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Abstract This paper is concerned with front-like entire solutions for monostable reaction-
diffusion systems with cooperative and non-cooperative nonlinearities. In the cooperative
case, the existence and asymptotic behavior of spatially independent solutions (SIS) are
first proved. Further, combining a SIS and traveling fronts with different wave speeds and
propagation directions, the existence and various qualitative properties of entire solutions are
established by using the comparison principle. In the non-cooperative case, we introduce two
auxiliary cooperative systems and establish a comparison theorem for the Cauchy problems
of the three systems, and then prove the existence of entire solutions via using the comparison
theorem, the traveling fronts and SIS of the auxiliary systems. Our results are applied to some
biological and epidemiological models. To the best of our knowledge, it is the first work to
study the entire solutions of non-cooperative reaction-diffusion systems.
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1 Introduction

This paper is concerned with entire solutions of the following m-dimensional reaction-
diffusion system in R

N :

ut = D�u + f (u), x ∈ R
N , t ∈ R, (1.1)
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where m, N ∈ N,

u = (u1, · · · , um), f = ( f1, · · · , fm), D = diag(d1, · · · , dm),

and (d1, · · · , dm) � 0 := (0, · · · , 0) ∈ R
m . Here and in what follows, we always use

the usual notations for the standard ordering in R
m . As usual, system (1.1) is said to be

cooperative on I ⊆ R
m if each fi (u) is non-decreasing in u j on I for 1 ≤ j �= i ≤ m;

otherwise, it is said to be non-cooperative on I .
One important topic for reaction-diffusion systems is the traveling wave solution that

describes the phenomenon of wave propagation. In the past decades, many studies have
led to almost complete description of traveling wave solutions of (1.1) with cooperative
nonlinearity [22,31,34,42,43]. For example, Volpert et al. [34] gave a complete result about
the monostable and bistable traveling fronts, and Tsai [31] investigated the global exponential
stability of the bistable traveling fronts. In a series of papers, Weinberger et al. [22,42,43]
studied spreading speeds and traveling fronts for general cooperative recursion systems. The
second author, Wang [36], extended the results of spreading speeds and traveling waves for
cooperative systems to a large class of non-cooperative systems. Related results on scalar
non-monotone evolution equations, we refer to [8,18,21,25,35,45,49].

In addition to traveling wave solutions, another important topic in diffusion systems is the
interactions of them, which is crucially related to the pattern formation problem. We refer
to [5,6,19,26] for more details. Mathematically, this phenomenon can be described by the
so-called front-like entire solution that is defined for all space and time and behaves like a
combination of traveling fronts as t → −∞. On the other hand, from the dynamical points
of view, the study of entire solutions is essential for a full understanding of the transient
dynamics and the structures of the global attractor [27]. In the recent years, there were many
works devoted to the interactions of traveling fronts and entire solutions for scalar reaction-
diffusion (both spatially continuous and discrete) equations with and without delays, see e.g.,
[2–4,11,12,15,16,23,24,27,38–40,46,52].

More recently, Morita and Tachibana [28], Guo and Wu [14], Wang and Lv [37] and
Wu [44] extended the existence of entire solutions for scalar equations to some specific two
component cooperative reaction-diffusion model systems. The basic idea in these studies,
similar to [2,12,24,38], is to use traveling fronts propagating from both directions of the
x-axis to build sub- and supersolutions, and then prove the existence results by employing
comparison principle. Unfortunately, it seems difficult, if not impossible, to construct such
supersolutions for the m-component reaction-diffusion system (1.1). In fact, to the best of our
knowledge, there have been no results on entire solutions for general cooperative reaction-
diffusion systems and non-cooperative systems.

The purpose of this paper is to consider entire solutions of system (1.1) with cooperative or
non-cooperative nonlinearity. In the cooperative case, the existence and asymptotic behavior
of spatially independent solutions are first proved. Since it is difficult to use traveling fronts
to construct supersolutions for the general m-component system, we extend the arguments
developed in [15] for scalar KPP equations to system (1.1). More precisely, we construct
appropriate upper estimates by virtue of the exact asymptotic behavior of the traveling fronts
and spatially independent solution, and then prove the existence of entire solutions of (1.1)
by using comparison principle (see Theorem 2.9). Various qualitative features of the entire
solutions are also investigated (see Theorems 2.10 and 2.11). Although the argument is
inspired by the work of Hamel and Nadirashvili [15], the technical details are different. In
[15], the upper estimates were proved by the solution formulation of the linearization of
the scalar KPP equation at the trivial equilibrium. Contrasting to [15], we use a general
comparison principle to prove the upper estimates (see Lemma 2.13). Recently, the method
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was successfully applied in our previous work [48] to a multi-type SIS nonlocal epidemic
model.

It is well known that the comparison principle is not applicable for the non-cooperative
reaction-diffusion systems. To overcome this difficulty, we introduce two auxiliary cooper-
ative systems with one reaction term lies above and another lies below the reaction term of
(1.1), and establish a comparison theorem for the Cauchy problems of the three systems. The
existence and qualitative features of entire solutions of (1.1) is then established by using the
comparison theorem and considering a sequence of initial value problems of (1.1), where the
combinations of traveling fronts and spatially independent solutions of the lower system (i.e.
the auxiliary system with smaller reaction term) are taken as the initial values (see Theorem
3.6). We mention that these auxiliary systems have been used by the second author of this
paper to establish the existence of traveling wave solutions of (1.1) recently, see Wang [36]. To
the best of our knowledge, it is the first work to study the entire solutions of non-cooperative
reaction-diffusion systems.

In biology and epidemiology, there are quite a few reaction-diffusion model systems of the
form (1.1) with cooperative or non-cooperative nonlinearities. We shall illustrate our main
results by discussing the following models in [1,32,33,36,41].

A. A Buffered System. In [32,33], Tsai and Sneyd presented a buffered system:

{
∂t u1 = d�u1 + g(u1)+ ∑m

i=1[k−
i (b

0
i − vi )− k+

i u1vi ],
∂tvi = di�vi + k−

i (b
0
i − vi )− k+

i u1vi , i = 1, · · · , n,
(1.2)

where d, k±
i , b0

i > 0 and di > 0 are given parameters. They studied the existence, uniqueness
and stability of traveling fronts of (1.2) by taking the typical bistable nonlinearity for the
function g, i.e. g(u1) = u1(u1 − a)(1 − u1) for some a ∈ (0, 1). Note that (1.2) can
be transformed to a cooperative system on R

+ × ∏n
i=1[0, b0

i ] under the change of variable
wi = b0

i −vi , i = 1, · · · , n. Other results related to the buffered system, we refer to [7,13,20]
and the references therein.

B. An Epidemic Model. To study the fecally-orally transmitted diseases in the European
Mediterranean regions, Capasso and Maddalena [1] introduced the epidemic model:

{
∂t u1 = d1�u1 − a11u1 + a12u2,

∂t u2 = d2�u2 − a22u2 + g(u1),
(1.3)

where d1, a11, a12, a22 > 0 and d2 ≥ 0 are given parameters. The function g(u1) describes
the infection rate of human under the assumption that total susceptible human population
is constant. In general, g(·) is increasing on [0,+∞). But, if the “psychological” effect
is considered (see, e.g., Xiao and Ruan [50]), then g(·) is a unimodal curve on [0,+∞),
that is, g(·) achieves its maximum at some umax > 0, and is increasing on [0, umax] and
decreasing on [umax,+∞). When d2 = 0 and g is monotone, Xu and Zhao [51] proved
the existence, uniqueness and stability of bistable traveling fronts of (1.3) and Zhao and
Wang [54] established the existence and non-existence of monostable traveling fronts. These
results were then extended by Wu and Liu [45] to the non-monotone case by constructing
two auxiliary monotone integral equations.

C. A Population Model. Weinberger et al. [41] discussed the reaction-diffusion model
which describes the interaction between ungulates with linear density u1 and grass with linear
density u2:

{
∂t u1 = d1�u1 + u1[−α − δu1 + r1u2],
∂t u2 = d2�u2 + r2u2[1 − u2 + h(u1)], (1.4)
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where d1, d2, r1, r2, α, δ are all positive parameters. The function h(u1)models the increase
in the specific growth rate of the grass due to the presence of ungulates. When the density u1 is
small the net effect of ungulates is increasingly beneficial, but as the density increases above
a certain value, the benefits decrease with increasing. In Weinberger et al. [41] established
the spreading speeds for (1.4) by employing comparison methods. Taking the non-monotone
Ricker function u1e−u1 as h(u1), Wang [36] further characterized the spreading speed as the
slowest speed of traveling wave solutions.

Throughout this paper, we always make the following assumptions:

(A0) There exists K � 0 such that f (0) = f (K) = 0, f ∈ C2([0,K],Rm) and there is
no other positive equilibrium of f between 0 and K.
(A1) One of the following holds:

(a) The matrix f ′(0) is cooperative and irreducible with s( f ′(0)) > 0, where

s( f ′(0)) := max{�λ : det(λI − f ′(0)) = 0};
(b) For each λ ≥ 0, A(λ) := Dλ2 + f ′(0) is in block lower triangular form, the first

diagonal block has a positive principal eigenvalue M(λ), and M(λ) is strictly larger
than the principal eigenvalues of all other diagonal blocks. In addition, there is a
positive eigenvector v(λ) = (v1(λ), · · · , vm(λ)) � 0 of A(λ) corresponding to
M(λ) and v(λ) is continuous with respect to λ.

We mention that a square matrix is called to be cooperative if all off-diagonal entries
are non-negative, and irreducible if it cannot be placed into block lower-triangular form by
simultaneous row/column permutations (cf. Smith [29]).

If (A1)(b) holds, by the argument of [36, Lemma 1.1], there exist two numbers c∗ > 0
and λ∗ > 0 such that

c∗ = M(λ∗)
λ∗

= inf
λ>0

M(λ)

λ
, (1.5)

and for any c > c∗, there existsλ1 := λ1(c) ∈ (0, λ∗) such that M(λ1) = cλ1 and M(λ) < cλ
for any λ ∈ (λ1, λ∗].

If (A1)(a) holds, then the matrix A(λ) = Dλ2 + f ′(0) is also cooperative and irreducible.
Hence

M(λ) = s(A(λ)) := max{�λ : det(λI − A(λ)) = 0}
is a simple eigenvalue of A(λ) with an eigenvector v(λ) = (v1(λ), · · · , vm(λ)) � 0. In
addition, M(λ) = s(A(λ)) ≥ s( f ′(0)) > 0 for any λ ≥ 0 (see e.g., [29, Corollary 4.3.2]).
From the argument of [7, Lemma 2.1], there also exist c∗ > 0 and λ∗ > 0 such that (1.5)
holds, and for any c > c∗, there exists λ1 := λ1(c) ∈ (0, λ∗) such that M(λ1) = cλ1 and
M(λ) < cλ for any λ ∈ (λ1, λ∗].

The rest of the paper is organized as follows. In Sect. 2, we consider the entire solutions of
system (1.1) with monostable and cooperative nonlinearity. Section 3 is devoted to the entire
solutions of (1.1) with monostable and non-cooperative nonlinearity. In Sect. 4, we apply
our abstract results to the above models (1.2)–(1.4). Finally, conclusions and discussions are
given in Sect. 5.

2 Entire Solutions for Cooperative Systems

In this section, we consider the entire solutions of (1.1) with monostable and cooperative
nonlinearity. In addition to (A0) and (A1), we also need the following assumptions:
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(A2) System(1.1) is cooperative on [0,K], that is, ∂ j fi (u) ≥ 0 for all u ∈ [0,K] and
1 ≤ j �= i ≤ m.
(A3) For any k ∈ Z

+, ρ1, · · · , ρk > 0 and λ1, · · · , λk ∈ [0, λ∗],
f
(

min{K, ρ1v(λ1)+ · · · + ρkv(λk)}
) ≤ f ′(0)

[
ρ1v(λ1)+ · · · + ρkv(λk)

]
.

Here, v(λ) � 0 is the eigenvector of A(λ) corresponding to M(λ).

Remark 2.1 It is easily seen that if f (u) ≤ f ′(0)u for u ∈ [0,K], then (A3) holds spon-
taneously. We also note that if f is defined on [0,+∞)m , then (A3) can be replaced by
(A3)

∗:

(A3)
∗ For any k ∈ Z

+, ρ1, · · · , ρk > 0 and λ1, · · · , λk ∈ [0, λ∗],
f
(
ρ1v(λ1)+ · · · + ρkv(λk)

) ≤ f ′(0)
[
ρ1v(λ1)+ · · · + ρkv(λk)

]
.

From the arguments of [7, Theorem 3.1] and [36, Theorem 2.1], we have the following
result.

Proposition 2.2 Let (A0)–(A3) hold. For every c ≥ c∗ and ν ∈ R
N with ‖ν‖ = 1, (1.1)

admits a traveling front

	c(ξ) = (φ1,c(ξ), · · · , φm,c(ξ)), ξ = x · ν + ct,

which satisfies 	c(−∞) = 0, 	c(+∞) = K and 	c(·) � 0. Furthermore, if c > c∗, then
there holds

lim
ξ→−∞	c(ξ)e

−λ1(c)ξ = v(λ1(c)) and 	c(ξ) ≤ v(λ1(c))e
λ1(c)ξ for all ξ ∈ R.

In the remainder of this section, we first give some comparison theorems for sub and
supersolutions of (1.1). We then state the main results for the cooperative system (Theorems
2.9–2.11) and establish the existence and asymptotic behavior of spatially independent solu-
tions. Finally, we prove Theorems 2.9–2.11 by constructing appropriate subsolutions and
upper estimates and using a general comparison principle.

2.1 Preliminaries

Consider the initial value problem of (1.1) with initial condition:

u(x, τ ) = ϕ(x), x ∈ R
N , (2.1)

where τ ∈ R is an any given constant.
Let X = BUC(RN ,Rm) be the Banach space of all bounded and uniformly con-

tinuous functions from R
N into R

m with the supremum norm ‖ · ‖X . For simplicity,
we denote W = [0,K] and [0,K]X = {

φ ∈ X : 0 ≤ φ(x) ≤ K, x ∈ R
N
}
. Take L =

maxi=1,··· ,m max
{|∂i fi (u)|

∣∣u ∈ [0,K]} and define

Q(u) = (Q1(u), · · · , Qm(u)) = f (u)+ Lu, u ∈ W.

Clearly, Q(u) is non-decreasing in u for u ∈ W.We further define a family of linear operator

T (t) = diag(T1(t), · · · , Tm(t)) : X → X, t ≥ 0, (2.2)

by Ti (0) = I and

(Ti (t)φ)(x) = e−Lt
∫

RN

�i (y, t)φ(x − y)dy, ∀x ∈ R
N , t > 0, φ(x) ∈ BUC(RN ,R),
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where

�i (x, t) = 1

(4diπ t)N/2 exp

{
−‖x‖2

4di t

}
, i = 1, · · · ,m.

The definitions of sub- and supersolutions of (1.1) are as follows.

Definition 2.3 A continuous function u = (u1, · · · , um) : R
N × [τ,+∞) → W is called a

supersolution of (1.1) on [τ,+∞) if

u(x, t) ≥ T (t − τ)u(x, τ )+
t∫
τ

T (t − s)Q(u(x, s))ds, ∀x ∈ R
N , t > τ, (2.3)

A subsolution of (1.1) is defined by reversing the inequality.

Remark 2.4 Let w = (w1, · · · , wm) : R
N × [τ,+∞) → W be a continuous function with

the property that wi is C1 in t and C2 in x . It is easy to see that if w satisfies

wt ≥ (or ≤)D�w + f (w), ∀x ∈ R
N , t > τ,

then w is a supersolution (or subsolution) of (1.1) on [τ,+∞).

By Definition 2.3, we have the following results, see e.g., Fang and Zhao [7].

Lemma 2.5 (i) For any ϕ ∈ [0,K]X , (1.1) admits a unique classical solution u(x, t;ϕ)
satisfying u(x, τ ;ϕ) = ϕ(x) and 0 ≤ u(x, t;ϕ) ≤ K for all x ∈ R

N and t ≥ τ .
(ii) Let w+(x, t) and w−(x, t) be a supersolution and a subsolution of (1.1), respectively. If

w+(·, τ ) ≥ w−(·, τ ), then w+(·, t) ≥ w−(·, t) for all t ≥ τ .

The following result follows from the standard parabolic estimates (Friedman [10]), see
also Wang et al. [38, Proposition 4.3].

Lemma 2.6 Suppose that u(x, t;ϕ) is a solution of (1.1) with the initial value ϕ ∈ [0,K]X .
Then there exists a positive constant M1, independent of τ and ϕ, such that for any x ∈ R

N

and t > τ + 1,∥∥∥∥∂u

∂t
(x, t;ϕ)

∥∥∥∥ ≤ M1,

∥∥∥∥ ∂
2u

∂t xi
(x, t;ϕ)

∥∥∥∥ ≤ M1,

∥∥∥∥∂
2u

∂t2 (x, t;ϕ)
∥∥∥∥ ≤ M1,

∥∥∥∥ ∂u

∂xi
(x, t;ϕ)

∥∥∥∥ ≤ M1,

∥∥∥∥ ∂
2u

∂xi t
(x, t;ϕ)

∥∥∥∥ ≤ M1,

∥∥∥∥ ∂2u

∂xi x j
(x, t;ϕ)

∥∥∥∥ ≤ M1

∥∥∥∥∥
∂3u

∂x2
i t
(x, t;ϕ)

∥∥∥∥∥ ≤ M1,

∥∥∥∥∥
∂3u

∂x2
i x j

(x, t;ϕ)
∥∥∥∥∥ ≤ M1, ∀i, j = 1, · · · , N .

Similar to Lemma 2.5(ii), we have the following result.

Lemma 2.7 Let u+ ∈ C
(
R

N × [τ,+∞), [0,+∞)m
)

and

u− ∈ C
(
R

N × [τ,+∞), (−∞, K1] × · · · × (−∞, Km])
be such that u+(·, τ ) ≥ u−(·, τ ) and

u+
t ≥ D�u+ + f ′(0)u+, ∀x ∈ R

N , t > τ,

u−
t ≤ D�u− + f ′(0)u−, ∀x ∈ R

N , t > τ.

Then, u+(x, t) ≥ u−(x, t) for all x ∈ R
N and t ≥ τ .
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2.2 Main results for cooperative systems

Before to state our main results, we give the following definition and notation.

Definition 2.8 Let n ∈ N and p, p0 ∈ R
n . We say that the functions Wp(x, t) =(

W1;p(x, t), · · · ,Wm;p(x, t)
)

converge to Wp0(x, t) = (
W1;p0(x, t), · · · ,Wm;p0(x, t)

)
as

p → p0 in the sense of the topology T if, for any compact set S ⊂ R
N+1, the functions

Wp , ∂t Wp , ∂xi Wp , ∂x2
i
Wp , i = 1, · · · , N , converge uniformly in S to Wp0 , ∂t Wp0 , ∂xi Wp0 ,

∂x2
i
Wp0 , i = 1, · · · , N , as p → p0.

Notation For any l ∈ Z
+, νi ∈ R

N , i = 1, · · · , l, A ∈ R and a ∈ R, denote by T i
A,a and

T̃ i
A,a (i = 1, · · · , l + 1) the regions:

T i
A,a := {

x ∈ R
N
∣∣x · νi ≥ A

} × [a,+∞), i = 1, · · · , l, T l+1
A,a := R

N × [a,+∞),

T̃ i
A,a := {

x ∈ R
N
∣∣x · νi ≤ A

} × (−∞, a], i = 1, · · · , l, T̃ l+1
A,a := R

N × (−∞, a].
Now, we state the main results of entire solutions for the cooperative system as follows.

Theorem 2.9 (Existence) Let (A0) − (A3) hold. Then, for any l ∈ Z
+, ν1, · · · , νl ∈ R

N

with ‖νi‖ = 1, h1, · · · , hl+1 ∈ R, c1, · · · , cl > c∗, and χ1, · · · , χl+1 ∈ {0, 1} with χ1 +
· · · + χl+1 ≥ 2, there exists an entire solution Up(x, t) := (

U1;p(x, t), · · · ,Um;p(x, t)
)

of
(1.1) such that

u(x, t) ≤ Up(x, t) ≤ min
{
K,�(x, t)

}
, ∀(x, t) ∈ R

N+1, (2.4)

where p := pχ1,··· ,χl+1 = (
χ1c1, χ1h1, χ1ν1, · · · , χl cl , χl hl , χlνl , χl+1hl+1

)
and

u(x, t) := max
{

max
i=1,··· ,l χi	ci

(
x · νi + ci t + hi

)
, χl+1�(t + hl+1)

}
,

�(x, t) :=
l∑

i=1

χiv(λ1(ci ))e
λ1(ci )(x ·νi +ci t+hi ) + χl+1v

∗eλ
∗(t+hl+1).

Here,�(t) is the spatially independent solution of (1.1) obtained in Lemma 2.12, λ∗ = M(0)
and v∗ = v(0).

By considering a combination of any finite number of traveling wave fronts coming from
directions νi with speeds ci > c∗ and a spatial variable independent solution, we obtain some
new types of entire solutions of (1.1). It is clear that Up(x, t) depends on these parameters
pχ1,··· ,χl+1 . For example, if χ1 = · · · = χl+1 = 1, then Up(x, t) depends on p1,··· ,1 =
(c1, h1, ν1, · · · , cl , hl , νl , hl+1). Here, we can not prove that Up(x, t) depends continuously
on pχ1,··· ,χl+1 .

However, some other qualitative properties, such as the monotonicity of Up(x, t) with
respect to t and xi (see (i) and (ii) in Theorem 2.10 below), the asymptotic behavior of
Up(x, t) when t → ±∞ (see (iii)− (vi) in Theorem 2.10 below), and the monotonicity and
the limit of Up(x, t) with respect to hi (see (vii) and (viii) in Theorem 2.10 below), can be
obtained. In fact, we have the following results.

Theorem 2.10 (Qualitative properties) Let all the assumptions of Theorem 2.9 hold and
Up(x, t) be the entire solution of (1.1) obtained in Theorem 2.9, then the following properties
hold.

(i) 0 � Up(x, t) � K and ∂tUp(x, t) � 0 for all (x, t) ∈ R
N+1.
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(ii) If l = 1 and χ1 = χ2 = 1, then

sgn
(
∂xi Up(x, t)

) = sgn(ν1i ), i = 1, · · · , N , for (x, t) ∈ R
N+1,

where ν1 = (ν11, · · · , ν1N ) ∈ R
N with ‖ν1‖ = 1. In particular, for N = 2, if we

denote ν1 = (cos θ1, sin θ1), θ1 ∈ [0, 2π), then

∂x1Up(x, t)=
{

≥ 0, θ1 ∈ [0, π2 ] ∪ [ 3π
2 , 2π ];

≤ 0, θ1 ∈ [π2 , 3π
2 ], and ∂x2Up(x, t)=

{≥ 0, θ1 ∈ [0, π ];
≤ 0, θ1 ∈ [π, 2π ].

for (x, t) ∈ R
3. Similar results hold true for N = l = 2 and χ2 = 0.

(iii) limt→−∞ sup‖x‖≤A ‖Up(x, t)
∥∥ = 0 for any A ∈ N.

(iv) If χl+1 = 1, then for every x ∈ R
N ,

Up(x, t) ∼ �(t + hl+1) ∼ v∗eλ
∗(t+hl+1) as t → −∞.

(v) If χl+1 = 0, then for every x ∈ R
N ,

Up(x, t) = O
(
eϑ(c1,··· ,cl )t

)
as t → −∞,

where ϑ(c1, · · · , cl) = mini=1,··· ,l
{
ciλ1(ci )

}
.

(vi) If χl+1 = 0, then limt→+∞ sup‖x‖≤A

∥∥Up(x, t) − K
∥∥ = 0 for any A ∈ R+, and if

χl+1 = 1, then limt→+∞ supx∈RN

∥∥Up(x, t)− K
∥∥ = 0.

(vii) For any (x, t) ∈ R
N+1, Up(x, t) is increasing with respect to hi , i = 1, · · · , l + 1.

(viii) Up(x, t) converges to K as hi → +∞ in T and uniformly on (x, t) ∈ T i
A,a for any

A, a ∈ R, i = 1, · · · , l + 1.

By the assumption (A1), it is easy to verify that cλ1(c) > λ∗ for any c > c∗ (see the proof
of Theorem 2.10 (iv)). Thus, by the statements (iv) and (v) of Theorem 2.10, we see that the
entire solutions Up(x, t) with χl+1 = 1 and Up(x, t) with χl+1 = 0 have different decay
rates when t → −∞, and hence they are completely different.

For the sake of simplicity, we denote χ = (χ1, · · · , χl+1). According to the assumption
χ1, · · · , χl+1 ∈ {0, 1} with χ1 +· · ·+χl+1 ≥ 2 in Theorem 2.9, we further denote the entire
solution Up(x, t) of (1.1) by

Up(x, t) :=

⎧⎪⎪⎨
⎪⎪⎩

Up0(x, t), if χ = (
1, · · · , 1

);
Upi (x, t), if χ = (

1, · · · , 1, 0i , 1, · · · , 1
)
, i = 1, · · · , l + 1,

Upi, j (x, t), if χi = χ j = 0, 1 ≤ i �= j ≤ l + 1,
and χk = 1,∀k ∈ {1, · · · , l + 1} \ {i, j},

(2.5)

where p0 = p1,··· ,1, pi = p1,··· ,1,0i ,1,··· ,1, i = 1, · · · , l + 1 and pi, j = pχ1,··· ,χl+1 with
χi = χ j = 0, 1 ≤ i �= j ≤ l + 1 and χk = 1, ∀k ∈ {1, · · · , l + 1} \ {i, j}.

Moreover, we have the following convergence results.

Theorem 2.11 (Convergence properties) Assume (A0)−(A3). Assume further that f ′(u) ≤
f ′(0) for u ∈ [0,K]. Then, from (2.5), the following properties hold.

(i) For any A, a ∈ R, Up0(x, t) converges to Upi (x, t) as hi → −∞ in T , and uniformly
on (x, t) ∈ T̃ i

A,a, i = 1, · · · , l + 1.
(ii) For any A, a ∈ R, Upi (x, t)(i = 1, · · · , l + 1) converges to Upi, j (x, t) as h j → −∞

in T , and uniformly on (x, t) ∈ T̃ j
A,a, 1 ≤ i �= j ≤ l + 1.
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(iii) For any h1, · · · , hl , h∗
1, · · · , h∗

l ∈ R, there exists (x0, t0) ∈ R
N+1, depending on

c1, · · · , cl , h1, · · · , hl , h∗
1, · · · , h∗

l such that

Upl+1(x, t) = Up∗
l+1
(x + x0, t + t0) for all (x, t) ∈ R

N+1.

Here, p∗
l+1 = (

c1, h∗
1, ν1, · · · , cl , h∗

l , νl , 0
)
.

2.3 Existence of Spatially Independent Solutions

In this subsection, we consider the spatially independent solutions of (1.1) connecting 0 and
K, that is, solutions of the following ordinary differential problem:

d�(t)

dt
= f

(
�(t)

)
, t ∈ R, (2.6)

�(−∞) = 0, �(+∞) = K, (2.7)

where � = (�1, · · · , �m) and f = ( f1, · · · , fm). Recall that W = [0,K].
Note that (2.6) is a cooperative and irreducible system. The existence of such a heteroclinic

orbit �(t) can be established by using the theory of monotone dynamical systems (see Smith
[29] and Zhao [53]). However, these results do not give the exponential decay rate of the
solution at minus infinity. To overcome the shortcoming, we shall use the standard technique
of monotone iteration scheme to prove the existence and asymptotic behavior of the solutions
of (2.6) and (2.7).

Lemma 2.12 Let (A0)− (A3) hold. There exists a solution �(t) : R → W of (2.6) and (2.7)
such that

�′(t) � 0, lim
t→−∞�(t)e−λ∗t = v∗, and �(t) ≤ eλ

∗tv∗ for all t ∈ R,

where λ∗ = M(0) and v∗ = v(0).

Proof Since the method is standard, we only sketch the outline. Let C(R,Rm) be the spaces
of continuous vector-valued functions on R. Define the operator F = (F1, · · · , Fm) :
C(R,W ) → C(R,Rm) by

Fi (u)(t) =
t∫

−∞
e−L(t−s)Qi (u)(s)ds, i = 1, · · · ,m.

Recall that

L = max
i=1,··· ,m max

{|∂i fi (u)|
∣∣u ∈ W

}
and Qi (u)(t) = fi (u(t))+ Lui (t), i = 1, · · · ,m.

It is easy to verify that each Qi (·) is a nondecreasing map from C(R,W ) to C(R,R) with
respect to the point-wise ordering. The remainder of the proof is divided into the following
three steps.

Step 1 The following observation is straightforward.

(i) F : C(R,W ) → C(R,W );
(ii) F(φ)(t) ≥ F(ψ)(t) for φ,ψ ∈ C(R,W ) with φ(t) ≥ ψ(t);

(iii) F(φ)(t) is increasing in R if φ ∈ C(R,W ) is increasing in R.
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Step 2 For any fixed ε ∈ (
1, 2

)
and sufficiently large q > 1, define two functions as follows:

φ(t) = (
φ1(t), · · · , φm(t)

)
and φ(t) = (

φ
1
(t), · · · , φ

m
(t)

)
,

where

φi (t) = min
{

Ki , v
∗
i eλ

∗t
}

and φ
i
(t) = max

{
0, v∗

i eλ
∗t − qv∗

i eελ
∗t
}
, t ∈ R.

Then, by direct computations, we obtain

0 ≤ φ(t) ≤ φ(t) ≤ K, F(φ)(t) ≤ φ(t) and F(φ)(t) ≥ φ(t) for all t ∈ R.

Step 3 Using the monotone iteration technique, we can show that equation (2.6) admits a
solution �(t) which satisfies

�′(t) ≥ 0 and φ(t) ≤ �(t) ≤ φ(t) for all t ∈ R.

Thus, �(−∞) = 0, �(+∞) ∈ (0,K] and limt→−∞ �(t)e−λ∗t = v∗, 0 � �(t) ≤
eλ

∗tv∗ for all t ∈ R. Moreover, one can easily verify that �(+∞) = K for all t ∈ R.

Next, we show that �′(t) � 0 for all t ∈ R. Since ∂ j fi (u) ≥ 0 for all u ∈ [0,K] and
1 ≤ j �= i ≤ m, by (2.6), we have

�′′
i (t) = ∂1 fi

(
�(t)

)
�′

1(t)+ · · · + ∂m fi
(
�(t)

)
�′

m(t) ≥ ∂i fi
(
�(t)

)
�′

i (t) ≥ m0�
′
i (t), ∀t ∈ R,

where m0 = mini=1,··· ,m min
{
∂i fi (u)

∣∣u ∈ W
}
. Thus, for any τ ∈ R, we obtain

�′
i (t) ≥ �′

i (τ )e
m0(t−τ), ∀t > τ, i = 1, · · · ,m. (2.8)

Suppose for the contrary that there exist i0 ∈ {1, · · · ,m} and t0 ∈ R such that �′
i0
(t0) = 0. It

then follows from (2.8) that �′
i0
(τ ) = 0 for all τ < t0. Thus, �i0(τ ) = �i0(t0) for all τ ≤ t0

and hence 0 < �i0(t0) = �i0(−∞) = 0. This contradiction shows that �′(t) � 0 for all
t ∈ R. The proof is complete. ��

2.4 Proofs of Theorems 2.9–2.11

In this subsection, we will use the results of previous subsections to obtain an appropriate
upper estimate for solutions of (1.1) and then prove Theorems 2.9–2.11.

For any l, n ∈ Z
+, ν1, · · · , νl ∈ R

N with ‖νi‖ = 1, h1, · · · , hl+1 ∈ R, c1, · · · , cl > c∗,
and χ1, · · · , χl+1 ∈ {0, 1} with χ1 + · · · + χl+1 ≥ 2, we denote

ϕn(x) := max

{
max

i=1,··· ,l χi	ci

(
x · νi − ci n + hi

)
, χl+1�(−n + hl+1)

}
,

u(x, t) := max
{

max
i=1,··· ,l χi	ci

(
x · νi + ci t + hi

)
, χl+1�(t + hl+1)

}
, t ≥ −n.

Let U n(x, t) = (
U n

1 (x, t), · · · ,U n
m(x, t)

)
be the unique solution of the following initial

value problem of (1.1) {
ut = D�u + f (u), x ∈ R

N , t > −n,
u(x,−n) = ϕn(x), x ∈ R

N .

Then, by Lemma 2.5, we have

u(x, t) ≤ U n(x, t) ≤ K for all x ∈ R
N and t ≥ −n.

The following lemma provides the appropriate upper estimate of U n(x, t).
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Lemma 2.13 Assume (A0)− (A3). The function U n(x, t) satisfies

U n(x, t) ≤ min
{
K,�(x, t)

}
for all x ∈ R

N and t ≥ −n,

where �(x, t) is defined in Theorem 2.9.

Proof Let v+(x, t) = min
{
K,�(x, t)

}
. From Proposition 2.2 and Lemma 2.12, we have

v+(x,−n) = min
{
K,�(x,−n)

}

= min
{

K,
l∑

i=1

χiv(λ1(ci ))e
λ1(ci )(x ·νi −ci n+hi ) + χl+1v

∗eλ
∗(−n+hl+1)

}

≥ ϕn(x) = U n(x,−n), ∀x ∈ R
N .

By Lemma 2.5(ii), it is sufficient to show that v+(x, t) is a supersolution of (1.1) on
[−n,+∞), that is,

v+(x, t) ≥ T (t + n)v+(x,−n)+
t∫

−n

T (t − s)Q(v+(x, s))ds, ∀x ∈ R
N , t > −n. (2.9)

Note that Q(u) = f (u)+ Lu is non-decreasing in u for 0 ≤ u ≤ K. For x ∈ R
N , t > −n,

we have

Ti (t + n)v+
i (x,−n)+

t∫
−n

Ti (t − s)Qi (v
+(x, s))ds

≤ Ti (t + n)Ki +
t∫

−n

Ti (t − s)Qi (K)ds

≤ e−L(t+n)Ki +
t∫

−n

e−L(t−s)L Ki ds = Ki .

Consequently,

T (t + n)v+(x,−n)+
t∫

−n

T (t − s)Q(v+(x, s))ds ≤ K, ∀x ∈ R
N , t > −n. (2.10)

Note also that A(0)v∗ = λ∗v∗ and

A(λ1(ci ))v(λ1(ci )) = M(λ1(ci ))v(λ1(ci )) = ciλ1(ci )v(λ1(ci )), i = 1, · · · , l.
It is easy to see that the function �(x, t) satisfies the linear equation:

�t = D��+ f ′(0)�(x, t).

Then, for any x ∈ R
N , t > −n, �(x, t) satisfies the integral equation:

�(x, t) = T (t + n)�(x,−n)+
t∫

−n

T (t − s)
[

f ′(0)�(x, s)+ L�(x, s)
]
ds.
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By the assumption (A3), we obtain

Q(v+(x, t)) = f (v+(x, t))+ Lv+(x, t)

≤ f ′(0)�(x, t)+ Lv+(x, t) ≤ f ′(0)�(x, t)+ L�(x, t),

and hence

T (t + n)v+(x,−n)+
t∫

−n

T (t − s)Q(v+(x, s))ds

≤ T (t + n)�(x,−n)+
t∫

−n

T (t − s)
[

f ′(0)�(x, s)+ L�(x, s)
]
ds

= �(x, t). (2.11)

Combining (2.10) and (2.11), (2.9) holds and the assertion follows from Lemma 2.5. This
completes the proof. ��
Remark 2.14 We note that if f (u) ≤ f ′(0)u for u ∈ [0,K], then Lemma 2.13 is a direct
consequence of Lemma 2.7. In fact, by f (u) ≤ f ′(0)u for u ∈ [0,K], we have

U n
t ≤ D�U n + f ′(0)U n, ∀x ∈ R

N , t > −n.

Noting that U n(x,−n) = ϕn(x) ≤ �(x,−n) for all x ∈ R
N and

�t = D��+ f ′(0)�(x, t), ∀x ∈ R
N , t > −n.

It follows from Lemma 2.7 that U n(x, t) ≤ �(x, t) and hence U n(x, t) ≤ min
{
K,�(x, t)

}
for all x ∈ R

N and t ≥ −n.

Now we give the proofs of Theorems 2.9–2.11.

Proof of Theorem 2.9 By Lemmas 2.5 and 2.13, we have

u(x, t) ≤ U n(x, t) ≤ U n+1(x, t) ≤ min
{
K,�(x, t)

}

for all x ∈ R
N and t ≥ −n. By the priori estimate of Lemma 2.6 and the diagonal extraction

process, there exists a subsequence {U nk (x, t)}k∈N of {U n(x, t)}n∈N such that U nk (x, t)
converges to a function Up(x, t) = (

U1;p(x, t), · · · ,Um;p(x, t)
)

in the sense of topology
T . Since U n(x, t) ≤ U n+1(x, t) for any t > −n, we have

lim
n→+∞ U n(x, t) = Up(x, t)for any(x, t) ∈ R

N+1.

The limit function is unique, whence all of the functions U n(x, t) converge to the function
Up(x, t) in the sense of topology T as n → +∞. Clearly, Up(x, t) is an entire solution of
(1.1) satisfying (2.4). This completes the proof of Theorem 2.9. ��
Proof of Theorem 2.10 The assertions for parts (ii)–(iii) and (vi)–(viii) are direct conse-
quences of (2.4). Therefore, we only prove the results of parts (i), (iv) and (v).

(i) Clearly, Up(x, t) � 0 for all (x, t) ∈ R
N+1. Since

U n(x, t) ≥ u(x, t) ≥ u(x,−n) = ϕn(x) = U n(x,−n)
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for all (x, t) ∈ R
N × [−n,+∞), by Lemma 2.5, we have ∂

∂t U n(x, t) ≥ 0 for (x, t) ∈
R

N × (−n,+∞). This yields ∂
∂t Up(x, t) ≥ 0 for all (x, t) ∈ R

N+1. Noting that

∂2Ui;p

∂t2 = di�(Ui;p)t + ∂1 fi
(
Up

)
(U1;p)t + · · · + ∂m fi

(
Up

)
(Um;p)t

≥ di�(Ui;p)t + ∂i fi
(
Up

)
(Ui;p)t

≥ di�(Ui;p)t + m0(Ui;p)t , i = 1, · · · ,m,

where m0 = mini=1,··· ,m,u∈W ∂i fi (u), we obtain for any τ ∈ R,

(Ui;p)t (x, t) ≥ em0(t−τ)
∫

RN

�i (x − y, t − τ)(Ui;p)t (y, τ )dy ≥ 0, ∀x ∈ R
N , t > τ. (2.12)

Assume, by contradiction, that there exist i0 ∈ {1, · · · ,m} and (x0, t0) ∈ R
N+1 such that

(Ui0;p)t (x0, t0) = 0, it then follows from (2.12) that (Ui0;p)t (x0, τ ) = 0 for all τ ≤ t0.
Hence Ui0;p(x0, t) = Ui0;p(x0, t0) for all t ≤ t0, which implies that limt→−∞ Ui0;p(x0, t) =
Ui0;p(x0, t0). But following from (2.4),

Ui0;p(x0, t0) > 0 and lim
t→−∞ Ui0;p(x0, t) = 0.

This contradiction yields that ∂
∂t Up(x, t) � 0 for all (x, t) ∈ R

N+1. Following from
∂
∂t Up(x, t) � 0 for (x, t) ∈ R

N+1, we have Up(x, t) � K for (x, t) ∈ R
N+1.

(iv) When χl+1 = 1, by (2.4), we have

max

{
max

i=1,··· ,l χi	ci

(
x · νi + ci t + hi

)
, �(t + hl+1)

}

≤ Up(x, t) ≤
l∑

i=1

χiv(λ1(ci ))e
λ1(ci )(x ·νi +ci t+hi ) + v∗eλ

∗(t+hl+1).

We claim that cλ1(c) > λ∗ for any c > c∗. In fact, if (A1)(a) holds, then M(λ) > M(0) = λ∗
(see, e.g., [29, Corrollary 4.3.2]), since A(λ) > A(0) for any λ > 0. In view of M(λ1(c)) =
cλ1(c) and λ1(c) > 0 for any c > c∗, we obtain cλ1(c) > λ∗ for any c > c∗. If (A1)(b)
holds, it is easily seen that cλ1(c) > λ∗ for any c > c∗([17, Theorem 8.1.18]). Therefore,
the assertion follows from the fact

lim
t→−∞�(t)e−λ∗t = v∗ and lim

ξ→−∞	ci (ξ)e
−λ1(ci )ξ = v(λ1(ci )), i = 1, · · · , l.

The proof of part (v) is similar to that of part (iv) and omitted. This completes the proof of
Theorem 2.10. ��
Proof of Theorem 2.11 (i) We only prove the case that Up0(t) converges to Up1(t) in the
sense of topology T as h1 → −∞, and uniformly on (x, t) ∈ T̃ 1

A,a . The proofs for the other
cases are similar.

For (χ1, · · · , χl+1) = (1, · · · , 1), we denote ϕn(x) by ϕn
p0
(x) and U n(x, t) by U n

p0
(x, t),

respectively. Similarly, when (χ1, · · · , χl+1) = (0, 1, · · · , 1), we denote ϕn(x) by ϕn
p1
(x)

and U n(x, t) by U n
p1
(x, t), respectively. Let

W n(x, t) = U n
p0
(x, t)− U n

p1
(x, t), (x, t) ∈ R

N × (−n,+∞),
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then 0 ≤ W n(x, t) ≤ K for all (x, t) ∈ R
N ×(−n,+∞). Since f ′(u) ≤ f ′(0) for u ∈ [0,K],

we get

∂W n

∂t
= D�W n + f (U n

p0
(x, t))− f (U n

p1
(x, t))

= D�W n + f ′(U n
p0
(x, t)+ (1 − θ3)W

n(x, t)
)
W n(x, t)

≤ D�W n + f ′(0)W n(x, t), ∀x ∈ R
N , t > −n,

where θ3 ∈ (0, 1). Define the function

Ŵ (x, t) = v(λ1(c1))e
λ1(c1)(x ·ν1+c1t+h1), (x, t) ∈ R

N+1.

Since A(λ1(c1))v(λ1(c1)) = M(λ1(c1))v(λ1(c1)) = c1λ1(c1)v(λ1(c1)), direct computa-
tions show that

∂Ŵ

∂t
= D�Ŵ + f ′(0)Ŵ (x, t), ∀x ∈ R

N , t ∈ R.

Moreover, by Proposition 2.2, we have

W n(x,−n) = U n
p0
(x,−n)− U n

p1
(x,−n)

≤ 	c1

(
x · ν1 − c1n + h1

)
≤ v(λ1(c1))e

λ1(c1)(x ·ν1−c1n+h1) = Ŵ (x,−n).

It then follows from Lemma 2.7 that

0 ≤ W n(x, t) = U n
p0
(x, t)− U n

p1
(x, t) ≤ Ŵ (x, t) = v(λ1(c1))e

λ1(c1)(x ·ν1+c1t+h1)

for all (x, t) ∈ R
N × [−n,+∞). Since limn→+∞ U n

pi
(x, t) = Upi (x, t), i = 0, 1, we get

0 ≤ Up0(x, t)− Up1(x, t) ≤ v(λ1(c1))e
λ1(c1)(x ·ν1+c1t+h1) for all (x, t) ∈ R

N+1,

which implies that Up0(x, t) converges to Up1(x, t) as h1 → −∞ uniformly on (x, t) ∈ T̃ 1
A,a

for any A, a ∈ R. For any sequence h�1 with h�1 → −∞ as � → +∞, the functions Up�0
(x, t),

p�0 := (c1, h�1, ν1, · · · , cl , hl , νl , hl+1), converge to a solution of (1.1) (up to extraction of
some subsequence) in the sense of topology T , which turns out to be Up1(x, t). The limit does
not depend on the sequence h�1, whence all of the functions Up0(x, t) converge to Up1(x, t)
in the sense of topology T as h1 → −∞, and the assertion of this part follows.

The proof of part (ii) is similar to that of part (i), and omitted. Moreover, the proof of part
(iii) is straightforward. This completes the proof of Theorem 2.11. ��

3 Entire Solutions for Non-Cooperative Systems

In this section, we consider the entire solutions of (1.1) with monostable and non-cooperative
nonlinearity. First, we introduce two auxiliary cooperative reaction-diffusion systems and
establish a comparison theorem for the Cauchy problems of the three systems. Then, we prove
the existence and qualitative properties of entire solutions using the comparison theorem.

Throughout this section, in addition to (A0) and (A1), we also make the following assump-
tions:
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(A2)
′ There exist K± = (K ±

1 , · · · , K ±
m ) � 0 with 0 � K− ≤ K ≤ K+ and two

continuous and twice piecewise continuous differentiable functions f +, f − : [0,K+] →
R

m such that f ∈ C2
([0,K+],Rm

)
, f ±(0) = f +(K+) = f −(K−) = 0, and

f −(u) ≤ f (u) ≤ f +(u) for all u ∈ [0,K+].
(A3)

′ There is no other positive equilibrium of f ± between 0 and K±, and f (u) and
f ±(u) have the same Jacobian matrix f ′(0) at u = 0.
(A4)

′ ∂ j f ±
i (u) ≥ 0 for all u ∈ [0,K+], 1 ≤ j �= i ≤ m.

(A5)
′ For any k ∈ Z

+, ρ1, · · · , ρk > 0 and λ1, · · · , λk ∈ [0, λ∗],
f +(min

{
K+, ρ1v(λ1)+ · · · + ρkv(λk)

}) ≤ f ′(0)
[
ρ1v(λ1)+ · · · + ρkv(λk)

]
.

Remark 3.1 Clearly, if f +(u) ≤ f ′(0)u for u ∈ [0,K+], then (A5)
′ holds. We remark that

when (1.1) is cooperative, then f ± = f and K± = K. We also note that if f is defined on
[0,+∞)m , then (A5)

′ can be replaced by (A5)
∗:

(A5)
∗ For any k ∈ Z

+, ρ1, · · · , ρk > 0 and λ1, · · · , λk ∈ [0, λ∗],
f +(ρ1v(λ1)+ · · · + ρkv(λk)

) ≤ f ′(0)
[
ρ1v(λ1)+ · · · + ρkv(λk)

]
.

Denote W + = [0,K+]. It is easy to verify that for any ϕ ∈ [0,K+]X , system (1.1) admits
a unique solution u(x, t;ϕ) satisfying u(·, τ ;ϕ) = ϕ(·) and 0 ≤ u(x, t;ϕ) ≤ K+ for all
x ∈ R

N and t ≥ τ .
Now, we consider the following two auxiliary cooperative reaction-diffusion systems

ut = D�u + f +(u), x ∈ R
N , t ∈ R, (3.1)

ut = D�u + f −(u), x ∈ R
N , t ∈ R. (3.2)

Take L̃ = maxu∈W+,i=1,··· ,m max
{|∂i f +

i (u)|, |∂i f −
i (u)|

}
and define

Q̃(u) = (Q̃1(u), · · · , Q̃m(u)) = f (u)+ L̃u, u ∈ W +

Q̃±(u) = (Q̃±
1 (u), · · · , Q̃±

m(u)) = f ±(u)+ L̃u, u ∈ W +.

Clearly, Q̃±(u) is non-decreasing in u for u ∈ W + and

Q̃−(u) ≤ Q̃(u) ≤ Q̃+(u) for any u ∈ W +.

We further define the operator T̃ (t) = diag
(
T̃1(t), · · · , T̃m(t)

)
as (2.2) by replacing L

with L̃ .
The following comparison theorem plays an important role in the proof of our main result

for the non-cooperative system.

Lemma 3.2 Let u, u± ∈ C(RN × [τ,+∞),W +) be such that

u−(x, t) ≤ T̃ (t − τ)u−(x, τ )+
t∫
τ

T̃ (t − s)Q̃−(u−(x, s))ds, ∀x ∈ R
N , t > τ, (3.3)

u(x, t) = T̃ (t − τ)u(x, τ )+
t∫
τ

T̃ (t − s)Q̃(u(x, s))ds, ∀x ∈ R
N , t > τ, (3.4)

u+(x, t) ≥ T̃ (t − τ)u+(x, τ )+
t∫
τ

T̃ (t − s)Q̃+(u+(x, s))ds, ∀x ∈ R
N , t > τ, (3.5)
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and u−(x, τ ) ≤ u(x, τ ) ≤ u+(x, τ ). Then, there holds

u−(x, t) ≤ u(x, t) ≤ u+(x, t) for all x ∈ R
N and t > τ.

Proof We first prove u(x, t) ≤ u+(x, t) for all x ∈ R
N and t > τ . Let w(x, t) = u(x, t)−

u+(x, t) and define

Li = max
u∈W+, j=1,··· ,m

∂ Q̃+
i (u)

∂u j
, i = 1, · · · ,m, and [r ]+ = max{r, 0} for any r ∈ R.

Since w(·, τ ) ≤ 0 and Q̃+(u) is non-decreasing in u for u ∈ W +, by (3.4) and (3.5), we
obtain

wi (x, t) ≤ T̃i (t − τ)wi (x, τ )+
t∫
τ

T̃i (t − s)
[
Q̃i (u(x, s))− Q̃+

i (u
+(x, s))

]
ds

≤
t∫
τ

T̃i (t − s)
[
Q̃+

i (u(x, s))− Q̃+
i (u

+(x, s))
]
ds

=
t∫
τ

T̃i (t − s)

⎛
⎝ m∑

j=1

w j (x, s)

1∫
0

∂

∂u j
Q̃+

i (u
+(x, s)+ θw(x, s))dθ

⎞
⎠ ds

≤
t∫
τ

T̃i (t − s)

⎛
⎝Li

m∑
j=1

[w j (x, s)]+
⎞
⎠ ds, ∀x ∈ R

N , t > τ.

Consequently,

[wi (x, t)]+ ≤
t∫
τ

T̃i (t − s)

⎛
⎝Li

m∑
j=1

[w j (x, s)]+
⎞
⎠ ds, ∀x ∈ R

N , t > τ. (3.6)

Let �(x, t) = ∑m
i=1[wi (x, t)]+. It follows from (3.6) that

�(x, t) ≤
m∑

i=1

t∫
τ

T̃i (t − s)Li�(x, s)ds

≤
t∫
τ

m∑
i=1

∫

RN

Li�i (x − y, t − s)�(y, s)ds

=
t∫
τ

∫

RN

P(x − y, t − s)�(y, s)ds,

where P(y, s) = ∑m
i=1 Li�i (y, s). Using the same argument as in [30, Lemma 3.2], we

obtain �(x, t) = 0, and hence u(x, t) ≤ u+(x, t) for all x ∈ R
N and t > τ . Similarly, we

can prove that u−(x, t) ≤ u(x, t) for all x ∈ R
N and t > τ . This completes the proof. ��

The following result is a direct consequence of Lemma 3.2, see also Fife [9].
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Corollary 3.3 Let u, u± ∈ C(RN × [τ,+∞),W +) be such that ui , u±
i is C1 in t and C2

in x. If

u−
t ≤ D�u− + f −(u−), ∀x ∈ R

N , t > τ,

ut = D�u + f (u), ∀x ∈ R
N , t > τ,

u+
t ≥ D�u+ + f +(u+), ∀x ∈ R

N , t > τ,

and u−(x, τ ) ≤ u(x, τ ) ≤ u+(x, τ ), then u−(x, t) ≤ u(x, t) ≤ u+(x, t) for all x ∈
R

N , t > τ.

From the argument of Wang [36, Theorem 2.1], we have the following result.

Proposition 3.4 Let (A0)− (A1) and (A2)
′ − (A5)

′ hold. For any c > c∗ and ν ∈ R
N with

‖ν‖ = 1, (3.2) has a non-decreasing traveling wave solution

	−
c (x · ν + ct) = (

φ−
1,c(x · ν + ct), · · · , φ−

m,c(x · ν + ct)
)
,

which satisfies 	−
c (·) � 0, 	−

c (−∞) = 0, 	−
c (+∞) = K− and

lim
ξ→−∞	−

c (ξ)e
−λ1(c)ξ = v(λ1(c)), 	

−
c (ξ) ≤ v(λ1(c))e

λ1(c)ξ for all ξ ∈ R. (3.7)

Here, c∗, λ1(c) and v(λ1(c)) are given as in Sect. 1.

We also consider the following ordinary differential system

u′(t) = f −(u), t ∈ R. (3.8)

By Lemma 2.12, the following result holds.

Lemma 3.5 Let (A0)−(A1) and (A2)
′−(A5)

′ hold. There exists a solution�−(t) : R → W +
of (3.8) which satisfies �−(−∞) = 0 and �−(+∞) = K−. Furthermore,

(�−)′(t) � 0, lim
t→−∞�−(t)e−λ∗t = v∗ and �−(t) ≤ eλ

∗tv∗ for all t ∈ R,

where λ∗ = M(0) and v∗ = v(0).

The following theorem contains the main results of this section.

Theorem 3.6 Let (A0) − (A1) and (A2)
′ − (A5)

′ hold. For any l ∈ Z
+, ν1, · · · , νl ∈ R

N

with ‖νi‖ = 1, h1, · · · , hl+1 ∈ R, c1, · · · , cl > c∗, and χ1, · · · , χl+1 ∈ {0, 1} with χ1 +
· · · + χl+1 ≥ 1, there exists an entire solution U (x, t) := (

U1(x, t), · · · ,Um(x, t)
)

of (1.1)
such that

u−(x, t) ≤ U (x, t) ≤ min
{
K+,�(x, t)

}
(3.9)

for all (x, t) ∈ R
N+1, where

u−(x, t) = max
{

max
i=1,··· ,l χi	

−
ci

(
x · νi + ci t + hi

)
, χl+1�

−(t + hl+1)
}
,

�(x, t) =
l∑

i=1

χiv(λ1(ci ))e
λ1(ci )(x ·νi +ci t+hi ) + χl+1v

∗eλ
∗(t+hl+1).

Furthermore, the following statements hold:

(i) U (x, t) � 0 for (x, t) ∈ R
N+1 and limt→−∞ sup‖x‖≤A ‖U (x, t)

∥∥ = 0 for any A ∈ R+.
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(ii) If χl+1 = 1, then lim inf t→+∞ infx∈R U (x, t) ≥ K − and for every x ∈ R
N ,

U (x, t) ∼ v∗eλ
∗(t+hl+1) as t → −∞.

(iii) If χl+1 = 0, then lim inf t→+∞ inf‖x‖≤A U (x, t) ≥ K − for any A ∈ R+ and for every
x ∈ R

N ,

U (x, t) = O
(
eϑ(c1,··· ,cl )t

)
as t → −∞,

where ϑ(c1, · · · , cl) = mini=1,··· ,l
{
ciλ1(ci )

}
.

Proof Let W n(x, t) = (
W n

1 (x, t), · · · ,W n
m(x, t)

)
be the unique solution of the following

initial value problem

{
ut = D�u + f (u), x ∈ R

N , t > −n,
u(x,−n) = ϕ̃n(x), x ∈ R

N ,

where

ϕ̃n(x) := max

{
max

i=1,··· ,l χi	
−
ci

(
x · νi − ci n + hi

)
, χl+1�

−(−n + hl+1)

}
.

We first show the following claim.

Claim The function W n(x, t) satisfies

u−(x, t) ≤ W n(x, t) ≤ u+(x, t) := min
{
K+,�(x, t)

}
for all x ∈ R

N , t > −n. (3.10)

In fact, from Proposition 3.4 and Lemma 3.5, we see that

u−(x,−n) = ϕ̃n(x) = W n(x,−n) ≤ min
{
K+,�(x,−n)

} = u+(x,−n), ∀x ∈ R.

By Lemma 3.2, it suffices to show that for any x ∈ R
N , t > −n,

u−(x, t) ≤ T̃ (t + n)u−(x,−n)+
t∫

−n

T̃ (t − s)Q̃−(u−(x, s))ds, (3.11)

u+(x, t) ≥ T̃ (t + n)u+(x,−n)+
t∫

−n

T̃ (t − s)Q̃+(u+(x, s))ds. (3.12)

Now we prove (3.11). Note that the function ũ(x, t) := χ j	
−
c j

(
x · ν j + c j t + h j

)
( j =

1, · · · , l), satisfies the equation

ũt = D�ũ + f −(̃u),

or the integral equation

ũ(x, t) = T̃ (t + n)̃u(x,−n)+
t∫

−n

T̃ (t − s)Q̃−(̃u(x, s))ds.
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Since u−(x, t) ≥ ũ(x, t) for x ∈ R
N , t ≥ −n, and Q̃−(u) = f −(u)+ L̃u is non-decreasing

in u for u ∈ W +, we have

T̃ (t + n)u−(x,−n)+
t∫

−n

T̃ (t − s)Q̃−(u−(x, s))ds

≥ T̃ (t + n)̃u(x,−n)+
t∫

−n

T̃ (t − s)Q̃−(̃u(x, s))ds

= ũ(x, t), ∀x ∈ R
N , t > −n,

that is,

T̃ (t + n)u−(x,−n)+
t∫

−n

T̃ (t − s)Q̃−(u−(x, s))ds ≥ χ j	
−
c j

(
x · νi + c j t + h j

)
. (3.13)

Similarly, we can show that for x ∈ R
N , t > −n,

T̃ (t + n)u−(x,−n)+
t∫

−n

T̃ (t − s)Q̃−(u−(x, s))ds ≥ χl+1�
−(t + hl+1). (3.14)

Hence, (3.11) follows from (3.13) and (3.14).
Next, we prove (3.12). Since Q̃+(u) = f +(u)+ L̃u is non-decreasing in u for u ∈ W +,

we get for x ∈ R
N , t > −n,

T̃i (t + n)u+
i (x,−n)+

t∫
−n

T̃i (t − s)Q̃+
i (u

+(x, s))ds

≤ e−L̃(t+n)K +
i +

t∫
−n

e−L̃(t−s)K +
i L̃ds = K +

i , i = 1, · · · ,m.

Consequently,

T̃ (t + n)u+(x,−n)+
t∫

−n

T̃ (t − s)Q̃+(u+(x, s))ds ≤ K+, ∀x ∈ R
N , t > −n. (3.15)

Note that �(x, t) satisfies the integral equation:

�(x, t) = T̃ (t + n)�(x,−n)+
t∫

−n

T̃ (t − s)
[

f ′(0)�(x, s)+ L̃�(x, s)
]
ds. (3.16)

By the assumption (A5)
′, we obtain

Q̃+(u+(x, t)) = f +(u+(x, t))+ L̃u+(x, t) ≤ f ′(0)�(x, t)+ L̃�(x, t).
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It follows from (3.16) that

T̃ (t + n)u+(x,−n)+
t∫

−n

T̃ (t − s)Q̃+(u+(x, s))ds

≤ T̃ (t + n)�(x,−n)+
t∫

−n

T̃ (t − s)[ f ′(0)�(x, s)+ L̃�(x, s)]ds

= �(x, t). (3.17)

Combining (3.15) and (3.17), (3.12) holds. Therefore, the claim follows from Lemma 3.2.
Moreover, W n(x, t) satisfies the regular estimates as in Lemma 2.5, that is, there exists a

positive constant M , independent of n, such that for any x ∈ R
N and t > −n + 1,∥∥∥∥∂W n

∂t
(x, t)

∥∥∥∥ ,
∥∥∥∥∂

2W n

∂t xi
(x, t)

∥∥∥∥ ,
∥∥∥∥∂

2W n

∂t2 (x, t)

∥∥∥∥ ,
∥∥∥∥∂W n

∂xi
(x, t)

∥∥∥∥ ,
∥∥∥∥∂

2W n

∂xi t
(x, t)

∥∥∥∥ ≤ M,

and ∥∥∥∥∂
2W n

∂xi x j
(x, t)

∥∥∥∥ ,
∥∥∥∥∥
∂3W n

∂x2
i t
(x, t)

∥∥∥∥∥ ,
∥∥∥∥∥
∂3W n

∂x2
i x j

(x, t)

∥∥∥∥∥ ≤ M, ∀i, j = 1, · · · , N .

By using the diagonal extraction process, there exists a subsequence {W nk (x, t)}k∈N of
{W n(x, t)}n∈N such that W nk (x, t) converges to a function U (x, t)=(

U1(x, t),· · · ,Um(x, t)
)

in the sense of topology T . Clearly, U (x, t) is an entire solution of (1.1). By virtue of (3.10),
we have

u−(x, t) ≤ U (x, t) ≤ min
{
K+,�(x, t)

}
for all (x, t) ∈ R

N+1.

From (3.9), it is easy to see that the assertion of part (i) holds. Note that cλ1(c) ≥ λ∗ for
any c > c∗, and

lim
t→−∞�−(t)e−λ∗t = v∗, lim

ξ→−∞	−
ci
(ξ)e−λ1(ci )ξ = v(λ1(ci )), i = 1, · · · , l.

The assertions for parts (ii) and (iii) are direct consequences of (3.9). The proof is complete.
��

4 Applications

In this section, we apply our main results developed in Sect. 2–3 to the models (1.2)–(1.4). In
particular, we shall carefully discuss the sufficient conditions to ensure (A2)

′ − (A5)
′ when

(A2) is not satisfied.

4.1 A Buffered System

Consider the buffered system (1.2). For simplicity, we consider the case n = 1, i.e.{
∂t u1 = d1�u1 + g(u1)+ k1(b − v1)− k2u1v1,

∂tv1 = d2�v1 + k1(b − v1)− k2u1v1,
(4.1)

where d1, d2, k1, k2, b are positive constants. Our choice of the function g is the typical
monostable nonlinearity, i.e. g(u1) = u1(1 − u1). Let w1 = u1 and w2 = b − v1, then (4.1)
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can be transformed to{
∂tw1 = d1�w1 + w1(1 − w1)+ k1w2 − k2w1(b − w2),

∂tw2 = d2�w2 − k1w2 + k2w1(b − w2).
(4.2)

System (4.2) has only two equilibria 0 = (0, 0) and K = (
1, k2b/(k2+k1)

)
and is cooperative

on [0,K]. Let D = diag(d1, d2), and

f (w1, w2) = (
w1(1 − w1)+ k1w2 − k2w1(b − w2), −k1w2 + k2w1(b − w2)

)
.

Assume d1 ≥ d2, 1 > k2b and k1 ≥ k2. We claim that the conditions (A0), (A1)(a), (A2)

and (A3)
∗ hold for (4.2). In fact, it is easy to see that

f ′(0) =
(

1 − k2b k1

k2b −k1

)
.

Obviously, f ′(0) is cooperative and irreducible, and

s( f ′(0)) = 1 − k2b − k1 + √
(1 − k2b + k1)2 + 4k1

2
> 0.

Hence, (A0), (A1)(a) and (A2) hold for (4.2). Moreover, for any λ ≥ 0,

A(λ) := Dλ2 + f ′(0) =
(

d1λ
2 + 1 − k2b k1

k2b d2λ
2 − k1

)
.

Direct computation shows that

M(λ) = s(A(λ))

= d1λ
2 + d2λ

2 + 1 − k2b − k1 + √[(d1 − d2)λ2 + 1 − k2b + k1]2 + 4k2k1b

2
> 0,

and the eigenvector v(λ) corresponding to M(λ) is

v(λ) := (v1(λ), v2(λ)) = (
M(λ)− d2λ

2 + k1, k2b
) � (0, 0).

Take c∗ = M(λ∗)
λ∗ = infλ>0

M(λ)
λ

. Next, we check the condition (A3)
∗ (see Remark 2.1).

Since d1 ≥ d2 and 1 > k2b, for any λ ≥ 0,

v1(λ)

v2(λ)
= M(λ)− d2λ

2 + k1

k2b

= 1

2k2b

[
(d1−d2)λ

2+1−k2b + k1+
√

[(d1 − d2)λ2 + 1−k2b + k1]2 + 4k2k1b
]

>
1

2

[
1 − k2b + k1 +

√
[1 − k2b + k1]2 + 4k2k1b

]
≥ k1.

For any k ∈ Z
+, ρ1, · · · , ρk > 0 and λ1, · · · , λk ∈ [0, λ∗], denote

(z1, z2) := (
ρ1v1(λ1)+ · · · + ρkv1(λk), ρ1v2(λ1)+ · · · + ρkv2(λk)

) � (0, 0).

Consequently, (A3)
∗ is equivalent to the following two inequalities

z1(1 − z1)+ k1z2 − k2z1(b − z2) ≤ (1 − k2b)z1 + k1z2,

−k1z2 + k2z1(b − z2) ≤ k2bz1 − k1z2

or

z1 ≥ k2z2 and − k2z1z2 ≤ 0. (4.3)
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Since v1(λ)
v2(λ)

≥ k1 for any λ ≥ 0, we have z1/z2 ≥ k1. Hence, (4.3) holds if k1 ≥ k2. Therefore,
(A3)

∗ holds.

From Proposition 2.2 and Lemma 2.12, we see that (4.2) has a traveling wave front	c(ξ)

for any c ≥ c∗ and a spatially independent solution �(t). Furthermore, by Theorems 2.9 and
2.10, (4.2) has other types of entire solutions which are different from the traveling wave
fronts and spatially independent solution. In fact, we have the following result.

Theorem 4.1 If d1 ≥ d2, 1 > k2b and k1 ≥ k2, then the conclusions of Theorems 2.9 and
2.10 are valid for (4.2), i.e., for any l ∈ Z

+, ν1, · · · , νl ∈ R
N with ‖νi‖ = 1, h1, · · · , hl+1 ∈

R, c1, · · · , cl > c∗, and χ1, · · · , χl+1 ∈ {0, 1} with χ1 + · · · + χl+1 ≥ 2, (4.2) admits an
entire solution Wp(x, t) = (

W1;p(x, t),W2;p(x, t)
)
, where p = pχ1,··· ,χl+1 .

Moreover, the monotonicity with respect to t and xi , the asymptotic behavior when t →
±∞, and the monotonicity and the limit with respect to hi in Theorem 2.10 hold true for
Wp(x, t) as for Up(x, t).

4.2 An Epidemic Model

Consider the epidemic model (1.3). Scaling time and absorbing the appropriate constants
into u2, system (1.3) can be rewritten as

{
∂t u1(x, t) = d̃1�u1(x, t)− u1(x, t)+ γ u2(x, t),
∂t u2(x, t) = d̃2�u2(x, t)− βu2(x, t)+ g(u1(x, t)),

(4.4)

where d̃1 = d1/a11 > 0, d̃2 = d2/a2
11 > 0, γ = a12/a2

11 > 0 and β = a22/a11 > 0. For
convenience, we denote d̃i by di , i = 1, 2.

We assume

(H1) g ∈ C2([0,+∞), [0,+∞)), g(0) = g(k) − β
γ

k = 0, g(u) > β
γ

u for u ∈ (0, k),
and g(u) ≤ g′(0)u for u ∈ [0, k], where k > 0 is a constant.
(H2) One of the following holds:

(a) g(u) is increasing for u > 0;
(b) There exists a number umax > 0 such that g(u) is increasing for 0 < u ≤ umax

and decreasing for u > umax.

Let K = (k, g(k)/β), D = diag(d1, d2) and f (u1, u2) = (− u1 + γ u2,−βu2 + g(u1)
)
.

Clearly, f (0) = f (K) = 0 and

f ′(0) =
( −1 γ

g′(0) −β
)
.

From (H1), we see g′(0) > β
γ
> 0. It is easy to see that f (u) ≤ f ′(0)u for u ∈ [0,K], f ′(0)

is cooperative and irreducible, and

s( f ′(0)) = −(β + 1)+ √
(β + 1)2 + 4(γ g′(0)− β)

2
> 0.

Thus, the conditions (A0) and (A1)(a) hold for (4.4). Furthermore, for any λ ≥ 0,

A(λ) := Dλ2 + f ′(0) =
(

d1λ
2 − 1 γ

g′(0) d2λ
2 − β

)
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and

M(λ)=s(A(λ)) = d1λ
2 + d2λ

2 − β − 1+√[(d1λ2 − 1)− (d2λ2 − β)]2 + 4γ g′(0)
2

> 0.

Clearly, infλ>0
M(λ)
λ

exists and denote by c∗.

Theorem 4.2 Assume (H1). The following statements hold:

(i) If (H2)(a) or (H2)(b) holds and k ≤ umax, then the conclusions of Theorems 2.9 and
2.10 are valid for (4.4). If, in addition, g′(u) ≤ g′(0) for u ∈ [0, k], then the conclusions
of Theorem 2.11 hold true for (4.4).

(ii) If (H2)(b) holds and k > umax, then the conclusions of Theorem 3.6 hold for (4.4).

If (H1) and (H2)(a) or (H2)(b) hold and k ≤ umax, then system (4.4) is cooperative on
[0,K]. It is easy to verify that (A2)− (A3) hold. If, in addition, g′(u) ≤ g′(0) for u ∈ [0, k],
then f ′(u) ≤ f ′(0) for u ∈ [0,K]. Therefore, the statement (i) of Theorem 4.2 holds true.

When (H1), (H2)(b) hold and k > umax, system (4.4) is non-cooperative on [0,K]. Take

umin = inf
{

u ∈ (0, umax]
∣∣∣g(u) = g

(γ
β

g(umax)
)}
.

Clearly, umin > 0. We define two functions f ±(u) as follows:

f ±(u) = ( − u1 + γ u2,−βu2 + g±(u1)
)
,

where

g+(u1) =
{

g(u1), u1 ∈ [
0, umax

]
,

g(umax), u1 ∈ [
umax,

γ
β

g(umax)
]

and

g−(u1) =
{

g(u1), u1 ∈ [
0, umin

]
,

g
(
umin

)
, u1 ∈ [

umin,
γ
β

g(umax)
]
.

Clearly, g+(u1) ≤ g′(0)u1 for u1 ∈ [
0, γ

β
g(umax)

]
. Hence, f +(u) ≤ f ′(0)u for u ∈ [0,K+]

which yields that (A5)
′ holds. One can further check the conditions (A2)

′ − (A4)
′ with

K = (
k, g(k)/β

)
,

K+ =
(γ
β

g(umax), g(umax)
)

and K− =
(γ
β

g
(
umin

)
, g

(
umin

))
.

Therefore, the statement (ii) of Theorem 4.2 holds true.
We remark that two specific functions

g1(u) = ωu

1 + νu
and g2(u) = ωu

1 + νu2 ,

which have been widely used in the mathematical biology literature, satisfies the above
conditions for a wide range of parameters ω and ν. In fact, we have the following statements:

(a) if ωγ > β, then the function

f (u1, u2) = ( − u1 + γ u2,−βu2 + g1(u1)
)

satisfies the conditions (H1) and (H2)(a) with k = ωγ−β
βν

;
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(b) if ωγ > β, then the function

f (u1, u2) = ( − u1 + γ u2,−βu2 + g2(u1)
)

satisfies the conditions (H1) and (H2)(b) with

k =
√
ωγ − β

βν
and umax =

√
1

ν
.

Furthermore, it is easy to see that if ωγ ≤ 2β, then k ≤ umax, and if ωγ > 2β, then
k > umax.

4.3 A Population Model

Consider the model (1.4) by taking the non-monotone Ricker function u1e−u1 as h(u1). Let
w1 = u1 and w2 = u2 − 1, then (1.4) reduces to{

∂tw1 = d1�w1 + w1(r1 − α − δw1 + r1w2),

∂tw2 = d2�w2 + r2(1 + w2)[−w2 + h(w1)], (4.5)

where h(w1) = w1e−w1 and d1, d2, r1, r2, α, δ are all positive parameters. Similar to [36],
we assume

r1 > α, d1 ≥ d2 and δ ≥ r1r2

r1 + r2 − α
. (4.6)

In the nonnegative quadrant, (4.5) has only two equilibria 0 = (0, 0) and K = (K1, K2)

which satisfy

r1 K1e−K1 = δK1 + α − r1 and K2 = K1e−K1 . (4.7)

Let D = diag(d1, d2) and

f (w) = (
w1(r1 − α − δw1 + r1w2), r2(1 + w2)[−w2 + w1e−w1 ]).

For any λ ≥ 0,

A(λ) := Dλ2 + f ′(0) =
(

d1λ
2 + r1 − α 0

r2 d2λ
2 − r2

)
.

Direct computation shows that M(λ) = d1λ
2 + r1 − α > 0 and the eigenvector v(λ)

corresponding to M(λ) is

v(λ) := (v1(λ), v2(λ)) = (
(d1 − d2)λ

2 + r1 + r2 − α, r2
) � (0, 0).

Hence, the conditions (A0) and (A1)(b) hold for (4.5). Take c∗ = M(λ∗)
λ∗ = infλ>0

M(λ)
λ
.

Note that h(w1) = w1e−w1 achieves its maximum at hm = 1, and is increasing on [0, hm]
and decreasing on [hm,+∞).

Theorem 4.3 Assume (4.6). The following statements hold:

(i) If K1 ≤ 1, then the conclusions of Theorems 2.9 and 2.10 are valid for (4.5).

(ii) If K1 > 1, then the conclusions of Theorem 3.6 hold true for (4.5).
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When K1 ≤ 1, system (4.5) is a cooperative system on [0,K], i.e., (A2) holds. We need
to check the condition (A3)

∗ (see Remark 2.1). For any k ∈ Z
+, ρ1, · · · , ρk > 0 and

λ1, · · · , λk ∈ [0, λ∗], denote

(z1, z2) := (
ρ1v1(λ1)+ · · · + ρkv1(λk), ρ1v2(λ1)+ · · · + ρkv2(λk)

) � (0, 0).

Consequently, (A3)
∗ is equivalent to the following two inequalities

z1[r1 − α − δz1 + r1z2] ≤ (r1 − α)z1, (4.8)

r2(1 + z2)
( − z2 + z1e−z1

) ≤ r2(z1 − z2) (4.9)

or

δz1 ≥ r1z2, (4.10)

ez1(z1 + z2
2) ≥ z1(1 + z2). (4.11)

Since for any λ ≥ 0,

v1(λ)

v2(λ)
= (d1 − d2)λ

2 + r1 + r2 − α

r2
≥ r1 + r2 − α

r2
,

we have

z1

z2
≥ r1 + r2 − α

r2
.

Note also that z1 > 0 and ez1 > 1 + z1. Thus, the following two equalities suffice to verify
(4.10) and (4.11):

δ
r1 + r2 − α

r2
≥ r1 and z1z2

2 + (
z1 − 1

2
z2
)2 + 3

4
z2

2 ≥ 0,

which are true provided that (4.6) holds.
If K1 > 1, system (4.5) is non-cooperative on [0,K]. Similar to [36,41], we define two

functions f ±(u) as follows:

f ±(w) = (
w1(r1 − α − δw1 + r1w2), r2(1 + w2)[−w2 + h±(w1)]

)
,

where

h+(w1) =
{
w1e−w1 , w1 ∈ [0, 1],
e−1, w1 > 1,

and

h−(w1) =
{
w1e−w1 , w1 ∈ [0, h0],
K +

1 e−K +
1 , w1 > h0.

Here K +
1 > K1 and h0 ∈ (0, 1] are the unique roots of the equations

δK +
1 + α − r1 − r1h+(K +

1 ) = 0 and h0e−h0 − K +
1 e−K +

1 = 0,

respectively. It is easy to verify that (A2)
′ − (A4)

′ hold with K = (
K1, K1e−K1

)
and K± =(

K ±
1 , K ±

1 e−K ±
1
)
, where K −

1 ∈ (0, K1) is the unique root of the equation

δK −
1 + α − r1 − r1h−(K −

1 ) = 0.
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Next, we check the condition (A5)
∗ (see Remark 3.1). Let

(z1, z2) := (
ρ1v1(λ1)+ · · · + ρkv1(λk), ρ1v2(λ1)+ · · · + ρkv2(λk)

) � (0, 0).

Consequently, (A5)
∗ is equivalent to the following two inequalities

z1[r1 − α − δz1 + r1z2] ≤ (r1 − α)z1, (4.12)

r2(1 + z2)
( − z2 + h+(z1)

) ≤ r2(z1 − z2). (4.13)

Note that (4.8) and (4.9) hold and h+(z1) = z1e−z1 for z1 ∈ (0, 1]. To verify the above two
inequalities, we only need to show (4.13) holds for z1 > 1, i.e.,

(1 + z2)(−z2 + e−1) ≤ z1 − z2,

that is,

e(z1 + z2
2) ≥ 1 + z2 for z1 > 1.

It suffices to show that

2(1 + z2
2) ≥ 1 + z2,

which holds obviously.

5 Conclusion and Discussion

In this paper, we establish the existence and qualitative properties of front-like entire solutions
for m-dimensional monostable cooperative reaction-diffusion systems in R

N . The same issues
for some class of monostable non-cooperative systems are also considered. The main results
are applied to some biological and epidemiological models. Though the case that the condition
(A2) does not hold is studied, our main results are invalid for some classical non-cooperative
systems, such as L-V competition system and L-V predator-prey system. Besides, uniqueness
and stability of entire solutions of diffusion systems and the continuous dependence of such
entire solutions on parameters, such as wave speeds and wave directions, seem to be very
interesting and challenging problems.

We mention that the assumption (d1, · · · , dm) � 0 := (0, · · · , 0) ∈ R
m (i.e. (1.1) is

non-degenerate) is crucial for our main results. When some but not all diffusion coefficients
are zero (i.e. (1.1) is partially degenerate), system (1.1) has weak regularity and compactness.
For example, if di = 0 for some i ∈ {1, · · · ,m}, then ui is not smooth enough with respect
to x due to zero diffusion coefficient and hence the prior estimate for ui is not valid (see
Lemma 2.6). Recently, in [44], we considered the entire solution of the reaction-diffusion
system modeling man-environment-man epidemics with bistable nonlinearity:

{
∂u(x,t)
∂t = d ∂

2u(x,t)
∂x2 − u(x, t)+ αv(x, t),

∂v(x,t)
∂t = −βv(x, t)+ g(u(x, t)).

(5.1)

To obtain the entire solution, we established the following prior estimate of solutions of
(5.1), see [44, Theorem 3.3].

Proposition 5.1 Suppose that w(x, t) = (u(x, t), v(x, t)) is a solution of (5.1) with initial
value ϕ ∈ [0,K]X , then there exists a positive constant M > 0 such that for any ϕ ∈ [0,K]X ,
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x ∈ R and t > 1,

|ut (x, t)| ≤ M, |utt (x, t)| ≤ M, |utx (x, t)| ≤ M, |ux (x, t)| ≤ M,

|uxt (x, t)| ≤ M, |uxx (x, t)| ≤ M, |uxxx (x, t)| ≤ M, |uxxt (x, t)| ≤ M,

|vt (x, t)| ≤ M, |vx (x, t)| ≤ M, |vt x (x, t)| ≤ M, |vt t (x, t)| ≤ M.

As mention above, v(x, t) in general is not C1 in x when v(0, ·) ∈ C(R; [0; K2]). Hence,
the estimates for vx , vt x and uxxx are not valid. Here, we correct this mistake. We shall prove
that v, vt and uxx possess a property which is similar to a global Lipschitz condition with
respect to x . In fact, we have the following result.

Proposition 5.2 Suppose that w(x, t) = (u(x, t), v(x, t)) is a solution of (5.1) with initial
value ϕ = (ϕ1, ϕ2) ∈ C

(
R, [0,K]), then there exists a positive constant M > 0, independent

of ϕ, such that for any x ∈ R and t > 1,∣∣ut (x, t)
∣∣, ∣∣utt (x, t)

∣∣, ∣∣utx (x, t)
∣∣, ∣∣ux (x, t)

∣∣ ≤ M,∣∣uxt (x, t)
∣∣, ∣∣uxx (x, t)

∣∣, ∣∣uxxt (x, t)
∣∣ ≤ M,∣∣vt (x, t)

∣∣, ∣∣vt t (x, t)
∣∣ ≤ M.

If, in addition, there exists a constant L ′ > 0 such that for any η > 0, supx∈R
|ϕ2(x + η)−

ϕ2(x)| ≤ L ′η, then for any η > 0,

sup
x∈R,t≥1

∣∣v(x + η, t)− v(x, t)
∣∣ ≤ M ′η, sup

x∈R,t≥1
|vt (x + η, t)− vt (x, t)| ≤ M ′η,

and

sup
x∈R,t≥1

|uxx (x + η, t)− uxx (x, t)| ≤ M ′η,

where M ′ > 0 is a constant which is independent of ϕ and η.

It turns out that the results in [44] hold for the bistable partially degenerate system (5.1).
More recently, we have extended the results to a class of two component monostable coop-
erative partially degenerate reaction-diffusion systems [47]. However, it seems difficult to
establish such results for general partially degenerate reaction-diffusion systems. Thus, an
interesting problem is to adress the entire solutions of general partially degenerate reaction-
diffusion systems.
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