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Abstract We improve Delort’s method to show that solutions of linear Schrödinger equa-
tions with a time dependent Gevrey potential on the torus, have at most logarithmically
growing Sobolev norms. In particular, it contains the result of Wang (Commun Partial Differ
Equ 33:2164–2179, 2008), which deals with analytic potentials in dimension 1.
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1 Introduction and Statement of the Theorem

The main goal of this paper is to obtain logarithmic growth of Sobolev norms of solutions of
linear Schrödinger equations with a time dependent Gevrey potential on the torus, using the
method of Delort [4]. Let N

∗ = N \ {0} and let T
d denote the standard torus, where d ∈ N

∗.
We consider the time dependent linear Schrödinger equations:

i∂t u − �u + V (x, t)u = 0 (1.1)

on T
d × R. We assume that the potential V is a real smooth function on T

d × R. Let
μ, λ ∈ [1,+∞). We further assume that V is a Gevrey-μ function in time t and Gevrey-λ
in every space variable, i.e., V (x, t) satisfies estimates

sup
t∈R

sup
x∈Td

|∂k
t ∂α

x V (x, t)| ≤ Ck+|α|+1(k!)μ(α!)λ (1.2)

for any k ∈ N, for any α ∈ N
d and for some constant C independent of k and α.
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We prove the following result:

Theorem 1 There exists ζ > 0 independent of μ and λ such that for any s > 0, there is a
constant Cs,λ,d > 0 such that

‖u(t)‖Hs ≤ Cs,λ,d
[

log(2 + |t |)]ζμλs‖u(0)‖Hs , (1.3)

where u(t) is the solution to (1.1) with the initial condition u0
de f= u(0) ∈ Hs(Td).

Remark 1.1 Wang [8] obtained (1.3) with the exponent ‘ζμλs’ replaced by ‘ζ s’ and Cs,λ,d

replaced by Cs under the assumption that the dimension d = 1 and that the potential V (x, t)
is bounded and analytic in space and time on �ρ̃ (ρ̃ > 0 is a constant) when V is identified
with a periodic function on R

d × R, where

�ρ̃ = {(x, t) ∈ C × C : | Im x | < ρ̃, | Im t | < ρ̃}.
When d = 1, the assumption we made here on the potential V is weaker than the assumption
that V is analytic both in space and time on the strip �ρ̃ , since the latter implies that V is a
function of Gevrey-1 in time and Gevrey-1 in space. Moreover, our result concerns the case
of any dimension d ∈ N

∗ instead of just d = 1.

Remark 1.2 One may assume that V (x, t) is a Gevrey-μ function in time and Gevrey-λi in
space variable xi for 1 ≤ i ≤ d with μ, λi ∈ [1,+∞). However, this leads to (1.2) if we
take λ = max {λi : 1 ≤ i ≤ d}, and thus we may obtain the same result.

The problem of finding optimal bounds for ‖u(t, ·)‖Hs has been addressed by Nenciu [7]
and Barbaroux and Joye [1], in the abstract framework of an operator P (instead of −�) and
a perturbation V (t) acting on elements of a Hilbert space, when the spectrum of P is discrete
and has increasing gaps. This condition is satisfied by the Laplacian on the circle. It follows
from the results of [1,7], that solutions of (1.1) verify

‖u(t, ·)‖Hs ≤ Cε |t |ε‖u(0, ·)‖Hs (1.4)

when t goes to infinity, for any ε > 0. Later, Bourgain [3] proved that a similar bound
holds for solutions of (1.1) on the torus T

d . The increasing gap condition of Nenciu [7]
and Barbaroux and Joye [1] is no longer satisfied, and has to be replaced by a convenient
decomposition of Z

d in well separated clusters. Delort [4] recently published a simpler proof
of the results of Bourgain (included for other examples of compact manifolds than the torus),
which is close to the one of Nenciu and Barbaroux and Joye. If one further assumes that V
is analytic, and quasi-periodic in t , then it was showed by Bourgain [2] that (1.4) holds with
(1 + |t |)ε replaced by some power of log t when t > 2. When the dimension d = 1, for any
real analytic potential, whose holomorphic extension to �ρ̃ is bounded, Wang [8] showed
that one may still obtain such a logarithmic bound, using the method of [3]. In this paper,
we improve the method of Delort [4] to provide a new proof of the result of Wang [8] and
extend it to any dimension d ≥ 1 and to Gevrey regularity.

There are also some results about uniformly bounded Sobolev norms. Eliasson and
Kuksin [5] have shown that if the potential V on T

d × R is analytic in space, quasi-periodic
in time, and small enough, then for most values of the parameter of quasi-periodicity, the
equation reduces to an autonomous one. Consequently, the Sobolev norm of the solution is
uniformly bounded. A similar result for the harmonic oscillator has been obtained by Grébert
and Thomann recently [6]. For Schrödinger equations on the circle with a small time periodic
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potential, Wang [9] showed that the solutions of the corresponding equation have bounded
Sobolev norms.

Now let us give a picture of the proof of Theorem 1. For any given N ∈ N
∗, one first finds

for every fixed time t an operator QN (·, t), which extends as a bounded linear operator from
H N (Td) to H N (Td) such that

(
I + QN (·, t)

)∗
(i∂t − � + V )

(
I + QN (·, t)

) = i∂t − � + V ′
N (·, t) + R′

N (·, t) (1.5)

with self-adjoint operator V ′
N exactly commuting to the modified Laplacian �̃ (see (2.4) for

its precise definition) and R′
N a remainder operator which is essentially a bounded linear

map from L2(Td) to H N (Td). Moreover, we also require that the adjoint of QN in the usual
L2 paring (denoted by QN (·, t)∗) extends as a bounded linear operator from H N (Td) to
H N (Td). In order to obtain the estimate for the solution u of (1.1), one needs to ‘invert’ the
operator I + QN , that is, to find an operator P N , which extends as a bounded linear operator
not only from H N (Td) to H N (Td), but also from L2(Td) to L2(Td), such that

(
I + QN (·, t)

)(
I + P N (·, t)

) = I + RN (·, t) (1.6)

where RN is a remainder operator such that [i∂t − � + V, RN ] sends L2(Td) to H N (Td).
Now by setting

v = (I + P N )u, (1.7)

we deduce from (1.5), (1.6) and (1.1)

(i∂t − � + V ′
N )v = (I + QN )∗[i∂t − � + V, RN ]u − R′

N v. (1.8)

Remarking that the modified Laplacian has the property that

C−N ‖(1 − �)
N
2 u‖L2 ≤ ‖(1 − �̃)

N
2 u‖L2 ≤ C N ‖(1 − �)

N
2 u‖L2

holds for any u ∈ H N (Td) and for some uniform constant C , then we let the operator

(1 − �̃)
N
2 act on both sides of (1.8) and deduce from the energy inequality

‖v(t)‖H N ≤ CN ‖v(0)‖H N + CN

t∫

0

‖(I + QN )∗[i∂t − � + V, RN ]u(t)‖H N

+‖R′
N v(t)‖H N dt,

which together with (1.7), the conservation law of the L2-norm of (1.1) and the properties
of those operators we have constructed, implies

‖v(t)‖H N ≤ CN ‖v(0)‖H N + CN |t‖|u(0)‖L2 . (1.9)

We then use (1.6), (1.7) and the properties of the operators to deduce

‖u(t)‖H N ≤ CN

(
‖u(0)‖H N + (2 + |t |)‖u(0)‖L2

)
. (1.10)

Remark that the above constants CN may be different in different lines and they depend
on the norms of operators which appear in the above process. Since (1.10) holds for any
N ∈ N

∗, if we have good estimates for CN (we shall finally see that CN can be controlled by
C N times a power of the factorial of N ), then the theorem will follow by interpolation just
as we shall do in the last section. There are two difficulties. The first one is that we have to
carefully choose those operators QN so that the above process can go on. The second is to
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obtain proper estimates for CN , which means that we have to estimate the norms of operators
and remainders for every N ∈ N

∗ in the above process.
The paper is organized as follows. In Sect. 2, we introduce the spaces and give their prop-

erties we shall use. Then we construct the operator in these spaces to conjugate the original
equation in Sect. 3. The last section is dedicated to the proof of the main theorem.

2 Definitions of Operator Spaces and Their Properties

Let us introduce some notation.

Notation 1 We denote by 
n the spectral projector on L2(Td) defined by


nu = einx

(2π)d/2

〈
u,

einx

(2π)d/2

〉
, n ∈ Z

d . (2.1)

For a ∈ R and b ∈ R
d , we set

a+ = max{a, 0}, 〈b〉 = (1 + |b|2)1/2. (2.2)

By A � B we mean that there is an absolute constant C > 0 such that A ≤ C B. For s ∈ R,
denote by Hs(Td) the Sobolev space consisting of u ∈ L2(Td) with its norm

‖u‖Hs =
⎛

⎝
∑

n∈Zd

〈n〉2s‖
nu‖2
L2

⎞

⎠

1/2

< +∞. (2.3)

Using the following proposition which is just Lemma 3.2 in [4], we shall give an equivalent
characterization of the Sobolev space Hs(Td) when s > 0.

Proposition 2.1 (Bourgain) Let σ ∈ (0, 1/10). Then there are τ0 ∈ (0, σ ), γ > 0 and a
partition (Aα)α∈� of Z

d such that

• ∀α ∈ �,∀n ∈ Aα,∀n′ ∈ Aα, |n − n′| + ‖n|2 − |n′|2| < γ + max (|n|, |n′|)σ ;
• ∀α, β ∈ �,α �= β,∀n ∈ Aα,∀n′ ∈ Aβ, |n − n′| + ‖n|2 − |n′|2| > max (|n|, |n′|)τ0 .

Notation 2 We denote for α ∈ �


̃α =
∑

n∈Aα


n .

For any α ∈ �, we choose n(α) ∈ Aα and define

�̃u = −
∑

α∈�

|n(α)|2
̃αu. (2.4)

By definition we know that

[�, �̃] = 0, [i∂t , �̃] = 0. (2.5)

For s ∈ R, let H̃ s(Td) be the space consisting of those elements u ∈ L2(Td) with its norm

‖u‖H̃ s =
(
∑

α∈�

〈n(α)〉2s‖
̃αu‖2
L2

)1/2

< +∞. (2.6)
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By the first condition in Proposition 2.1, we deduce that there is a constant C0 > 0 such that
for any s > 0, for any u ∈ H̃ s(Td)

C−s
0 ‖u‖H̃ s ≤ ‖u‖Hs ≤ Cs

0‖u‖H̃ s . (2.7)

We introduce some operator spaces which will be used in the next section. Let μ, λ defined
in (1.2) be fixed throughout the paper. We also fix throughout the paper any ρ ∈ (0, 1

3C ],
where the constant C is the same as in (1.2).

Definition 2.1 Let M > 0, τ ∈ (0, 1], δ ∈ {0, 1} and j ∈ N. We denote by L− j
τ (M, δ) the

space of smooth families in time of linear operators Q(·, t) from C∞(Td) to D ′(Td) such
that there is a constant B > 0 independent of M and ρ, for which one has

sup
t∈R

‖
n∂k
t Q(·, t)
n′ ‖L(L2) ≤ B Mk+( j+δ−1)+

[(
k + ( j + δ − 1)+

)!
]max (2, μ)

× e−ρ | n−n′| 1
λ
〈
n − n′〉−(d+2)

(
1 + max (|n|, |n′|)

)− j τ

1{| n−n′|� max (|n|,|n′ |)
10 (1+ j )

}

(2.8)

for any k ∈ N, any n, n′ ∈ Z
d . The best constant B will be denoted by ‖Q‖(M,τ )

j,δ . This defines

a seminorm of L− j
τ (M, δ).

The notation ‖Q‖(M,τ )
j, δ will be abbreviated to ‖Q‖ j, δ when M, τ are fixed and there is

no confusion.

Remark 2.1 In comparison with the space introduced in Delort [4], we have added a cut-off
in the definition, which depends on the size of j . This ensures that the composition of two
elements in the space is essentially in the same space and the seminorm can be controlled
by an absolute constant times the product of those of the original two operators. This will be
described precisely in Proposition 2.7 and it is important to obtain the logarithmic growth of
Sobolev norms.

Remark 2.2 As we shall see in Proposition 3.2, we chose the quantity Mk+( j+δ−1)+
[
(k + ( j + δ − 1))+!]max (2, μ) to ensure that all the operators which will be used to con-

jugate the equation (1.1) are in the same type of space, i.e., L− j
τ (M, δ).

Definition 2.2 Let M > 0, τ ∈ (0, 1], δ ∈ {0, 1} and j ∈ N. We denote by L̃− j
τ (M, δ) the

subspace of L− j
τ (M, δ) consisting of those elements Q(·, t) ∈ L− j

τ (M, δ) such that (2.8)
holds with the cut-off 1{|n−n′|� max (|n|,|n′ |)

10(1+ j )
} replaced by 1{| n−n′|� max (|n|,|n′ |)

10(2+ j )
}. We also denote

by L − j
τ (M, δ) the set of those Q(·, t) ∈ L̃− j

τ (M, δ) such that (2.8) holds with the cut-off
1{|n−n′|� max (|n|,|n′ |)

10(1+ j )
} replaced by

1{| n−n′|� max (|n|,|n′ |)
10(2+ j )

, ‖n|2−|n′|2|> 1
4 (|n|+|n′|)τ0 }, where τ0 is given by Proposition 2.1.

We shall also define some other convenient subspaces of L̃− j
τ (M, δ) and L − j

τ (M, δ).

Definition 2.3 Let M > 0, τ ∈ (0, 1], δ ∈ {0, 1} and j ∈ N. We denote by L̃− j
τ,D(M, δ) (resp.

L̃− j
τ, N D(M, δ)) the subspace of L̃− j

τ (M, δ) given by those operators Q(·, t) ∈ L̃− j
τ (M, δ) such

that for any α, β ∈ � with α �= β (resp. any α ∈ �) 
̃α Q
̃β ≡ 0 (resp. 
̃α Q
̃α ≡ 0). We
also set

L − j
τ,D(M, δ) = L − j

τ (M, δ) ∩ L̃− j
τ,D(M, δ),

L − j
τ,N D(M, δ) = L − j

τ (M, δ) ∩ L̃− j
τ,N D(M, δ).
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Proposition 2.2 It follows by definition that if Q is an element of L̃− j
τ,D(M, δ) or L − j

τ,D(M, δ),

then we have [�̃, Q] = 0.

Notation 3 Let M > 0, τ ∈ (0, 1], δ ∈ {0, 1} and j ∈ N. If Q is an element of L− j
τ (M, δ)

(resp. L̃− j
τ (M, δ), L − j

τ (M, δ)), we denote

Q D =
∑

α∈�


̃α Q
̃α, QN D =
∑

α, β ∈�
α �=β


̃α Q
̃β . (2.9)

By definition we immediately have

‖Q D‖ j, δ ≤ ‖Q‖ j, δ, ‖QN D‖ j, δ ≤ ‖Q‖ j, δ,

Q D ∈ L− j
τ,D(M, δ)

(
resp. L̃− j

τ,D(M, δ), L − j
τ,D(M, δ)

)
,

QN D ∈ L− j
τ,N D(M, δ)

(
resp. L̃− j

τ,N D(M, δ), L − j
τ,N D(M, δ)

)
.

(2.10)

Proposition 2.3 Let M > 0, τ ∈ (0, τ0], δ ∈ {0, 1} and j ∈ N
∗. Here τ0 is given by Propo-

sition 2.1. Assume S ∈ L −( j−1)

τ,N D (M, δ). Then the equation [Q,�] = −S defines an element

Q ∈ L− j
τ (M, 0) with ‖Q‖ j,0 � ‖S‖ j−1, δ . If S is self-adjoint, then Q∗ = −Q, where Q∗

denote the adjoint of Q (at fixed time, for the usual L2-pairing).

Proof The equation [Q,�] = −S may be written

(|n′|2 − |n|2)
n Q
n′ = 
n S
n′ . (2.11)

To define Q ∈ L− j
τ (M, 0), we only need to estimate ‖
n∂k

t Q
n′ ‖L(L2) when it is non zero.

So we may assume both sides of (2.11) are non zero. Since S ∈ L −( j−1)

τ,N D (M, δ), we then
have

| n − n′| �
max (|n|, |n′|)

10(1 + j )
, ‖n|2 − |n′|2| >

1

4
(|n| + |n′|)τ0 ,

which, together with (2.11) and the fact τ ≤ τ0, allows us to deduce

sup
t

‖
n∂k
t Q
n′ ‖L(L2) � ‖S‖ j−1,δ Mk+( j−1)+

[(
k + ( j − 1)+

)!
]max (2, μ)

× e−ρ | n−n′| 1
λ
〈
n − n′〉−(d+2)

(
1 + max (|n|, |n′|)

)− j τ

1{| n−n′|� max (|n|,|n′ |)
10 (1+ j )

}.

This means Q ∈ L− j
τ (M, 0) and ‖Q‖ j,0 � ‖S‖ j−1, δ . If S is self-adjoint, then by (2.11)

we see that Q∗ = −Q. This concludes the proof. ��
We shall also need the following remainder operators which raise the order of regularity

as much as we want.

Definition 2.4 Let M > 0, τ ∈ (0, 1] and j ∈ N. We denote by R−∞
j (M, τ ) the space of

smooth families in time of linear operators R(·, t) from C∞(Td) to D ′(Td) such that there
is a constant B > 0 independent of M , for which one has

sup
t∈R

‖
n∂k
t R(·, t)
n′ ‖L(L2) ≤ B M N+ j+k(( j + k)!)max (2, μ)

N !

× 〈
n − n′〉−(d+2)

(
1 + max (|n|, |n′|)

)−τ N
(2.12)
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for any k, N ∈ N, any n, n′ ∈ Z
d . The best constant B will be denoted by |R|(M,τ )

j . This

defines a seminorm of R−∞
j (M, τ ).

Similarly as before, the notation |R|(M,τ )
j will be abbreviated to |R| j when M, τ are fixed

and there is no confusion.
By definition, we immediately have the following proposition.

Proposition 2.4 Let M > 1, τ ∈ (0, 1] and j ∈ N
∗. If Q ∈ L− j

τ (M, 0), then

[i∂t , Q] = i∂t Q ∈ L− j
τ (M, 1) and ‖[i∂t , Q]‖ j,1 ≤ ‖Q‖ j,0. (2.13)

The elements defined in the above definitions may be extended as bounded linear operators
acting on Sobolev spaces.

Proposition 2.5 Let M > 0, τ ∈ (0, 1], δ ∈ {0, 1} and j ∈ N. Let Q ∈ L− j
τ (M, δ). Then

for any k ∈ N, ∂k
t Q extends as a bounded linear operator from Hs(Td) to Hs+ j τ (Td) for

any s ∈ R. Moreover, its operator norm, denoted by ‖∂k
t Q‖L(Hs ,Hs+ j τ ), satisfies

‖∂k
t Q‖L(Hs ,Hs+ j τ ) � C |s|

1 ‖Q‖ j, δ Mk+( j+δ−1)+
((

k + ( j + δ − 1)+
)!
)max (2, μ)

, (2.14)

where C1 > 1 is an absolute constant. Recall that by A � B we mean that there is a constant
C independent of any other quantities such that A ≤ C B.

Proof Assume u ∈ Hs(Td). Since |n − n′| � max (|n|,|n′|)
10(1+ j )

implies C−1
1 〈n′〉 ≤ 〈n〉 ≤ C1〈n′〉

for some absolute constant C1, we compute using (2.8)

‖∂k
t Qu‖2

Hs+ j τ =
∑

n∈Zd

〈n〉2(s+ j τ)‖
n∂k
t Qu‖2

L2

≤
∑

n∈Zd

⎛

⎝
∑

n′∈Zd

〈n〉s+ j τ‖
n∂k
t Q
n′u‖L2

⎞

⎠

2

≤
∑

n∈Zd

( ∑

n′∈Zd

〈n〉s+ j τ‖Q‖ j, δ Mk+( j+δ−1)+[(k + ( j + δ − 1)+
)!]max (2, μ)

× 〈n − n′〉−(d+2)
(
1 + max (|n|, |n′|))− j τ 1{|n−n′|� max (|n|,|n′ |)

10(1+ j) }‖
n′u‖L2

)2

≤ C2|s|
1 ‖Q‖2

j, δ M2(k+( j+δ−1)+)
[(

k + ( j + δ − 1)+
)!]2 max (2, μ)

×
∑

n∈Zd

⎛

⎝
∑

n′∈Zd

〈n − n′〉−(d+2)〈n′〉s‖
n′u‖L2

⎞

⎠

2

� C2|s|
1 ‖Q‖2

j, δ M2(k+( j+δ−1)+)
[(

k + ( j + δ − 1)+
)!]2 max (2, μ)‖u‖2

Hs ,

where in the last step we used Young inequality. The conclusion follows by taking the square
root of both sides. ��
Proposition 2.6 Let M > 0, τ ∈ (0, 1] and j ∈ N. Let R ∈ R−∞

j (M, τ ). Then operators

R(·, t), ∂k
t R and [�, R] may be extended as bounded linear operators from H−s(Td) to

H τm(Td) for any s ≥ 0 and any k, m ∈ N. Moreover,
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‖∂k
t R‖L(H−s ,H τm ) � |R| j M

m+
[

s+1
τ

]
+ j+k(

( j + k)!)max (2, μ)
(

m +
[

s + 1

τ

])
!,

‖[�, R]‖L(H−s ,H τm ) � |R| j M
m+

[
s+2
τ

]
+ j (

j !)max (2, μ)
(

m +
[

s + 2

τ

])
!,

(2.15)

where [·] means the integer part of a real number.

Proof Let s ≥ 0, m ∈ N, u ∈ H−s(Td). For k ∈ N, we have by (2.12) with N = m + [ s+1
τ

]

‖∂k
t Ru ‖2

H τm =
∑

n∈Zd

〈n〉2τm‖
n∂k
t Ru ‖2

L2

≤
∑

n∈Zd

[ ∑

n′∈Zd

〈n〉τm |R| j M
m+

[
s+1
τ

]
+ j+k(

( j + k)!)max (2, μ)
(

m +
[

s + 1

τ

])
!

× 〈n − n′〉−(d+2)
(
1 + max (|n|, |n′|))−τ

(
m+

[
s+1
τ

])

‖
n′u‖L2

]2

≤ |R|2j M
2
(

m+
[

s+1
τ

]
+ j+k

)
(
( j + k)!)2 max (2, μ)

[(
m +

[
s + 1

τ

])
!
]2

×
∑

n∈Zd

⎡

⎣
∑

n′∈Zd

〈n − n′〉−(d+2)〈n′〉−s‖
n′u‖L2

⎤

⎦

2

� |R|2j M
2
(

m+
[

s+1
τ

]
+ j+k

)
(
( j + k)!)2 max (2, μ)

[(
m +

[
s + 1

τ

])
!
]2

‖u‖2
H−s ,

where in the last step we used Young inequality. The first inequality of (2.15) follows by
taking the square root of both sides. The second inequality follows by a similar argument
and by noting that ‖n|2 − |n′|2| � 〈n − n′〉(1 + max (|n|, |n′|)) and taking N = m + [ s+2

τ

]

in (2.12). ��
When one conjugates the original equation, one needs to compute the composition of two

elements in L− j
τ (M, δ) and the commutator [i∂t , Q] for Q ∈ L− j

τ (M, 0). First of all let us
introduce some notation before we give a precise description of that.

Notation 4 Recall that Q∗ denote the adjoint of Q ∈ L− j
τ (M, δ) (δ ∈ {0, 1}, at fixed time,

for the usual L2-pairing). If Qi ∈ L− ji
τ (M, δi ), ji ∈ N, δi ∈ {0, 1}, i = 1, 2, we then denote

M (Q1, Q2) =
∑

n, n′∈Zd


n
(
Q1 ◦ Q2

)

n′1{| n−n′|� max (|n|,|n′ |)

10(2+ j1+ j2 )
} ,

R(Q1, Q2) =
∑

n, n′∈Zd


n
(
Q1 ◦ Q2

)

n′1{| n−n′|> max (|n|,|n′ |)

10(2+ j1+ j2 )
}.

(2.16)

We shall also denote

M ′(Q1, Q2) = M (Q1, Q2) + M (Q1, Q2)
∗,

R′(Q1, Q2) = R(Q1, Q2) + R(Q1, Q2)
∗.

(2.17)

Note that M (Q1, Q2)
∗ = M (Q∗

2, Q∗
1) and the operator M (Q1, Q2) is the main part of

the operator obtained by composing Q1 and Q2. As we shall see, it essentially falls into the
same operator class as the original ones. The remainder part, i.e., R(Q1, Q2) is a regularizing
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operator. Moreover, M ′(Q1, Q2) and R′(Q1, Q2) are obviously self-adjoint. Remark that
for ρ > 0, a ∈ [1,+∞), τ ∈ (0, 1], denoting

θ0(ρ, a, τ ) = min

(
2

601/(2a)

(
log

162

100

) 1
2

(ρτ)
1
2 ,

ρ
(
30

√
2
)1/a

)

, (2.18)

we have that

exp

{

−ρ

(
x

10(2 + t)

) 1
a
}

(1 + x)−tτ
(

100

81

)tτ

≤ exp
{
−θ0(ρ, a, τ )(x + 1)

1
2a

}
(2.19)

holds for any x ≥ 1, any t ≥ 0. Denote

θ1(ρ, τ ) = 1 + max
a≥1

[θ0(ρ, a, τ )]−1. (2.20)

Proposition 2.7 Let τ ∈ (0, 1] and j1, j2 ∈ N. Let M > θ1(ρ, τ ) and j = j1 + j2. Assume
Q1 ∈ L− j1

τ (M, 0) and Q2 ∈ L− j2
τ (M, 0). Then one has

Q1 ◦ Q2 = M (Q1, Q2) + R(Q1, Q2) (2.21)

with

M (Q1, Q2) ∈ L̃− j
τ (M, 0), ‖M (Q1, Q2)‖ j,0 � ‖Q1‖ j1,0‖Q2‖ j2,0,

R(Q1, Q2) ∈ R−∞
j (M,

1

2λ
), |R(Q1, Q2)| j � ‖Q1‖ j1,0‖Q2‖ j2,0.

(2.22)

Proof We only need to check (2.22). For k ∈ N, we have by (2.8)

‖
n∂k
t M (Q1, Q2)
n′ ‖L(L2)

≤
∑

k1+k2=k

(
k
k1

) ∑

�∈Zd

‖
n∂
k1
t Q1
�‖L(L2)‖
�∂

k2
t Q2
n′ ‖L(L2)1{|n−n′|� max (|n|,|n′ |)

10(2+ j) }

≤
∑

k1+k2=k

∑

�∈Zd

(
k
k1

)
‖Q1‖ j1,0‖Q2‖ j2,0 Mk+( j1−1)++( j2−1)+1{|n−n′|� max (|n|,|n′ |)

10(2+ j) }

×
[(

k1 + ( j1 − 1)+
)!
]max (2, μ)[(

k2 + ( j2 − 1)+
)!
]max (2, μ)

× e−ρ|n−n′| 1
λ 〈n − �〉−(d+2)〈� − n′〉−(d+2)

×
(

1 + max (|n|, |�|)
)− j1τ(

1 + max (|�|, |n′|)
)− j2τ

× 1{|n−�|� max (|n|,|�|)
10(1+ j1)

}1{|n′−�|� max (|n′ |,|�|)
10(1+ j2)

}1{|n−n′|� max (|n|,|n′ |)
10(2+ j) },

(2.23)

where we have used the following inequality:

|n − �| 1
λ + |� − n′| 1

λ ≥ |n − n′| 1
λ when λ ≥ 1.

We need to estimate the following two terms:

I
de f=

∑

k1+k2=k

(
k
k1

)[(
k1 + ( j1 − 1)+

)!
]max (2, μ)[(

k2 + ( j2 − 1)+
)!
]max (2, μ)

,

II
de f= the last two lines of (2.23).
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To obtain an estimate for I, let us first estimate

I′ =
∑

k1+k2=k

(
k
k1

)[(
k1 + ( j1 − 1)+

)!
]2[(

k2 + ( j2 − 1)+
)!
]2

.

If neither of ( j1 − 1)+ and ( j2 − 1)+ is larger than 0, then

I′ =
∑

k1+k2=k

k!k1!k2! ≤ 3(k!)2.

If only one of ( j1 − 1)+ and ( j2 − 1)+ is larger than 0, for instance, ( j2 − 1)+ > 0, then

I′ =
∑

k1+k2=k

(
k
k1

)
[
k1!

]2[(
k2 + j2 − 1

)!]2

≤ 2
[(

k + j − 1
)!]2 +

∑

k1+k2=k
k1≥1,k2≥1

k!k1!
(
k2 + j2 − 1 + k1 − 1) . . . (2 + k1 − 1)

× (k2 + j2 − 1 + k1) . . . (k2 + 1 + k1)

≤ 3
[(

k + j − 1
)!]2

,

while if both of ( j1 − 1)+ and ( j2 − 1)+ are larger than 0, then

I′ =
∑

k1+k2=k

(
k
k1

) [(
k1 + j1 − 1

)!]2[(
k2 + j2 − 1

)!]2

=
∑

k1+k2=k

k!(k1 + j1 − 1)!(k2 + j2 − 1)!

× (k1 + j1 − 1) . . . (k1 + 1)(k2 + j2 − 1) . . . (k2 + 1)

≤
∑

k1+k2=k

k!(k1 + j1 − 1 + k2 + j2 − 1) . . . (1 + k2 + j2 − 1)(k2 + j2 − 1)!

× (k1 + j1 − 1 + k2 + j2 − 1) . . . (k1 + 1 + k2 + j2 − 1)

× (k2 + j2 − 1 + k1) . . . (k2 + 1 + k1)

≤ [(
k + j − 1

)!]2
.

Thus we always have

I′ ≤ 3
[(

k + ( j − 1)+
)!]2

. (2.24)

Since
[(

k1 + ( j1 − 1)+
)!
](μ−2)+[(

k2 + ( j2 − 1)+
)!
](μ−2)+ ≤ [

(k + ( j − 1)+)!](μ−2)+ ,

we have by (2.24)

I ≤ 3
[(

k + ( j − 1)+
)!]max (2, μ)

. (2.25)

We first assume |n′| ≥ |n| when estimating II. From the cut-offs we deduce |n′| ≤ 2|n|
so that

|n − n′| ≤ max (|n|, |n′|)
10(2 + j)

= |n′|
10(2 + j)

≤ |n|
5(1 + j)

.
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Therefore

II ≤ (
1 + |n|)− j1τ (1 + |n′|)− j2τ 1{|n−n′|� |n|

5(1+ j) }

≤ (
1 + |n′|)− j τ (1 + |n − n′|

1 + |n|
) j1τ 1{|n−n′|� |n|

5(1+ j) }

≤ (
1 + |n′|)− j τ (1 + 1

5(1 + j)

) j τ

≤ 3
(
1 + |n′|)− j τ

.

We may get an analogue when |n| ≥ |n′| and thus we obtain

II ≤ 3
(
1 + max (|n|, |n′|))− j τ

. (2.26)

Plugging (2.25), (2.26) into (2.23) and using the fact that
∑

�∈Zd

〈n − �〉−(d+2)〈� − n′〉−(d+2) � 〈n − n′〉−(d+2), (2.27)

we obtain

‖
n∂k
t M (Q1, Q2)
n′ ‖L(L2) � ‖Q1‖ j1,0‖Q2‖ j2,0 Mk+( j−1)+[(k + ( j − 1)+

)!]max (2, μ)

× e−ρ|n−n′| 1
λ 〈n − n′〉−(d+2)

(
1 + max (|n|, |n′|))− j τ 1{|n−n′|� max (|n|,|n′ |)

10(2+ j) },

which implies the claims in the first line of (2.22).
We are left with estimating the remainder operator. We have for k ∈ N

‖
n∂k
t R(Q1, Q2)
n′ ‖L(L2)

≤
∑

k1+k2=k

∑

�∈Zd

(
k
k1

)
‖
n∂

k1
t Q1
�‖L(L2)‖
�∂

k2
t Q2
n′ ‖L(L2)1{|n−n′|> max (|n|,|n′ |)

10(2+ j) }

≤
∑

k1+k2=k

∑

�∈Zd

(
k
k1

)
‖Q1‖ j1,0‖Q2‖ j2,0 Mk+( j1−1)++( j2−1)+1{|n−n′|> max (|n|,|n′ |)

10(2+ j) }

×
[(

k1 + ( j1 − 1)+
)!
]max (2, μ)[(

k2 + ( j2 − 1)+
)!
]max (2, μ)

× e−ρ|n−n′| 1
λ 〈n − �〉−(d+2)〈� − n′〉−(d+2)

×
(

1 + max (|n|, |�|)
)− j1τ(

1 + max (|�|, |n′|)
)− j2τ

× 1{|n−�|� max (|n|,|�|)
10(1+ j1)

}1{|n′−�|� max (|n′ |,|�|)
10(1+ j2)

}1{|n−n′|> max (|n|,|n′ |)
10(2+ j) }.

(2.28)

We only deal with the case |n′| ≥ |n|. The other will be the same. Thus we assume

max (|n|, |n′|) = |n′|. (2.29)

We denote by III the last two lines of (2.28). We may assume that III is non-zero when
estimating it. Thus by the cut-offs we deduce

|n| ≥ 9

10
|�| ≥ 81

100
|n′| > 0
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so that

III ≤ (1 + |n|)− j1τ (1 + |n′|)− j2τ 1{ 81
100 |n′|≤|n|} ≤ (1 + |n′|)− j τ

(100

81

) j1τ .

Thus by the assumption (2.29), (2.19), (2.20) and the assumption on M , we have

e−ρ|n−n′| 1
λ 1{|n−n′|> max (|n|,|n′ |)

10(2+ j) }III ≤ e−ρ|n−n′| 1
λ
(1 + |n′|)− j τ

(100

81

) j1τ 1{|n−n′|> |n′ |
10(2+ j) }

≤ e−ρ(
|n′ |

10(2+ j) )
1
λ
(1 + |n′|)− j τ

(100

81

) j τ

≤ e−θ0(ρ,λ,τ )(|n′|+1)
1

2λ

≤ ( 1

θ0(ρ, λ, τ )

)N
N ! (1 + max (|n|, |n′|))− N

2λ

≤ M N N ! (1 + max (|n|, |n′|))− N
2λ .

(2.30)

Plugging (2.30), (2.27), (2.25) into (2.28), we obtain for k ∈ N and for any N ∈ N

sup
t

‖
n∂k
t R(Q1, Q2)
n′ ‖L(L2) � ‖Q1‖ j1,0‖Q2‖ j2,0 M N+k+ j

× (
( j + k)!)max (2, μ)

N !〈n − n′〉−(d+2)
(
1 + max (|n|, |n′|))− N

2λ ,

which gives the claims in the second line of (2.22) and concludes the proof. ��
We also have the following proposition.

Proposition 2.8 Let τ ∈ (0, 1] and j1, j2 ∈ N
∗. Let M > θ1(ρ, τ ) and j = j1 + j2. Assume

Q1 ∈ L− j1
τ (M, 0) and Q2 ∈ L− j2

τ (M, 1). Then one has

Q1 ◦ Q2 = M (Q1, Q2) + R(Q1, Q2),

Q2 ◦ Q1 = M (Q2, Q1) + R(Q2, Q1),
(2.31)

with

M (Q1, Q2), M (Q2, Q1) ∈ L̃− j
τ (M, 0),

R(Q1, Q2), R(Q2, Q1) ∈ R−∞
j (M,

1

2λ
),

‖M (Q1, Q2)‖ j,0 + ‖M (Q2, Q1)‖ j,0 � ‖Q1‖ j1,0‖Q2‖ j2,1,

|R(Q1, Q2)| j + |R(Q2, Q1)| j � ‖Q1‖ j1,0‖Q2‖ j2,1.

(2.32)

Proof The proof is the same as that of Proposition 2.7 except that instead of estimating I,
we have to estimate

I′′ de f=
∑

k1+k2=k

(
k
k1

)(
(k1 + j1 − 1)!

)max (2, μ)((
k2 + j2)!

)max (2, μ)

,

which is less or equals 3
[(

k + ( j −1)+
)!]max (2, μ) if j1, j2 ∈ N

∗. Note that Mk+( j1−1)++ j2 ≤
Mk+( j−1)+ fails when j1 = 0 and j2 ∈ N

∗. However, we shall only need to use the result for
j1, j2 ∈ N

∗. ��
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The following two corollaries are immediate consequences of Proposition 2.7 and 2.8.

Corollary 2.1 Under the hypotheses of Proposition 2.7, one has

Q1 ◦ Q2 + (Q1 ◦ Q2)
∗ = M ′(Q1, Q2) + R′(Q1, Q2). (2.33)

Moreover, M ′(Q1, Q2), R′(Q1, Q2) are self-adjoint and we have

M ′(Q1, Q2) ∈ L̃− j
τ (M, 0), R′(Q1, Q2) ∈ R−∞

j (M,
1

2λ
),

‖M ′(Q1, Q2)‖ j,0 �
(
‖Q1‖ j1,0‖Q2‖ j2,0 + ‖Q∗

1‖ j1,0‖Q∗
2‖ j2,0

)
,

|R′(Q1, Q2)| j �
(
‖Q1‖ j1,0‖Q2‖ j2,0 + ‖Q∗

1‖ j1,0‖Q∗
2‖ j2,0

)
.

(2.34)

Corollary 2.2 Under the hypotheses of Proposition 2.8, one has

Q1 ◦ Q2 + (Q1 ◦ Q2)
∗ = M ′(Q1, Q2) + R′(Q1, Q2),

Q2 ◦ Q1 + (Q2 ◦ Q1)
∗ = M ′(Q2, Q1) + R′(Q2, Q1).

(2.35)

Moreover, M ′(Q1, Q2), R′(Q1, Q2) are self-adjoint and (2.34) holds. M ′(Q2, Q1),

R′(Q2, Q1) respectively have the same properties as that of M ′(Q1, Q2), R′(Q1, Q2).

Proposition 2.9 Let τ ∈ (
0, 1], M > θ1(ρ, τ ) and j ∈ N

∗. Let Q ∈ L− j
τ (M, 1). Then one

may decompose

Q = Q̃ + R̃ (2.36)

with

Q̃ ∈ L̃− j
τ (M, 1), ‖Q̃‖ j,1 ≤ ‖Q‖ j,1,

R̃ ∈ R−∞
j (M,

1

2λ
), |R̃| j ≤ ‖Q‖ j,1.

(2.37)

Moreover, if we further assume that Q is a self-adjoint operator (for fixed t, Q extends as a
bounded linear operator on L2(Td) by Proposition 2.5), so are Q̃ and R̃.

Proof Defining

Q̃ =
∑

n

∑

n′

n Q
n′1{|n−n′|� max (|n|,|n′ |)

10(2+ j) },

R̃ =
∑

n

∑

n′

n Q
n′1{|n−n′|> max (|n|,|n′ |)

10(2+ j) },

we see that (2.36) holds and that the claims in the first line of (2.37) hold true. For k, N ∈ N,
we have by (2.19) and (2.20)

‖
n∂k
t R̃
n′ ‖L(L2)

≤ ‖Q‖ j,1 Mk+ j ((k + j)!)max (2, μ)〈n − n′〉−(d+2)

× e−ρ | n−n′| 1
λ
(
1 + max (|n|, |n′|))− j τ 1{ max (|n|,|n′ |)

10(2+ j) <|n−n′|� max (|n|,|n′ |)
10(1+ j) }

≤ ‖Q‖ j,1 Mk+ j ((k + j)!)max (2, μ)〈n − n′〉−(d+2)e−ρ (
max (|n|,|n′ |)

10(2+ j) )
1
λ (

1 + max (|n|, |n′|))− jτ

≤ ‖Q‖ j,1 Mk+ j ((k + j)!)max (2, μ)〈n − n′〉−(d+2)e−θ0(ρ,λ,τ )(1+max (|n|,|n′|)) 1
2λ

≤ ‖Q‖ j,1 M N+k+ j ((k + j)!)max (2, μ)
N ! 〈n − n′〉−(d+2)

(
1 + max (|n|, |n′|))− N

2λ .
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This gives the claims in the second line of (2.37). The last claim in the proposition follows
by the construction of Q̃ and R̃. This concludes the proof. ��

We shall also need to compute the composition of three elements in L− j
τ (M, 0). To do

that, we first have to compute the composition of one element in L− j
τ (M, 0) and one in

R−∞
j (M, τ ).

Proposition 2.10 Let τ, τ ′ ∈ (0, 1] and j1, j2 ∈ N. Let M > 1 and j = j1 + j2. Assume
Q ∈ L− j1

τ ′ (M, 0) and R ∈ R−∞
j2

(M, τ ). Then

Q ◦ R ∈ R−∞
j (2M, τ ), R ◦ Q ∈ R−∞

j (2M, τ ),

|Q ◦ R|(2M,τ )
j + |R ◦ Q|(2M,τ )

j � ‖Q‖ j1,0|R| j2 .
(2.38)

Recall the notation |R|(M,τ )
j in Definition 2.4.

Proof We need to estimate ‖
n∂k
t (Q ◦ R)
n′ ‖L(L2) and ‖
n∂k

t (R ◦ Q)
n′ ‖L(L2) for k ∈ N

and for any n, n′ ∈ Z
d . By definition, the estimate for I′′, (2.27)

sup
t

‖
n∂k
t (Q ◦ R)
n′ ‖L(L2)

≤
∑

k1+k2=k

∑

�∈Zd

(
k
k1

)
‖
n∂

k1
t Q
�‖L(L2)‖
�∂

k2
t R
n′ ‖L(L2)

≤
∑

k1+k2=k

∑

�∈Zd

(
k
k1

)
‖Q‖ j1,0|R| j2 M N+ j+k[(k1 + ( j1 − 1)+

)!]max (2, μ)

× [
(k2 + j2)!

]max (2, μ)
N ! e−ρ| �−n| 1

λ 〈n − �〉−(d+2)〈� − n′〉−(d+2)

× (
1 + max (|n|, |�|))− j1τ ′(

1 + max (|�|, |n′|))−τ N 1{|�−n|� max (|n|,|�|)
10(1+ j1)

}

� ‖Q‖ j1,0|R| j2(2M)N+ j+k((k + j)!)max (2, μ)
N !

× 〈n − n′〉−(d+2)
(
1 + max (|n|, |n′|))−τ N

(2.39)

holds for any N ∈ N, any n, n′ ∈ Z
d , where in the last step we have used

(
1 + max (|�|, |n′|))−τ N 1{|�−n|� max (|n|,|�|)

10(1+ j1)
} ≤ 2N (1 + max (|n|, |n′|))−τ N

.

With the same reasoning, we see that the quantity after the last sign of inequality in (2.39) is
also an upper bound of ‖
n∂k

t (R ◦ Q)
n′ ‖L(L2). Thus (2.38) holds and this concludes the
proof. ��

Combining Propositions 2.7 and 2.10 and remarking that R−∞
j (M, τ ) ⊂ R−∞

j (2M, τ ),
we obtain:

Proposition 2.11 Let τ ∈ (0, 1] and M > θ1(ρ, τ ) with θ1 defined by (2.20). Let j1, j2, j3 ∈
N and j = j1 + j2 + j3. Assume Qi ∈ L− j i

τ (M, 0), i = 1, 2, 3. Then one may decompose

Q1 ◦ Q2 ◦ Q3 = Q + R (2.40)
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with

Q ∈ L̃− j
τ (M, 0), ‖Q‖ j,0 � ‖Q1‖ j1,0‖Q2‖ j2,0‖Q3‖ j3,0,

R ∈ R−∞
j (2M,

1

2λ
), |R|(2M, 1

2λ
)

j � ‖Q1‖ j1,0‖Q2‖ j2,0‖Q3‖ j3,0,
(2.41)

where the notation |R|(2M, 1
2λ

)

j is indicated in Definition 2.4.

By (2.40), its adjoint equation and (2.41) we have the following corollary which is an analogue
of Corollary 2.1.

Corollary 2.3 Under the hypotheses of Proposition 2.11, one may find self-adjoint operators
Q ∈ L̃− j

τ (M, 0), R ∈ R−∞
j (2M, 1

2λ
) such that

Q1 ◦ Q2 ◦ Q3 + (Q1 ◦ Q2 ◦ Q3)
∗ = Q + R (2.42)

with

‖Q‖ j,0 �
( 3∏

i=1

‖Qi‖ ji ,0 +
3∏

i=1

‖Q∗
i ‖ ji ,0

)
,

|R|(2M, 1
2λ

)

j �
( 3∏

i=1

‖Qi‖ ji ,0 +
3∏

i=1

‖Q∗
i ‖ ji ,0

)
.

(2.43)

3 Conjugating the Equation

The goal of this section is to obtain the following: Roughly speaking, for any given N ∈ N
∗,

we want to conjugate the operator i∂t −�+V into i∂t −�+V ′
N + R′

N with V ′
N exactly com-

muting with the modified Laplacian �̃ and R′
N essentially being a bounded linear operator

from L2(Td) to H N (Td). The process is essentially an induction. Before giving the precise
description of the statement, we first present the following proposition.

Proposition 3.1 Let V (x, t) be the potential in the equation (1.1) so that it satisfies (1.2).
Let τ ∈ (0, 1]. Then one may find M > 0 such that for any M > M, the multiplica-
tion operator generated by V (x, t) may be written as QV + RV with self-adjoint operators
QV ∈ L̃0

τ (M, 0), RV ∈ R−∞
0 (M, 1

λ
). Moreover,

‖QV ‖0,0 ≤ h(λ, d), |RV |0 ≤ h(λ, d), (3.1)

where h(λ, d) is a constant depending only on λ, d.

Proof By (1.2), we know that
∣∣∣∣∣∣∣

∫

Td

nα∂k
t V (x, t)e−inx dx

∣∣∣∣∣∣∣
≤ (2π)dCk+|α|+1(k!)μ(α!)λ

holds for any n = (n1, . . . , nd) ∈ Z
d , any α = (α1, . . . , αd) ∈ N

d , any k ∈ N, any t ∈ R.
From this inequality we deduce

1

α1! . . .
1

αd !
( |n1|

C

) α1
λ

. . .
( |nd |

C

) αd
λ ‖
n∂k

t V (x, t)‖
1
λ

L∞ ≤ C
k+1
λ
(
k!) μ

λ . (3.2)
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Multiplying 2−(α1+···+αd ) in both sides and then taking a sum over α1, . . . , αd ∈ N, using

the fact |n1| 1
λ + · · · + |nd | 1

λ ≥ (|n1| + · · · + |nd |) 1
λ ≥ |n| 1

λ for λ ≥ 1, we obtain after some
simple calculation

‖
n∂k
t V (x, t)‖L∞ ≤ 2λdCk+1(k!)μe−ρ0(λ)| n| 1

λ
, (3.3)

where

ρ0(λ) = λ (2C
1
λ )−1.

Since ρ0(λ) − 1
3C ≥ 1

6C if λ ≥ 1 and

sup
r≥1

〈r〉d+2 exp {− 1

6C
r

1
λ } ≤ 2d+2

(6Cλ(d + 2)

e

)λ(d+2)

,

we have

C2λd exp {−ρ0(λ)|n| 1
λ } ≤ h(λ, d) exp {− 1

3C
|n| 1

λ }〈n〉−(d+2),

where h(λ, d) is given by (3.4). Thus by (3.3),

‖
n∂k
t V (x, t)‖L∞ ≤ h(λ, d)Ck(k!)μe− 1

3C |n| 1
λ 〈n〉−(d+2).

Therefore if ρ ∈ (0, 1
3C ], by the fact

‖
n∂k
t V (x, t)
n′u‖L2 =

∣∣∣∣∣

〈∂k
t V ein′x

(2π)d/2 ,
einx

(2π)d/2

〉
∣∣∣∣∣

∣∣∣∣∣

〈
u,

ein′x

(2π)d/2

〉
∣∣∣∣∣

=
∣∣∣∣∣

〈 ∂k
t V

(2π)d/2 ,
ei(n−n′)x

(2π)d/2

〉
∣∣∣∣∣

∣∣∣∣∣

〈
u,

ein′x

(2π)d/2

〉
∣∣∣∣∣

≤ ‖
n−n′∂k
t V (x, t)‖L∞‖u‖L2 , ∀u ∈ L2,

we then have

‖
n∂k
t V 
n′ ‖L(L2) ≤ ‖
n−n′∂k

t V (x, t)‖L∞ ≤ h(λ, d)Ck(k!)μ e−ρ|n−n′| 1
λ 〈n − n′〉−(d+2).

We define

QV =
∑

n∈Zd

∑

n′∈Zd


n V 
n′1{|n−n′|� max (|n|,|n′ |)
20 },

RV =
∑

n∈Zd

∑

n′∈Zd


n V 
n′1{|n−n′|> max (|n|,|n′ |)
20 }.

By the above formulas, for any M ≥ C , we have QV ∈ L̃0
τ (M, 0) with ‖QV ‖0,0 ≤

h(λ, d). For k ∈ {0, 1}, we know that

‖
n∂k
t RV 
n′ ‖L(L2) ≤ h(λ, d)Cke− 1

3C | n−n′| 1
λ 〈n − n′〉−(d+2)1{ | n−n′|> max (|n|,|n′ |)

20 }

≤ h(λ, d)Ck(120C
)N

N !〈n − n′〉−(d+2)
(

1 + max (|n|, |n′|)
)− N

λ

holds for any N ∈ N, where we have used

max (|n|, |n′|)1{|n−n′|> max (|n|,|n′ |)
20 } ≥ 1

2

(
1 + max (|n|, |n′|)).
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If M > M
def= 120C , then RV ∈ R−∞

0 (M, 1
λ
) and |RV |0 ≤ h(λ, d). This concludes the

proof. ��
Remark 3.1 As we have already seen in the proof,

h(λ, d) = C2λd+d+2
(6Cλ(d + 2)

e

)λ(d+2)

. (3.4)

But this explicit expression is not important in obtaining logarithmic growth of Sobolev
norms.

Remark 3.2 Let σ ∈ (0, 1
10 ) and τ0 ∈ (0, σ ) be given by Proposition 2.1. From now on, we

fix τ = min ( τ0
λ

, 1
2λ

) = τ0
λ

and fix ρ ∈ (0, 1
3C ]. We also fix M > max (M, 2θ1(ρ, τ )) ≥ 2

ρ

so that all the conclusions in Sect. 2 and Proposition 3.1 hold, where θ1(ρ, τ ) is given by
(2.20). We choose those M, τ because they will be used in the argument of the following
proposition. Note that M depends on λ, but this dependence does not matter in the sequel.

The main result of this section is the following:

Proposition 3.2 Let m ∈ N
∗ and denote P0 = i∂t − �. Let K be a large constant. There

are sequences (Q′
j )1≤ j≤m, (Q′′

j )1≤ j≤m satisfying

Q′
j ∈ L− j

τ (M, 0), Q′∗
j = −Q′

j , ‖Q′
j‖ j,0 ≤ K j− 1

2

j 2 h(λ, d) j ; (3.5)

[Q′
j ,�] ∈ L−( j−1)

τ (M, 0), ‖[Q′
j ,�]‖ j−1,0 ≤ K j−1

j 2 h(λ, d) j ; (3.6)

Q′′
j ∈ L−( j+1)

τ (M, 0), Q′′∗
j = Q′′

j , ‖Q′′
j‖ j+1,0 ≤ K j+ 1

2

( j + 1)2 h(λ, d) j+1; (3.7)

[Q′′
j ,�] ∈ L− j

τ (M, 0), ‖[Q′′
j ,�]‖ j,0 ≤ K j

( j + 1)2 h(λ, d) j+1 (3.8)

such that if we set Q j = Q′
j + Q′′

j , Qm = ∑m
j=1 Q j

(
I+Qm)∗(P0 + V )

(
I + Qm)

= i∂t − � + V m + 1

2

2m+1∑

j=m+1

(
Sj P0 + P0Sj

) + 1

2

2m+1∑

j=1

(
R j P0 + P0 R j

)

+ S̃m+1 +
2m+3∑

j=m+1

Sj +
2m+3∑

j=2

R j +
m∑

j=1

R̂ j

(3.9)

where the terms in the right hand side of (3.9) satisfy the following conditions:

• V m, Sj , R j , S̃j , Sj , R j , R̂ j are self-adjoint;
• [V m, �̃] = 0;
• S j ∈ L−( j+1)

τ (M, 0), ‖S j‖ j+1,0 � K j

( j+1)2 h(λ, d) j+1, m + 1 ≤ j ≤ 2m + 1;

• [�, Sj ] ∈ L̃− j
τ (M, 0), ‖[�, Sj ]‖ j,0 � K j− 1

2

( j+1)2 h(λ, d) j+1, m + 1 ≤ j ≤ 2m + 1
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• R j ∈ R−∞
j+1(M, τ ), |R j | j+1 � K j

( j+1)2 h(λ, d) j+1, 1 ≤ j ≤ 2m + 1;

• S̃m+1 ∈ L̃−m
τ (M, 1), ‖S̃m+1‖m,1 � K m− 1

2

(m+1)2 h(λ, d)m;

• S j ∈ L̃−( j−1)
τ (M, 0), ‖S j‖ j−1,0 � K j− 3

2

j 2 h(λ, d) j , m + 1 ≤ j ≤ 2m + 3;

• R j ∈ R−∞
j−1(4M, τ ), |R|(4M,τ )

j−1 � K j− 3
2

j 2 h(λ, d) j , 2 ≤ j ≤ 2m + 3;

• R̂ j ∈ R−∞
j−1(M, τ ), |R̂ j | j−1 � K j− 3

2

j 2 h(λ, d) j , 1 ≤ j ≤ m.

The notation |R|(4M,τ )
j−1 is explained in Definition 2.4 and by A � B we mean that there is an

absolute constant C such that A ≤ C B.

Let us first compute the left hand side of (3.9).

Lemma 3.1 Let Q′
j , Q′′

j be given operators satisfying (3.5)–(3.8) for 1 ≤ j ≤ m. Denote

Q′m = ∑m
j=1 Q′

j , Q′′m = ∑m
j=1 Q′′

j . Then one may find

• Elements (S j )1≤ j≤2m+1, (R j )1≤ j≤2m+1 satisfying

(1) Sj ∈ L̃−( j+1)
τ (M, 0), ‖Sj‖ j+1,0 � K j

( j+1)2 h(λ, d) j+1, 1 ≤ j ≤ 2m + 1;

(2) [�, Sj ] ∈ L̃− j
τ (M, 0), ‖[�, Sj ]‖ j,0 � K j− 1

2

( j+1)2 h(λ, d) j+1, 1 ≤ j ≤ 2m + 1;

(3) R j ∈ R−∞
j+1(M, τ ), |R j | j+1 � K j

( j+1)2 h(λ, d) j+1, 1 ≤ j ≤ 2m + 1;

(4) Sj , R j are self-adjoint and depend only on Q′
�, 1 ≤ � ≤ min ( j, m), Q′′

� , 1 ≤ � <

min ( j, m + 1);

• Elements (S̃j )2≤ j≤m+1, (Sj )2≤ j≤2m+3, (R j )2≤ j≤2m+3 satisfying

(5) S̃ j ∈ L̃−( j−1)
τ (M, 1), ‖S̃ j‖ j−1,1 � K j− 3

2

j 2 h(λ, d) j−1, 2 ≤ j ≤ m + 1;

(6) S j ∈ L̃−( j−1)
τ (M, 0), ‖S j‖ j−1,0 � K j− 3

2

j 2 h(λ, d) j , 2 ≤ j ≤ 2m + 3;

(7) R j ∈ R−∞
j−1(4M, τ ), |R j |(4M,τ )

j−1 � K j− 3
2

j 2 h(λ, d) j , 2 ≤ j ≤ 2m + 3;

(8) S̃j , Sj , R j are self-adjoint and depend only on Q′
�, Q′′

� , 1 ≤ � < min ( j, m + 1),

such that

(I + Qm)∗(P0 + V )(I + Qm)

= i∂t − � + V + [Q′m,�] + Q′′m P0 + P0 Q′′m

+ 1

2

2m+1∑

j=1

(
Sj P0 + P0Sj

)
+ 1

2

2m+1∑

j=1

(
R j P0 + P0 R j

)

+
m+1∑

j=2

S̃ j +
2m+3∑

j=2

S j +
2m+3∑

j=2

R j .

(3.10)
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Proof of Lemma 3.1 Using that (Q′m)∗ = −Q′m, (Q′′m)∗ = Q′′m , we write

(I + Qm)∗(P0 + V )(I+Qm) = i∂t − � + V

+ [Q′m,�] − [Q′m, i∂t ] + Q′′m P0 + P0 Q′′m (3.11)

+ 1

2

(
(Qm)∗Qm P0 + P0(Qm)∗Qm

)
(3.12)

+ 1

2

(
(Qm)∗[i∂t , Qm] + [(Qm)∗, i∂t ]Qm

)
(3.13)

+ 1

2

(
(Qm)∗[−�, Qm] + [(Qm)∗,−�]Qm

)
(3.14)

+ (Qm)∗V + V Qm + (Qm)∗V Qm . (3.15)

Let us show how the right hand side contributes to that of (3.10). We deal with it term by
term.

We write by Corollary 2.1 and Notation 4

(Qm)∗Qm =1

2

2m−1∑

j=1

∑

j1+ j2= j+1
1≤ j1, j2≤m

M ′(Q′∗
j1 , Q′

j2) + R′(Q′∗
j1 , Q′

j2)

+
2m∑

j=2

∑

j1+ j2= j
1≤ j1, j2≤m

M ′(Q′′∗
j1 , Q′

j2) + R′(Q′′∗
j1 , Q′

j2)

+ 1

2

2m+1∑

j=3

∑

j1+ j2= j−1
1≤ j1, j2≤m

M ′(Q′′∗
j1 , Q′′

j2) + R′(Q′′∗
j1 , Q′′

j2)

=
2m−1∑

j=1

(S(1)
j + R(1)

j ) +
2m∑

j=2

(S(2)
j + R(2)

j ) +
2m+1∑

j=3

(S(3)
j + R(3)

j )

(3.16)

for self-adjoint operators S(i)
j ∈ L̃−( j+1)

τ (M, 0), R(i)
j ∈ R−∞

j+1(M, 1
2λ

) ⊂ R−∞
j+1(M, τ ), i =

1, 2, 3, j = 1, . . . , 2m + 1. We make the following convention: we set the terms that do not
appear to be zero. For instance, here we set

S(1)
j = R(1)

j = 0, j = 2m, 2m + 1,

S(2)
j = R(2)

j = 0, j = 1, 2m + 1

S(3)
j = R(3)

j = 0, j = 1, 2.

We shall use such a convention throughout the proof of Lemma 3.1. Using (2.34), (3.5), (3.7)
and the fact that

∑

j1+ j2= j+1
1≤ j1, j2≤m

1

j 2
1

· 1

j 2
2

+ 2
∑

j1+ j2= j
1≤ j1, j2≤m

1

j 2
1

· 1

j 2
2

+
∑

j1+ j2= j−1
1≤ j1, j2≤m

1

j 2
1

· 1

j 2
2

�
1

( j + 1) 2 , (3.17)

we obtain

3∑

i=1

(
‖S(i)

j ‖ j+1,0 + |R(i)
j | j+1

)
�

K j

( j + 1)2 h(λ, d) j+1, 1 ≤ j ≤ 2m + 1.
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Defining

S j =
3∑

i=1

S(i)
j , 1 ≤ j ≤ 2m + 1; R j =

3∑

i=1

R(i)
j , 1 ≤ j ≤ 2m + 1,

we know by the construction that Sj , R j satisfy (1), (3) and (4). Moreover, by expressions
(2.16) and (2.17), we get

[�, Sj ] =
3∑

i=1

[�, S(i)
j ]

=
∑

j1+ j2= j+1
1≤ j1, j2≤m

[
M ([�, Q′∗

j1 ], Q′
j2) + M (Q′∗

j1 , [�, Q′
j2 ])

]

+
∑

j1+ j2= j
1≤ j1, j2≤m

[
M

([�, Q′∗
j1 ], Q′′

j2

) + M
(
Q′∗

j1 , [�, Q′′
j2 ]
)

+ M
([�, Q′′∗

j1 ], Q′
j2

) + M
(
Q′′∗

j1 , [�, Q′
j2 ]
)]

+
∑

j1+ j2= j−1
1≤ j1, j2≤m

[
M ([�, Q′′∗

j1 ], Q′′
j2) + M (Q′′∗

j1 , [�, Q′′
j2 ])

]
,

so we know from (3.5) to (3.8), Proposition 2.7 and (3.17) that [�, S j ] ∈ L̃− j
τ (M, 0) and

‖[�, S j ]‖ j,0 � K j− 1
2

( j+1)2 h(λ, d) j+1. Therefore, (3.12) contributes to the third line of (3.10).
By Propositions 2.4, 2.9, one may decompose

− [Q′
j−1, i∂t ] = S̃ j + R̃ j , 2 ≤ j ≤ m + 1 (3.18)

with

S̃ j ∈ L̃−( j−1)
τ (M, 1), ‖S̃ j‖ j−1,1 ≤ K j− 3

2

( j − 1)2 h(λ, d) j−1, 2 ≤ j ≤ m + 1;

R̃ j ∈ R−∞
j−1(M,

1

2λ
) ⊂ R−∞

j−1(M, τ ), |R̃ j | j−1 ≤ K j− 3
2

( j − 1)2 h(λ, d) j−1, 2 ≤ j ≤ m + 1.

(3.19)

Since −[Q′
j−1, i∂t ] is self-adjoint, so are S̃ j and R̃ j . Thus this determines the first term in

the fourth line of (3.10) and R̃ j contributes to R j .
According to Proposition 2.4, Corollary 2.2 and Notation 4, we may write

(3.13) = 1

2

2m+1∑

j=3

∑

j1+ j2= j−1
1≤ j1, j2≤m

M ′(Q′∗
j1 , [i∂t , Q′

j2 ]
) + R′(Q′∗

j1 , [i∂t , Q′
j2 ]
)
,

+1

2

2m+2∑

j=4

∑

j1+ j2= j−2
1≤ j1, j2≤m

M ′(Q′′∗
j1 , [i∂t , Q′

j2 ]
) + R′(Q′′∗

j1 , [i∂t , Q′
j2 ]
)

+1

2

2m+2∑

j=4

∑

j1+ j2= j−2
1≤ j1, j2≤m

M ′(Q′∗
j1 , [i∂t , Q′′

j2 ]
) + R′(Q′∗

j1 , [i∂t , Q′′
j2 ]
)
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+1

2

2m+3∑

j=5

∑

j1+ j2= j−3
1≤ j1, j2≤m

M ′(Q′′∗
j1 , [i∂t , Q′′

j2 ]
) + R′(Q′′∗

j1 , [i∂t , Q′′
j2 ]
)

=
2m+1∑

j=3

(
S

(1)

j + R
(1)

j

) +
2m+2∑

j=4

(
S

(2)

j + R
(2)

j

) +
2m+3∑

j=5

(
S

(3)

j + R
(3)

j

)
(3.20)

for self-adjoint operators S
(i)
j ∈ L̃−( j−1)

τ (M, 0), R
(i)
j ∈ R−∞

j−1(M, 1
2λ

) ⊂ R−∞
j−1(M, τ ), 1 ≤

i ≤ 3, 3 ≤ j ≤ 2m + 3. Here we have used the convention made on Sect. 3. By the inequal-
ities which are contained in the statement of Corollary 2.2, (2.13), (3.5), (3.7) and (3.17), we
obtain

3∑

i=1

(
‖S

(i)
j ‖ j−1,0 + |R(i)

j | j−1

)
�

K j−2

j 2 h(λ, d) j−1, 3 ≤ j ≤ 2m + 3. (3.21)

Now we turn to the term (3.14). Using Notation 4, Corollary 2.1, (3.5)–(3.8), we write

(3.14) =1

2

2m∑

j=2

∑

j1+ j2= j

1≤ j1, j2≤m

M ′(Q′∗
j1 , [−�, Q′

j2 ]
) + R′(Q′∗

j1 , [−�, Q′
j2 ]
)

+ 1

2

2m+1∑

j=3

∑

j1+ j2= j−1

1≤ j1, j2≤m

M ′(Q′′∗
j1 , [−�, Q′

j2 ]
) + R′(Q′′∗

j1 , [−�, Q′
j2 ]
)

+ 1

2

2m+1∑

j=3

∑

j1+ j2= j−1

1≤ j1, j2≤m

M ′(Q′∗
j1 , [−�, Q′′

j2 ]
) + R′(Q′∗

j1 , [−�, Q′′
j2 ]
)

+ 1

2

2m+2∑

j=4

∑

j1+ j2= j−2

1≤ j1, j2≤m

M ′(Q′′∗
j1 , [−�, Q′′

j2 ]
) + R′(Q′′∗

j1 , [−�, Q′′
j2 ]
)

=
2m∑

j=2

(
S

(4)

j + R
(4)

j

)
+

2m+1∑

j=3

(
S

(5)

j + R
(5)

j

)
+

2m+2∑

j=4

(
S

(6)

j + R
(6)

j

)

for self-adjoint operators S
(i)
j ∈ L̃−( j−1)

τ (M, 0), R
(i)
j ∈ R−∞

j−1(M, 1
2λ

) ⊂ R−∞
j−1(M, τ ), 4 ≤

i ≤ 6, 2 ≤ j ≤ 2m + 2, using the convention made on Sect. 3. By (2.34), (3.5)– (3.8) and
(3.17) we have

6∑

i=4

(
‖S

(i)
j ‖ j−1,0 + |R(i)

j | j−1

)
�

K j− 3
2

j 2 h(λ, d) j , 2 ≤ j ≤ 2m + 2.
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Let us now analyze (3.15). By Proposition 3.1, Corollary 2.1 and Proposition 2.10, we
write

(
Qm)∗V + V Qm =

m+1∑

j=2

[
Q′∗

j−1(QV + RV ) + (QV + RV )Q′
j−1

]

+
m+2∑

j=3

[(
Q′′

j−2

)∗
(QV + RV ) + (QV + RV )Q′′

j−2

]

=
m+1∑

j=2

(
S

(7)

j + R
(7)

j

)
+

m+2∑

j=3

(
S

(8)

j + R
(8)

j

)

for self-adjoint operators S
(i)
j ∈ L̃−( j−1)

τ (M, 0), R
(i)
j ∈ R−∞

j−1(2M, 1
2λ

) ⊂ R−∞
j−1(2M, τ ), 7

≤ i ≤ 8, 2 ≤ j ≤ m + 2. In this case the convention reads that

S
(7)

m+2 = R
(7)

m+2 = S
(8)

2 = R
(8)

2 = 0.

Moreover, by (2.34), (3.1), (3.5), (3.7) and (3.17)

8∑

i=7

(
‖S

(i)
j ‖ j−1,0 + |R(i)

j |(2M,τ )
j−1

)
�

K j− 3
2

j 2 h(λ, d) j , 2 ≤ j ≤ m + 2. (3.22)

Similarly, by Proposition 3.1, Proposition 2.10, Corollary 2.3, we also have

(Qm)∗V Qm =1

2

2m+1∑

j=3

∑

j1+ j2= j−1
1≤ j1, j2≤m

Q′∗
j1(QV + RV )Q′

j2 + Q′∗
j2(QV + RV )Q′

j1

+
2m+2∑

j=4

∑

j1+ j2= j−2
1≤ j1, j2≤m

Q′′∗
j1 (QV + RV )Q′

j2 + Q′∗
j2(QV + RV )Q′′

j1

+ 1

2

2m+3∑

j=5

∑

j1+ j2= j−3
1≤ j1, j2≤m

Q′′∗
j1 (QV + RV )Q′′

j2 + Q′′∗
j2 (QV + RV )Q′′

j1

=
2m+1∑

j=3

(
S

(9)

j + R
(9)

j

)
+

2m+2∑

j=4

(
S

(10)

j + R
(10)

j

)
+

2m+3∑

j=5

(
S

(11)

j + R
(11)

j

)

for self-adjoint operators S
(i)
j ∈ L̃−( j−1)

τ (M, 0), R
(i)
j ∈ R−∞

j−1(4M, 1
2λ

) ⊂ R−∞
j−1(4M, τ ), 9

≤ i ≤ 11, 3 ≤ j ≤ 2m + 3 and by (2.43), (2.38), (3.5), (3.7) and (3.17)

11∑

i=9

(
‖S

(i)
j ‖ j−1,0 + |R(i)

j |(4M,τ )
j−1

)
�

K j−2

j 2 h(λ, d) j , 3 ≤ j ≤ 2m + 3. (3.23)

Using the convention made on Sect. 3, we set

S j =
11∑

i=1

S
(i)
j , R j = R̃ j +

11∑

i=1

R
(i)
j , 2 ≤ j ≤ 2m + 3.
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Since R−∞
j−1(M, τ ) ⊂ R−∞

j−1(4M, τ ), we see from (3.19) to (3.23) that (Sj )2≤ j≤2m+3,

(R j )2≤ j≤2m+3 satisfy the conditions listed in the lemma and contribute respectively to the
second and last terms in the last line of (3.10). This concludes the proof. ��
Proof of Proposition 3.2 We shall recursively construct Q′

1, Q′′
1, . . . , Q′

m, Q′′
m with the

required estimates so that the left hand side of (3.9) may be written for r = 1, . . . , m + 1

i∂t − � + V r−1 +
m∑

j=r

[Q′
j ,�] +

m∑

j=r

(
Q′′

j P0 + P0 Q′′
j

)

+ 1

2

2m+1∑

j=r

(
Sj P0 + P0Sj

) + 1

2

2m+1∑

j=1

(
R j P0 + P0 R j

)

+
m+1∑

j=r

S̃ j +
2m+3∑

j=r

S j +
2m+3∑

j=1

R j +
r−1∑

j=1

R̂ j ,

(3.24)

where V 0 = 0,
(
V j

)∗ = V j and [�̃, V j ] = 0 for j ≥ 1, S̃1 = 0, S1 = QV , R1 = RV .
Here QV , RV are defined in Proposition 3.1. Remark that without regard to all the estimates,
(3.24) with r = 1 is the conclusion of Lemma 3.1 and (3.24) with r = m +1 is the conclusion
we want to reach. Assume that (3.24) has been obtained at rank r and we have already had the
estimates (3.5)–(3.8) for Q′

1, . . . , Q′
r−1, Q′′

1, . . . , Q′′
r−1. By Lemma 3.1, we have determined

S�, R�, 1 ≤ � ≤ r − 1, S̃�, S�, R�, 1 ≤ � ≤ r and they also satisfy the estimates listed in
Lemma 3.1. Using Notation 3, we set V r = V r−1 + (S̃r )D + (Sr )D and denote

(S̃r )
M
N D =

∑

n, n′∈Zd


n(S̃r )N D
n′1{‖n|2−|n′|2|> 1
4 (|n|+|n′|)τ0 },

(Sr )
M
N D =

∑

n, n′∈Zd


n(Sr )N D
n′1{‖n|2−|n′|2|> 1
4 (|n|+|n′|)τ0 },

(3.25)

with τ0 given by Proposition 2.1. We now deduce from (2.10) and Proposition 2.2 that

[�̃, V r ] = 0, (S̃r )
M
N D ∈ L −(r−1)

τ, N D (M, 1) and (Sr )
M
N D ∈ L −(r−1)

τ, N D (M, 0). We let Q′
r satisfy

[Q′
r ,�] = −(S̃r )

M
N D − (Sr )

M
N D . (3.26)

Since τ0 ≥ τ by Remark 3.2, according to Proposition 2.3 this equation defines an element
Q′

r ∈ L−r
τ (M, 0) with

‖Q′
r‖r,0 � ‖(S̃r )

M
N D‖r−1,1 + ‖(Sr )

M
N D‖r−1, 0 �

K r− 3
2

r 2 h(λ, d)r ≤ K r− 1
2

r 2 h(λ, d)r , (3.27)

if K is larger than the implicit constant and since (S̃r )
M
N D, (Sr )

M
N D are self-adjoint, Q′∗

r =
−Q′

r . (3.6) with j = r follows from (3.26), (5) and (6) with j = r if K is larger than
the square of the implicit constant. Thus Q′

r satisfies (3.5) and (3.6). We then claim that
(S̃r )N D − (S̃r )

M
N D and (Sr )N D − (Sr )

M
N D contribute to R̂r . But


n
(
(S̃r )N D − (S̃r )

M
N D

)

n′ = 
n(S̃r )N D
n′1{‖n|2−|n′|2|≤ 1

4 (|n|+|n′|)τ0 } (3.28)

and since (S̃r )N D ∈ L̃−(r−1)
τ,N D (M, 1), this expression is non zero only when n and n′ belong

to Aα and Aβ with α �= β, where Aα and Aβ are defined in Proposition 2.1. So the sec-
ond condition in Proposition 2.1, together with the cut-off in (3.28), implies that |n − n′| ≥
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1
2 (1+max (|n|, |n′|))τ0 . Then it follows by (2.8) and the assumption M > 2

ρ
stated in Remark

3.2 that

‖
n∂k
t

(
(S̃r )N D − (S̃r )

M
N D

)

n′ ‖L(L2)

� ‖(S̃r )N D‖r−1,1 M N+k+r−1[(k + r − 1)!]max (2, μ)N !
× 〈n − n′〉−(d+2)

(
1 + max (|n|, |n′|))−

τ0 N
λ

(3.29)

for any k, N ∈ N, any n, n′ ∈ Z
d . With the same reasoning we can get a similar estimate for

‖
n
(
(Sr )N D − (Sr )

M
N D

)

n′ ‖L(L2). We then set

R̂r = (S̃r )N D − (S̃r )
M
N D + (Sr )N D − (Sr )

M
N D

and deduce from (3.29), a similar estimate to (3.29) for ‖
n
(
(Sr )N D − (Sr )

M
N D

)

n′ ‖L(L2),

(2.10), (5) and (6) with j = r and the fact τ = τ0
λ

that R̂r satisfies the required properties in
Proposition 3.2.

We also have to find Q′′
r satisfying (3.7) and (3.8) such that

Q′′
r P0 + P0 Q′′

r = −1

2
[Sr P0 + P0Sr ].

Since by Lemma 3.1, Sr depends only on Q′
1, . . . , Q′

r , Q′′
1, . . . , Q′′

r−1 which have been
already determined, we may define Q′′

r = − 1
2 Sr . We see by Lemma 3.1 that Q′′

r obeys (3.7)
and (3.8) if K is chosen to be much larger than the square of the implicit constant. There-
fore we obtain (3.24) at rank r + 1 with terms satisfying the corresponding estimates. This
concludes the proof. ��

4 Proof of the Main Theorem

For any given N ∈ N
∗, once one has conjugated the operator i∂t −�+V into i∂t −�+V ′

N +
R′

N with V ′
N exactly commuting with the modified Laplacian �̃ and R′

N essentially being a
bounded linear operator from L2(Td) to H N (Td), which has already been done in the previ-
ous section when m is taken to be so large that mτ � N , we need to invert the transformation
in order to get an estimate for the solution of the original Cauchy problem. Moreover, we
have to compute the norms of the operators in order to obtain logarithmic growth of Sobolev
norms from the energy inequality. To realize this, we begin with the following lemma.

Lemma 4.1 Let m ∈ N
∗ and assume Q j ∈ L− j

τ (M, 0), j = 1, 2, . . . , m. Then there are

sequences Pj ∈ L− j
τ (M, 0), 1 ≤ j ≤ m, Tj ∈ L− j

τ (M, 0), m + 1 ≤ j ≤ 2m, R′
j ∈

R−∞
j (M, 1

2λ
), 2 ≤ j ≤ 2m such that

(I + Q1 + · · · + Qm)(I + P1 + · · · + Pm) = I +
2m∑

j=m+1

Tj +
2m∑

j=2

R′
j (4.1)

with

‖Pj‖ j,0 ≤
j∑

�=1

∑

j1+···+ j�= j
1≤ j1,..., j�≤m

C�−1
2 ‖Q j1‖ j1,0 . . . ‖Q j�‖ j�,0, 1 ≤ j ≤ m,
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‖Tj‖ j,0 ≤
j∑

�=2

∑

j1+···+ j�= j
1≤ j1,..., j�≤m

C�−1
2 ‖Q j1‖ j1,0 . . . ‖Q j�‖ j�,0, m + 1 ≤ j ≤ 2m,

|R′
j | j ≤

j∑

�=2

∑

j1+···+ j�= j
1≤ j1,..., j�≤m

C�−1
2 ‖Q j1‖ j1,0 . . . ‖Q j�‖ j�,0, 2 ≤ j ≤ 2m, (4.2)

where C2 is an absolute constant.

Proof Let Q1, . . . , Qm be given. We set P1 = −Q1 and by Proposition 2.7 we may recur-
sively determine Pj ∈ L− j

τ (M, 0) and R′
j ∈ R−∞

j (M, 1
2λ

) for j = 2, . . . , m such that

− Q j −
∑

i+k= j
1≤i, k≤m

Qi Pk = Pj + R′
j (4.3)

with

‖Pj‖ j,0 � ‖Q j‖ j,0 +
∑

i+k= j
1≤i, k≤m

‖Qi‖i,0‖Pk‖k,0, 2 ≤ j ≤ m,

|R′
j | j � ‖Q j‖ j,0 +

∑

i+k= j
1≤i, k≤m

‖Qi‖i,0‖Pk‖k,0, 2 ≤ j ≤ m.
(4.4)

Consequently, we have

(I+Q1 + · · · + Qm)(I + P1 + · · · + Pm)

= I + P1 + Q1 +
m∑

j=2

(
Pj + Q j +

∑

i+k= j
1≤i, k≤m

Qi Pk

)
+

2m∑

j=m+1

∑

i+k= j
1≤i, k≤m

Qi Pk

= I +
2m∑

j=m+1

∑

i+k= j
1≤i, k≤m

Qi Pk +
m∑

j=2

R′
j .

(4.5)

Moreover by induction we obtain from (4.4) the required inequalities for Pj , 1 ≤ j ≤ m
and the third inequality in (4.2) holds when 2 ≤ j ≤ m, if C2 is chosen to be larger than the
implicit constant. Since P1, . . . , Pm have already been determined, by Proposition 2.7, we
may also find Tj ∈ L− j

τ (M, 0), R′
j ∈ R−∞

j (M, 1
2λ

), m + 1 ≤ j ≤ 2m, such that

∑

i+k= j
1≤i, k≤m

Qi Pk = Tj + R′
j , m + 1 ≤ j ≤ 2m, (4.6)

with

‖Tj‖ j,0 �
∑

i+k= j
1≤i, k≤m

‖Qi‖i,0‖Pk‖k,0, m + 1 ≤ j ≤ 2m,

|R′
j | j �

∑

i+k= j
1≤i, k≤m

‖Qi‖i,0‖Pk‖k,0, m + 1 ≤ j ≤ 2m.
(4.7)
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Thus (4.1) follows by (4.5) and (4.6). The required estimates for Tj , R′
j , m + 1 ≤ j ≤ 2m,

follow by (4.7) and the estimates of Pj , 1 ≤ j ≤ m, which we have already obtained. This
concludes the proof. ��

Proof of the main theorem Recall that τ = τ0
λ

< 1
2λ

, where τ0 is given by Proposition 2.1
and λ given by (1.2). For any N ∈ N

∗, let m be an integer such that

N + 3 ≤ (m + 2)τ < N + 4, (4.8)

which implies

m >
3

τ
, mτ > N . (4.9)

Let the operators Q′
j , Q′′

j , 1 ≤ j ≤ m be given by Proposition 3.2. Applying Lemma 4.1 to

Q1 = Q′
1, Q j = Q′

j + Q′′
j−1, 2 ≤ j ≤ m, Qm+1 = Q′′

m , we may find

Pj ∈ L− j
τ (M, 0), 1 ≤ j ≤ m + 1,

Tj ∈ L− j
τ (M, 0), m + 2 ≤ j ≤ 2m + 2,

R′
j ∈ R−∞

j (M,
1

2λ
), 2 ≤ j ≤ 2m + 2

such that if we set Pm+1 = ∑m+1
j=1 Pj , Qm = ∑m+1

j=1 Q j

(I + Qm)(I + Pm+1) = I +
2m+2∑

j=m+2

Tj +
2m+2∑

j=2

R′
j . (4.10)

Moreover, (4.2) with m replaced by m + 1 are satisfied by those operators. Since by (3.5),
(3.7)

‖Q j‖ j,0 ≤ 2K j− 1
2

j 2 h(λ, d) j , 1 ≤ j ≤ m + 1, (4.11)

we get by (4.2)

‖Pj‖ j,0 ≤
j∑

�=1

∑

j1+···+ j�= j

C�−1
2

2K j1− 1
2

j1 2 . . .
2K j�− 1

2

j 2
�

h(λ, d) j

≤ C j
λ,d , 1 ≤ j ≤ m + 1,

‖Tj‖ j,0 ≤ C j
λ,d , m + 2 ≤ j ≤ 2m + 2,

|R′
j | j ≤ C j

λ,d , 2 ≤ j ≤ 2m + 2

(4.12)

if K > (2C2)
2 and it is large enough so that Proposition 3.2 holds, where Cλ,d is some

constant depending only on λ, d . Keep in mind that from now on the meaning of constant
Cλ,d depending only on λ and d may change from line to line. For the solution u of (1.1),
we set

v = (I + Pm+1)u. (4.13)
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Then by Proposition 2.5, (4.12), for any σ ∈ R,

‖v(t)‖Hσ �
(

1 + C |σ |
1

m+1∑

j=1

‖Pj ‖ j,0 M j−1[( j − 1)!]max (2, μ)
)

‖u(t)‖Hσ

� C |σ |
1 Cm+2

λ,d (m!)max (2, μ) ‖u(t)‖Hσ .

(4.14)

Similarly, by Proposition 2.5, (4.12), for any σ ∈ R,

‖∂tv(t)‖Hσ

≤ ‖∂t u(t)‖Hσ +
m+1∑

j=1

‖[∂t , Pj ]u(t)‖Hσ +
m+1∑

j=1

‖Pj∂t u(t)‖Hσ (4.15)

� C |σ |
1 Cm+2

λ,d

(
(m + 1)!)max (2, μ)‖u(t)‖Hσ + C |σ |

1 Cm+2
λ,d (m!)max (2, μ)‖∂t u(t)‖Hσ ,

and by (4.10), (4.13), (4.9), Proposition 2.5, Proposition 2.6, (4.11), (4.12)

‖u(t)‖H N

≤ ‖(I + Qm)v(t)‖H N +
2m+2∑

j=m+2

‖Tj u(t)‖H (m+2)τ +
2m+2∑

j=2

‖R′
j u(t)‖Hmτ (4.16)

� Cm+1
λ,d (m!)max (2, μ) ‖v(t)‖H N + C4m+3

λ,d

[
(2m + 2)!]max (2, μ)+1 ‖u(t)‖L2 .

By (3.9), (4.10) and (1.1)

(i∂t − � + V m)v = f + g, (4.17)

where

f = −
⎡

⎣1

2

2m+1∑

j=m+1

(
Sj P0 + P0Sj

)
v + 1

2

2m+1∑

j=1

(
R j P0 + P0 R j

)
v

+
⎛

⎝S̃m+1 +
2m+3∑

j=m+1

S j +
2m+3∑

j=2

R j +
m∑

j=1

R̂ j

⎞

⎠ v

⎤

⎦ , (4.18)

g =(I + Qm)∗
⎡

⎣i∂t − � + V,

2m+2∑

j=m+2

Tj +
2m+2∑

j=2

R′
j

⎤

⎦ u. (4.19)

Therefore by (2.5) and the property of V m , we have

(
i∂t − � + V m)(1 − �̃

) N
2 v = w,

where by Lemma 4.2 below

‖w‖L2 ≤ C5m+6
λ,d

[
(2m + 3)!]2 max (2, μ)‖u0‖L2 ,
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if Cλ,d is in addition larger than the implicit constants of (4.24) and (4.25). Since V m is
self-adjoint, this implies the energy inequality

‖v(t)‖H̃ N ≤ ‖v(0)‖H̃ N +
t∫

0

C5m+6
λ,d

[
(2m + 3)!]2 max (2, μ)‖u0‖L2 dt

≤ ‖v(0)‖H̃ N + |t |C5m+6
λ,d

[
(2m + 3)!]2 max (2, μ)‖u0‖L2 .

(4.20)

Now using (4.16), (2.7), (4.20), (4.14), the conservation law of the L2-norm of (1.1) and
(4.9), we deduce for some constant Cλ,d independent of m and N

‖u(t)‖H N ≤ C N
λ,d

[
(2m + 3)!] 5

2 max (2, μ)
(2 + |t |)‖u0‖H N , (4.21)

if we use

(m!)max (2, μ) ≤ [(2m)!] 1
2 max (2, μ).

Since by (4.8), 2m + 3 ≤ ([ 10
τ

] + 1)N , we deduce from (4.21)

‖u(t)‖H N ≤ C N
λ,d

[(
([10

τ
] + 1)N

)!] 5
2 max (2, μ)

(2 + |t |)‖u0‖H N . (4.22)

By Stirling’s approximation N ! ∼ √
2π N ( N

e )N for any N ∈ N, there is a constant pλ which

depends on τ and thus on λ such that
(
([ 10

τ
] + 1)N

)! ≤ pN
λ (N !)[ 10

τ
]+1, which, together

with the fact that τ = τ0
λ

, allows us to rewrite (4.22) for some constant Cλ,d independent of
m, N , μ and for some constant ζ independent of m, N , μ and λ as

‖u(t)‖H N ≤ C N
λ,d(N !)ζμλ(2 + |t |)‖u0‖H N . (4.23)

Since (4.23) holds for any N ∈ N
∗, we deduce, for any s > 0, from the conservation law of

the L2-norm and interpolation

‖u(t)‖Hs ≤ Cθ N
λ,d(N !)ζμλ θ (2 + |t |)θ‖u0‖Hs

where θ satisfies s = θ N , θ ∈ [0, 1]. Assuming ‖u0‖Hs �= 0, we obtain for any N ∈ N and
for some other constant Cs,λ,d independent of N

( 1

Cs,λ,d

(‖u(t)‖Hs

‖u0‖Hs

) 1
ζμλ s

)N ≤ N ! (2 + |t |) 1
ζμλ .

This gives immediately for some other constant Cs,λ,d

‖u(t)‖Hs ≤ Cs,λ,d
[

log(2 + |t |)]ζμλs‖u0‖Hs ,

thus concludes the proof of the main theorem. ��

Lemma 4.2 Let f, g be the quantities defined respectively by (4.18) and (4.19). Then

‖ f ‖H̃ N � C5m+5
λ,d

[
(2m + 3)!]2 max (2, μ)‖u0‖L2 , (4.24)

‖g‖H̃ N � C5m+5
λ,d

[
(2m + 3)!]2 max (2, μ)‖u0‖L2 . (4.25)
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Proof We have by (2.7), (4.8), the properties of Sj listed in Proposition 3.2, Proposition 2.4,
Proposition 2.5, (4.15), (4.14), (1.1) and the conservation law of the L2-norm of (1.1)

‖
2m+1∑

j=m+1

(
Sj P0 + P0 Sj

)
v(t)‖H̃ N

� C N
0

2m+1∑

j=m+1

(
‖Sj ∂tv(t)‖H−2+(m+2)τ + ‖Sj �v(t)‖H−2+(m+2)τ

+ ‖[i∂t , Sj ]v(t)‖H (m+2)τ + ‖[�, Sj ]v(t)‖H (m+1)τ

)

� C N
0

2m+1∑

j=m+1

K j

( j + 1)2 h(λ, d) j+1 M j ( j !)max (2, μ)
(
‖∂tv(t)‖H−2 + ‖�v(t)‖H−2

)

+ C N
0

2m+1∑

j=m+1

K j

( j + 1)2 h(λ, d) j+1 M j+1[( j + 1)!]max (2, μ)‖v(t)‖L2

� C N
0 C2m+2

λ,d [(2m + 1)!]max (2, μ)

×
(

Cm+2
λ,d

(
(m + 1)!)max (2, μ)‖u(t)‖L2 + Cm+2

λ,d (m!)max (2, μ)‖∂t u(t)‖H−2

)

+ C N
0 C2m+2

λ,d

[
(2m + 2)!]max (2, μ)

Cm+2
λ,d (m!)max (2, μ) ‖u(t)‖L2

� C3m+4
λ,d

[
(2m + 2)!]2 max (2, μ)‖u0‖L2 .

Using, in addition, (4.9) and Proposition 2.6, we similarly have

‖
2m+1∑

j=1

(
R j P0 + P0 R j

)
v(t)‖H̃ N � C5m+5

λ,d

[
(2m + 3)!]2 max (2, μ)‖u0‖L2 .

By Proposition 2.5, Proposition 2.6 and Proposition 3.2, we easily deduce that the other terms
in the expression of f can be controlled by the right hand side of (4.24). What is important
here is that Cλ,d does not depend on m, N .

Next we want to show (4.25). First notice that by Proposition 2.5, (4.11), (4.9)

‖(I + Qm)∗‖L(H N ,H N ) � C N
1

m+1∑

j=1

2K j− 1
2

j 2 h(λ, d) j M j−1[( j − 1)!]max (2, μ)

� Cm+1
λ,d (m!)max (2, μ).

(4.26)

On the other hand, by (2.7), (4.9), Proposition 2.5, Proposition 2.6, (4.12), the conservation
law of the L2-norm of (1.1),

‖[i∂t ,

2m+2∑

j=m+2

Tj +
2m+2∑

j=2

R′
j ]u(t)‖H̃ N

≤ C N
0

2m+2∑

j=m+2

‖[i∂t , Tj ]u(t)‖Hmτ + C N
0

2m+2∑

j=2

‖[i∂t , R′
j ]u(t)‖Hmτ

� C N
0

2m+2∑

j=m+2

C j
λ,d( j !)max (2, μ)‖u(t)‖L2
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+C N
0

2m+2∑

j=2

C2m+ j+1
λ,d

(
( j + 1)!)max (2, μ)

(2m)!‖u(t)‖L2

� C4m+4
λ,d

[
(2m + 3)!]max (2, μ)+1‖u0‖L2 , (4.27)

and

‖[−�,

2m+2∑

j=m+2

Tj +
2m+2∑

j=2

R′
j ]u(t)‖H̃ N � C4m+3

λ,d

[
(2m + 2)!]max (2, μ)+1‖u0‖L2 . (4.28)

Since the quantity ‖[V,
∑2m+2

j=m+2 Tj +∑2m+2
j=2 R′

j ]u(t)‖H̃ N is also less than a constant times
the last line of (4.27), by (4.26)-(4.28) we see that (4.25) holds true. ��
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