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Abstract A diffusive logistic equation with mixed delayed and instantaneous density
dependence and Dirichlet boundary condition is considered. The stability of the unique pos-
itive steady state solution and the occurrence of Hopf bifurcation from this positive steady
state solution are obtained by a detailed analysis of the characteristic equation. The direction
of the Hopf bifurcation and the stability of the bifurcating periodic orbits are derived by the
center manifold theory and normal form method. In particular, the global continuation of the
Hopf bifurcation branches are investigated with a careful estimate of the bounds and periods
of the periodic orbits, and the existence of multiple periodic orbits are shown.
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1 Introduction

In a density-dependent population model, the growth rate of a population relies on the pop-
ulation size. However it is unrealistic that the newborns have an immediate impact on the
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population growth, and such impact can only be felt after the newborns become mature adults.
This effect can be achieved by introducing a time-delay in the growth rate per capita. In 1948,
renowned ecologist Hutchinson [16] proposed a time delayed logistic population model

du

dt
= ru(t)[1 − bu(t − τ)], (1.1)

where r is the maximum growth rate per capita, 1/b is the carrying capacity, and τ is the time
delay due to the maturation. The Hutchinson model (1.1) is considered as the milestone in
population ecology which first embodied the time delay effect [25,26,34]. In general, a large
delay will destabilize a positive equilibrium in a population model like (1.1) and cause oscil-
lations (e.g. see [15,25]). Indeed it can be shown that there exists a critical value τ 0 = π/(2r)
such that the positive equilibrium u∗ = 1/b of (1.1) loses the stability when τ > τ 0, and an
oscillatory pattern (a periodic orbit) emerges as the dominant dynamical behavior.

On the other hand, the absence of the instantaneous density dependence in (1.1) could
also make the prediction of population inaccurate. Thus a more reasonable and more realistic
time delayed model would depend on an average over past populations [24,25]. A simplified
average can be taken between the present population at time t and a fixed past time t − τ ,
which results in a modified Hutchinson’s equation (see [13,35,38]):

du

dt
= ru(t)[1 − au(t)− bu(t − τ)]. (1.2)

Here the meaning of r and τ are same as in (1.1), and the parameters a and b represent the
portions of instantaneous and delayed dependence of the growth rate respectively, and system
(1.2) has a carrying capacity u∗ = 1/(a + b).

If the instantaneous dependence is dominant, i.e. a > b, it has been shown that the unique
positive equilibrium u∗ is globally asymptotically stable, see [5,6,22,28,35,36,38]. On the
other hand, if the delayed dependence is more dominant, i.e. a < b, then it has been shown
that [13,35] there exists a critical value τ0 > 0 given by

τ0 = a + b

r
√

b2 − a2
arccos

(
−a

b

)
,

such that the positive equilibrium u∗ is locally asymptotically stable when τ ∈ [0, τ0) and is
unstable when τ > τ0. Moreover a Hopf bifurcation occurs at the positive equilibrium when
τ passes through τ0.

In this paper, we consider the following logistic type reaction-diffusion population model
with mixed delayed and instantaneous density dependence:

∂u(x, t)

∂t
= d

∂u2(x, t)

∂x2 + ru(x, t)[1 − au(x, t)− bu(x, t − τ)], x ∈ (0, π), t > 0,

u(0, t) = u(π, t) = 0, t ≥ 0, (1.3)

where u(x, t) is the population density at location x and time t , and x ∈ (0, π) which is the
spatial domain; Dirichlet boundary condition is imposed so that the exterior environment is
hostile; d > 0 is the diffusion coefficient, and parameters a, b, τ are as in (1.2). For conve-
nience we normalize the time delay by a time-scaling û(x, t) = u(x, tτ), and drop the hat
for the simplicity of notation, then (1.3) becomes

∂u(x, t)

∂t
= dτ

∂u2(x, t)

∂x2 + rτu(x, t)[1 − au(x, t)− bu(x, t − 1)], x ∈ (0, π), t > 0,

u(0, t) = u(π, t) = 0, t ≥ 0, (1.4)
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We consider Eq. (1.4) with the following initial condition

u(x, s) = η(x, s), x ∈ (0, π), t ∈ [−1, 0], (1.5)

where η ∈ C := C([−1, 0]; Y ) and Y = L2
(
(0, π)

)
.

It is well-known that (1.4) admits no positive steady state solution when r ≤ d , and it
possesses a unique positive steady state solution ur when r > d [17,37]. The local stability
of steady states has been studied by Green and Stech [14] and Parrot [32], while the global
stability was studied by Huang [18] and Pao [31]. In Huang [18] and Pao [31], it was proved
that when r ≤ d , the zero solution is the global attractor of all nonnegative solutions to (1.4)
for any τ ≥ 0; and when r > d and a > b (instantaneous dominant case), the unique positive
steady state solution ur is globally attractive for all nonnegative solutions to (1.4) for any
τ ≥ 0. Dynamical system approach was used in [18] and upper-lower solution method was
used in [31] for the proof of global stability. On the other hand, Friesecke [12] proved that
for small delay, the dynamics of (1.4)–(1.5) is the same as that of (1.4)–(1.5) without delay.

In [42], we studied the following general delayed diffusive population model:

∂u(x, t)

∂t
= d

∂u2(x, t)

∂x2 + λu(x, t) f (u(x, t − τ)), x ∈ (0, �), t > 0,

u(0, t) = u(�, t) = 0, t ≥ 0,
(1.6)

where f is a smooth decreasing function and f (0) > 0. We proved that when λ > dπ2/�2,
the model has a unique positive steady state solution uλ, and for a fixed λ satisfying 0 <
λ − dπ2/�2 � 1, there exists a sequence of the delay values {τn}∞n=0 so that a forward
Hopf bifurcation occurs at each τ = τn from the positive steady state uλ. For (1.6), the
stability of the bifurcating periodic solutions were studied by Yan and Li [46]. The result in
[42] generalized earlier result of Busenberg and Huang [2], in which a diffusive Hutchinson
equation with Dirichlet boundary condition was considered.

In this paper we consider the stability and associated Hopf bifurcations of system (1.4) in
the delayed dominant case of a < b, and we show that the dynamics of (1.4) when a < b
is similar to (1.6). That is, a large delay will destabilize the positive steady state and causes
oscillatory patterns. Our main results can be summarized as follows: assume that r > d and
0 < r − d � 1, then

(i) (1.4) has a unique positive steady state solution ur (x).
(ii) If a < b, then there exists a constant τ0 = τ0(r) satisfying

lim
r→d+(r − d)τ0(r) = a + b√

b2 − a2
arccos

(−a

b

)
, (1.7)

such that for (1.4), ur is locally asymptotically stable when τ ∈ [0, τ0), whereas it is
unstable when τ ∈ (τ0,∞). Moreover, there exist a sequence of values {τn(r)}∞n=0,
which satisfies

lim
r→d+(r − d)τn(r) = a + b√

b2 − a2

[
arccos

(−a

b

)
+ 2nπ

]
, (1.8)

such that for (1.4), a forward Hopf bifurcation occurs at each τ = τn(r)(n =
0, 1, 2, · · · ) from u = ur , and the bifurcating periodic solutions are orbitally asymp-
totically stable on the center manifold.

(iii) Assuming the conditions in (ii), then (1.4) has at least one periodic orbit for any
τ > τ1, and (1.4) has at least two distinct periodic orbits when 0 < τ − τn � 1, for
n = 2, 3, · · ·.
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The particular equation considered here is a canonical example for considering the com-
bined effect of delay and diffusion which has interested many authors. For the local stability
and Hopf bifurcation around the positive steady state solution of (1.4), we analyze the charac-
teristic equation using the approach in Busenberg and Huang [2], which has been utilized in
many other studies of stability of non-constant steady state solution [1,42,46]. The first part
of analysis here is conducted under a similar framework as in [2,42], but the analysis here is
more difficult with the presence of both delayed and instantaneous effect on the growth rate.
For the normal form calculation on the center manifold in Sect. 4, we adopt the framework
in [8,9] to handle the complicated computation, which is different from the ones in [2,42].
In Sect. 5 we combine the upper and lower solutions method and the global Hopf bifurcation
theorem in [44] to obtain global continuation of branch of periodic solutions bifurcating from
the local Hopf bifurcation, which has not been obtained for reaction-diffusion equation with
delay effect.

The diffusive logistic equation with mixed delayed and instantaneous density dependence
(1.4) (including the case without instantaneous effect) with Neumann boundary condition
has also been considered. The local stability and Hopf bifurcations from the constant steady
state solution were studied in [27,29,47], and global stability for this case has been proved in
[12,20,21,31]. Similar analysis for a constant steady state solution in a Dirichlet boundary
value problem has also been investigated [41]. It is recognized that the stability and bifurca-
tion analysis for a non-constant steady state solution (which is natural for Dirichlet boundary
condition) is more difficult than the one for a constant steady state solution (which is natural
for Neumann boundary condition) [2,7,18,40,42], as the spatial profile of the non-constant
steady state solution is usually not known, which makes the characteristic equation analysis
much harder. Analysis in [2,42] has also been extended to a diffusive logistic equation with
nonlocal delay effect [3].

The rest of this paper is organized as follows. In Sect. 2, the eigenvalue problem of the
associated characteristic equation is investigated. In Sect. 3, the stability of the steady state
solutions and the occurrence of the Hopf bifurcations are considered. The direction of the
Hopf bifurcations and the stability of bifurcating periodic solutions on center manifold are
established in Sect. 4. In Sect. 5, the global continuation of the branch of periodic orbits from
Hopf bifurcations is studied. Finally some numerical simulations motivated by our theoretical
studies are presented in Sect. 6.

Throughout the paper, we use standard notation L2, Hk, Hk
0 for the real-valued Sobolev

spaces based on L2 spaces, and the underlying spatial domain is always the interval (0, π).
Moreover we denote X = H2 ⋂

H1
0 , Y = L2 and, for any real-valued vector space Z , we also

denote the complexification of Z to be ZC := Z ⊕ i Z = {x1 + i x2| x1, x2 ∈ Z}. For the com-
plex-valued Hilbert space YC, we use the standard inner product 〈u, v〉 = ∫ π

0 u(x)v(x)dx .
We also define by D(L),N (L), and R(L), the domain, the null space and the range space
of a linear operator L , and define by Span{A} the space spanned by all the elements in A. For
a nonlinear mapping F , we denote by Du F the Fréchet derivative with respect to variable(s)
u. In the remaining part of this paper, we will always assume that a < b unless specified
otherwise.

2 Eigenvalue Problems

In this section we first study the existence and properties of the positive steady state solutions
of (1.4), which satisfy the following boundary value problem
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d
d2u(x)

dx2 + ru(x)[1 − (a + b)u(x)] = 0, x ∈ (0, π),
u(0) = u(π) = 0.

(2.1)

It is well known that

Y = N (d D2 + d)⊕ R(d D2 + d),

where

D2 = ∂2

∂x2 , N (d D2 + d) = Span
{

sin(·)}

and

R(d D2 + d) =
{

y ∈ Y : 〈sin(·), y〉 =
∫ π

0
sin(x)y(x)dx = 0

}
.

Now we give a result on the existence of positive steady state as follows.

Theorem 2.1 There exist r∗ > d and a continuously differentiable mapping r → (ξr , αr )

from [d, r∗] to (X ∩ R(d D2 + d))× R
+ such that (1.4) has a positive steady state solution

(solution of (2.1)) given by

ur (x) = αr (r − d)[sin(x)+ (r − d)ξr (x)], r ∈ [d, r∗]. (2.2)

Moreover,

αd =
∫ π

0 sin2 xdx

d(a + b)
∫ π

0 sin3 xdx

and ξd ∈ X is the unique solution of the equation

(d D2 + d)ξ + [1 − d(a + b)αd sin(·)] sin(·) = 0, 〈sin(·), ξ 〉 = 0.

Proof Since d D2 + d is bijective from X ∩ R(d D2 + d) to R(d D2 + d) we know that ξd

is well-defined. Let m : X × R × R → Y × R be defined as

m(ξ, α, r) =
(
(d D2 + d)ξ + sin(·)+ (r − d)ξ

− r(a + b)αr [sin(·)+ (r − d)ξ ]2, 〈sin(·), ξ 〉
)
.

Using the definition of ξd , we have that

m(ξd , αd , d) = (d D2 + d)ξd + [1 − d(a + b)αd sin(·)] sin(·), 〈sin(·), ξd 〉) = 0,

and

D(ξ,α)m(ξd , αd , d)(η, ε) = (
(d D2 + d)η − d(a + b)ε sin2(·), 〈sin(·), η〉).

From sin2(·) �∈ R(d D2 + d), it follows that D(ξ,α)m(ξd , αd , d) is bijective from X × R

to Y × R. Therefore, the implicit function theorem implies that there exist r∗ > d and a
continuously differentiable mapping r → (ξr , αr ) ∈ X × R

+ such that

m(ξr , αr , r) = 0, r ∈ [d, r∗].
An easy calculation shows that αr (r − d)[sin(·)+ (r − d)ξr ] solves (2.1). ��
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In the remaining part of this paper, we will always assume r ∈ [d, r∗] unless otherwise
specified, and 0 < r∗ − d � 1. But the value of r∗ may change from one place to another
when further perturbation arguments are used.

The linearization of (1.4)–(1.5) at ur is given by

∂v(x, t)

∂t
= dτ

∂2v(x, t)

∂x2 + rτ [1 − (2a + b)ur ]v(x, t)− rbτurv(x, t − 1), t > 0,

v(0, t) = v(π, t) = 0, t ≥ 0,

v(x, t) = η(x, t), (x, t) ∈ [0, π ] × [−1, 0],
(2.3)

where η ∈ C.
We introduce the operator A(r) : D(A(r)) → YC defined by

A(r) = d D2 + r − r(2a + b)ur , (2.4)

with domain

D(A(r)) = {y ∈ YC : ẏ, ÿ ∈ YC, y(0) = y(π) = 0} = XC,

and set v(t) = v(·, t), η(t) = η(·, t). Then (2.3) can be rewritten as

dv(t)

dt
= τ A(r)v(t)− τbrurv(t − 1), t > 0,

v(t) = η(t), t ∈ [−1, 0], η ∈ C,
(2.5)

with A(r) an infinitesimal generator of a compact C0-semigroup [33]. From [43] (or [44]),
the semigroup induced by the solutions of (2.5) has the infinitesimal generator Aτ (r) given
by

Aτ (r)φ = φ̇,

D(Aτ (r)) = {φ ∈ CC ∩ C1
C

: φ(0) ∈ XC, φ̇(0) = τ A(r)φ(0)− brτurφ(−1)},
where C1

C
= C1([−1, 0]; YC). The spectral set σ(Aτ (r)) = {

λτ ∈ C : (r, λ, τ )y =
0, for some y ∈ XC \ {0}}, where

(r, λ, τ ) = A(r)− brur e−λτ − λ.

The eigenvalues of Aτ (r) depend continuously on τ (see e.g. [4]).
It is clear that Aτ (r) has a purely imaginary eigenvalue λτ = iντ (ν �= 0) for some τ > 0

if and only if

[A(r)− brur e−iθ − iν]y = 0, y(�= 0) ∈ XC (2.6)

is solvable for some value of ν > 0 and θ ∈ [0, 2π).
One can see that if we find a pair of (ν, θ) such that (2.6) has a non-zero solution y, then

(r, iν, τn)y = 0, τn = θ + 2nπ

ν
, n = 0, 1, 2, · · · .

Next we shall show that, for r ∈ (d, r∗], there is a unique pair (ν, θ) which solves (2.6).
Now we give two lemmas which will be used to conclude our assertion.

Lemma 2.2 If z ∈ XC and 〈sin(·), z〉 = 0, then |〈(d D2 + d)z, z〉| ≥ 3d‖z‖2
YC

.

This is exactly the Lemma 2.3 of [2] and we omit its proof here.
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Lemma 2.3 For r ∈ (d, r∗], if (ν, θ, y) solves (2.6) with y(�= 0) ∈ XC, ν > 0 and θ ∈
[0, 2π), then

ν

r − d
is uniformly bounded for r ∈ (d, r∗].

Proof Noting that

〈[A(r)− brur e−iθ − iν]y, y〉 = 0,

and also A(r) is self-adjoint, then separating the real and imaginary parts of the above equality,
we obtain

ν〈y, y〉 = 〈br sin θur y, y〉.
Hence

ν

r − d
= brαr | sin θ |〈[sin(·)+ (r − d)ξr ]y, y〉

‖y‖2
YC

.

It follows that there is a constant M > 0 such that
ν

r − d
≤ M[1 + (r − d)‖ξr‖∞], r ∈ (d, r∗].

The boundedness of ν/(r − d) follows from the continuity of r → (‖ξr‖∞, αr ). ��
Now, for r ∈ (d, r∗], suppose that (ν, θ, y) is a solution of (2.6) with y(�= 0) ∈ XC. We

normalize y so it can be represented as

y = β sin(·)+ (r − d)z, 〈sin(·), z〉 = 0, β ≥ 0,

‖y‖2
YC

= β2‖ sin(·)‖2
YC

+ (r − d)2‖z‖2
YC

= ‖ sin(·)‖2
YC
.

(2.7)

Substituting (2.2), (2.7) and ν = (r −d)h into (2.6), we obtain an equivalent system to (2.6):

g1(z, β, h, θ, r) :=(d D2 + d)z + [β sin(·)+ (r − d)z]
·
(

1 − [r(2a + b)αr + brαr e−iθ ][sin(·)+ (r − d)ξr ] − ih
)

= 0,

g2(z) :=Re〈sin(·), z〉 = 0,

g3(z) :=Im〈sin(·), z〉 = 0,

g4(z, β, r) :=(β2 − 1)‖ sin(·)‖2
YC

+ (r − d)2‖z‖2
YC

= 0.

(2.8)

We define G : XC × R
3 × R → YC × R

3 by G = (g1, g2, g3, g4) and define (recall that
a < b)

zd =
(

1 −
√

b2 − a2

a + b
i

)
ξd , βd = 1, hd =

√
b2 − a2

a + b
, θd = arccos

(
−a

b

)
, (2.9)

with ξd defined as in Theorem 2.1. An easy calculation shows that

G(zd , βd , hd , θd , d) = 0.

Now we are in the position to give the main theorem of this section.

Theorem 2.4 There exists a continuously differentiable mapping r → (zr , βr , hr , θr ) from
[d, r∗] to XC × R

3 such that G(zr , βr , hr , θr , r) = 0. Moreover, if r ∈ (d, r∗], then the
solution for G = 0 is unique for given r, that is, if (zr , βr , hr , θr , r) solves the equation
G = 0 with hr > 0, and θr ∈ [0, 2π), then (zr , βr , hr , θr ) = (zr , βr , hr , θr ).

123



904 J Dyn Diff Equat (2012) 24:897–925

Proof Let T = (T1, T2, T3, T4) : XC × R
3 → YC × R

3 be defined by

T = D(z,β,h,θ)G(zd , βd , hd , θd , d).

Thus, we have

T1(χ, κ, ε, ϑ) =(d D2 + d)χ − iε sin(·)+ idϑαd

(
−a

b
− i

√
b2 − a2

b

)
sin2(·)

+ κ

(
1 −

√
b2 − a2

a + b
i

)
sin(·) [1 + d(a + b)αd sin(·)] ,

T2(χ) = Re〈sin(·), χ〉, T3(χ) = Im〈sin(·), χ〉, T4(κ) = 2κ‖ sin(·)‖2
YC
.

It is routine to verify that T is bijective from XC ×R
3 to YC ×R

3. It follows from the implicit
function theorem that there exists a continuously differentiable mapping r → (zr , βr , hr , θr )

from [d, r∗] (with a smaller r∗) to XC × R
3 such that G(zr , βr , hr , θr , r) = 0. Hence the

existence is proved, and it remains to prove the uniqueness. By virtue of the uniqueness of the
implicit function theorem, now we only need to show that if G(zr , βr , hr , θr , r) = 0, hr > 0
and θr ∈ [0, 2π), then

(zr , βr , hr , θr ) → (zd , βd , hd , θd)

as r → d in the norm of XC × R
3. From the definitions of (zr , βr , hr , θr ), it is easy to see

that {hr }, {βr } and {θr } are bounded. From Lemma 2.2 and the first equation of Eq. (2.8)
we have

‖zr‖2
YC

≤ 1

3d
|〈�(hr , θr , r)[βr sin(·)+ (r − d)zr ], zr 〉|,

where

�(hr , θr , r) = 1 − [r(2a + b)αr + brαr e−iθr ][sin(·)+ (r − d)ξr ] − ihr .

The boundedness of {hr }, {αr } and {ξr } yield that there is M > 0 such that
‖�(hr , θr , r)‖∞ ≤ 3d M , for r ∈ [d, r∗]. Thus we have

‖zr‖2
YC

≤ M |βr | · ‖ sin(·)‖YC
‖zr‖YC

+ M(r − d)‖zr‖2
YC
.

Without loss of generality, assume M(r∗ − d) < 1/2, then

‖zr‖YC
≤ 2M |βr | · ‖ sin(·)‖YC

, r ∈ [d, r∗].
Hence {zr } is bounded in YC. On the other hand, (d D2 + d) : XC ∩ RC(d D2 + d) → YC ∩
RC(d D2 + d) has a bounded inverse, by applying (d D2 + d)−1 on g1(zr , βr , hr , θr , r) = 0
one sees that {zr } is also bounded in XC, and hence {(zr , βr , hr , θr ) : r ∈ (d, r∗]} is
precompact in YC ∩ R

3. Therefore, there is a subsequence {(zn, βn, hn, θn)} such that

(zn, βn, hn, θn) → (zd , βd , hd , θd), r → d as n → ∞,

by taking the limit of the equation G(zn, βn, hn, θn, rn) = 0 as n → ∞. We claim that
G(z, β, h, θ, d) = 0 has a unique solution given by (z, β, h, θ) = (zd , βd , hd , θd) defined
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in (2.9), thus (zd , βd , hd , θd) = (zd , βd , hd , θd). In fact, we take the limit in equation
G(zn, βn, hn, θn, rn) = 0 as n → ∞ to obtain

(d D2 + d)zd + βd sin(·)
(

1 − [d(2a + b)αd + bdαde−iθd ] sin(·)− ihd
)

= 0,

〈sin(·), zd 〉 = 0,
(
(βd)2 − 1

)‖ sin(·)‖2
YC

= 0.
(2.10)

It follows that β = 1. Multiplying the first equation of (2.10) by sin(·) and integrating it
from 0 to π , and separating the real and imaginary parts, we obtain that

⎧
⎪⎪⎨
⎪⎪⎩

∫ π

0

(
1 − [d(2a + b)αd + bdαd cos θd ] sin x

)
sin2 xdx = 0,

∫ π

0

(
hd − bdαd sin θd)

sin2 xdx = 0.

Noting thatαd =
∫ π

0 sin2 xdx

d(a + b)
∫ π

0 sin3 xdx
and hd > 0, it follows that θd = arccos

(
−a

b

)
= θd

and hd =
√

b2 − a2

a + b
= hd . Therefore, (2.10) yields that

(d D2 + d)zd +
(

1 −
√

b2 − a2

a + b
i

) [
sin(·)− d(a + b)αd sin2(·)] = 0, 〈sin(·), zd 〉 = 0.

From the uniqueness of the solution of this equation in XC, we have zd = zd . Hence,
(zr , βr , hr , θr ) → (zd , βd , hd , θd) as r → d in the norm of YC×R

3. In addition, (d D2+d)−1

is a continuous linear operator from RC(d D2 + d) into XC ∩RC(d D2 + d), we get the con-
vergence in XC × R

3, which follows that (zr , βr , hr , θr ) = (zr , βr , hr , θr ). ��
Corollary 2.5 For r ∈ (d, r∗], the eigenvalue problem

(r, iν, τ )y = 0, ν ≥ 0, τ > 0, y(�= 0) ∈ XC

has a nontrivial solution, or equivalently, iντ ∈ σ(Aτ (r)) if and only if

ν = νr = (r − d)hr , τ = τn = θr + 2nπ

νr
, n = 0, 1, 2, · · · (2.11)

and

y = cyr , yr = βr sin(·)+ (r − d)zr ,

where c is a nonzero constant, and zr , βr , hr , θr are defined as in Theorem 2.4.

Remark 2.6 Combining Theorem 2.4, Eq. (2.9) and Corollary 2.5, we can obtain the estimate
of Hopf bifurcation values given in (1.7) and (1.8).

3 Stability of Steady State Solutions

In this section we study the stability of non-constant steady state solution ur of Eq.(1.3) with
a fixed r ∈ (d, r∗], and the time delay τ is considered as a parameter.

We recall the following facts:

Lemma 3.1 Let r ∈ (d, r∗].

123



906 J Dyn Diff Equat (2012) 24:897–925

1. If τ ≥ 0, then 0 is not an eigenvalue of Aτ (r);
2. If τ = 0, then all eigenvalues of Aτ (r) have negative real parts.

Part 1 can be proved by using So and Yang [40, Lemma 4.1] and it is very similar to [42,
Lemma 3.2], and part 2 is essentially same as [40, Theorem 4.2], hence we omit their proof
here.

We now show that λτn = iντn is a simple eigenvalue of Aτn for n = 0, 1, 2, · · ·. For this
purpose, we first give the following lemma.

Lemma 3.2 For fixed r ∈ (d, r∗],

Sn(r) :=
∫ π

0
[1 − brτne−iθr ur ]y2

r (x)dx �= 0, n = 0, 1, 2, · · · .

Proof From the expressions of ur , yr , τn , and the fact that θr → arccos(−a

b
) as r → d , it

is easy to obtain

Sn(r) →
[

1 +
(

a√
b2 − a2

+ i

) (
arccos

(
−a

b

)
+ 2nπ

)] ∫ π

0
sin2 xdx, as r → d.(3.1)

It follows that Sn(r) �= 0 for r ∈ (d, r∗] and for all τn, n = 0, 1, 2, · · ·. ��

Theorem 3.3 For each fixed r ∈ (d, r∗], λτn = iνrτn is a simple eigenvalue of Aτn for
n = 0, 1, 2, · · ·.

Proof From Corollary 2.5 we have N [Aτn (r)− iνr τn] = Span{eiνr τn ·yr }. Suppose that for
some φ ∈ D(Aτn (r)) ∩ D([Aτn (r)]2), we have

[Aτn (r)− iνrτn]2φ = 0.

This implies that

[Aτn (r)− iνr τn]φ ∈ N [Aτn (r)− iνrτn] = Span{eiνr τn ·yr }.
So there is a constant c such that

[Aτn (r)− iνrτn]φ = ceiνr τn ·yr .

Hence

φ̇(θ) = iνr τnφ(θ)+ ceiνr τnθ yr , θ ∈ [−1, 0],
φ̇(0) = A(r)φ(0)− brτnurφ(−1).

(3.2)

The first equation of (3.2) yields

φ(θ) = φ(0)eiνr τnθ + cθeiνr τnθ yr ,

φ̇(0) = iνrτnφ(0)+ cyr .
(3.3)

From (3.2) and (3.3) we have

(r, iν, τn)φ(0) = [A(r)− brτnur e−iθr − iνr τn]φ(0)
= c(1 − brτnur e−iθr )yr .
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Hence

0 =
∫ π

0
φ(0)[(r, iν, τn)yr ]dx

=
∫ π

0
yr [(r, iν, τn)φ(0)]dx

= c
∫ π

0
(1 − brτnur e−iθr )y2

r dx .

As a consequence of Lemma 3.2 we have c = 0, which leads to that φ ∈ N [Aτn (r)− iνr τn].
By induction we obtain

N [Aτn (r)− iνr τn] j = N [Aτn (r)− iνr τn] j = 1, 2, 3, · · · , n = 0, 1, 2, · · · .
Therefore, λτn = iνr τn is a simple eigenvalue of Aτn for n = 0, 1, 2, · · ·. ��

Since λτn = iνrτn is a simple eigenvalue of Aτn , by using the implicit function theorem
it is not difficult to show that there are a neighborhood On × Dn × Hn ⊂ R × C × XC of
(τn, iνrτn, yr ) and a continuously differential function (λ, y) : On → Dn × Hn such that
for each τ ∈ On , the only eigenvalue of Aτ (r) in Dn is λ(τ), and

λ(τn) = iνr τn, y(τn) = yr , ||y(τ )||YC
= ‖ sin(·)‖YC

,

(r, λ(τ )/τ, τ ) = [A(r)− brτur e−λ(τ) − λ(τ)]y(τ ) = 0, τ ∈ On . (3.4)

We show that λ(τ) moves across the imaginary axis at τ = τn transversally.

Theorem 3.4 For r ∈ (d, r∗], we have

Re

{
dλ(τn)

dτ

}
> 0, n = 0, 1, 2, · · · .

Proof Differentiating (3.4) with respect to τ at τ = τn , we have

dλ(τn)

dτ
[−1 + brurτne−iθr ]yr +(r, iνr , τn)

dy(τn)

dτ
+ iνr yr = 0.

Multiplying the equation by yr and integrating on (0, π), we obtain

dλ(τn)

dτ
=

iνr

∫ π

0
y2

r dx
∫ π

0
[1 − brτnur e−iθr ]y2

r dx

= 1

|Sn(r)|2
(

iνr

∣∣∣∣
∫ π

0
y2

r dx

∣∣∣∣
2

− ibrνrτneiθr

∫ π

0
y2

r dx
∫ π

0
ur y2

r dx

)
.

(3.5)

Noting that
∫ π

0
y2

r (x)dx =
∣∣∣∣
∫ π

0
y2

r (x)dx

∣∣∣∣eiρr ,

where ρr = Arg
( ∫ π

0 y2
r (x)dx

)
, −π < ρr ≤ π . Then from (3.5) it follows that

Re

{
dλ(τn)

dτ

}
= brτnνr (r − d)

|Sn(r)|2
∣∣∣∣
∫ π

0
y2

r dx

∣∣∣∣Re

{
− iei(θr +ρr )

∫ π

0

ur y2
r

r − d
dx

}
.
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Hence, by

Re

{
−iei(θr +ρr )

∫ π

0

ur y2
r

r − d

}
→

√
b2 − a2

b

∫ π
0 sin2 xdx

d(a + b)
> 0 as r → d,

we have Re

{
dλ(τn)

dτ

}
> 0 when r ∈ (d, r∗]. ��

We summarize the stability properties of steady state solutions and associated bifurcations
of Eq. (1.4) as follows:

Theorem 3.5 Suppose that a, b, d, r > 0 and τ ≥ 0.

1. If 0 < r ≤ d, then for all a, b > 0, each solution u(x, t) with nonnegative initial value
of the problems (1.4)–(1.5) satisfies ||u(·, t)||Y → 0 as t → ∞ for any τ ≥ 0.

2. If r > d, then the trivial steady state u = 0 is unstable, and Eq. (1.4) has a unique
positive steady state solution ur .

3. There exists r∗ > d such that for r ∈ (d, r∗], the infinitesimal generator Aτ (r) associated
with ur has exactly 2(n+1) eigenvalues with positive real part when τ ∈ (τn, τn+1], n =
0, 1, 2, · · · . In particular, for r ∈ (d, r∗], the positive steady state solution ur of Eq. (1.4)
is locally asymptotically stable when τ ∈ [0, τ0) and is unstable when τ ∈ (τ0,∞), and
a Hopf bifurcation occurs at each τ = τn and u = ur .

Proof Part 1 is similar to [42, Theorem 6.2] and we omit the proof. Part 2 is well-known, see
for example [17,37]. The eigenvalue distribution in part 3 follows directly from Lemma 3.1
and Theorem 3.4, and the stability/instability follows from Lemma 3.1, Corollary 2.5 and
the eigenvalue distribution. ��

4 Hopf Bifurcation

We have shown in Theorem 3.5 the existence of Hopf bifurcations for the problem (1.4)–(1.5)
occurring around the positive steady state solution ur and at τ = τn with τ as bifurcation
parameter. In this section, the detailed local Hopf bifurcation analysis at τ = τn is carried
out by using the normal form method described in [8].

We first transform the steady state to the origin via a translation U (t) = u(·, t) − ur (·)
with u(x, t) satisfying (1.4), and introduce a new bifurcating parameter α = τ − τn , then
(1.4) is transformed into

dU (t)

dt
= τn A(r)U (t)− τnrbur U (t − 1)+ F(Ut , α), (4.1)

where A(r) is defined in (2.4), Ut ∈ C, and for φ ∈ C, F is defined as

F(φ, α) = αA(r)φ(0)− αrburφ(−1)− ar(τn + α)φ2(0)− br(τn + α)φ(0)φ(−1).

For the linearized equation of (4.1):

dv(t)

dt
= τn A(r)v(t)− τnrburv(t − 1), (4.2)

following [9], we introduce a formal duality 〈〈·, ·〉〉, which is a bilinear form defined in
C∗

C
× CC where C∗ := C([0, 1]; YC), and it is defined by

〈〈ψ, φ〉〉 = 〈ψ(0), φ(0)〉∗ −
∫ 0

−1
〈ψ(s + 1), brτnurφ(s)〉∗ds, for φ ∈ CC, ψ ∈ C∗

C
,
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with 〈·, ·〉∗ the natural duality in YC when it is considered as a Banach space, that is 〈u, v〉∗ =∫ π
0 u(x)v(x)dx for u, v ∈ YC. In the following we will also use 〈〈·, ·〉〉 and 〈·, ·〉∗ for vectors

or matrices, which should be understood as matrix multiplication with entry multiplication
given by these dualities.

Recall that Aτn (r) is the infinitesimal generator of (4.2). We denote by � = �r,n the set
of pure imaginary eigenvalues of the Aτn (r). It is clear that

� = {iνrτn,−iνr τn} .
We also introduce P as the generalized eigenspace associated with �. From Sects. 2 and 3,
it is clear that

P = Span{�}, where �(θ) = (φ1(θ), φ2(θ)) = (yr eiνr τnθ , yr e−iνr τnθ ), for θ ∈ [−1, 0].
From the formal duality theory in [10], the phase space CC can be decomposed as CC = P⊕Q,
in which

Q = {φ ∈ CC : 〈〈ψ, φ〉〉 = 0, for all ψ ∈ P∗},
where P∗ is the generalized eigenspace of the adjoint equation of (4.2) associated with �.
By an easy computation we have that

P∗ = Span{�}, where �(s) =
(
ψ1(s)
ψ2(s)

)
=

⎛
⎜⎝

1

Sn
yr e−iνr τns

1

Sn
yr eiνr τns

⎞
⎟⎠ , for s ∈ [0, 1].

Here Sn = Sn(r) is defined in Lemma 3.2 and 〈〈�,�〉〉 = I , where I ∈ R
2×2 is the identity

matrix.
In order to obtain the normal form, one needs to consider an enlarged phase space:

BC ={ψ : [−1, 0] → YC : ψ is continuous on[−1, 0)

with a possible jump discontinuity at0},
with the sup norm. From [8], BC can be decomposed by � as BC = P ⊕ N (π), where π
is a continuous projection from BC onto P , which is defined by

π(φ + X0 y) = �
(〈〈�,φ〉〉 + 〈�(0), y

〉∗)
, φ ∈ CC, y ∈ YC,

where

X0(θ) =
{

0, −1 ≤ θ < 0,

I, θ = 0.

We define an extension An of Aτn by

Anv = v̇ + X0[τn A(r)v(0)− τnrburv(−1)− v̇(0)]
for v ∈ C1

0 := {φ ∈ CC| φ̇ ∈ CC, φ(0) ∈ XC}. Then we can state the following result from
[8].

Lemma 4.1 In BC decomposed by �, (4.1) can be written as
⎧⎪⎨
⎪⎩

dz

dt
= Bnz(t)+ 〈�(0), F(�z(t)+ y(t), α)〉∗,

dy

dt
= A1

n y(t)+ (I − π)X0 F(�z(t)+ y(t), α),
(4.3)
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where z(t) ∈ C
2, y(t) ∈ Q1

0 := Q ∩ C1
0 , Bn =

(
iνrτn 0

0 −iνr τn

)
and A1

n is defined by

A1
n : Q1

0 → N (π), A1
nv = Anv for v ∈ Q1

0.

In order to give the main result, we now write F as a Taylor polynomial in form

F(Ut , α) = 1

2! F2(Ut , α)+ 1

3! F3(Ut , α),

where F2, F3 are the second and third Fréchet derivatives of F at (0, 0) respectively, that is

F2(Ut , α) = 2α[A(r)U (t)− rbur U (t − 1)] − 2arτnU 2(t)− 2brτnU (t)U (t − 1),

F3(Ut , α) = −6arαU 2(t)− 6brαU (t)U (t − 1).

Then (4.3) can be rewritten as
⎧
⎪⎨
⎪⎩

dz

dt
= Bnz + 1

2
f 1
2 (z, y, α)+ 1

3! f 1
3 (z, y, α),

dy

dt
= A1

n y + 1

2
f 2
2 (z, y, α)+ 1

3! f 2
3 (z, y, α),

with f j := ( f 1
j , f 2

j ), j = 2, 3, defined by

f 1
j (z, y, α) = 〈�(0), Fj (�z + y, α)〉∗, f 2

j (z, y, α) = (I − π)X0 Fj (�z + y, α).

Following the approach in [9], we prepare the following Lemmas 4.2 and 4.3.

Lemma 4.2 For fixed r ∈ (d, r∗], there exist A1, A2 ∈ C such that the normal form of the
flow of Eq. (4.1) on the center manifold near α = 0 is given by

dz

dt
= Bnz +

(
A1z1α

Ā1z2α

)
+

(
A2z2

1z2

Ā2z1z2
2

)
+ O(α2|z| + |(α, z)|4) (4.4)

where z(t) = (z1(t), z2(t))T , and Āi is the complex conjugation of Ai (depending on r and
n) for i = 1, 2.

Proof By the procedure in [8], the normal form of (4.1) can be obtained by a recursive
process of changes of variables. At each step, using the transformation

(z, y) = (ẑ, ŷ)+ 1

j

(
U 1

j (ẑ, α),U
2
j (ẑ, α)

)
, j = 2, 3, · · ·

with Ui
j (ẑ, α), i = 1, 2, are homogeneous polynomials of degree j in (ẑ, α).

Ultimately Eq. (4.3) can be transformed to
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dz

dt
= Bnz +

∑
j≥2

1

j ! g1
j (z, y, α),

dy

dt
= A1

n y +
∑
j≥2

1

j ! g2
j (z, y, α),

with g j := (g1
j , g2

j ) are homogeneous polynomials of degree j in (z, y, α), defined by

g j = f̃ j − M j U j ,
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where f̃ j := ( f̃ 1
j , f̃ 2

j ) are the terms of order j in (z, y, α) obtained after the ( j − 1)-th

transformation and linear operators M j := (M1
j ,M2

j ) are defined by

(M1
j p)(z, α) = Dz p(z, α)Bnz − Bn p(z, α),

(M2
j p)(z, α) = Dz p(z, α)Bnz − A1

n p(z, α),
(4.5)

where p(z, α) is a homogeneous polynomials of degree j in (z, α).
An easy calculation yields that

M1
j (z

qαl ek) = iνr τn
(
q1 − q2 + (−1)k

)
zqαl ek, j = 2, 3, · · · , k = 1, 2, (4.6)

with zq = zq1
1 zq2

2 , q1, q2, l ∈ N0, l + q1 + q2 = j , and {e1, e2} is the canonical basis for C
2.

Therefore,

N (M1
2 ) = Span

{(
z1α

0

)
,

(
0

z2α

)}
,

N (M1
3 ) = Span

{(
z2

1z2

0

)
,

(
0

z1z2
2

)
,

(
z1α

2

0

)
,

(
0

z2α
2

)}
.

(4.7)

From [8],

g1
j (z, 0, α) = ProjN (M1

j )
f̃ 1

j (z, 0, α).

It follows that the normal form up to third order of the flow of Eq. (4.1) on the center manifold
near α = 0 is given by (4.4), with the coefficients can be found to be complex conjugates.

��

Using Lemma 4.2 and well-known calculations, we can state the following Lemma.

Lemma 4.3 For each fixed r ∈ (d, r∗) and each fixed n ∈ N0, (4.1) has a 2-dimensional
local center manifold of the origin at τ = τn, on which the flow is given by an ODE written
in normal form and in polar coordinates (ρ, ξ) as

ρ̇ = K1(τ − τn)ρ + K2ρ
3 + O

(
(τ − τn)

2ρ + |(τ − τn, ρ)|4
)
,

ξ̇ = −iνrτn + O
(|(τ − τn, ρ)|

)
,

(4.8)

where K1 = Re{A1}, K2 = Re{A2}.
Next we calculate the signs of Re{A1} and Re{A2} which determine the direction of Hopf

bifurcation and the stability of bifurcating periodic orbits.

Proposition 4.4 Let r ∈ (d, r∗] and n = 0, 1, 2, · · ·, and let A1 be defined as in (4.4). Then
Re{A1} > 0.

Proof From the definition of f 1
2 , we have

1

2
f 1
2 (z, y, α)

= α〈�0, A(r)
(
�0z + y0

) − rbur
(
�−1z + y−1

)〉∗
− arτn〈�0,

(
�0z + y0

)2〉∗ − brτn〈�0,
(
�0z + y0

)(
�−1z + y−1

)〉∗,
(4.9)
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where�0 = �(0),�θ = �(θ) and yθ = y(θ), θ = 0,−1. Note that A1 is the coefficient of

the term

(
x1α

0

)
in

1

2
f 1
2 (z, 0, α) = 1

2
f̃ 1
2 (z, 0, α). Then from Corollary 2.5, we obtain that

A1 = 1

Sn
〈yr , A(r)yr − rbur e−iθr yr 〉∗

= iνr

Sn
〈yr , yr 〉∗ = iνr Sn

∫ π
0 y2

r dx

|Sn |2 .

From (3.1) and yr → sin x as r → d , we have

Re

{
i Sn

∫ π

0
y2

r dx

}
→ (θd + 2nπ)

(∫ π

0
sin2 xdx

)2

, as r → d.

Therefore Re{A1} > 0. ��

From Lemma 4.2, A2 is the coefficient of the term

(
z2

1z2

0

)
in

1

3! f̃ 1
3 (z, 0, 0). Then follow-

ing [8], we write

f̃ 1
3 (z, 0, 0) = f 1

3 (z, 0, 0)+ 3

2

[
(Dz f 1

2 )(z, 0, 0)U 1
2 (z, 0)

− (DzU 1
2 )(z, 0)g1

2(z, 0, 0)+ (Dy f 1
2 )(z, 0, 0)U 2

2 (z, 0)
]
,

=3

2

[
(Dz f 1

2 )(z, 0, 0)U 1
2 (z, 0)+ (Dy f 1

2 )(z, 0, 0)U 2
2 (z, 0)

]
,

(4.10)

since f 1
3 (z, 0, 0) = 0 and g1

2(z, 0, 0) = 0. Thus

A2 = 3

2
[C1 + C2] ,

where C1 and C2 are the coefficients of

(
z2

1z2

0

)
contributed from (Dz f 1

2 )(z, 0, 0)U 1
2 (z, 0)

and (Dy f 1
2 )(z, 0, 0)U 2

2 (z, 0) respectively. We calculate C1 and C2 separately in the following
lemma.

Lemma 4.5 Let yr and θr be defined as in Theorem 2.4, and let C1 and C2 be defined as
above. We define a matrix

R =
(
(a + be−iθr )y2

r (a + be−iθr )|yr |2
(a + beiθr )|yr |2 (a + beiθr )yr

2

)
:=

(
R11 R12

R21 R22

)
.

Then

C1 =4r2τn

iνr

(
− 1

S2
n
〈yr ,R11〉∗〈yr ,R21 + R12〉∗ + 2

3|Sn |2 〈yr ,R22〉∗〈yr ,R11〉∗

+ 1

|Sn |2 〈yr ,R21 + R12〉∗〈yr ,R21 + R12〉∗
)
,

(4.11)

and we have

lim
r→d+(r − d)2Re{C1(r)} = 0. (4.12)
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Proof We define H(z) = zTRz to be the quadratic norm H(z) = R11z2
1 + (R12 +R21)z1z2 +

R22z2
2. We observe that

ProjR(M1
2 )

f 1
2 (z, 0, 0) = −2rτn〈�0, zTRz〉∗,

and from (4.6),

M1
2 (z

2
1, z1z2, z2

2)e1 = iνrτn(z
2
1,−z1z2,−3z2

2)e1,

M1
2 (z

2
1, z1z2, z2

2)e2 = iνrτn(3z2
1, z1z2,−z2

2)e2.

Hence,

U 1
2 (z, α) = (M1

2 )
−1(ProjR(M1

2 )
f 1
2 (z, 0, α))

= − 2r

iνr

⎛
⎜⎝

〈 yr

Sn
,R11z2

1 − (R12 + R21)z1z2 + 1

3
R22z2

2〉∗

〈 yr

Sn
,

1

3
R11z2

1 + (R12 + R21)z1z2 − R22z2
2〉∗

⎞
⎟⎠ .

On the other hand,

Dz f 1
2 (z, 0, 0) = −2rτn〈�0,∇(zTRz)〉∗,

where

∇(zTRz) =
(
∂

∂z1
(zTRz),

∂

∂z2
(zTRz)

)

= (2R11z1 + (R12 + R21)z2, (R12 + R21)z1 + 2R22z2) .

Hence

Dz f 1
2 (z, 0, 0)

= − 2rτn

⎛
⎜⎝

〈 yr

Sn
, 2R11z1 + (R12 + R21)z2〉∗ 〈 yr

Sn
, (R12 + R21)z1,+2R22z2〉∗

〈 yr

Sn
, 2R11z1 + (R12 + R21)z2〉∗ 〈 yr

Sn
, (R12 + R21)z1,+2R22z2〉∗

⎞
⎟⎠ .

Then we can obtain (4.11) from the expressions of U 1
2 (z, α) and Dz f 1

2 (z, 0, 0).
We rewrite C1(r) as the following:

C1 =4r2τn

iνr

(
− 2

S2
n
〈yr , (a + be−iθr )y2

r 〉∗〈yr , (a + bRe{eiθr })|yr |2〉∗

+ 2

3|Sn |2 |〈yr , (a + beiθr )yr
2〉∗|2 + 4

|Sn |2 |〈yr , (a + bRe{eiθr })|yr |2〉∗|2
)
.

Then

Re{C1} = Re

{
4r2τn

iνr

(
− 2

S2
n
〈yr , (a + be−iθr )y2

r 〉∗〈yr , (a + bRe{eiθr })|yr |2〉∗
}
.

It follows that

lim
r→d+(r − d)2Re{C1} = − Re

{
8d2(θd + 2nπ)

i(hd)2(Sd
n )

2 (a + be−iθd )(a + b cos θd)(

∫ π

0
sin3 xdx)2

}

=0,

since a + b cos θd = 0, here Sd
n = lim

r→d+ Sn(r). ��
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From [8], the U 2
2 (z, 0) can be uniquely determined by M2

2 U 2
2 (z, 0) = f 2

2 (z, 0, 0), which
is equivalent to

DzU 2
2 (z, 0)Bnz − A1

n

(
(U 2

2 (z, 0)
) = (I − π)X0 F2(�z, 0).

Define

U 2
2 (z, 0) := p(z)(θ) := p20(θ)z

2
1 + p11(θ)z1z2 + p02(θ)z

2
2, (4.13)

here p20, p11, p02 ∈ Q1
0. From (4.9),

f 1
2 (z, y, 0) = −2rτn〈�0,

(
�0z + y0

)(
a�0z + ay0 + b�−1z + by−1

)〉∗.
Then for W ∈ Q1

0,

Dy f 1
2 (z, y, 0)W = − 2rτn〈�0,W0

(
�0z + y0

)(
a�0z + ay0 + b�−1z + by−1

)〉∗
− 2rτn〈�0,

(
�0z + y0

)(
aW0 + bW−1

)〉∗,
where Wθ = W (θ), θ = 0, −1. Hence

Dy f 1
2 (z, y, 0)U 2

2 (z, 0) = −2rτn〈�0,
(
2a�0zp(z)(0)+ b�−1zp(z)(0)+ b�0zp(z)(−1)

)〉∗.
Now the coefficient of z2

1z2 in 2a�0zp(z)(0)+ b�−1zp(z)(0)+ b�0zp(z)(−1) is

(2a + be−iθr )yr p11(0)+ (2a + be−iθr )yr p20(0)+ byr p11(−1)+ byr p20(−1),

Hence

C2 = − 2rτn

Sn

{
〈yr , [bp11(−1)+ (2a + be−iθr )p11(0)]yr 〉∗

+ 〈yr , [bp20(−1)+ (2a + beiθr )p20(0)]yr 〉∗
}
.

(4.14)

Now, we need to determine p20(0), p20(−1), p11(0) and p11(−1).
By using the definitions of A1

n and F2, we have
{

ṗ(z)(θ)− Dz p(z)(θ)Bnz = −2rτn�〈�0, zT Rz〉∗,
ṗ(z)(0)− τn A(r)p(z)(0)+ rbτnur p(z)(−1) = −2rτnzTRz.

(4.15)

Substituting (4.13) into the first equation of (4.15) we obtain
{

ṗ20(θ)− 2iνrτn p20(θ) = τnk1
r eiνr τnθ + τnk2

r e−iνr τnθ

ṗ11(θ) = τnk3
r eiνr τnθ + τnk4

r e−iνr τnθ ,
(4.16)

where

k1
r = −2r

〈yr ,R11〉∗yr

Sn
, k2

r = −2r
〈yr ,R11〉∗yr

Sn
,

k3
r = −2r

〈yr ,R12 + R21〉∗yr

Sn
, k4

r = −2r
〈yr ,R12 + R21〉∗yr

Sn
.

Solving the equations in (4.16), we obtain that, for −1 ≤ θ < 0,
⎧⎪⎪⎨
⎪⎪⎩

p20(θ) =e2iνr τnθ p20(0)+ k1
r i

νr
(eiνr τnθ − e2iνr τnθ )+ k2

r i

3νr
(e−iνr τnθ − e2iνr τnθ ),

p11(θ) =p11(0)− k3
r i

νr
(eiνr τnθ − 1)+ k4

r i

νr
(e−iνr τnθ − 1).

(4.17)
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Using the second equation of (4.15) we get
{

ṗ20(0)− τn A(r)p20(0)+ brτnur p20(−1) = −2rτnR11,

ṗ11(0)− τn A(r)p11(0)+ brτnur p11(−1)] = −2rτn(R12 + R11).
(4.18)

However, using (4.16) we have
{

ṗ20(0) = 2iνr τn p20(0)+ τnk1
r + τnk2

r ,

ṗ11(0) = τnk3
r + τnk4

r .
(4.19)

Combining (4.18) and (4.19) we have the following equations of p20(0) and p11(0):
⎧⎪⎪⎨
⎪⎪⎩

A20(r)p20(0) = brur i

νr
[k1

r (e
−iθr − e−2iθr )+ k2

r

3
(eiθr − e−2iθr )] + k1

r + k2
r + 2rR11,

A11(r)p11(0) = −brur i

νr
[k3

r (e
−iθr − 1)− k4

r (e
iθr − 1)] + k3

r + k4
r + 2r(R12 + R21),

with
{

A20(r) = A(r)− 2iνr − rbur e−2iθr ,

A11(r) = A(r)− brur .

Let q20(θ) = νr p20(θ) and q11(θ) = νr p11(θ), then from (4.17),
⎧⎨
⎩

q20(θ) =e2iνr τnθq20(0)+ k1
r i(eiνr τnθ − e2iνr τnθ )+ k2

r i

3
(e−iνr τnθ − e2iνr τnθ ),

q11(θ) =q11(0)− k3
r i(eiνr τnθ − 1)+ k4

r i(e−iνr τnθ − 1).
(4.20)

We decompose q∗(0) as q∗(0) = sr∗ sin(·) + zr∗, where sr∗ ∈ C, zr∗ ∈ Q1
0 satisfy∫ π

0 q∗(x) sin xdx = 0 for ∗ = 20, 11. Since lim
r→d+ ||A∗(r) − (d D2 + d)|| = 0, and

lim
r→d+ νrρ∗(r) = 0 uniformly for x ∈ [0, π ], then lim

r→d+ ||zr∗|| = 0. Define qd∗ (θ) =
lim

r→d+ qr∗(θ), sd∗ = lim
r→d+ sr∗ and k j

d = lim
r→d+ k j

d for ∗ = 20, 11 and j = 1, 2, 3, 4. Then,

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

qd∗ (0) = sd∗ sin x,

qd
20(θ) = sd

20e2iθdθ sin x + k1
d i(eiθdθ − e2iθdθ )+ k2

d i

3
(e−iθdθ − e2iθdθ ),

qd
11(θ) = sd

11 sin x − k3
d i(eiθdθ − 1)+ k4

d i(e−iθdθ − 1).

(4.21)

Now from

〈〈�, q∗(θ)〉〉 = 〈�0, q∗(0)〉∗ − brτn

∫ 0

−1
〈�s+1, ur q∗(s)〉∗ds = 0,

taking limit as r → d+, and using (4.21), we obtain

sd
20 = bi(θd + 2nπ)e−iθd

μd(a + b)hd
∫ π

0 sin3 xdx

[ (
1 − 1 − e−iθd

iθd

) ∫ π

0
k1

d sin2 xdx

− 3 + e2iθd − 2e−iθd

6iθd

∫ π

0
k2

d sin2 xdx

]
,

(4.22)
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where

μd = 1 − b(θd + 2nπ)

i(a + b)hdθd
(e−iθd − e−2iθd ). (4.23)

By using

(
k1

d k2
d

k3
d k4

d

)
= −2d sin x

∫ π

0
sin3 xdx

⎛
⎜⎜⎜⎝

a + be−iθd

Sd
n

a + be−iθd

Sd
n

2(a + b cos θd)

Sd
n

2(a + b cos θd)

Sd
n

⎞
⎟⎟⎟⎠ , (4.24)

and noting that a + b cos θd = 0 so that k3
d = k4

d = 0, hence sd
11 = 0 and qd

11(θ) ≡ 0 for
θ ∈ [−1, 0]. Using (4.14), we obtain that

lim
r→d+(r − d)2C2 = − 2d(θd + 2nπ)

Sd
n h2

d

∫ π

0
sin3 xdx

[
(2a + beiθd + be−2iθd )sd

20

− 2bdi(a + be−iθd )

∫ π

0
sin3 xdx(

e−iθd − e−2iθd

Sd
n

+ eiθd − e−2iθd

3Sd
n

)

]

=4bd2i(θd + 2nπ)(a + be−iθd )

Sd
n h2

dμd
(

∫ π

0
sin3 xdx)2

·
{
(θd + 2nπ)(2a + beiθd + be−2iθd )e−iθd

(a + b)hdμd

[
1

Sd
n
(1 − 1 − e−iθd

iθd
)

− 1

Sd
n

3 + e2iθd − 2e−iθd

6iθd

]
+ e−iθd − e−2iθd

Sd
n

+ eiθd − e−2iθd

3Sd
n

}

=4bd2(θd + 2nπ)(a + b)2
√

b2 − a2(
∫ π

0 sin3 xdx)2

b2 − a2 I (n, a, b),

where

I (n, a, b) = (θd + 2nπ)(2a + beiθd + be−2iθd )e−iθd

(a + b)hdμd

[
1

(Sd
n )

2 (1 − 1 − e−iθd

iθd
)

− 1

|Sd
n |2

3 + e2iθd − 2e−iθd

6iθd

]
+ e−iθd − e−2iθd

(Sd
n )

2 + eiθd − e−2iθd

3|Sd
n |2 .

(4.25)

From Lemmas 4.3 and 4.5, the determination of the direction of the Hopf bifurcations
and the stability of the bifurcating periodic solutions for (1.4) is calculating the sign of the
quantity Re{I (n, a, b)}. Without loss of generality, we can assume that a + b = 1, it follows
that b ∈ (0.5, 1). Notice that if we introduce a transformation v(x, t) = (a + b)u(x, t), then
v satisfies the following equation

∂v(x, t)

∂t
= dτ

∂v2(x, t)

∂x2 + rτv(x, t)

[
1 − a

a + b
v(x, t)− b

a + b
v(x, t − 1)

]
, (4.26)
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Fig. 1 Graph of functions Re{K (n, b)}. Left n = 0. Right 0 ≤ n ≤ 6

which is same as (1.4) ignoring a scalar factor. Note that we can rewrite I (n, a, b) = I (n, b)
as follows:

I (n, b) = (
∫ π

0 sin2 x)2

|Sd
n |4

{
(θd + 2nπ)(2a + beiθd + be−2iθd )e−iθd

(a + b)hdμd
[

(S
d
n)

2

(
∫ π

0 sin2 x)2
(1 − 1 − e−iθd

iθd
)− |Sd

n |2
(
∫ π

0 sin2 x)2
3 + e2iθd − 2e−iθd

6iθd

]

+ (S
d
n)

2

(
∫ π

0 sin2 x)2
(e−iθd − e−2iθd )+ |Sd

n |2
(
∫ π

0 sin2 x)2
eiθd − e−2iθd

3

}

:= (
∫ π

0 sin2 x)2

|Sd
n |4 K (n, b),

(4.27)

where K (n, b) is a function of variables b ∈ (0.5, 1) and n = 0, 1, 2, · · ·.
It is difficult to determine the sign of Re{K (n, b)} analytically due to its complicated form,

but for b ∈ (0.5, 1) and each fixed n = 0, 1, 2, · · ·, the graph of function Re{K (n, b)} can be
plotted (see Fig. 1), and it follows that Re{C2} < 0 for any b ∈ (0.5, 1) and n = 0, 1, 2, · · ·.
This implies that the constant K2 = Re{A2} < 0 from Lemma 4.5. Hence the direction of
each Hopf bifurcation at τ = τn is forward (periodic orbits exist for τ ∈ (τn, τn + ε), and the
bifurcating periodic orbits are locally orbitally stable from Lemma 4.3 and the well-known
formulas for Hopf bifurcations [44].

Summarizing above results, we obtain the following theorem about the direction of local
Hopf bifurcation and the stability of the bifurcating periodic solutions.

Theorem 4.6 For each fixed r ∈ (d, r∗), (1.4) undergoes a Hopf bifurcation at u = ur when
τ = τn (n = 0, 1, 2, · · ·). Moreover, all bifurcating periodic solutions are locally orbitally
asymptotically stable on the center manifold near τ = τn and u = ur and the direction
of bifurcations are forward. In particular, the bifurcating periodic solutions from the first
bifurcation value τ = τ0 are orbitally asymptotically stable in the entire phase space.

5 Global Existence of Periodic Solutions

In this section, we study the global continuation of periodic solutions bifurcating from the
point (ur , τn), n = 0, 1, 2, · · · for Eq. (1.4) using global Hopf bifurcation theorem given by
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Wu [44,45]. Throughout this section, we closely follow the notations in [44]. To state the
global Hopf bifurcation theorem, we define that

(i) E = C(S1; X) is a real isometric Banach representation of the group G = S1 :=
{z ∈ C : |z| = 1};

(ii) Let EG := {x ∈ E : gx = x for allg ∈ G}. Then EG = X , and E has an isotypical

direct sum decomposition E = EG
∞⊕

k=1

Ek where Ek = {eikt x : x ∈ X} for k ≥ 1.

Then from [44], Eq. (1.4) can be casted into an integral equation which is continuously
differentiable, completely continuous, and G-invariant.

We fix r ∈ (d, r∗) and n ∈ N
⋃{0}. Recall that ur is the unique positive steady state

solution of (1.4). From Lemma 3.1, for any τ ≥ 0, 0 is not an eigenvalue of Aτ (r), hence the
assumption (H1) in [44, Sect. 6.5] is satisfied. When τ = τn,Aτ (r) has a unique pair of purely
imaginary eigenvalues ±iνr τn , hence the assumption (H2) in [44, Sect. 6.5] is satisfied. We
choose sufficiently small ε0, ς0 > 0, and we define the local steady state manifold

Mr = {(ur , τ, ω) : |τ − τn | < ε0, |ω − νr τn | < ς0} ⊂ EG × R × R+.

Then for (τ, ω) ∈ [τn − ε0, τn + ε0] × [νr τn − ς0, νr τn + ς0], iω is an eigenvalue of Aτ (r)
if and only if τ = τn and ω = νrτn from our results in Sect. 2. This verifies the assumption
(H3) in [44, Sect. 6.5]. From [44, Lemma 6.5.3], we conclude that (ur , τn, νr τn) is an isolated
singular point in Mr .

Let μk(ur , τn, νr τn) (k = 1, 2, · · ·) be the generalized crossing number defined in [44,
Sect. 6.5]. Then from Theorem 3.4, if λ(τ) = α(τ) ± iβ(τ) are the eigenvalues of Aτ (r)
satisfying λ(τn) = ±iνr τn , then α′(τn) > 0. This implies that μ1(ur , τn, νr τn) = 1. Hence
one obtains the local topological Hopf bifurcation for Eq. (1.4) at τ = τn .

Next we consider the global nature of the Hopf bifurcation. Let S be the closure of the set

{(z, τ, ω) ∈ E × R × R+ : u(·, t) = z(·, ωt) is a nontrivial

2π/ω periodic solution of (1.4)}.
Then from the local bifurcation theorem, (ur , τn, νr τn) ∈ S. We also define the complete
steady state manifold:

M∗
r = {(ur , τ ) : τ ∈ R} ⊂ EG × R.

Let Cn = C(ur , τn, νr τn) denote the connected component of S for which (ur , τn, νr τn)

belongs to. Then the global Hopf bifurcation theorem of (1.4) can be adapted from [44,
Theorem 6.5.5]:

Theorem 5.1 Let S,M∗
r , and Cn be defined as above. Then for each n ∈ N

⋃{0},Cn is
unbounded, i.e.,

sup

{
max
t∈R

|z(t)| + |τ | + ω + ω−1 : (z, τ, ω) ∈ Cn

}
= ∞. (5.1)

Proof From Theorem 6.5.5 in [44], one of the following holds:

(i) Cn is unbounded, i.e. (5.1) holds; or
(ii) Cn ∩ (M∗

r × R+) is finite and for all k ≥ 1, one has the equality
∑

(ur ,τ j ,νr τ j )∈Cn∩(M∗
r ×R+)

μk(ur , τ j , νr τ j ) = 0, (5.2)
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where μk is the k-th generalized crossing number. However from Theorem 3.4, if λ(τ) =
α(τ) ± iβ(τ) are the eigenvalues of Aτ (r) satisfying λ(τn) = ±iνr τn , then α′(τn) >

0. This implies that μ1(ur , τn, νr τn) = 1. Hence if case (ii) occurs, then the sum∑
μ1(ur , τ j , νr τ j ) = p > 0, where p is the number of elements in Cn ∩ (M∗

r × R+).
That is a contradiction to (5.2) when k = 1. Therefore the second alternative could not hap-
pen, and Cn is unbounded. ��

For the further structure of each Cn , we prove the following properties of solutions of
Eq. (1.4):

Lemma 5.2 Suppose that r > d, and u(x, t) is the solution of (1.4)–(1.5) with η(x, t) ≥ 0
for t ∈ [−1, 0], x ∈ (0, π), then u(·, t) exists for all t ∈ (0,∞), and there exists Tη > 0 so
that

0 ≤ u(x, t) ≤ 1

a
, t > Tη. (5.3)

Moreover, for t ∈ (0,∞) and x ∈ (0, π), u(x, t) > 0 if η(x, 0) ≥ (�≡)0, and u(x, t) ≡ 0 if
η(x, 0) ≡ 0.

Proof From [44, Chap. 2], (1.4)–(1.5) has a local solution u(x, t). We choose K ≥
max{1/a,max |η(t, x)|}, and let v(x, t) be the unique solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂v(x, t)

∂t
= dτ

∂v2(x, t)

∂x2 + rτv(x, t)[1 − av(x, t)], x ∈ (0, π), t > 0,

v(0, t) = v(π, t) = 0, t ≥ 0,

v(x, 0) = K .

(5.4)

It is well-known that v(x, t) exists and v(x, t) > 0 for t ∈ (0,∞) and x ∈ (0, π), and
lim

t→∞ v(x, t) = va(x), which is the unique positive steady state solution of (5.4) (see [17]).

Note that we assume that r > d here so va(x) exists. Then u(x, t) = 0 and u(x, t) = v(x, t)
are a pair of upper and lower solutions of (1.4)–(1.5) as [31, Definition 2.2]. Then from the
comparison principle (see [31, Theorem 2.1]), u(x, t) exists and 0 = u(x, t) ≤ u(x, t) ≤
u(x, t) = v(x, t) for all t ∈ (0,∞). Since 0 < va(x) < 1/a for 0 < x < π , then (5.3)
holds for t > Tη. The last assertion follows from strong maximum principle of parabolic
equations. ��

Secondly we claim that Eq. (1.4) has no positive periodic orbit for small τ > 0.

Lemma 5.3 Suppose that d < r < r∗, then Eq. (1.4) has no positive nontrivial periodic
orbit for small τ > 0.

Proof From [12] (see also [44, Sect. 10.2]), for small enough τ > 0, the unique positive
steady state solution ur is globally asymptotically stable for all positive initial values for Eq.
(1.4). Thus the conclusion of this lemma holds. ��

Next we prove a lemma about the nonexistence of positive periodic orbits of (1.4) with
certain periods:

Lemma 5.4 Assume that b > a > 0, r > d > 0 and τ > 0. Suppose that u(x, t) is a
nontrivial T -periodic solution of (1.4) satisfying u(x, t) > 0 for t ∈ R and x ∈ (0, π), and
T > 0. Then T �= 1/m for m ∈ N.
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Proof We prove that (1.4) has no nontrivial positive 1-periodic solution. Indeed a nontrivial
1-periodic solution of (1.4) is also a nontrivial periodic solution of the following diffusive
logistic equation:

⎧⎨
⎩
∂v(x, t)

∂t
= dτ

∂v2(x, t)

∂x2 + rτv(x, t)[1 − (a + b)v(x, t)], x ∈ (0, π), t > 0,

v(0, t) = v(π, t) = 0, t ≥ 0.
(5.5)

It is well-known that (5.5) has no nonconstant periodic solution as a gradient system, and
the unique positive steady state solution is globally asymptotically stable with respect to
all non-negative initial values (�≡ 0) (see [17,31,37]). Therefore (1.4) has no nonconstant
1-periodic solution. Since any nontrivial 1/m-periodic solution is also a nontrivial 1-periodic
solution, then there is no nontrivial positive 1/m-periodic solution of (1.4) as well. ��

The nonexistence of nontrivial positive 1/m-periodic solution implies the following
important estimate for the periods of periodic orbits on Cn :

Corollary 5.5 Suppose that (z, τ, ω) ∈ Cn for n ∈ N
⋃{0}. Then 1/(n + 1) < ω < 1/n if

n ≥ 1, and ω > 1 if n = 0.

Proof From (1.8) and (2.9), we know that

lim
r→d+ νr τn(r) = arccos

(−a

b

)
+ 2nπ.

Hence near the bifurcation point (ur , τn, νr τn), the period ω of periodic orbit is close to
2π/(νr τn) which satisfies

2

2n + 1
= 2π

π + 2nπ
<

2π

τnνr
<

2π

π/2 + 2nπ
= 4

4n + 1
. (5.6)

When n ≥ 1, (5.6) implies that

1

n + 1
<

2π

τnνr
<

1

n
. (5.7)

From Lemma 5.4 and the continuity ofω on Cn, 1/(n+1) < ω < 1/n for any (z, τ, ω) ∈ Cn .
Similarly for n = 0, we have ω > 1 for any (z, τ, ω) ∈ C0. ��

Next we show that the strong maximum principle also implies that every periodic orbit
on Cn must be strictly positive.

Lemma 5.6 Suppose that (z, τ, ω) ∈ Cn for n ∈ N
⋃{0}, and let u(x, t) be a ω-periodic

solution of (1.4) with delay τ which is a representation of z. Then u(x, t) > 0 for t ∈ R and
x ∈ (0, π).
Proof Since (ur , τn, νr τn) ∈ Cn , then near the bifurcation point (ur , τn, νr τn), any
(z, τ, ω) ∈ Cn satisfies u(x, t) > 0 for t ∈ R and x ∈ (0, π), where u(x, t) is an ω-periodic
solution of (1.4) with delay τ and u is a representation of z. Suppose that the assertion does
not hold for all (z, τ, ω) ∈ Cn . Then there exists a (z∗, τ ∗, ω∗) ∈ Cn such that if u∗(x, t) is
an ω∗-periodic solution of (1.4) with delay τ ∗ and u∗ is a representation of z∗, and either (i)
u∗(x∗, t∗) = 0 for some x∗ ∈ (0, π) and t∗ ∈ R, or (ii) u∗(x, t∗) > 0 for all x ∈ (0, π)
but u∗

x (x
∗, t∗) = 0 for x∗ = 0 or π . For case (i), the strong maximum principle of parabolic

equations [30,39] implies that u∗(x, t) ≡ 0; and for case (ii), the Hopf boundary lemma of
parabolic equations [11,39] (especially Corollary 9.14 of [39]) implies that u∗(x, t) ≡ 0.
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From Lemma 5.3, τ ∗ > 0, and from Corollary 5.5, ω∗ > 0. This would make τ = τ ∗ a
Hopf bifurcation point for periodic orbits with period near ω∗ from the steady state solution
u = 0. Hence the linearized Eq. (2.3) at u = 0 has a pair of purely imaginary eigenvalues
±ω∗i . But this is impossible since the linearization at u = 0 does not any eigenvalues with
nonzero imaginary part. That is a contradiction, and hence the assertion of the lemma holds.

��
Now we are in the position to state a structure theorem about Cn and the multiplicity of

periodic orbits of (1.4).

Theorem 5.7 Let Cn be the connected component of S for which (ur , τn, νr τn) belongs to,
where n = 0, 1, 2, · · ·.
1. For any n,m ∈ N

⋃{0}, n �= m,Cn
⋂

Cm = ∅;
2. For each n ∈ N, the projection of Cn to the τ -component is unbounded, and indeed,

define ProjτCn := {τ : (z, τ, ω) ∈ Cn}, then ProjτCn ⊇ (τn,∞);
3. For any τ̃ > τn, Sτ̃ := {(z, τ̃ , ω) ∈ S} contains at least n elements (zi , τ̃ , ωi ), (1 ≤ i ≤

n), and (zi , τ̃ , ωi ) ∈ S
⋂

Ci .

Proof From Corollary 5.5, the ranges of periodω on Cn and Cm are disjoint, hence Cn
⋂

Cm =
∅ for any n,m ∈ N

⋃{0}, n �= m. From Theorem 5.1, each Cn is unbounded in the sense
of (5.1). For n ∈ N

⋃{0},max
t∈R

|z(t)| is uniformly bounded for all (z, τ, ω) ∈ Cn from

Lemma 5.2. From Corollary 5.5, for n ∈ N, ω + ω−1 is also uniformly bounded for all
(z, τ, ω) ∈ Cn . Thus the projection of Cn to τ component must be unbounded from (5.1).
From Lemma 5.3, ProjτCn does not extend to small τ > 0, hence it must extend to τ = ∞.
Therefore ProjτCn ⊇ (τn,∞). Since ProjτCi ⊇ (τi ,∞) for any i ≥ 1, then Sτ̃

⋂
Ci �= ∅ for

1 ≤ i ≤ n if τ̃ > τn . Thus Sτ̃ contains at least n elements for any τ̃ > τn . ��
We now has the following existence and multiplicity result for the periodic orbits of Eq.

(1.4):

Theorem 5.8 For each fixed r ∈ (d, r∗), (1.4) has at least one periodic orbit when τ > τ1,
and (1.4) has at least two distinct periodic orbits when τ ∈ (τn, τn + ε) for n ≥ 2 and some
ε > 0.

Proof Since ProjτC1 ⊇ (τ1,∞), then (1.4) has at least one periodic orbit when τ > τ1.
We denote by (z1(τ ), τ, ω1(τ )) an element of C1 with delay value τ > τ1. When τ >

τn, Sτ
⋂

Cn �= ∅, hence we denote by (zn(τ ), τ, ωn(τ )) an element of Cn with delay value
τ > τn .

We call (z1, τ, ω1) and (z2, τ, ω2) ∈ S to be geometrically identical, if there exist repre-
sentation ui (x, t) of zi (i = 1, 2) such that u1(x, t) ≡ u2(x, t) for t ∈ R and x ∈ (0, π),
otherwise we call (z1, τ, ω1), (z2, τ, ω2) ∈ S to be geometrically distinctive. It is evident that
if (z1, τ, ω1) and (z2, τ, ω2) ∈ S are geometrically identical, then ω1 = kω2 orω2 = kω1

for some k ∈ N. When τ → τ+
n with n ≥ 2, (z1(τ ), τ, ω1(τ )) and (zn(τ ), τ, ωn(τ )) are

two geometrically distinctive periodic orbits since zn(τ ) → ur and z1(τ ) �→ ur as τ → τ+
n

from the uniqueness of bifurcating periodic orbits near u = ur and τ = τn . Hence (1.4)
has at least two distinct periodic orbits when τ ∈ (τn, τn + ε) for n ≥ 2 and some ε > 0.

��
We remark that in general, for the global Hopf bifurcation theorem, it is hard to assert the

existence of n geometrically distinctive periodic orbits when τ > τn , although one can obtain
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Fig. 2 Left τ = 15, the solution tends to a positive steady state. Right τ = 18, the solution converges to a
time-periodic solution with small amplitude

Fig. 3 Left τ = 100. Right τ = 200. In both cases, the solution converges to a time-periodic solution with
larger amplitude

n different elements on the different connected components Cm (1 ≤ m ≤ n) of the set of
periodic orbits as in Theorem 5.7. In general we cannot exclude the possibility that (z1, τ, ω1)

and (z2, τ, ω2) ∈ S, but they are geometrically identical. It is an interesting question to study
the nodal properties of these bifurcating periodic orbits similar to the steady state bifurcation
case.

6 Numerical Simulations and Discussion

In this section, we present some numerical simulations to demonstrate the analytic results in
previous sections. As an example we consider (1.4)–(1.5) with d = 0.5 and r = 0.6, and in the
following simulations, we always use the initial condition η(x, t) = 0.15 sin x, t ∈ [−1, 0].
In Figs. 2 and 3 and 4, left we use a = 0.1, b = 0.9. For this set of parameter, τ0 ≈ 16.9
and the period of bifurcating orbits is near T ≈ 3.74 from Corollary 2.5. We know that the
positive steady state solution ur is locally asymptotically stable when τ < τ0, which is shown
in Fig. 2-left with τ = 15. One can see that the maximum of the steady state in Fig. 2-left

is close to
(r − d)

∫ π
0 sin2 xdx

d(a + b)
∫ π

0 sin3 xdx
≈ 0.23. A Hopf bifurcation occurs when τ crosses τ0, the

positive steady state ur loses its stability and the bifurcating periodic solutions state is stable
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Fig. 4 Left τ = 400, the solution converges to a time-periodic solution with large amplitude which is less
than 1/a. Right a = 0.6, b = 0.4 and τ = 200, the solution converges to a steady state solution

as shown in Fig. 2-right, and one can see that period of the periodic solution in Fig. 2-left is
close to 3.74.

As τ increases, the solutions still converge to a time periodic solution, see Figs. 3 and
4-left, and the period of the periodic solutions increases slowly. But after τ = 200, the
amplitude of periodic solutions almost does not increase anymore, and it is smaller than
1/a = 10, see Figs. 3-right and 4-left. This partly verifies the uniform boundedness of all
solutions proved in Lemma 5.2. Finally in Fig. 4-right we show that when a > b (we use
a = 0.6, b = 0.4), the steady state ur is asymptotically stable even with a large delay τ .

Our analytical results prove the local Hopf bifurcation at τn for n ≥ 1 can be extended
to τ = ∞, but such an assertion cannot be made for n = 0 as the periods of periodic orbits
on C0 is not bounded. The numerical simulations here suggest that, for any τ > τ0 there is
a stable periodic orbit, which provides evidence for the global continuation of local Hopf
bifurcation from τ0.

Acknowledgements The authors thank an anonymous referee and the editor for careful reading of the man-
uscript and some helpful comments. Partially supported by China-NNSF Grants 11031002 and 11071051,
US-NSF grant DMS-1022648 and Shanxi 100 Talent program.

References

1. Azevedo, K.A.G., Ladeira, L.A.C.: Hopf bifurcation for a class of partial differential equation with
delay. Funkcialaj Ekvacioj 47, 395–422 (2004)

2. Busenberg, S., Huang, W.: Stability and Hopf Bifurcation for a Population Delay Model with Diffusion
Effects. J. Differ. Equ. 124, 80–107 (1996)

3. Chen, S., Shi, J.: Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal
delay effect. Submitted (2011)

4. Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Springer, New York (1982)
5. Cooke, K.L., Huang, W.: A theorem of George Seifert and an equation with state-dependent delay. In: Fink,

A.M., Miller, R.K., Kliemann, W. (eds.) Delay and Differential Equations, pp. 65–77. World Scientific,
Singapore (1992)

6. Cushing, J.M.: Integrodifferential Equations and Delay Models in Population Dynamics. Lecture Notes
in Biomathematics, vol. 20. Springer, Berlin (1977)

7. Dos Santos, J.S., Bená, M.A.: The delay efect on reaction-diffusion equations. Appl. Anal. 83, 807–
824 (2004)

8. Faria, T.: Normal form for semilinear functional differential equations in Banach spaces and applica-
tions. Part II. Disc. Cont. Dyn. Syst. 7(1), 155–176 (2001)

123



924 J Dyn Diff Equat (2012) 24:897–925

9. Faria, T., Huang, W.: Stability of periodic solutions arising from Hopf bifurcation for a reaction-diffusion
equation with time delay. In: Differential Equations and Dynamical Systems (Lisbon, 2000), vol. 31, pp.
125–141. Fields Institute Communications, American Mathematical Society, Providence, RI (2002)

10. Faria, T., Huang, W., Wu, J.: Smoothness of center manifolds for maps and formal adjoints for semilinear
FDEs in general Banach spaces. SIAM J. Math. Anal. 34((1), 173–203 (2002)

11. Friedman, A.: Remarks on the maximum principle for parabolic equations and its applications. Pac. J.
Math. 8, 201–211 (1958)

12. Friesecke, G.: Convergence to equilibrium for delay-diffusion equations with small delay. J. Dyn. Differ.
Equ. 5, 89–103 (1993)

13. Gopalsamy, K.: Stability and oscillations in delay differential equations of population. In: Mathematics
and its Applications, vol. 74. Kluwer, Dordrecht (1992)

14. Green, D., Stech, H.: Diffusion and hereditary effects in a class of population models. In: Busenberg, S.,
Cooke, C. (eds.) Differential Equation and Applications in Ecology, Epidemics and Population Problems,
pp. 19–28, Academic Press, New York (1981)

15. Gurney, M.S., Blythe, S.P., Nisbet, R.M.: Nicholson’s bowflies revisited. Nature 287, 17–21 (1980)
16. Hutchinson, G.E.: Circular Causal Systems in Ecology. Ann. N. Y. Acad. Sci. 50, 221–246 (1948)
17. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol.

840. Springer, Berlin (1981)
18. Huang, W.: Global dynamics for a reaction-diffusion equation with time delay. J. Differ. Equ. 143, 293–

326 (1998)
19. Krawcewicz, W., Wu, J.: Theory of degrees with applications to bifurcations and differential equations.

In: Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1997)
20. Kuang, Y., Smith, H.L.: Global stability in diffusive delay Lotka-Volterra systems. Differ. Integr.

Equ. 4, 117–128 (1991)
21. Kuang, Y., Smith, H.L.: Convergence in Lotka-Volterra type diffusive delay systems without dominating

instantaneous negative feedbacks. J. Aust. Math. Soc. B 34, 471–493 (1993)
22. Lenhart, S.M., Travis, C.C.: Global stability of a biological model with time delay. Proc. Am. Math.

Soc. 96, 75–78 (1986)
23. Li, W.T., Yan, X.P., Zhang, C.H.: Stability and Hopf bifurcation for a delayed cooperation diffusion

system with Dirichlet boundary conditions. Chaos Solitons Fract. 38, 227–237 (2008)
24. May, R.M.: Time-delay versus stability in population models with two and three trophic levels. Ecol-

ogy 54, 315–325 (1973)
25. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1973)
26. Maynard-Smith, J.: Models in Ecology. Cambridge University Press, Cambridge (1978)
27. Memory, M.C.: Bifurcation and asymptotic behaviour of solutions of a delay-differential equation with

diffusion. SIAM J. Math. Anal. 20, 533–546 (1989)
28. Miller, R.: On Volterra’s population equation. SIAM J. Appl. Math. 14, 446–452 (1996)
29. Morita, Y.: Destabilization of periodic solutions arising in delay-diffusion systems in several space dimen-

sions. Jpn. J. Appl. Math. 1, 39–65 (1984)
30. Nirenberg, L.: A strong maximum principle for parabolic equations. Commun. Pure Appl. Math. 6, 167–

177 (1953)
31. Pao, C.V.: Dynamics of nonlinear parabolic systems with time delays. J. Math. Anal. Appl. 198, 751–

779 (1996)
32. Parrot, M.E.: Linearized stability and irreducibility for a functional differential equation. SIAM J. Math.

Anal. 23, 649–661 (1993)
33. Pazy, A.: Semigroups of Linear Operators and Application to Partial Differential Equations. Springer,

Berlin (1983)
34. Ricklefs, R.E., Miller, G.: Ecology. W.H. Freeman, (1999)
35. Ruan, S.: Delay differential equations in single species dynamics. In: Delay Differential Equations and

Applications (Marrakech, 2002), pp. 477–517. NATO Science Series II: Mathematics, Physics and Chem-
istry, vol. 205. Springer, New York (2006)

36. Seifert, G.: On a delay differential equation for single specie population variations. Nonlinear
Anal. 11, 1051–1059 (1987)

37. Shi, J., Shivaji, R.: Persistence in reaction diffusion models with weak allee effect. J. Math.
Biol. 52(6), 807–829 (2006)

38. Smith, H.: An introduction to delay differential equations with applications to the life sciences. In: Texts
in Applied Mathematics, vol. 57. Springer, New York (2011)

39. Smoller, J.: Shock Waves and Reaction-Diffusion Equations Grundlehren der Mathematischen
Wissenschaften, vol. 258. Springer, New York (1983)

123



J Dyn Diff Equat (2012) 24:897–925 925

40. So, J.W.-H., Yang, Y.: Dirichlet problem for the diffusive Nicholson’s blowflies equation. J. Differ.
Equ. 150, 317–348 (1998)

41. Su, Y., Wei, J., Shi, J.: Bifurcation analysis in a delayed diffusive Nicholson’s blowflies equation. Non-
linear Anal. Real World Appl. 11, 1692–1703 (2010)

42. Su, Y., Wei, J., Shi, J.: Hopf bifurcation in a reaction-diffusion population model with delay effect. J.
Differ. Equ. 247, 1156–1184 (2009)

43. Travis, C., Webb, G.: Existence and stability for partial functional differential equations. Trans. Am.
Math. Soc. 200, 395–418 (1974)

44. Wu, J.: Theory and Applications of Partial Functional-Differential Equations. Springer, New York (1996)
45. Wu, J.: Symmetric functional differential equations and neural networks with memory. Trans. Am. Math.

Soc. 350, 4799–4838 (1998)
46. Yan, X., Li, W.: Stability of bifurcating periodic solutions in a delayed reaction-diffusion population

model. Nonlinearity 23, 1413–1431 (2010)
47. Yoshida, K.: The Hopf bifurcation and its stability for semilinear diffusion equations with time delay

arising in ecology. Hiroshima Math. J. 12, 321–348 (1982)
48. Zhou, L., Tang, Y., Hussein, S.: Stability and Hopf bifurcation for a delay competition diffusion sys-

tem. Chaos Solitons Fract. 14, 1201–1225 (2002)

123


	Hopf Bifurcation in a Diffusive Logistic Equation with Mixed Delayed and Instantaneous Density Dependence
	Abstract
	1 Introduction
	2 Eigenvalue Problems
	3 Stability of Steady State Solutions
	4 Hopf Bifurcation
	5 Global Existence of Periodic Solutions
	6 Numerical Simulations and Discussion
	Acknowledgements
	References


