co-circular central configurations with positive masses is a two-dimensional surface
parameterized by two of the exterior side-lengths. Two symmetric families, the kite and
isosceles trapezoid, are investigated extensively.

6 Co-Circular Central Configurations of Four Bodies with a Fifth Mass
at the Center

In this section, we consider a configuration of five bodies with the following shape: four
masses m1, m2, m3, m4 lying on a common circle and a fifth body with mass m at the
center of that circle (see Fig. 6). We will refer to this type of configuration as a co-circular
(4,1)-configuration. By following A. Chenciner (see [10]), we raise the question: what are
the co-circular (4,1)-central configurations? Again, let M be the total mass of the system
and whenever a tilde accent is used in the notation, we will be referring to the co-circular
four-body configuration, e.g, M̃ = M − m and β̃ is the relative configuration of the four
co-circular masses on the circle.

We will apply the tensorial approach presented in Sect. 2. In this context, the tensor β has
range 2 and by Remark 1, the differential α = dg(β) must have rg α ≤ 2. This allows us to
write

α = aZ1 ⊗ Z1 + bZ2 ⊗ Z2, Z1, Z2 ∈ D∗

where either a < 0 or b < 0 by virtue of radial minimization (Remark 3). Without loss of
generality, suppose that a < 0 and consider the vector Z1 factoring by a = − (√|a|)2, so
that

α = −Z1 ⊗ Z1 + b Z2 ⊗ Z2

The two vectors Z1 and Z2 are assumed to be linearly independent. By supposing that β is
a relative central configuration—what will be done from now on—by Definition 2, we must
have that

β ◦ α = −(β ◦ Z1) ⊗ Z1 + b (β ◦ Z2) ⊗ Z2 = 0

i.e., the contractions Z1 ◦ β and Z2 ◦ β should be zero in D.

Fig. 6 Co-circular
(4, 1)-configuration
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Lemma 4 b �= 0.

Proof In fact, if α = −Z ⊗ Z for some Z = (z0, z1, z2, z3, z4) ∈ D∗, then

αi j = mi m jϕ(si j ) = zi z j . (6.1)

By assuming that z0 �= 0, we would have for any j = 1, . . . , 4,

z j

m j
= ϕ(R2)

m

z0
= k (constant)

so that, for i �= 0 �= j

ϕ(si j ) = zi z j

mi m j
= k2 ⇒ si j = constant

and this would imply that the four-body configuration (q1, . . . , q4) is spatial, which is a
contradiction. So, we must have z0 = 0 and ϕ(R2) = 0

R2a = λ

M
⇒ ϕ(si j ) = −sa

i j + ρa . (ρ = R2)

On the other hand, the nullity of the contraction Z ◦ β gives us that
∑

j �=0,i

si j z j = −2z0 R2 = 0, ∀i = 1, . . . , 4.

This system together with the Eq. (6.1) for i �= 0 �= j show that the four bodies (q1, . . . , q4)

form a co-circular central configuration (see Sect. 4). By Lemma 1, one of the sides of the
polygon must be greater than

√
2R and so, one of the mutual distances s13, s14, s23, s24

must be greater than 2ρ. This implies that

ϕ(si j ) > 0

for some pair (i, j) which corresponds to some side of the polygon. This is absurd, since
according to estimates in the proof of Lemma 1, convex central configurations of the four-
body problem must have ϕ(si j ) < 0 for all external sides.

This way, we have shown that b is not zero. ��
By Lemma 4, we can write

α = −Z1 ⊗ Z1 + σ Z2 ⊗ Z2, (6.2)

where σ = ±1 and the vectors Z1, Z2 ∈ D∗ are linearly independent.
In order to characterize the co-circular (4, 1)-central configurations, we will need a further

constraint on the vectors Z j . By writing

Z1 = (ξ, . . .) and Z2 = (η, . . .),

we have:

Lemma 5 If σ = 1 then |ξ | �= |η|.
Proof Firstly, ξ and η can not be simultaneously null, for in this case, we would have

β̃ ◦ Z̃1 = β̃ ◦ Z̃2 = 0

That is, the two linearly independent vectors Z̃1 and Z̃2 would be in a 1D vector space,
namely, ker{β̃}.
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Suppose that η = ±ξ . By equating the coordinates of α in (2.4) and (6.2) and considering
the hypothesis σ = 1, we have

mmiϕ(R2) = ξ Z1i − η Z2i = ξ
(
Z1i ∓ Z2i

)
,

for all i = 1, . . . , 4. This provides that the vector Z1 ∓ Z2 has all its coordinates either
non-negative or non-positive. But this vector is in the hyperplane D∗, so Z1 = ±Z2 and they
are linearly dependent which is an absurd. Thus, if σ = 1 then ξ and η must have different
absolute values. ��
Lemma 6 There exists 
 ∈ D∗ whose first coordinate is zero and such that

α = −
 ⊗ 
 + σ Z ⊗ Z (6.3)

Proof Let α be as written in (6.2). If σ = −1, take a, b ∈ R given by

a = −η
√

ξ2 + η2
and b = ξ

√
ξ2 + η2

so that a2 + b2 = 1 and the vector


 = aZ1 + bZ2 = (
0, 
1, 
2, 
3, 
4

)

has its first coordinate being zero. By defining

Z = −bZ1 + aZ2

it is easy to see that


 ⊗ 
 + Z ⊗ Z = Z1 ⊗ Z1 + Z2 ⊗ Z2 = −α

as stated. Now, if σ = 1 take a, b ∈ R as

a = −η
√|ξ2 − η2| and b = ξ

√|ξ2 − η2| .

By Lemma 5, these expressions are well defined and the vector


 = aZ1 + bZ2 = (
0, 
1, 
2, 
3, 
4

)
,

has its first coordinate null. By defining

Z = bZ1 + aZ2

one has that


 ⊗ 
 − Z ⊗ Z = (a2 − b2) (Z1 ⊗ Z1 − Z2 ⊗ Z2) = −(a2 − b2)α.

It only remains to demonstrate that a2 − b2 = 1 to prove the lemma.
Supposing by absurd that a2 − b2 = −1, i.e., α = 
 ⊗ 
 − Z ⊗ Z . In coordinates, this

produces the relations

mi m jϕ(si j ) = −
i
 j + Zi Z j .

For j = 0, we have that s0i = R2 and 
0 = 0, so

mi mϕ
(
R2) = Z0 Zi , ∀i �= 0.

By remembering that Z0 is not zero, we see that
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Zi

mi
= mϕ

(
R2

)

Z0
= k

is constant for all i = 1, . . . , 4. Thus

Z = k
(
m − M, m1, m2, m3, m4

)

and for 1 ≤ i < j ≤ 4,

mi m jϕ(si j ) = −
i
 j + k2mi m j .

Once the vector 
̃ = (
1, 
2, 
3, 
4) ∈ D∗
4 is in ker{β̃}, it is the unique vector, up to a

scalar factor, such that

4∑

i=1


i = 0 and
4∑

i=1


i qi = 0.

Furthermore, a co-circular configuration of four bodies is convex and the previously adopted
labeling gives us 
3, 
4 < 0 < 
1, 
2. The equation


i
 j

mi m j
= k2 − ϕ(si j )

and the distribution of the 
i ’s signs imply that

ϕ(s12), ϕ(s34) < k2 < ϕ(s13), ϕ(s14), ϕ(s23), ϕ(s24).

Once ϕ is increasing, both diagonals are smaller than any external side of the co-circular
polygon and this is geometrically impossible. ��

The next theorem is the tensorial characterization of the co-circular (4, 1)-central
configurations.

Theorem 7 Let β be a relative co-circular (4, 1)-central configuration of the five body-
problem. Then the tensor α = dg(β) admits the following parametrization

α = −
 ⊗ 
 − γ� ⊗ �

where

• 
0 = 0 and 
̃ = (
1, . . . ,
4) ∈ D∗
4 is a Dziobek cc of the co-circular 4 body–problem.

• � = (M − m, −m1, −m2,−m3, −m4)

• γ = − m
M−m ϕ(R2) > 0.

Proof By the Lemma 6, there are vectors 
, Z ∈ D∗
5 such that 
0 = 0 and

α = −
 ⊗ 
 + σ Z ⊗ Z .

Choose 
1 > 0 and Z0 > 0. Introducing coordinates, the tensor equation becomes

mi m jϕ(si j ) = 
i
 j − σ Zi Z j .

By taking j = 0 and i �= 0, we get

− σ Z0 Zi = mmiϕ(R2), (6.4)

whose summation gives us
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σ Z2
0 =

4∑

i=1

Z0 Zi =
4∑

i=1

mmiϕ(R2) = m(M − m)ϕ(R2)

⇒ Z2
0 = σm(M − m)ϕ(R2) > 0. (6.5)

On the other hand, all Zi coordinates must be non zero and their quotients by the respective
masses mi are constants because of (6.4). Thus

Zi

mi
= −σ

mϕ(R2)

Z0
= − Z0

M − m

Z = Z0

M − m

(
M − m, −m1, −m2, −m3, −m4

)
.

By defining

� = (
M − m, −m1, −m2, −m3, −m4

)
and γ = Z2

0

(M − m)2

we arrive to the expression

α = −
 ⊗ 
 + σ · γ · � ⊗ �.

The Eq. (6.5) allows us to write the expression for γ in another way

γ = σ
m

M − m
ϕ(R2). (6.6)

If 1 ≤ i < j ≤ 4, then

mi m jϕ(si j ) = 
i
 j − σγ mi m j

mi m j
(
σγ + ϕ(si j )

) = 
i
 j

mi m j ϕ̃(si j ) = 
i
 j

where we have made ϕ̃(s) = σγ + λ
M − sa .

However

σγ + λ

M
= m

M − m
ϕ(R2) + λ

M
= m

M − m

(
λ

M
− R2a

)

+ λ

M
= λ − m R2a

M − m
.

We define

λ̃ = λ − m R2a

to obtain the function

ϕ̃(s) = λ̃

M − m
− sa

and it follows that the four bodies lying on the circle must satisfy the equations

mi m j ϕ̃(si j ) = 
i
 j ,

4∑

i=1


i = 0,

4∑

i=1


i qi = 0.

We claim that λ̃ > 0. In fact, if λ̃ ≤ 0 then we would have all the ϕ̃(si j ) to be negative, which
does not hold, since at least two of 
′

i s have the same sign. Thus (q1, . . . , q4) is a co-circular
Dziobek configuration associated to the multiplier λ̃.

By Remark (5), we have that
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0 > ϕ̃(R2) = λ − m R2a

M − m
− R2a = M

M − m

(
λ

M
− R2a

)

= M

M − m
ϕ(R2).

On the other hand, the expression (6.6) and the positiveness of γ imply that

σ = −1.

��
Remark 11 In the above proof, we saw that the co-circular (4, 1)-central configurations are,
in fact, stacked central configurations as defined in [11].

Corollary 1 In a co-circular (4, 1)-central configuration, the radius of the circle R must
satisfy

λ

M
< R2a <

λ

m
.

Indeed, this follows from the two estimates

ϕ(R2) < 0 and 0 < λ̃.

Corollary 2 In a co-circular (4, 1)-central configuration, the center of mass for the four
co-circular particles is located at the center of the circle.

Proof In fact, both vectors 
 and � are in ker{β}. As a quadratic form on the hyperplane
D∗, the tensor β has another representation by the matrix

β =

⎛

⎜
⎜
⎝

. . .
...

〈qi , q j 〉
...

. . .

⎞

⎟
⎟
⎠

0≤i, j≤4

.

By using the relations M − m = ∑4
i=1 mi and β ◦ � = 0 in D, we get

〈

q0,

4∑

j=1

(q0 − q j )m j

〉

=
〈

qi ,

4∑

j=1

(q0 − q j )m j

〉

for all i = 1, . . . , 4, that is,
〈

q0 − qi ,

4∑

j=1

(q0 − q j )m j

〉

= 0.

Thus, the vector
4∑

j=1

(q0 − q j )m j is orthogonal to its components and so, it must be zero. By

extracting q0 from this expression, we get

q0 = 1

M − m

4∑

i=1

mi qi .

��
Consider the Newtonian five-body problem, i.e., a = −3/2. Once the four bodies on the

circle form a co-circular central configuration whose center of mass is located at the center
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of the circle, the configuration (q1, . . . , q4) is a square and the masses m1, . . . , m4 are all
equal, as proved by Hampton in [10].

This allows partially to answer the question raised at the beginning of this section

Corollary 3 For a = −3/2, the only co-circular (4, 1)-central configuration is the square
with four equal masses on the circle and an arbitrary mass located at the center.

We finish with a few words about the question posed by Chenciner in the co-circular
four-body problem (see [10]). We think that the condition of fixing the center of mass at the
center of the circle is a condition of symmetry as well as the condition of equal masses in [1],
for example. Despite the result published in [10], we propose to search for a general method
to prove that the co-circular central configurations for four bodies having its center of mass
located at the center of the circle present some kind of symmetry, for any homogeneous force
law, i.e., for any a ≤ −1.

7 Conclusions

In this work, we intended to draw attention on two aspects in the research of central configu-
rations. First of all, the generality of some results that apply to the Newtonian case and which
can work for any homogeneous force law, as for example, questions dealing with symmetry.
We consider the Chenciner’s question about co-circular central configurations as a problem of
this type and therefore, the Hampton’s result in [10] may be true for any homogeneous force
law. For instance, we saw here a partial generalization of the result found in [8] about kites.
In effect, we could show the existence of a family of co-circular kite central configurations in
the four body-problem, regardless of the value of the exponent a in the interval (−∞,−1].

The other aspect is the application of the tensorial approach to model the central con-
figurations. In here, we succeed to describe all co-circular (4,1)-central configurations in a
first application of these techniques to the study of central configurations of the planar five
body-problem.
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