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Abstract The diffusion-based algorithm to produce density-equalizing maps interprets
diffusion as an advection process. This algorithm uses the dynamics of a flow that is defined
by an initial value problem that turns out to be very singular at the initial time. The singu-
larities appear when the initial density has line or angle discontinuities, which is always the
case, for example, in area cartogram maps. This singular initial value problem is analyzed
mathematically in this article and the conclusion is that despite these singularities, it has a
unique solution. This justifies the extensive numerical use of this algorithm in the recent years.
The techniques presented in this article use both partial and ordinary differential equations
estimates.

Keywords Density equalizing map · Cartogram · Diffusion algorithm · Singular initial
value problem

1 Introduction

For a given bounded domain � ⊂ R
n and a density function ρ : � → R

+ such that
inf� ρ > 0 and

∫
�

ρ = |�| , we proposed (see [2] and [3]) an algorithm to produce a
diffeomorphism � : � → � that satisfies

det(D�)(x) = ρ(x). (1.1)
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This prescribed Jacobian equation had been used in several problems of mathematical
physics, such as the problem of equilibrium of gases considered in the book of Dacorogna
(see [7], Sect A.2.3) or generating random distributions of particles on a domain with a given
probability density (see Russo [15]).

Independently of [2] and [3], the same algorithm was proposed by Gastner and Newman
[9] to focus on the construction of geographical cartograms, maps of countries or regions
where each region would be deformed to have an area proportional to a given quantity of
economic or social interest, with the aim of building a reliable and efficient numerical method
to produce them (see also [8] for extensive use of this method). More recently this algorithm
has been used to construct non-uniform coverage of a planar region by sensor networks
(Lekien and Leonard [12]). From a theoretical point of view, Carrillo and Lisini [6] have
used a nonlinear diffusion version of this algorithm to study the asymptotic behavior of the
solutions of some systems of nonlinear partial differential equations.

The algorithm is based on the idea that diffusion is a process that evenly distributes an
arbitrary initial density ρ, and that the diffusion equation

∂

∂t
u(t, x) = �u(t, x) (1.2)

can be written as an advection equation

∂

∂t
u(t, x) + ∇ · (u(t, x)V(t, x)) = 0 (1.3)

if one uses as a velocity field V = −∇u/u. Then, the map � of (1.1) is obtained by solving first
(1.2) with homogeneous Neumann boundary conditions and initial condition u(0, x) = ρ(x).
After this, one has to solve the initial value problem for the ordinary differential equation

x′(t) = −∇u(t, x(t))

u(t, x(t))
(1.4)

with x(0) = x0 ∈ �. And, finally, one defines �(x0) = limt→∞ x(t) (see [3]).
The main problem for this algorithm to be well defined turns out to be the uniqueness of the

solution of (1.4) near t = 0, and, as a consequence, continuity with respect to the initial state.
As it was shown in [3], when ρ ∈ Cα(�), for some α > 0, one can estimate || − ∇u/u||C1,β ,
for small β, rather than Lip(−∇u/u). More exactly, one can use the maximum principle and
the inequality

||∇u(t, ·)||C1,β ≤ C

t1−(α−β)/2
|| ρ(·)||Cα , (1.5)

for the solution of (1.2) (see Belonosov [5] and Mora [13]). Then, when 0 < β < α, Lip
(−∇u/u) is L1([0, T ]) and the situation is quite analogous to the weakly singular Volterra
operators that appear in the semigroup approach to semilinear parabolic equations (see Henry
[11]).

But, in the practical case of geographical cartograms, the class of admissible densities ρ

should include piecewise constant functions with discontinuities along curves and corners.
In this discontinuous case, since u(t, x) → ρ(x) as t → 0, the ratio ∇u(t, x)/u(t, x) will
have obvious singularities when t → 0. The study of these singularities is the goal of this
article.

From the viewpoint of asymptotic analysis, the previous considerations would lead to
define the new stretched variables x′ = (x − x0)/ε and t ′ = t/ε2, and to let ε → 0 when
x0 is a discontinuity point of ρ. The two equations (1.2) and (1.4) remain invariant by this
change of variables. This is a well-known fact for the diffusion equation, but it is also very
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easy to see for the ordinary differential equation (1.4). The effect of letting ε → 0 would
only mean that the initial density ρ is now defined in the whole plane and it is a function that
is constant on sectors.

So, the aim of this article is to study the singular initial value problem (1.4) when u(t, x)

is the solution of (1.2), the domain is all the plane and the initial data ρ is a positive piecewise
constant on sectors function. We concentrate on the most difficult part, namely uniqueness.
Some particular and simpler cases were studied in our previous publication [4]. The previous
calculations are the origin of this study in the sense that gave us confidence on the fact that
the effect of these singularities would not be to break the uniqueness of solutions.

2 Main Results

In this section we present three theorems. The first one is the main result of the article. The
other two, that are needed to prove the first, are also interesting by themselves.

Definition 1 We will say that a function ρ ∈ L∞(R2) is positive piecewise constant on sec-
tors if there are strictly positive constants C1, C2, . . . , Ck and angles θ1 < θ2 < · · · < θk+1 =
θ1 + 2π such that ρ(x) = Ci for all x with θi < arg(x) < θi+1 and for all i = 1, 2, . . . , k.

Theorem 1 Let ρ be a positive piecewise constant on sectors function and u(t, x) be the
solution to the linear heat equation in R

2 with initial condition ρ. Then, for all x0 ∈ R
2, the

initial value problem for the ordinary differential equation
⎧
⎨

⎩

x′(t) = −∇u (t, x(t))

u(t, x(t))
, t > 0,

lim
t→0+ x(t) = x0,

(2.1)

has at most one solution.

By using that the function ρ is a positive piecewise constant on sectors and the symmetry
properties of the heat equation, we will see that the differential equation in (2.1) has the
particular form

y′(t) = 1√
t

F
(

y(t)√
t

)

, (2.2)

where F is a bounded vector function independent of time. So, it is quite clear that the Lips-
chitz constant of the right hand can be like 1/t . For this reason, in the proof of Theorem 1,
we will need the following non-standard uniqueness theorem which is also interesting by
itself. This theorem is inspired in the one-sided generalization of Nagumo’s Criterion [14]
due to Hartman (see [10], exercise 6.8). For an extensive list of other uniqueness results for
ordinary differential equations and systems see also Agarwal and Lakshmikantham [1]

Theorem 2 Let G(t, y) be a continuous function in (0, T ) × R
n and let there be three

constants M > 0 and 0 < β < α < 1 such that:

|G(t, y)| ≤ M

t1−α
, (2.3)

(G(t, y1) − G(t, y2)) · (y1 − y2) ≤ β
|y1 − y2|2

t
, (2.4)
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for all t > 0 and y1, y2 ∈ R
n. Then, the initial value problem
{

y′(t) = G(t, y), t > 0,

lim
t→0+ y(t) = y0,

(2.5)

has at most one solution.

We will use this theorem only for α = 1/2. For this case, the inequality (2.4) of Theorem
2 for G(t, x) = −∇u(t, x(t))/u(t, x(t)), where u(t, x) is the solution of the heat equation
in the plane, follows from the next theorem

Theorem 3 Let ρ ∈ L∞(Rn) such that infRn ρ > 0, and let u(t, x) be the solution to the
linear heat equation in R

n with initial condition ρ.
Then, the following two properties hold:

a) If ξ ∈ R
n is a unit vector, then

(
Dξ

)2
(− ln u(t, x)) <

1

2t
(2.6)

for all t > 0 and all x ∈ R
n.

b) If n = 2 and ρ is a positive piecewise constant on sectors function, then there is a number
β with 0 < β < 1/2 such that the inequality (2.6) for t = 1 can be improved to

(
Dξ

)2
(− ln u(1, x)) ≤ β. (2.7)

3 Proof of Theorem 2

For a solution y(t) of (2.5) we have the integral representation

y(t) = y0 +
t∫

0

G(s, y(s)) ds, (3.1)

and, because of (2.3), it will satisfy

|y(t) − y0| ≤ M

α
tα (3.2)

for all t ∈ (0, T ). Suppose now we have two different solutions y1(t) and y2(t). Then, by
using (2.4), we would have, for t > 0,

(y2(t) − y1(t))2

t2α
= 2

t2α

t∫

0

(G(s, y2(s)) − G(s, y1(s))) · (y2(s) − y1(s)) ds (3.3)

≤ 2 β

t2 α

t∫

0

(y2(s) − y1(s))2

s
ds. (3.4)

Because of (3.2), the quantity

Q = sup
0<t≤T

(y2(t) − y1(t))2

t2 α
(3.5)
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is finite and, from the previous inequality, we get

Q ≤ sup
0<t≤T

2 β

t2 α

t∫

0

s2 α−1 Q ds = β

α
Q, (3.6)

which implies Q = 0 since β < α. 
�

Remark 1 We now present a counterexample of Theorem 2 with α = β = 1/2. Let G ∈
C1(R, R) be a bounded function such that G(x) = x/2 when −1 ≤ x ≤ 1 and G ′(x) ≤ 1/2
for all x . Let us consider the ordinary differential equation

x ′ = 1√
t

G

(
x√
t

)

. (3.7)

This equation satisfies the hypotheses of the Theorem 2 except β < α, but one can observe
that x(t) = C

√
t, −1 < C < 1, 0 ≤ t < ∞ is a family of forward solutions and all of

them have the same initial value x(0) = 0.

4 Proof of Theorem 3

Without loss of generality, let us take ξ as the unit vector in the direction of the x1 coordinate.
Since

− ln u(t, x) = − ln

⎛

⎝ e
−|x|2

4t

(4π t)n/2

∫

Rn

e
2x·y−|y|2

4t ρ(y) dy

⎞

⎠ (4.1)

= |x|2
4t

− ln

⎛

⎝
∫

Rn

e
2x·y−|y|2

4t ρ(y) dy

⎞

⎠ + ln (4π t)n/2, (4.2)

then

(− ln u(t, x))x1x1
= 1

2t
−

⎛

⎝ln
∫

Rn

e
2x·y−|y|2

4t ρ(y) dy

⎞

⎠

x1x1

. (4.3)

So, the inequality (2.6) is equivalent to prove that

⎛

⎝− ln
∫

Rn

e
2x·y−|y|2

4t ρ(y) dy

⎞

⎠

x1x1

= −

∫

Rn

y2
1

4t2 e
2x·y−|y|2

4t ρ(y) dy

∫

Rn

e
2x·y−|y|2

4t ρ(y) dy
+

⎛

⎝
∫

Rn

y1

2t
e

2x·y−|y|2
4t ρ(y) dy

⎞

⎠

2

⎛

⎝
∫

Rn

e
2x·y−|y|2

4t ρ(y) dy

⎞

⎠

2 < 0, (4.4)
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or, equivalently,

−
⎛

⎝
∫

Rn

y2
1

4t2 e
2x·y−|y|2

4t ρ(y) dy

⎞

⎠

⎛

⎝
∫

Rn

e
2x·y−|y|2

4t ρ(y) dy

⎞

⎠

+
⎛

⎝
∫

Rn

y1

2t
e

2x·y−|y|2
4t ρ(y) dy

⎞

⎠

2

< 0. (4.5)

And, for x fixed, this last inequality is the Cauchy-Schwarz inequality applied to the two
functions g1(y) = 1 and g2(y) = y1

2t with respect to the auxiliary scalar product

〈g1(y), g2(y)〉 =
∫

Rn

g1(y)g2(y)e
2x·y−|y|2

4t ρ(y) dy. (4.6)

The strict Cauchy-Schwarz inequality comes from the fact that 〈g1(y) + λg2(y), g1(y) +
λg2(y)〉 = 〈1 + λ

y1
2t , 1 + λ

y1
2t 〉 > 0 for all λ ∈ R. This finishes the proof of (2.6).

To see inequality (2.7), we start with the simplest case when the function ρ is piecewise
constant on two half planes. Suppose that the half planes are x1 < 0 and x1 > 0, where the
constant values are, respectively, C− and C+ (C−, C+ > 0). The function u(t, x1, x2) turns
out to be independent of x2,

u(t, x1, x2) = C+ + C−

2
+ C+ − C−

2
erf

(
x1

2
√

t

)

, (4.7)

where erf(x) = 2√
π

∫ x

0
e−s2

ds. So, taking t = 1, in order to obtain inequality (2.7) we

only have to care about the x1 direction because all derivatives in the x2 direction are zero.
More exactly, we have to deal with the function of a single variable

h(x1) = − ln

(
C+ + C−

2
+ C+ − C−

2
erf

( x1

2

))

. (4.8)

Since we already know inequality (2.6), we have that h′′(x1) < 1/2 for all x1 ∈ R. Then, to
conclude that h′′(x1) ≤ β for some β < 1/2 it is enough to observe that from the properties
of the erf function it follows that lim

x1→±∞ h′′(x1) = 0.

Now we proceed with the general case of a positive piecewise constant on sectors function
ρ. From (2.6), with t = 1, we deduce that at every point the Hessian matrix of − ln u(1, x1, x2)

, as a quadratic form, is strictly less than the quadratic form given by the matrix 1
2 I . So, like

in the case studied before, we have to prove strict inequality only near infinity.
For this goal, first at all, let us cover the plane with a finite number of small sectors of the

form (αi ) = {αi − ε ≤ arg(x1, x2) ≤ αi + ε}. For each of these sectors, we consider also
a second sector ′(αi ) = {αi − ε′ ≤ arg(x1, x2) ≤ αi + ε′}. The numbers ε′ > ε > 0 are
chosen in such a way that sin ε′ = 2 sin ε, and with the property that in the set ′(αi ) there
is at most one discontinuity line of ρ.

Now, for each point x0 with R = ||x0|| > 0 and arg(x0) = αi , let us consider the discs B
and B ′ centered at x0 and with radii R sin ε and R sin ε′, respectively. Observe that B ⊂ (αi )

and that B ′ ⊂ ′(αi ).
With all these conditions, the initial function ρ coincides in B ′ with an auxiliary function

ρ̃ that is either constant or piecewise constant on two half planes. Then, if uρ̃ (1, x1, x2) is
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the solution of the heat equation with initial condition ρ̃, we have already proven that the
inequality we are looking for holds for the Hessian matrix of − ln(uρ̃ ).

Finally, the following lemma tells us that since ρ and ρ̃ coincide in B ′, the C2(B) norms
of uρ and uρ̃ are as close as we like if R is sufficiently large. This implies that the inequality
is also true for the Hessian matrix of − ln u on the sectors ′(αi ), at least sufficiently far
from the origin, and since there are only finitely many of these sectors, this finishes the proof
of the Theorem 3. 
�

Lemma 1 Let ρ and ρ̃ be two functions with ||ρ||L∞(R2), ||ρ̃||L∞(R2) ≤ M and suppose that
ρ(x) = ρ̃(x) for all x in a closed ball of radius R > 0 centered at x0, BR(x0). Let uρ(t, x)

and uρ̃ (t, x) be the solutions of the linear heat equation in all the plane with initial condition
ρ and ρ̃, respectively. Then, there exists a constant K , depending only on M, such that for
t = 1,

||uρ(1, ·) − uρ̃ (1, ·)||C2(BR/2(x0)) ≤ K e−R2/64. (4.9)

Proof There is no loss of generality in supposing that x0 = 0 and ρ̃ ≡ 0. It is a simple
calculation to see that

∂2uρ(1, x1, x2)

∂x2
1

= 1

4π

∫

R2\BR(0)

(
(x1 − y1)

2

4
− 1

2

)

e− |x−y|2
4 ρ(y) dy. (4.10)

Then, if x ∈ BR/2(0) and y ∈ R
2 \ BR(0),

∣
∣
∣
∣

(
(x1 − y1)

2

4
− 1

2

)

e− 1x−y|2
4 ρ(y)

∣
∣
∣
∣ ≤ M

( |x − y|2
4

+ 1

2

)

e− |x−y|2
16 e

−R2
64 e− 3|x−y|2

16 . (4.11)

and, since max
z>0

{
(z + 1/2) e−z/4} = 4e−7/8 and

∫

R2
e− 3|x−y|2

16 dy = 16π/3, it follows that

∂2uρ(1, x1, x2)

∂x2
1

≤ K ′e−R2/64, (4.12)

for some constant K ′ that depends only on M . The estimates for the other second derivatives,
for the first derivatives and for the function uρ(1, x1, x2) itself are similar. 
�

Remark 2 In order to show that the inequality (2.7) with β < 1/2 is sharp, we present here
four plots. They correspond to the second derivative of the function h(x1) defined in (4.8)
for C− = C − 1, C+ = C + 1 and four different values of C . These plots show also that this
is really a one-sided inequality, in the sense that |h′′(x1)| < 1/2 cannot be expected to hold
in general.
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5 Proof of Theorem 1

It is known that the solution u(t, x) of the linear heat equation with initial condition ρ ∈
L∞(R2) and infRn ρ > 0 satisfies the inequality

|∇(ln u(t, x))| ≤ K√
t
. (5.1)

More exactly, if ρ is a positive piecewise constant on sectors function in the plane, it
follows that the constant K is

K = max (C1, C2, · · · , Ck)

2π min (C1, C2, · · · , Ck)
. (5.2)

Then, this upper bound (5.1) proves the validity of the first bound (2.3) of Theorem 2 with
α = 1/2.

On the other hand, if ρ is a positive piecewise constant on sectors function in the plane, it is
easy to check that if u(t, x) is the solution of the linear heat equation with initial data ρ then,
for all λ ∈ R, u(λ2t, λx) is also a solution of the same initial value problem. In particular,
taking λ = 1/

√
t , then u(1, x/

√
t) is also a solution and, therefore, the initial value problem

(2.1) can be written as
⎧
⎪⎨

⎪⎩

x′(t) = −1√
t
∇ũ

(
x(t)√

t

)

, t > 0,

lim
t→0+ x(t) = x0,

(5.3)

where ũ(x) = ln u(1, x). Then, the second bound of Theorem 2 and, therefore, the proof of
Theorem 1, are obtained from the estimate (2.7) of Theorem 3. 
�
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