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Abstract The current paper is concerned with the spectral theory, in particular, the prin-
cipal eigenvalue theory, of nonlocal dispersal operators with time periodic dependence, and
its applications. Nonlocal and random dispersal operators are widely used to model diffu-
sion systems in applied sciences and share many properties. There are also some essential
differences between nonlocal and random dispersal operators, for example, a smooth random
dispersal operator always has a principal eigenvalue, but a smooth nonlocal dispersal oper-
ator may not have a principal eigenvalue. In this paper, we first establish criteria for the
existence of principal eigenvalues of time periodic nonlocal dispersal operators with Dirich-
let type, Neumann type, or periodic type boundary conditions. It is shown that a time peri-
odic nonlocal dispersal operator possesses a principal eigenvalue provided that the nonlocal
dispersal distance is sufficiently small, or the time average of the underlying media satisfies
some vanishing condition with respect to the space variable at a maximum point or is nearly
globally homogeneous with respect to the space variable. Next we obtain lower bounds of
the principal spectrum points of time periodic nonlocal dispersal operators in terms of the
corresponding time averaged problems. Finally we discuss the applications of the established
principal eigenvalue theory to time periodic Fisher or KPP type equations with nonlocal dis-
persal and prove that such equations are of monostable feature, that is, if the trivial solution
is linearly unstable, then there is a unique time periodic positive solution which is globally
asymptotically stable.
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1 Introduction

Both random dispersal evolution equations and nonlocal dispersal evolution equations are
widely used to model diffusive systems in applied sciences. Classically, one assumes that the
internal interaction of organisms in a diffusive system is infinitesimal or the internal dispersal
is random, which leads to a diffusion operator, e.g.,�u as dispersal operator. Many diffusive
systems in real world exhibit long range internal interaction or dispersal, which can be mod-
eled by nonlocal dispersal operators such as

∫
RN κ(y − x)

(
u(t, y)− u(t, x)

)
dy, here κ(·) is

a convolution kernel supported on the ball centered at the origin with radius r , the interaction
range. As a basic technical tool for the study of nonlinear evolution equations with random
and nonlocal dispersals, it is of great importance to investigate aspects of spectral theory for
random and nonlocal dispersal operators.

The current paper is devoted to the study of principal eigenvalues of the following three
eigenvalue problems associated to nonlocal dispersal operators with time periodic depen-
dence,

{−∂t u + ν1[
∫

D κ(y − x)u(t, y)dy − u(t, x)] + a1(t, x)u = λu, x ∈ D̄
u(t + T, x) = u(t, x)

(1.1)

where D ⊂ R
N is a smooth bounded domain and a1(t, x) is a continuous function with

a1(t + T, x) = a1(t, x),
{−∂t u + ν2[

∫
D κ(y − x)(u(t, y)− u(t, x))dy] + a2(t, x)u = λu, x ∈ D̄

u(t + T, x) = u(t, x)
(1.2)

where D ⊂ R
N is as in (1.1) and a2(t, x) is a continuous function with a2(t+T, x) = a2(t, x),

and
{−∂t u + ν3[

∫
RN κ(y − x)u(t, y)dy − u(t, x)] + a3(t, x)u = λu, x ∈ R

N

u(t + T, x) = u(t, x + p j ej) = u(t, x), x ∈ R
N (1.3)

where p j > 0, ej = (δ j1, δ j2, · · · , δ j N ) with δ jk = 1 if j = k and δ jk = 0 if j �= k,
and a3(t, x) is a continuous function with a3(t + T, x) = a3(t, x + p j ej) = a3(t, x), j =
1, 2, · · · , N . κ(·) in (1.1)–(1.3) is a nonnegative C1 function with compact support, κ(0) > 0,
and

∫
RN κ(z)dz = 1.

The eigenvalue problems (1.1), (1.2), and (1.3) can be viewed as the nonlocal dispersal
counterparts of the following eigenvalue problems associated to random dispersal operators,

⎧
⎨

⎩

−∂t u + ν1�u + a1(t, x)u = λu, x ∈ D
u(t + T, x) = u(t, x), x ∈ D
u = 0, x ∈ ∂D,

(1.4)

⎧
⎨

⎩

−∂t u + ν2�u + a2(t, x)u = λu, x ∈ D
u(t + T, x) = u(t, x), x ∈ D
∂u
∂n = 0, x ∈ ∂D,

(1.5)

and
{−∂t u + ν3�u + a3(t, x)u = λu, x ∈ R

N

u(t + T, x) = u(t, x + p j ej) = u(t, x), x ∈ R
N ,

(1.6)

respectively. It is in fact proved in [29] that the principal eigenvalues of (1.4), (1.5), and
(1.6) can be approximated by the principal spectrum points of (1.1), (1.2), and (1.3) with
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properly rescaled kernels, respectively (see Definition 2.1 for the definition of principal
spectrum points of (1.1), (1.2), and (1.3)). The reader is referred to [6,7], and [29] about the
approximations of the initial value problems of the random dispersal operators associated to
(1.4), (1.5), and (1.6) by the initial value problems of the nonlocal dispersal operators with
properly rescaled kernels associated to (1.1), (1.2), and (1.3), respectively. We may hence
say that (1.1), (1.2), and (1.3) are of the Dirichlet type boundary condition, Neumann type
bounday condition, and periodic boundary condition, respectively.

The eigenvalue problems (1.4), (1.5), and (1.6), in particular, their associated principal
eigenvalue problems, are well understood. For example, it is known that there is λR,1 ∈ R

such that λR,1 is an isolated algebraically simple eigenvalue of (1.4) with a positive eigen-
function, and for any other eigenvalues λ of (1.4), Reλ ≤ λR,1 (λR,1 is called the principal
eigenvalue of (1.4)) (see [17]).

The principal eigenvalue problem for time independent nonlocal dispersal operators with
Dirichlet type, or Neumann type, or periodic boundary condition has been recently studied by
many people (see [9,15,18,22,31,30], and references therein) and is quite well understood
now. For example, among others, the following criteria for the existence of principal eigen-
values for nonlocal dispersal operators are established in [30] and [31] (see Definition 2.1
for the definition of principal eigenvalues of nonlocal dispersal operators),

(i) If a1(t, x) ≡ a1(x) (resp. a2(t, x) ≡ a2(x), a3(t, x) ≡ a3(x)) is C N and there is some
x0 ∈ Int(D) (resp. x0 ∈ Int(D), x0 ∈ R

N ) satisfying that a1(x0) = maxx∈D̄ a1(x)
(resp.−ν2

∫
D κ(y−x0)dy+a2(x0) = maxx∈D̄(−ν2

∫
D κ(y−x)dy+a2(x)), a3(x0) =

maxx∈RN a3(x)) and the partial derivatives of a1(x) (resp. −ν2
∫

D κ(y − x)dy +
a2(x), a3(x)) up to order N − 1 at x0 are zero, then (1.1) (resp. (1.2), (1.3)) admits a
principal eigenvalue.

(ii) If a1(t, x) ≡ a1(x) (resp. a2(t, x) ≡ a2(x), a3(t, x) ≡ a3(x)) and maxx∈D̄ a1(x) −
minx∈D̄ a1(x) < ν1 infx∈D̄

∫
D κ(y − x)dy (resp. maxx∈D̄ a2(x) − minx∈D̄ a2(x) <

ν2 inf x∈D̄

∫
D κ(y − x)dy, maxx∈RN a3(x) − minx∈RN a3(x) < ν3), then (1.1) (resp.

(1.2), (1.3)) admits a principal eigenvalue.
(iii) If a1(t, x) ≡ a1(x) (resp. a2(t, x) ≡ a2(x), a3(t, x) ≡ a3(x)) and κ(z) = 1

δN κ̃(
z
δ
)

for some δ > 0 and κ̃(·) with κ̃(z) ≥ 0, supp(k̃) = B(0, 1) := {z ∈ R
N | ‖z‖ < 1},∫

RN κ̃(z)dz = 1, and κ̃(·) being symmetric with respect to 0 (i.e. k̃(−z) = k̃(z)), then
(1.1) (resp. (1.2), (1.3)) admits a principal eigenvalue provided that 0 < δ 	 1.

It should be pointed out that [9] contains some similar result to (i) and [22] contains
some similar result to (iii) in the Dirichlet type boundary condition case. The work [31]
includes (i)–(iii) in the periodic boundary condition case and is also concerned with the spa-
tial spreading dynamics of nonlocal monostable equations in spatially periodic habitats. The
work [30] includes (i)–(iii) in the Dirichlet type and Nuemann type boundary condition cases
and also deals with the effects of spatial variations, dispersal rates, and dispersal distance on
the principal eigenvalues. The conditions in (i), (ii), and (iii) can be viewed as the spatial
inhomogeneity satisfying the vanishing condition (i.e. the partial derivatives up to order N −1
are zero) at some maximum point, the spatial inhomogeneity being nearly globally homo-
geneous, and the nonlocal dispersal distance being sufficiently small, respectively. It should
also be pointed out that a nonlocal dispersal operator may not have a principal eigenvalue
(see [31] for an example), which reveals some essential difference between nonlocal and
random dispersal operators. Methologically, due to the lack of regularity and compactness
of the solutions of nonlocal evolution equations, some difficulties, which do not arise in the
study of spectral theory of random dispersal operators, arise in the study of spectral theory
of nonlocal dispersal operators.
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Regarding nonlocal dispersal operators with time periodic dependence, in [21], the authors
studied the existence of principal eigenvalue of (1.1) in the case that N = 1. In [21] and
[28], the influence of temporal variation on the principal eigenvalue of (1.1) (if exists) is
investigated. In general, the understanding to the principal eigenvalue problems associated
to (1.1), (1.2), and (1.3) is very little.

The first objective of the current paper is to develop criteria for the existence of princi-
pal eigenvalues of (1.1), (1.2), and (1.3) and to explore fundamental properties of principal
eigenvalues of (1.1), (1.2), and (1.3). Many existing results on principal eigenvalues of time
independent and some special time periodic nonlocal dispersal operators are extended to
general time periodic nonlocal dispersal operators. To be a little more specific, let âi (x) be
the time average of ai (t, x) (i = 1, 2, 3), that is,

âi (x) = 1

T

T∫

0

ai (t, x)dt. (1.7)

Let s1(a1) (resp. s2(a2), s3(a3)) be the principal spectrum point (i.e. the largest real part of
the spectrum) of the spectral problem (1.1) (resp. (1.2), (1.3)) (see Definition 2.1 for detail).
s1(a1) (resp s2(a2), s3(a3)) is called the principal eigenvalue of (1.1) (resp. (1.2), (1.3)) if it
is an isolated eigenvalue with a positive eigenfunction (see Definition 2.1 again for detail).
Note that si (ai ) (i = 1, 2, 3)may not be an eigenvalue of its corresponding eigenvalue prob-
lem. Among others, the following criterion is established in this paper, which extends (i) in
the above for time independent nonlocal dispersal operators to time periodic ones,

• If â1(x) (resp. −ν2
∫

D κ(y − x)dy + â2(x), â3(x)) is in C N in x and there is some
x0 ∈ Int(D) (resp. x0 ∈ Int(D), x0 ∈ R

N ) such that â1(x0) = maxx∈D̄ â1(x) (resp.
−ν2

∫
D κ(y − x0)dy + â2(x0) = maxx∈D̄

( − ∫
D κ(y − x)dy + â2(x)

)
, â3(x0) =

maxx∈RN â3(x)) and the partial derivatives of â1(x) (resp. −ν2
∫

D κ(y − x)dy + â2(x),
â3(x)) up to order N − 1 at x0 are zero, then (1.1) (resp. (1.2), (1.3)) admits a principal
eigenvalue, i.e. s1(a1) (resp. s2(a2), s3(a3)) is the principal eigenvalue of (1.1) (resp.
(1.2), (1.3)) (see Theorem B(2) in Sect. 2).

We obtain the following result for the lower bound of si (ai ), which extends [21, Theorem
4.1] for the lower bound of s1(a1) in the case that s1(a1) is the principal eigenvalue of (1.1).

• For given 1 ≤ i ≤ 3, si (ai ) ≥ si (âi ). Moreover, if si (ai ) is the principal eigenvalue
of (1.i), then si (ai ) = si (âi ) iff ai (t, x) − âi (x) is independent of x , that is, ai (t, x) =
âi (x)+ ãi (t) for some time periodic function ãi (t) with

∫ T
0 ãi (t)dt = 0 (see Theorem C

in Sect. 2).

The reader is referred to Theorems A–C in Sect. 2 for the principal eigenvalue theories
established in this paper for general time periodic nonlocal dispersal operators.

The second objective of the current paper is to consider applications of the established
principal eigenvalue theories to the following time periodic KPP type or Fisher type equations
with nonlocal dispersal,

∂t u = ν1

⎡

⎣
∫

D

κ(y − x)u(t, y)dy − u(t, x)

⎤

⎦+ u f1(t, x, u), x ∈ D̄, (1.8)

∂t u = ν2

⎡

⎣
∫

D

κ(y − x)(u(t, y)− u(t, x))dy

⎤

⎦+ u f2(t, x, u), x ∈ D̄, (1.9)
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and
{
∂t u = ν3

[∫
RN κ(y − x)u(t, y)dy − u(t, x)

]+ u f3(t, x, u), x ∈ R
N

u(t, x + p j ej) = u(t, x), x ∈ R
N ,

(1.10)

where fi (t, x) (i = 1, 2, 3) are C1 functions, fi (t + T, x, u) = fi (t, x, u) (i = 1, 2, 3),
f3(t, x + p j ej, u) = f3(t, x, u) ( j = 1, 2, · · · , N ), and fi (t, x, u) < 0 for u 
 1 and
∂u fi (t, x, u) < 0 for u ≥ 0 (i = 1, 2, 3).

Equations (1.8), (1.9), and (1.10) are the nonlocal counterparts of the following reaction
diffusion equations,

{
∂t u = ν1�u + u f1(t, x, u), x ∈ D
u(t, x) = 0, x ∈ ∂D,

(1.11)

{
∂t u = ν2�u + u f2(t, x, u), x ∈ D
∂u
∂n = 0, x ∈ ∂D,

(1.12)

and
{
∂t u = ν3�u + u f3(t, x, u), x ∈ R

N

u(t, x + p j ej) = u(t, x), x ∈ R
N ,

(1.13)

respectively (see [29] for the approximations of the solutions of (1.11), (1.12), and (1.13) by
the solutions of (1.8), (1.9), and (1.10) with properly rescaled kernels, respectively).

Equations (1.8)–(1.10) and (1.11)–(1.13) are widely used to model population dynamics
of species exhibiting nonlocal internal interactions and random internal interactions, respec-
tively. Thanks to the pioneering works of Fisher [14] and Kolmogorov et al. [23] on the
following special case of (1.13),

∂t u = uxx + u(1 − u), x ∈ R,

(1.8)–(1.10) and (1.11)–(1.13) are referred to as Fisher type or KPP type equations.
One of the central problems for (1.8)–(1.10) and (1.11)–(1.13) is about the existence,

uniqueness, and stability of positive time periodic solutions. This problem has been exten-
sively studied and is well understood for (1.11)–(1.13). For example, it is known that (1.11)
exhibits the following monostable feature: if the trivial solution u ≡ 0 is a linearly unstable
solution of (1.11), then (1.11) has a unique stable time periodic positive solution. Again,
some difficulties, which do not arise in the study of (1.11)–(1.13), aries in the study of (1.8)–
(1.10) due to the lack of compactness and regularities of the solutions of nonlocal dispersal
evolution equations. In [33], the authors proved that time independent KPP equations with
nonlocal dispersal also exhibit monostable feature (see also [2,9] for the study of positive
stationary solutions of time independent KPP equations with nonlocal dispersal). But it is
hardly studied whether a general time periodic KPP equation with nonlocal dispersal is of the
monostable feature. In this paper, by applying the established principal eigenvalue theories
for time periodic nonlocal dispersal operators, we prove

• A time periodic KPP equations with nonlocal dispersal is of the monostable feature, that
is, if u ≡ 0 is a linearly unstable solution of a time periodic KPP equation with non-
local dispersal, then the equation has a unique stable time periodic positive solution (see
Theorem E in Sect. 2).

Nonlocal evolution equations have been attracting more and more attention due to the
presence of nonlocal interaction in many diffusive systems in applied sciences. The reader is
referred to [5,8,10,11,13,15,16,19,20,22,24–26,28,32], etc., for the study of various aspects
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of evolution equations with nonlocal dispersal. The reader is also referred to [1,3,34], etc.
for the study of evolution equations with nonlocal reaction.

The rest of the paper is organized as follows. In Sect. 2, we introduce standing notations
and definitions and state the main results of the paper. We present in Sect. 3 some preliminary
materials to be used in the proofs of the main results. The main results are proved in Sects. 4
and 5.

2 Notations, Definitions, and Main Results

In this section, we first introduce the standing notations to be used throughout the paper and
the definitions of principal spectrum points and principal eigenvalues of (1.1), (1.2), and
(1.3). We then state the main results of the paper.

Let

X1 = X2 = {
u ∈ C(R × D̄,R) | u(t + T, x) = u(t, x)

}

with norm ‖u‖Xi = supt∈R,x∈D̄ |u(t, x)| (i = 1, 2),

X3 =
{

u ∈ C(R × R
N ,R) | u(t + T, x) = u(t, x + pi ei) = u(t, x)

}

with norm ‖u‖X3 = supt∈R,x∈RN |u(t, x)|, and

X+
i = {u ∈ Xi | u ≥ 0}

(i = 1, 2, 3). For given ai ∈ Xi , let Li (ai ) : D(Li (ai)) ⊂ Xi → Xi be defined as follows,

(L1(a1)u)(t, x) = −∂t u(t, x)+ ν1

⎡

⎣
∫

D

κ(y − x)u(t, y)dy − u(t, x)

⎤

⎦+ a1(t, x)u(t, x),

(L2(a2)u)(t, x) = −∂t u(t, x)+ ν2

⎡

⎣
∫

D

κ(y − x)(u(t, y)− u(t, x))dy

⎤

⎦+ a2(t, x)u(t, x),

and

(L3(a3)u)(t, x) = −∂t u(t, x)+ ν3

⎡

⎢
⎣

∫

RN

κ(y − x)u(t, y)dy − u(t, x)

⎤

⎥
⎦+ a3(t, x)u(t, x).

Definition 2.1 Let

si (ai ) = sup{Reλ | λ ∈ σ(Li (ai ))}
for i = 1, 2, 3. si (ai ) is called the principal spectrum point of Li (ai ) (i = 1, 2, 3). If si (ai )

is an isolated eigenvalue of Li (ai ) with a positive eigenfunction φ (i.e. φ ∈ X+
i ), then si (ai )

is called the principal eigenvalue of Li (ai ) or it is said that Li (ai ) has a principal eigenvalue
(i = 1, 2, 3).

Remark 2.1 If si (ai ) is the principal eigenvalue of Li (ai ), then it is geometrically simple
(see Proposition 3.9).

123



J Dyn Diff Equat (2012) 24:927–954 933

For given 1 ≤ i ≤ 3 and ai ∈ Xi , let âi be as in (1.7). Let

bi (x) =
{−νi for i = 1, 3

−ν2
∫

D κ(y − x)dy for i = 2.
(2.1)

Let

Di =
{

D̄ for i = 1, 2
[0, p1] × [0, p2] × · · · × [0, pN ] for i = 3.

(2.2)

Our main results on the principal spectrum points and principal eigenvalues of nonlocal
dispersal operators can then be stated as follows.

Theorem A (Necessary and sufficient condition)
Let 1 ≤ i ≤ 3 be given. If λ ∈ R is an eigenvalue of Li (ai ) with a positive eigenfunc-

tion φ(t, x), then λ = si (ai ) > maxx∈Di (bi (x)+ âi (x)) and λ is the principal eigenvalue of
Li (ai ). Conversely, if si (ai ) > maxx∈Di (bi (x)+âi (x)), then si (ai ) is the principal eigenvalue
of Li (ai ) (hence si (ai ) is the principal eigenvalue of Li (ai ) iff si (ai ) > maxx∈Di (bi (x) +
âi (x))).

Theorem B (Sufficient conditions)
Let 1 ≤ i ≤ 3 be given.

(1) The principal eigenvalue of Li (ai ) exists if bi (x) + âi (·) is C N , there is some x0 ∈
Int(Di ) in the case i = 1, 2 and x0 ∈ Di in the case i = 3 satisfying that bi (x0) +
âi (x0) = maxx∈Di (bi (x) + âi (x)), and the partial derivatives of bi (x) + âi (x) up to
order N − 1 at x0 are zero.

(2) The principal eigenvalue of Li (ai ) exists if maxx∈Di âi (x) − minx∈Di âi (x) < νi

inf x∈Di

∫
Di
κ(y − x)dy in the case i = 1, 2 and maxx∈Di âi (x)− minx∈Di âi (x) < νi

in the case i = 3.
(3) Suppose that κ(z) = 1

δN κ̃(
z
δ
) for some δ > 0 and κ̃(·) with κ̃(z) ≥ 0, supp(κ̃) =

B(0, 1) := {z ∈ R
N | ‖z‖ < 1}, ∫

RN κ̃(z)dz = 1, and κ̃(·) being symmetric with
respect to 0. Then the principal eigenvalue of Li (ai ) exists for 0 < δ 	 1.

Theorem C (Influence of temporal variation)
For given 1 ≤ i ≤ 3, si (ai ) ≥ si (âi ) ≥ maxx∈Di (bi (x) + âi (x)). Moreover, if si (ai )

is the principal eigenvalue of Li (ai ), then si (ai ) = si (âi ) if and only if ai (t, x) − âi (x) is
independent of x.

Remark 2.2 If ai (t, x) − âi (x) is independent of x , then si (ai ) = si (âi ) no matter si (ai )

is the principal eigenvalue of Li (ai ) or not, which follows from the proof of Theorem C in
Sect. 4. Conversely, if si (ai ) = si (âi ) and si (ai ) is not the principal eigenvalue of Li (ai ),
then it may not be true that ai (t, x)− âi (x) is independent of x (see Example 4.1 in Sect. 4).

Corollary D If si (âi ) is the principal eigenvalue of Li (âi ), then si (ai ) is the principal eigen-
value of Li (ai ).

Proof Assume that si (âi ) is the principal eigenvalue of Li (âi ). Then by Theorem A,

si (âi ) > max
x∈Di

(
bi (x)+ âi (x)

)
.

This together with Theorem C implies that

si (ai ) > max
x∈Di

(
bi (x)+ âi (x)

)
.

Then by Theorem A again, si (ai ) is the principal eigenvalue of Li (ai ). �
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Observe that when ai (t, x) ≡ ai (x) (i = 1, 2, 3), Theorems A and B recover the existing
results for time independent nonlocal dispersal operators (see [30,31], and references therein).
The conditions in Theorem B (1)–(3) can be viewed as the time average of the underlying
time periodic medium satisfying the vanishing condition with respect to the space variable
(i.e. the partial derivatives of bi (x) + âi (x) up to order N − 1 are zero) at some maximum
point of bi (x) + âi (x), the time average of the underlying time periodic medium is nearly
globally spatially homogeneous, and the nonlocal dispersal distance being sufficiently small,
respectively. Theorem B (1) extends a result in [21] for the case i = 1 and N = 1 to time
periodic nonlocal dispersal operators in higher space dimension domains. In the case i = 1
and both si (ai ) and si (âi ) are eigenvalues of Li (ai ) and Li (âi ), it is shown in [21] that
si (ai ) ≥ si (âi ). Theorem C extends this result to general time periodic nonlocal dispersal
operators and shows that temporal variation does not reduce the principal spectrum point of
a general time periodic nonlocal dispersal operator.

Theorems A–C and Corollary D establish some fundamental principal eigenvalue theory
for general time periodic nonlocal dispersal operators and provide a basic tool for the study
of nonlinear evolution equations with nonlocal dispersal. In the following, we consider their
applications to the study of the asymptotic dynamics of (1.8)–(1.10).

Let

X1 = X2 = {u ∈ C(D̄,R)}
with norm ‖u‖Xi = supx∈D̄ |u(x)| (i = 1, 2),

X3 =
{

u ∈ C
(
R

N ,R
)

| u(x + p j ej) = u(x)
}

with norm ‖u‖X3 = supx∈RN |u(x)|, and

X+
i = {u ∈ Xi | u ≥ 0}, i = 1, 2, 3,

X++
i =

{ {u ∈ X+
i | u(x) > 0 ∀ x ∈ D̄}, i = 1, 2

{u ∈ X+
i | u(x) > 0 ∀x ∈ R

N }, i = 3.

By general semigroup theory (see [27]), for any s ∈ R and u0 ∈ X1 (resp. u0 ∈
X2, u0 ∈ X3), (1.8) (resp. (1.9), (1.10)) has a unique (local) solution u1(t, x; s, u0) (resp.
u2(t, x; s, u0),

u3(t, x; s, u0)) with u1(s, x; s, u0) = u0(x) (reps. u2(s, x; s, u0) = u0(x), u3(s, x; s, u0) =
u0(x)). Moreover, if u0 ∈ X+

i , then ui (t, x; s, u0) exists and ui (t, ·; s, u0) ∈ X+
i for all

t ≥ s (i = 1, 2, 3) (see Proposition 3.1).

Theorem E (Existence, uniqueness, and stability of time periodic positive solutions)
Let ai (t, x) = fi (t, x, 0) (i = 1, 2, 3). If s1(a1) > 0 (resp. s2(a2) > 0, s3(a3) > 0),

then (1.8) (resp. (1.9), (1.10)) has a unique time periodic solution u∗
1(t, ·) ∈ X++

1 (resp.
u∗

2(t, ·) ∈ X++
2 , u∗

3(t, ·) ∈ X++
3 ). Moreover, u∗

i (·, ·) is locally stable and is also globally
asymptotically stable in the sense that for any u0 ∈ X+

i \ {0},
‖ui (t, ·; 0, u0)− u∗

i (t, ·)‖Xi → 0

as t → ∞ (i = 1, 2, 3).

Corollary F Let ai (t, x) = fi (t, x, 0) (i = 1, 2, 3). If s1(â1) > 0 (resp. s2(â2) > 0,
s3(â3) > 0), then (1.8) (resp. (1.9), (1.10)) has a unique time periodic solution u∗

1(t, ·) ∈ X++
1

(resp. u∗
2(t, ·) ∈ X++

2 , u∗
3(t, ·) ∈ X++

3 ). Moreover, u∗
i (·, ·) is locally stable and is also glob-

ally asymptotically stable in the sense that for any u0 ∈ X+
i \ {0},
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‖ui (t, ·; 0, u0)− u∗
i (t, ·)‖Xi → 0

as t → ∞ (i = 1, 2, 3).

Proof Assume s1(â1) > 0 (resp. s2(â2) > 0, s3(â3) > 0). By Theorem C, s1(a1) > 0 (resp.
s2(a2) > 0, s3(a3) > 0). The corollary then follows from Theorem E. �

3 Preliminary

In this section, we present some basic properties for solutions of nonlocal evolution equations
and some basic properties of principal spectrum points of nonlocal dispersal operators.

Throughout this section, i denotes any integer with 1 ≤ i ≤ 3, unless specified otherwise
and Xi , X+

i , and Xi , X+
i , X++

i are as in Sect. 2. Di is as in (2.2). For u1, u2 ∈ Xi , we define

u1 ≤ u2 (u1 ≥ u2) if u2 − u1 ∈ X+
i (u1 − u2 ∈ X+

i ).

For u1, u2 ∈ Xi , we define

u1 ≤ u2 (u1 ≥ u2) if u2 − u1 ∈ X+
i (u1 − u2 ∈ X+

i ),

and

u1 	 u2 (u1 
 u2) if u2 − u1 ∈ X++
i (u1 − u2 ∈ X++

i ).

3.1 Basic Properties for Solutions of Nonlocal Evolution Equations

In this subsection, we present some basic properties for solutions of (1.8)–(1.10) and linear
nonlocal evolution equations,

∂t u = ν1

⎡

⎣
∫

D

κ(y − x)u(t, y)dy − u(t, x)

⎤

⎦+ a1(t, x)u, x ∈ D̄, (3.1)

∂t u = ν2

⎡

⎣
∫

D

κ(y − x)(u(t, y)− u(t, x))dy

⎤

⎦+ a2(t, x)u, x ∈ D̄, (3.2)

and

∂t u = ν3

⎡

⎢
⎣

∫

RN

κ(y − x)u(t, y)dy − u(t, x)

⎤

⎥
⎦+ a3(t, x)u, x ∈ R

N , (3.3)

where ai ∈ Xi (i = 1, 2, 3).
As in Sect. 2, u1(t, x; s, u0) (resp. u2(t, x; s, u0), u3(t, x; s, u0)) denotes the solution

of (1.8) (resp. (1.9), (1.10)) with u1(s, ·; s, u0) = u0(·) ∈ X1 (resp. u2(s, ·; s, u0) =
u0(·) ∈ X2, u3(s, ·; s, u0) = u0(·) ∈ X3). By general semigroup theory, (3.1) (resp.
(3.2), (3.3)) generates evolution families {
1(t, s; a1)} (resp. {
2(t, s; a2)}, {
3(t, s; a3)})
on X1 (resp. X2, X3), that is, for any u0 ∈ X1 (resp. u0 ∈ X2, u0 ∈ X3), u(t, x; s, u0) :=
(
1(t, s; a1)u0)(x) (resp. u(t, x; s, u0) := (
2(t, s; a2)u0)(x), u(t, x; s, u0) := (
3(t, s;
a3)u0)(x)) is the solution of (3.1) (resp. (3.2), (3.3)) with u(s, x; s, u0) = u0(x).
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Definition 3.1 A continuous function u(t, x) on [0, τ ) × D̄ is called a super-solution (or
sub-solution) of (1.8) if for any x ∈ D̄, u(t,x) is differentiable on [0, τ ) and satisfies that for
each x ∈ D̄,

∂u

∂t
≥ (or ≤)ν1

⎡

⎣
∫

D

κ(y − x)u(t, y)dy − u(t, x)

⎤

⎦+ u(t, x) f1(t, x, u)

for t ∈ [0, τ ).
Super-solutions and sub-solutions of (1.9), (1.10), and (3.1)–(3.3) are defined in an anal-

ogous way.

Proposition 3.1 (Comparison principle)

(1) If u1(t, x) and u2(t, x) are bounded sub- and super-solution of (3.1) (resp. (3.2), (3.3))
on [0, τ ), respectively, and u1(0, ·) ≤ u2(0, ·), then u1(t, ·) ≤ u2(t, ·) for t ∈ [0, τ ).

(2) If u1(t, x)and u2(t, x)are bounded sub- and super-solutions of (1.8) (resp. (1.9), (1.10))
on [0, τ ), respectively, and u1(0, ·) ≤ u2(0, ·), then u1(t, ·) ≤ u2(t, ·) for t ∈ [0, τ ).

(3) Given 1 ≤ i ≤ 3, for every u0 ∈ X+
i , ui (t, x; s, u0) exists for all t ≥ s.

Proof It follows from the arguments in [31, Proposition 2.1]. �
Proposition 3.2 (Strong monotonicity) Let 1 ≤ i ≤ 3 be given.

(1) If u1, u2 ∈ Xi , u1 ≤ u2 and u1 �= u2, then 
i (t, s; ai )u1 	 
i (t, s; ai )u2 for all
t > s.

(2) If u1, u2 ∈ Xi , u1 ≤ u2 and u1 �= u2, then ui (t, ·; s, u1) 	 ui (t, ·; s, u2) for every
t > s at which both ui (t, ·; s, u1) and ui (t, ·; s, u2) exist.

Proof It follows from the arguments in [31, Proposition 2.2]. �
For simplicity in notation, put


i (T ; ai ) = 
i (T, 0; ai ), i = 1, 2, 3.

Let r(
i (T ; ai )) be the spectral radius of 
i (T ; ai ) (i = 1, 2, 3).

Proposition 3.3 For given 1 ≤ i ≤ 3,

ln r(
i (T ; ai ))

T
= lim sup

t−s→∞
ln ‖
i (t, s; ai )‖

t − s
.

Proof First, by (
i (T ; ai ))
n = 
i (nT, 0; ai ), it is clear that

ln r(
i (T ; ai ))

T
=

ln
{

limn→∞
(
‖(
i (T ; ai ))

n‖
)1/n}

T
≤ lim sup

t−s→∞
ln ‖
i (t, s; ai )‖

t − s
.

Next, for any ε > 0, there is K ≥ 1 such that
∥
∥(
i (T ; ai ))

n
∥
∥ = ‖
i (nT, 0; ai )‖ ≤ (r(
i (T ; ai ))+ ε)n ∀ n ≥ K .

Note that there is M > 0 such that

‖
i (t, s; ai )‖ ≤ M ∀t > s, t − s < T .
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For any s < t with t − s ≥ (K + 2)T , let n1, n2 ∈ Z be such that 0 ≤ n1T − s < T and
0 ≤ t − n2T < T . Then

n2 − n1 ≥ K

and

‖
i (t, s; ai )‖ = ‖
i (t, n2T ; ai ) ◦
i (n2T, n1T ; ai ) ◦
i (n1T, s; ai )‖
≤ ‖
i (t, n2T ; ai )‖ · ‖
i ((n2 − n1)T, 0; ai )‖ · ‖
i (n1T, s; ai )‖
≤ M2(r(
i (T ; ai ))+ ε)n2−n1 .

This implies that

ln ‖
i (t, s; ai )‖
t − s

≤ ln M2 + (n2 − n1) ln(r(
i (T ; ai ))+ ε)

(n2 − n1)T

and hence

lim sup
t−s→∞

ln ‖
i (t, s; ai )‖
t − s

≤ ln(r(
i (T ; ai ))+ ε)

T
.

Let ε → 0, we have

lim sup
t−s→∞

ln ‖
i (t, s; ai )‖
t − s

≤ ln r(
i (T ; ai ))

T
.

�
3.2 Basic Properties of Principal Spectrum Points

In this subsection, we present some basic properties of principal spectrum points of nonlocal
dispersal operators.

First of all, let Ki : Xi → Xi and Hi (ai ) : D(Hi (ai )) ⊂ Xi → Xi be as follows,

(K1u)(t, x) = (K2u)(t, x) =
∫

D

κ(y − x)u(t, y)dy,

(K3u)(t, x) =
∫

RN

κ(y − x)u(t, y)dy,

(H1(a1)u)(t, x) = −∂t u(t, x)− ν1u(t, x)+ a1(t, x)u(t, x),

(H2(a2)u)(t, x) = −∂t u(t, x)− ν2

∫

D

κ(y − x)dyu(t, x)+ a2(t, x)u(t, x),

and

(H3(a3)u)(t, x) = −∂t u(t, x)− ν3u(t, x)+ a3(t, x)u(t, x).

Then

Li (ai )u = (νi Ki + Hi (ai ))u, i = 1, 2, 3.

We denote I as an identity map from Xi to Xi and may write α I u as αu and α I − Hi (ai )

as α − Hi (ai ), etc.. If no confusion occurs, we may write Li (ai ) and Hi (ai ) as Li and Hi ,
respectively.
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Observe that if α ∈ C is such that (α − Hi )
−1 exists, then

(νi Ki + Hi )u = αu

has nontrivial solutions in Xi ⊕ iXi is equivalent to

νi Ki (α − Hi )
−1v = v

has nontrivial solutions in Xi ⊕ iXi , where

Xi ⊕ iXi = {u + iv | u, v ∈ Xi }.
Let

λi (x) = bi (x)+ âi (x), (3.4)

where âi (·) and bi (·) are as in (1.7) and (2.1), respectively, and

λi,max = max
x∈Di

λi (x), λi,min = min
x∈Di

λi (x) (3.5)

for i = 1, 2, 3.

Proposition 3.4 Let 1 ≤ i ≤ 3 be given. [λi,min, λi,max] ⊂ σ(Hi ).

Proof It follows from the arguments in [21, Lemma 3.7]. For the reader’s convenience, we
provide a proof in the following.

Fix any x0 ∈ Di . By Floquet theory for time periodic ordinary differential equations, the
equation

φ̇ = bi (x0)φ + ai (t, x0)φ − λi (x0)φ (3.6)

has a nontivial solution φ∗(t) with φ∗(t + T ) = φ∗(t). Similarly, the equation

ψ̇ = −bi (x0)ψ − ai (t, x0)ψ + λi (x0)ψ (3.7)

has a nontivial solution ψ∗(t) with ψ∗(t + T ) = ψ∗(t).
Assume that λi (x0) ∈ ρ(Hi ). Then for any v ∈ Xi with v(t, x) ≡ v(t), there is a unique

u(·, ·; v) ∈ Xi such that

∂t u(t, x; v) = bi (x)u(t, x; v)+ ai (t, x)u(t, x; v)− λi (x0)u(t, x; v)+ v(t) (3.8)

This implies that

∂t u(t, x0;ψ∗) = bi (x0)u(t, x0;ψ∗)+ ai (t, x0)u(t, x0;ψ∗)− λi (x0)u(t, x0;ψ∗)
+ψ∗(t). (3.9)

Put

φ̃∗(t) = u(t, x0;ψ∗).

By (3.7) and (3.9),

T∫

0

ψ∗(t)ψ∗(t)dt =
T∫

0

[
dφ̃∗(t)

dt
− bi (x0)φ̃

∗(t)− ai (t, x0)φ̃
∗(t)+ λi (x0)φ̃

∗(t)
]

ψ∗(t)dt

=
T∫

0

[

−dψ∗(t)
dt

− bi (x0)ψ
∗(t)− ai (t, x0)ψ

∗(t)+ λi (x0)ψ
∗(t)

]

φ̃∗(t)dt

= 0,
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which is a contradiction. Therefore λi (x0) ∈ σ(Hi ) and the proposition follows. �

Proposition 3.5 Let 1 ≤ i ≤ 3 be given. For any α ∈ C with Re α > λi,max, (α − Hi )
−1

exists. Moreover,

(
(α − Hi )

−1v
)
(t, x) ≥ M

α − λi (x)
v(x)

for any λi,max < α ≤ λi,max + 1 and any v ∈ X+
i with v(t, x) ≡ v(x), where

M = inf
s≤t≤s+T,s,t∈R

exp

⎛

⎝
t∫

s

(

min
x∈Di

(bi (x)+ ai (τ, x))− λi,max − 1

)

dτ

⎞

⎠ .

Proof First of all, by Floquet theory for periodic ordinary differential equations, for any
α ∈ C with Re α > λi,max, (α − Hi )

−1 exists. Moreover, for any v ∈ Xi ⊕ iXi , we have

(
(α − Hi )

−1v
)
(t, x) =

t∫

−∞
exp

⎛

⎝
t∫

s

(bi (x)+ ai (τ, x)− α)v(τ, x)dτ

⎞

⎠ ds.

Hence for any v ∈ Xi with v(t, x) ≡ v(x), we have

(
(α − Hi )

−1v
)
(t, x) =

⎧
⎨

⎩

t∫

−∞
exp

⎛

⎝
t∫

s

(bi (x)+ ai (τ, x)− α)dτ

⎞

⎠ ds

⎫
⎬

⎭
v(x).

If λi,max < α ≤ λi,max + 1, then

t∫

−∞
exp

⎛

⎝
t∫

s

(bi (x)+ ai (τ, x)− α)dτ

⎞

⎠ ds ≥ M

α − λi (x)
,

where

M = inf
s≤t≤s+T,s,t∈R

exp

⎛

⎝
t∫

s

(

min
x∈Di

(bi (x)+ ai (τ, x))− λi,max − 1

)

dτ

⎞

⎠

(see the arguments of [21, Lemma 3.6]). It then follows that for any λi,max < α ≤ λi,max + 1
and v ∈ X+

i with v(t, x) ≡ v(x),

(
(α − Hi )

−1v
)
(t, x) ≥ M

α − λi (x)
v(x).

The proposition is thus proved. �

Proposition 3.6 Let 1 ≤ i ≤ 3 be given. Hi − maxx∈Di ,t∈R

(
bi (x) + ai (t, x)

)
generates

a positive semigroup of contractions on Xi and for any α ∈ C with Re α > λi,max,

νi Ki (α − Hi )
−1 is a compact operator on Xi ⊕ iXi .

Proof First, by the arguments in [21, Lemma 3.4], Hi − maxx∈Di ,t∈R

(
bi (x) + ai (t, x)

)

generates a positive semigroup of contractions on Xi . By Proposition 3.5, for any α with
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Re α > λi,max, (α− Hi )
−1 exists. Moreover, by the arguments of Proposition 3.5, for any α

with Re α > λi,max and any v ∈ Xi ⊕ iXi ,
(
νi Ki (α − Hi )

−1v
)
(t, x)

= νi

∫

D̃

⎧
⎨

⎩
k(y − x)

t∫

−∞
exp

⎛

⎝
t∫

s

(bi (y)+ ai (τ, y)− α)v(τ, y)dτ

⎞

⎠ ds

⎫
⎬

⎭
dy,

where D̃ = D in the case i = 1, 2 and D̃ = R
N in the case i = 3. It then follows that for any

bounded subset E ⊂ Xi ⊕ iXi , νi Ki (α− Hi )
−1 E is a relatively compact subset of Xi ⊕ iXi

and hence νi Ki (α − H)−1 is a compact operator on Xi ⊕ iXi . �
Proposition 3.7 For given 1 ≤ i ≤ 3, si (ai ) > λi,max iff there is α > λi,max such that
r(νi Ki (α− Hi )

−1) > 1, where r(νi Ki (α− Hi )
−1) is the spectral radius of νi Ki (α− Hi )

−1.

Proof By Propositions 3.4 and 3.5,

λi,max = sup σ(Hi ).

By Proposition 3.6, νi Ki (α− Hi )
−1 is a compact operator for any α ∈ C with Re α > λi,max.

It then follows from [4, Theorem 2.2] that si (ai ) > λi,max iff there is α > λi,max such that
r(νi Ki (α − Hi )

−1) > 1. �
Proposition 3.8 For given 1 ≤ i ≤ 3, if there is α0 > λi,max such that r(νi Ki (α0 − H)−1) >

1, then si (ai ) > λi,max, r(νi Ki (si (ai )− H)−1) = 1, and si (ai ) is an isolated eigenvalue of
νi Ki + Hi of finite multiplicity with a positive eigenfunction.

Proof Suppose that there is α0 > λi,max such that r(νi Ki (α0 − H)−1) > 1. Then by Prop-
osition 3.7, si (ai ) > λi,max. Moreover, by [4, Theorem 2.2], r(νi Ki (si (ai ) − H)−1) =
1, and si (ai ) is an isolated eigenvalue of νi Ki + Hi of finite multiplicity with a positive
eigenfunction. �
Proposition 3.9 For given 1 ≤ i ≤ 3, if λ ∈ R is an eigenvalue of Li (ai ) with a positive
eigenfunction, then it is geometrically simple.

Proof Suppose that φ(t, x) is a positive eigenfunction of Li associated with λ. By Proposi-
tion 3.2, φ(t, x) > 0 for t ∈ R and x ∈ D̄. Assume that ψ(t, x) is also an eigenfunction of
Li associated with λ. Then there is a ∈ R such that w(t, x) = φ(t, x)− aψ(t, x) satisfies

w(t, x) ≥ 0 ∀t ∈ R, x ∈ D̄ and w(t0, x0) = 0

for some t0 ∈ R and x0 ∈ D̄. By Proposition 3.2 again, w(t, x) ≡ 0 and then φ(t, x) =
aψ(t, x). This implies that λ is geometrically simple. �
Proposition 3.10 For 1 ≤ i ≤ 3, si (ai ) = ln r(
i (T ;ai ))

T .

Proof By the arguments in [21, Proposition 2.5 and Theorem 3.2],

si (ai ) = lim sup
t−s→∞

ln ‖
i (t, s; ai )‖
t − s

.

By Proposition 3.3,

lim sup
t−s→∞

ln ‖
i (t, s; ai )‖
t − s

= ln r(
i (T ; ai ))

T
.

The proposition thus follows. �
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Proposition 3.11 For 1 ≤ i ≤ 3, if an
i ∈ Xi and an

i → ai in Xi as n → ∞, then

si
(
an

i

) → si (ai ) as n → ∞.

Proof It follows from the arguments in [21, Proposition 2.6]. �

4 Principal Eigenvalues of Nonlocal Dispersal Operators

In this section, we investigate the existence and lower bounds of principal eigenvalues of
nonlocal dispersal operators with time periodic dependence and prove Theorems A–C.

First of all, we prove an important technical lemma, which will also be used in next section.

Lemma 4.1 For any ai ∈ Xi and any ε > 0, there is ai,ε ∈ Xi satisfying that

‖ai − ai,ε‖Xi < ε,

bi + âi,ε is C N , bi + âi,ε attains its maximum at some point x0 ∈ Int(Di ), and the partial

derivatives of bi + âi,ε up to order N − 1 at x0 are zero, where âi,ε(x) = 1
T

∫ T
0 ai,ε(t, x)dt.

Proof We prove the case i = 1 or 2. The case i = 3 can be proved similarly.
First, let x̃0 ∈ Di be such that

λi (x̃0) = max
x∈Di

λi (x).

For any ε > 0, there is x̃ε ∈ Int(Di ) such that

λi (x̃0)− λ(x̃ε) < ε. (4.1)

Let σ̃ > 0 be such that

B(x̃ε, σ̃ ) ⊂⊂ Di ,

where B(x̃ε, σ̃ ) denotes the open ball with center x̃ε and radius σ̃ .
Note that there is h̃i ∈ C(Di ) such that 0 ≤ h̃i (x) ≤ 1, h̃i (x̃ε) = 1, and supp(h̃i ) ⊂

B(x̃ε, σ̃ ). Let

ãi,ε(t, x) = ai (t, x)+ εh̃i (x)

and

λ̃i,ε(x) = bi (x)+ âi (x)+ εh̃i (x).

Then ãi,ε and λ̃i,ε are continuous on Di ,

‖ãi,ε − ai‖ ≤ ε (4.2)

and λ̃i,ε attains its maximum in Int(Di ).
Let D̃i ⊂ R

N be such that Di ⊂⊂ D̃i . Note that λ̃i,ε can be continuously extended to
D̃i . Without loss of generality, we may then assume that λ̃i,ε is a continuous function on D̃i

and assume that x0 ∈ Int(Di ) is such that λ̃i,ε(x0) = supx∈D̃i
λ̃i,ε(x) (since λ̃i,ε attains its

maximum in Int(Di )).
Observe that there is σ > 0 and λ̄i,ε ∈ C(D̃i ) such that B(x0, σ ) ⊂⊂ Di ,

0 ≤ λ̄i,ε(x)− λ̃i,ε(x) ≤ ε ∀ x ∈ D̃i , (4.3)

λ̄i,ε(x) = λ̃i,ε(x0) ∀ x ∈ B(x0, σ ),
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and

λ̄i,ε(x) ≤ λ̃i,ε(x0) ∀x ∈ D̃i .

Let

η(x) =
{

C exp
(

1
‖x‖2−1

)
if ‖x‖ < 1

0 if ‖x‖ ≥ 1,

where C > 0 is such that
∫

RN η(x)dx = 1. For given δ > 0, set

ηδ(x) = 1

δN
η
( x

δ

)
.

Let

λi,ε,δ(x) =
∫

D̃i

ηδ(y − x)λ̄i,ε(y)dy.

By [12, Theorem 6, Appendix C], λi,ε,δ is in C∞(D̃i ) and when 0 < δ 	 1,
∣
∣λi,ε,δ(x)− λ̄i,ε(x)

∣
∣ < ε ∀ x ∈ Di .

It is not difficulty to see that for 0 < δ 	 1,

λi,ε,δ(x) = λ̄i,ε(x0) ∀x ∈ B(x0, σ/2)

and

λi,ε,δ(x) ≤ λ̄i,ε(x0) ∀x ∈ D̃i .

Fix 0 < δ 	 1. Let

λi,ε(x) = λi,ε,δ(x).

Then λi,ε attains its maximum at some x0 ∈ Int(Di ), and the partial derivatives of λi,ε up to
order N − 1 at x0 are zero. Let

ai,ε = ãi,ε + λi,ε − λ̃i,ε .

Then ai,ε ∈ Xi ,

‖ai − ai,ε‖ ≤ ‖ai − ãi,ε‖ + ‖λi,ε − λ̄i,ε‖ + ‖λ̄i,ε − λ̃i,ε‖ < 3ε

and

bi (x)+ âi,ε(x) = λi,ε(x).

Therefore, bi + âi,ε is C N , attains its maximum at some point x0 ∈ Int(D), and the partial
derivatives of bi + âi,ε up to order N − 1 at x0 are zero. The lemma is thus proved. �
Proof of Theorem A First of all, assume that λ ∈ R is an eigenvalue of Li (ai )with a positive
eigenfunction φ(t, x). We first prove that si (ai ) = λ. By direct computation, we have

(

i (t, 0; ai )φ(0, ·)

)
(t, x) = eλtφ(t, x).

By Proposition 3.2, we have

φ(t, x) > 0 ∀ t ∈ R, x ∈ Di .
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Then for any u0 ∈ X+
i ,

u0(x) ≤ M0φ(0, x) ∀ x ∈ Di

where M0 = ‖u0‖
minx∈Di φ(0,x)

. It then follows that


i (t, 0; ai )u0 ≤ M0
i (t, 0;φ(0, ·)) = M0eλtφ(t, ·) ∀ t > 0.

This together with Proposition 3.10 implies that

si (ai ) = λ.

We now prove that si (ai ) > maxx∈Di (bi (x)+ âi (x)) and si (ai ) is the principal eigenvalue
of Li (ai ) for the case i = 1. Other cases can be proved similarly. Observe that

−φt (t, x)

φ(t, x)
+ ν1

∫
D κ(y − x)φ(t, y)dy

φ(t, x)
− ν1 + a1(t, x) = s1(a1) ∀x ∈ D̄, t ∈ R.

This implies that

s1(a1) = −ν1 + â1(x)+ ν1

T

T∫

0

∫
D κ(y − x)φ(t, y)dy

φ(t, x)
dt ∀x ∈ D̄

and hence

s1(a1) > −ν1 + max
x∈D̄

â1(x)

(

= max
x∈D1

(b1(x)+ â1(x)) = λ1,max

)

.

By Propositions 3.7 and 3.8, s1(a1) is the principal eigenvalue of L1(a1).
Conversely, assume that si (ai ) > maxx∈Di (bi (x)+ âi (x))(= λi,max). By Propositions 3.7

and 3.8, si (ai ) is the principal eigenvalue of Li (ai ). �
Next, we prove Theorem B(1).

Proof of Theorem B (1) We prove the case that i = 2. The other cases can be proved simi-
larly. By Proposition 3.5, there is M > 0 such that for any α > λ2,max with α < λ2,max + 1,

(
(α − H2)

−1v
)
(t, x) ≥ M

α − λ2(x)
v(x)

where v(t, x) ≡ c(x) � 0. This implies that

(
ν2 K2(α − H2)

−1v
)
(t, x) ≥

∫

D

ν2 Mκ(y − x)

α − λ2(y)
v(y)dy.

By the arguments in [31, Theorem B (2)], for 0 < α − λ2,max 	 1, there is v(x) ≥ 0 such
that

ν2 K2(α − H2)
−1v > v.

Hence there is ε > 0 such that

ν2 K2(α − H2)
−1v ≥ (1 + ε)v

and then
(
ν2 K2(α − H2)

−1)n v ≥ (1 + ε)nv ∀ n ≥ 1.
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This implies that r(ν2 K2(α− H2)
−1) > 1. By Proposition 3.8, s2(a2) is the principal eigen-

value of L2(a2). �
Before proving Theorem B (2) and (3), we first prove Theorem C.

Proof of Theorem C We prove the case i = 2. Other cases can be proved similarly.
First, we prove

s2(a2) ≥ s2(â2) ≥ λ2,max. (4.4)

In the case that both L2(a2) and L2(â2) have principal eigenvalues, the first inequality in
(4.4) follows from the arguments in [21, Theorem 4.1]. Regarding the second inequality, by
Proposition 3.4, λ2,max ∈ σess(H2(â2)) (σess(·) denotes the essential spectrum of an opera-
tor). Note that K2 is a compact operator on X2. Hence λ2,max ∈ σess(ν2 K2 + H2(â2)). This
implies that s2(â1) ≥ λ2,max. Hence (4.4) holds.

In general, s2(a2) (resp. s2(â2)) may not be the principal eigenvalue of L2(a2) (resp.
L2(â2)). By Lemma 4.1 and Theorem B (1), for any ε > 0, there is a2,ε ∈ X2 such that

‖a2,ε − a2‖X2 < ε,

and s2(a2,ε) and s2(â3,ε) are principal eigenvalues of L2(a2,ε) and L2(â2,ε), respectively.
By the arguments in [21, Theorem 4.1] again,

s2(a2,ε) ≥ s2(â3,ε). (4.5)

By Proposition 3.1, for any v ∈ X+
2 ,


2(nT ; a2,ε − ε)v ≤ 
2(nT ; a2)v ≤ 
2(nT ; a2,ε + ε)v.

Note that


2(nT ; a2,ε ± ε) = e±εnT
2(nT ; a2,ε).

Then by Proposition 3.3,

r(
2(T ; a2,ε)) · e−εT ≤ r(
2(T ; a2)) ≤ r(
2(T ; a2,ε)) · eεT .

By Proposition 3.10,

s2(a2,ε)− ε ≤ s2(a2) ≤ s2(a2,ε)+ ε.

Similarly, we have

s2(â2,ε)− ε ≤ s2(â2) ≤ s2(â3,ε)+ ε.

It then follows that

s2(a2) ≥ s2(a2,ε)− ε, s2(â2) ≤ s2(â3,ε)+ ε.

This together with (4.5) implies that

s2(a2) ≥ s2(â2)− 2ε

for any ε > 0 and hence s2(a2) ≥ s2(â2), that is, the first inequality in (4.4) holds. The
second inequality in (4.4) holds by the same reason as before.

Next, we prove that if s2(a2) is the principal eigenvalue of L2(a2), then s2(a2) = s2(â2)

iff a2(t, x)− â2(x) is independent of x .
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First of all, assume that a2(t, x)−â2(x) is independent of x and let ã2(t) = a2(t, x)−â2(x).
Then


2(t, 0; a2) = e
∫ t

0 ã2(s)ds
2(t, 0; â2).

Since
∫ T

0 ã2(s)ds = 0, we have

2(T ; a2) = 
2(T ; â2).

By Proposition 3.10,
s2(a2) = s2(â2).

Conversely, assume that s2(a2) is the principal eigenvalue of L2(a2) and s2(a2) = s2(â2).
By Theorem A, s2(â2) is also the principal eigenvalue of L2(â2). By the arguments similar
to those in [21, Theorem 4.1], we can prove that a2(t, x) − â2(x) is independent of x . For
the completeness, we provide a proof in the following.

Let φ(t, x) and ψ(x) be the positive principal eigenfunctions of L2(a2) and L2(â2) with
supt∈R,x∈D̄ φ(t, x) = 1 and supx∈D̄ ψ(x) = 1, respectively. Then

s2(a2) = −φt (t, x)

φ(t, x)
+ ν2

∫
D κ(y − x)φ(t, y)dy

φ(t, x)

−ν2

∫

D

κ(y − x)dy + a2(t, x) ∀ t ∈ R, x ∈ D̄ (4.6)

and

s2(â2) = ν2

∫
D κ(y − x)ψ(y)dy

ψ(x)
− ν2

∫

D

κ(y − x)dy + â2(x) ∀ x ∈ D̄. (4.7)

By (4.6),

s2(a2) = ν2

T

∫

D

κ(y − x)

T∫

0

φ(t, y)

φ(t, x)
dtdy

−ν2

∫

D

κ(y − x)dy + â2(x) ∀ x ∈ D̄. (4.8)

Let

w(t, x) = φ(t, x)

ψ(x)
.

By the assumption that s2(a2) = s2(â2) and (4.7), (4.8), we have

∫

D

κ(y − x)
ψ(y)

ψ(x)

⎡

⎣1 − 1

T

T∫

0

w(t, y)

w(t, x)
dt

⎤

⎦ dy = 0, ∀ x ∈ D̄. (4.9)

By Jensen inequality,

1

T

T∫

0

w(t, y)

w(t, x)
dt ≥ exp

⎧
⎨

⎩
1

T

T∫

0

ln
w(t, y)

w(t, x)
dt

⎫
⎬

⎭

=
exp

{∫ T
0 lnw(t, y)dt/T

}

exp
{∫ T

0 lnw(t, x)dt/T
} ∀ x, y ∈ D̄. (4.10)

and the equality in (4.10) holds for some x0, y0 ∈ D̄ iff w(t,y0)
w(t,x0)

is independent of t .
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Let x∗ ∈ D̄ be such that

T∫

0

lnw(t, x∗)dt = inf
x∈D̄

T∫

0

lnw(t, x)dt.

By (4.10),

1

T

T∫

0

w(t, y)

w(t, x∗)
dt ≥

exp
{∫ T

0 lnw(t, y)dt/T
}

exp
{∫ T

0 lnw(t, x∗)dt/T
} ≥ 1 ∀ y ∈ D̄. (4.11)

This together with (4.9) and κ(0) > 0 (note that κ(·) ≥ 0) implies that there is ε0 > 0
(independent of x∗) such that

1

T

T∫

0

w(t, y)

w(t, x∗)
dt =

exp
{∫ T

0 lnw(t, y)dt/T
}

exp
{∫ T

0 lnw(t, x∗)dt/T
} = 1 ∀ y ∈ D̄, ‖y − x∗‖ ≤ ε0. (4.12)

This together with (4.10) implies that w(t,y)
w(t,x∗) is independent of t for any y ∈ D̄ with

‖y − x∗‖ ≤ ε0.
Take any y∗ ∈ D̄ with ‖y∗ − x∗‖ < ε0. By (4.12),

T∫

0

lnw(t, y∗)dt = inf
x∈D̄

T∫

0

lnw(t, x)dt.

Repeating the above arguments, we have

1

T

T∫

0

w(t, y)

w(t, y∗)
dt =

exp
{∫ T

0 lnw(t, y)dt/T
}

exp
{∫ T

0 lnw(t, y∗)dt/T
} = 1 ∀ y ∈ D̄, ‖y − y∗‖ ≤ ε0 (4.13)

and w(t,y)
w(t,y∗) is independent of t for any y ∈ D̄ with ‖y − y∗‖ ≤ ε0. Hence w(t,y)

w(t,x∗) is indepen-

dent of t for any y ∈ D̄ with ‖y − x∗‖ < 2ε0.
Continuing the above process, we have that w(t,x)

w(t,x∗) is independent of t for any x ∈ D̄. Let

p(x) = w(t, x)

w(t, x∗)
and

q(t) = w(t, x∗).

We then have

w(t, x) = p(x)q(t).

It then follows that

φ(t, x) = p(x)ψ(x)q(t).

This together with (4.6) implies that there are a2,1(x) and a2,2(t) such that

a2(t, x) = a2,1(x)+ a2,2(t)

and then a2(t, x)− â2(x) is independent of x . �
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We now prove Theorem B (2) and (3).

Theorem B (2) and (3) (2) We first claim that si (âi ) is the principal eigenvalue of Li (âi ).
In fact, this follows from [30, Theorem 2.1] in the case that i = 1, 2 and follows from [31,
Theorem B(1)] in the case i = 3. By Theorem A,

si (âi ) > max
x∈Di

λi (x).

Then by Theorem C,

si (ai ) > max
x∈Di

λi (x).

By Theorem A again, si (ai ) is the principal eigenvalue of Li (ai ).
(3) First by Theorem [30, Theorem 2.3], si (âi ) (i = 1 or 2) is the principal eigenvalue

of Li (âi ) for 0 < δ 	 1 and by [31, Theorem A (1)], s3(â3) is the principal eigenvalue of
L3(â3) for 0 < δ 	 1. By Theorems A and C,

si (ai ) ≥ si (âi ) > max
x∈Di

λi (x)

for 1 ≤ i ≤ 3 and 0 < δ 	 1. It then follows from Theorem A that si (ai ) is the principal
eigenvalue of Li (ai ) for 1 ≤ i ≤ 3 and 0 < δ 	 1. �

We end up this section with an example which shows that if si (ai ) is not the principal
eigenvalue of Li (ai ), then si (ai ) = si (âi )may not imply that ai (t, x)− âi (x) is independent
of x .

Example 4.1 Let i = 1, D = B(0, 1), N = 3, and ν1 = 1. Let 0 < σ < 1
2 and q(x) be a

smooth function given by

q(x) =
{

e
‖x‖2

‖x‖2−σ2 for ‖x‖ < σ

0 for σ ≤ ‖x‖ ≤ 1.

Let M > 1 be a constant to be determined later and

a1(t, x) = Mq(x)+ (cos t)q(x).

Then a1(t, x) is periodic in t with period 2π and

â1(x) = Mq(x), max
x∈D̄

â1(x) = M.

By Proposition 3.5, for anyα > −1+M, (α−H1(a1))
−1 exists. Moreover, by the arguments

in Proposition 3.5, for v(t, x) ≡ 1,

(
(α − H1(a1))

−1v
)
(t, x) =

t∫

−∞
exp

⎛

⎝
t∫

s

(−1 + a1(τ, x)− α)dτ

⎞

⎠ ds

=
t∫

−∞
exp ((−1 + Mq(x)− α)(t − s)) · exp ((sin t − sin s)q(x)) ds

≤ e2

1 − Mq(x)+ α
.
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This implies that

(
K1(α − H1(a1))

−1v
)
(t, x) =

∫

D

κ(y − x)

⎧
⎨

⎩

t∫

−∞
exp

⎛

⎝
t∫

s

(−1 + a1(τ, x)− α)dτ

⎞

⎠ ds

⎫
⎬

⎭
dy

≤ e2
∫

D

κ(y − x)

1 − Mq(y)+ α
dy

Let α = −1 + M + ε. Then

(
K1(−1 + M + ε − H1(a1))

−1v
)
(t, x) ≤ e2

∫

D

κ(y − x)

M(1 − q(y))+ ε
dy

≤ e2

M + ε
+ e2

∫

‖y‖≤σ

κ(y − x)

M(1 − e
‖y‖2

‖y‖2−σ2 )+ ε

dy

≤ e2

M + ε
+ e2

∫

‖y‖≤σ

κ(y − x)

M(1 − e− ‖y‖2

σ2 )+ ε

dy

This implies that there is M̃ > 0 (independent of M and ε) such that

(
K1(−1 + M + ε − H1(a1))

−1v
)
(t, x) ≤ e2

M + ε
+ M̃

M
.

It then follows that there is 0 < r̃ < 1 such that for any M 
 1 and 0 < ε < 1,

‖K1(−1 + M + ε − H1(a1))
−1‖ ≤ r̃ .

By Proposition 3.7, s1(a1) ≤ λ1,max.
By Theorem C,

s1(a1) ≥ s1(â1) ≥ λ1,max.

Hence

s1(a1) = s1(â1) = λ1,max.

But

a1(t, x)− â1(x) = (cos t)q(x)

and hence a1(t, x)− â1(x) depends on x .

5 Time Periodic Positive Solutions of Nonlocal KPP Equations

In this section, we consider applications of the principal eigenvalue theory established in the
previous section to time periodic KPP equations with nonlocal dispersal.

For given u1, u2 ∈ X++
1 (= X++

2 ) or u1, u2 ∈ X++
3 , we define

ρ(u1, u2) = inf

{

ln α | 1

α
u1(·) ≤ u2(·) ≤ αu1(·), α ≥ 1

}

. (5.1)
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Observe that for u1, u2 ∈ X++
1 (= X++

2 ), there is α ≥ 1 such that

ρ(u1, u2) = ln α.

For simplicity in notation, we put

ui (t, x; u0) = ui (t, x; 0, u0).

Proposition 5.1 For any u0, v0 ∈ X++
1 (= X++

2 )or u0, v0 ∈ X++
3 , u0 �= v0, ρ(ui (t, ·; u0),

ui (t, ·; v0)) strictly decreases as t increases.

Proof We prove the case i = 1. The cases i = 2 and i = 3 can be proved similarly.
For given u0, v0 ∈ X++

1 , there is α ≥ 1 such that

1

α
v0 ≤ u0 ≤ αv0

and

ρ(u0, v0) = ln α.

We first claim that ρ(u1(t, ·; u0), u1(t, ·; v0)) is non-increasing as t increases for t > 0
or equivalently for 0 < t ≤ T . In fact, by Proposition 3.1, for any t > 0, we have

u1(t, ·; u0) ≤ u1(t, ·;αv0). (5.2)

Similarly, for any t > 0,

u1(t, ·; 1

α
v0) ≤ u1(t, ·; u0). (5.3)

Assume u0 �≡ v0. Then α > 1. Let w(t, x) = αu1(t, x; v0). Then w(0, x) = αv0(x) and

∂tw =
∫

D

κ(y − x)w(t, y)dy − w(t, x)+ w(t, x) f1(t, x, u1(t, x; v0))

=
∫

D

κ(y − x)w(t, y)dy − w(t, x)+ w f1(t, x, w(t, x))

+ w[ f1(t, x, u1(t, x; v0))− f1(t, x, w(t, x))]
≥
∫

D

κ(y − x)w(t, y)dy − w(t, x)+ w f1(t, x, w(t, x))+ δ0 (5.4)

for some δ0 and 0 ≤ t ≤ T . By Proposition 3.1,

αu1(t, ·; v0) ≥ u1(t, ·;αv0)

for 0 < t ≤ T . This together with (5.2) implies that

u1(t, ·; u0) ≤ αu1(t, ·; v0)

for 0 < t ≤ T . Similarly, we have

u1(t, ·; u0) ≥ 1

α
u1(t, ·; v0).

It then follows that

ρ(u1(t, ·; u0), u1(t, ·; v0)) ≤ ρ(u0, v0)
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for 0 < t ≤ T , which implies that ρ(u1(t, ·; u0), u1(t, ·; v0)) is non-increasing as t increases
for 0 < t ≤ T .

Next, we prove that ρ(u1(t, ·; u0), u1(t, ·; v0)) is strictly decreasing as t increases for
t > 0 or equivalently for 0 < t 	 1. By (5.4),

∂tw(0, x) ≥ ∂t u1(0, x;αv0)+ δ0.

Hence

∂tw(t, x) ≥ ∂t u1(t, x;αv0)+ δ0

2

and then

w(t, x) = αu1(t, x; v0) ≥ u1(t, x;αv0)+ δ0

2
t

for 0 < t 	 1. This implies that for given 0 < t 	 1, there is α̃(t) < α such that

α̃(t)u1(t, x; v0) ≥ u1(t, x;αv0) ≥ u1(t, x; u0).

Similarly, we can prove that for given 0 < t 	 1, there is ᾱ(t) < α such that

1

ᾱ(t)
u1(t, x; v0) ≤ u1(t, x; u0).

Therefore,

ρ(u1(t, ·; u0), v1(t, ·; v0)) ≤ ln
(

max{α̃(t), ᾱ(t)}) < ρ(u0, v0)

for 0 < t 	 1. This implies that ρ(u1(t, ·; u0), u1(t, ·; v0)) is strictly decreasing as t
increases. �

Proof of Theorem E We prove the theorem in the case i = 1. Other cases can be proved
similarly.

First of all, for given M 
 1, u(t, x) ≡ M is a supersolution of (1.8). This implies that
u(nT, x; M) decreases as t increases. Let

u+(x) = lim
n→∞ u(nT, x; M) for x ∈ D̄. (5.5)

Next, by Lemma 4.1, there are an
1 ∈ X1 such that s1(an

1 ) is the principal eigenvalue of
L1(an

1 ),

an
1 (t, x) < f1(t, x, 0)

and

an
1 (t, x) → f1(t, x, 0) as n → ∞

uniformly in t ∈ R and x ∈ D̄. By Proposition 3.11,

lim
n→∞ s1

(
an

1

) → s1( f1(·, ·, 0))

as n → ∞ and then

s1
(
an

1

)
> 0 ∀n 
 1. (5.6)
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Let φn
1 be the positive principal eigenfunction of L1(an

1 ) with ‖φn
1 ‖Xi = 1. Then for any

b > 0, u(t, x) = bφn
1 (t, x) is a solution of

∂t u = ν1

⎡

⎣
∫

D

k(y − x)u(t, y)dy − u(t, x)

⎤

⎦+ an
1 (t, x)u − s1

(
an

1

)
u.

Observe that

∂t u = ν1

⎡

⎣
∫

D

k(y − x)u(t, y)dy − u(t, x)

⎤

⎦+ an
1 (t, x)u − s1

(
an

1

)
u

≤ ν1

⎡

⎣
∫

D

k(y − x)u(t, y)dy − u(t, x)

⎤

⎦+ f1(t, x, 0)u − s1(a
n
1 )u

= ν1

⎡

⎣
∫

D

k(y − x)u(t, y)dy − u(t, x)

⎤

⎦+ u f1(t, x, u)+ [ f1(t, x, 0)− f1(t, x, u)]u

− s1(a
n
1 )u. (5.7)

Fix n 
 1. By (5.6),
[

f1(t, x, 0)− f1
(
t, x, bφn

1 (t, x)
)]− s1(a

n
1 ) < 0 ∀0 < b 	 1.

This together with (5.7) implies that u(t, x) = bφn
1 (t, x) is a subsolution of (1.8) for 0 <

b 	 1.
For fixed n 
 1, fix 0 < b 	 1 such that u(t, x) = bφn

1 (t, x) is a subsolution of (1.8).
Then u(kT, x; bφn

i ) increases as k increases. Let

u−(x) = lim
k→∞ u

(
kT, x; bφn

1

)
for x ∈ D̄. (5.8)

For fixed n 
 1 and 0 < b 	 1, choose M 
 1 such that

bφn
1 < M.

Then

u−(x) ≤ u+(x) ∀ x ∈ D̄.

We claim that

u− ≡ u+.

In fact, by Proposition 5.1, ρ
(
u1(t, ·; M), u1

(
t, ·; bφn

1

))
strictly decreases as t increases. Let

ρk = ρ
(
u1(kT, ·; M), u1

(
kT, ·; bφn

1

))

ρ∗ = lim
k→∞ ρk .

Observe that u+ ≡ u− iff ρ∗ = 0. Assume that ρ∗ > 0. Let α∗ = eρ
∗
. Then for any

0 < ε < α∗,

1

α∗ + ε
u1
(
kT, ·; bφn

1

) ≤ u1(kT, ·; M) ≤ (α∗ + ε)u1
(
kT, ·; bφn

1

) ∀k 
 1.
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Note that

inf
t∈R,x∈D̄

φn
1 (t, x) > 0.

By the arguments in Proposition 5.1, there is δ0 > 0 such that

ρk+1 ≤ ρk − δ0 ∀k 
 1.

This implies that

ρ∗ ≤ ρ∗ − δ0.

This is a contradiction. Therefore, u+ = u−.
Note that u+ is upper semi-continuous and u− is lower semi-continuous. Hence u∗ := u+

is continuous and u∗ := u+ ∈ X+ \ {0}. By Dini’s Theorem, limk→∞ u(kT, ·; bφn
1 ) =

limk→∞ u(kT, ·; M) = u∗ uniformly in x ∈ D̄. This implies that

u(T, x; u∗) = lim
k→∞ u(T, x; u(kT, ·; M)) = lim

k→∞ u((k + 1)T, x; M) = u∗(x).

Hence u(t, x; u∗) is periodic in t . This proves the existence of time periodic positive solutions.
Now suppose that u1(t, x) and u2(t, x) are two time periodic positive solutions. Since

ρ(u1(t, ·), u2(t, ·)) is strictly decreasing if u1 �= u2, we must have u1 ≡ u2. This proves the
uniqueness of time periodic positive solutions.

Finally, we show the stability of u∗(t, x) := u(t, x; u∗). Observe that

u∗
t (t, x) = ν1

⎡

⎣
∫

D

κ(y − x)u∗(t, y)dy − u∗(t, x)

⎤

⎦+ u∗(t, x) f1(t, x, u∗(t, x)), x ∈ D̄.

(5.9)

By Theorem A,

s1( f1(·, ·, u∗(·, ·))) = 0. (5.10)

Consider the linearization of (1.8) at u∗(t, x),

vt (t, x) = ν1

⎡

⎣
∫

D

κ(y − x)v(t, y)dy − v(t, x)

⎤

⎦+ a∗
1 (t, x)v(t, x), x ∈ D̄,

where

a∗
1 (t, x) = f1(t, x, u∗(t, x))+ u∗(t, x)∂u f1(t, x, u∗(t, x)).

By the assumption that ∂u f1(t, x, u) < 0 for u ≥ 0,

a∗
1 (t, x) < f1(t, x, u∗(t, x)) ∀ t ∈ R, x ∈ D̄.

This together with (5.10) implies that

s1
(
a∗

1

)
< 0.

Then by Proposition 3.10,

r
(

1(T ; a∗

1 )
)
< 1.
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Therefore, u∗(t, x) is locally stable. Now for any u0 ∈ X+ \ {0}, u(t, ·; u0) ∈ Int(X+) for
t > 0. Fix n 
 1. Then

bφn
1 ≤ u(T, ·; u0) ≤ M

for 0 < b 	 1 and M 
 1. By the above arguments,

lim
t→∞

(
u(t, x; u0)− u(t, x; u∗)

) = 0

uniformly in x ∈ D̄. Therefore, the unique time periodic positive solution is globally asymp-
totically stable. �
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