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Abstract We develop a framework for treating the long-term behavior of solutions for
parabolic equations in multidimensional domains with discontinuous hysteresis. Bearing in
mind the thermostat model, we concentrate in this paper on the prototype heat equation with
hysteresis in the boundary condition. We provide an algorithm for constructing all periodic
solutions with exactly two switchings on the period and study their stability. Coexistence
of several periodic solutions with different stability properties is proved to be possible. A
mechanism of appearance and disappearance of periodic solutions is investigated.
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1 Introduction

Hysteresis operators arise in mathematical description of various physical processes [4,19,
26]. Models with hysteresis for ordinary differential equations were considered by many
authors (see e.g., [1,2,6,19,22,24,25]). Partial differential equations with hysteresis have
also been actively studied during the last decades (see [4,26] and the references therein). The
primary focus has been on the well-posedness of the corresponding problems and related
issues (existence of solutions, uniqueness, regularity, etc.). However, many questions remain
open, especially those related to the periodicity and long-time behavior of solutions.

In this paper, we deal with parabolic problems containing a discontinuous hysteresis oper-
ator in the boundary condition. Such problems describe processes of thermal control arising
in chemical reactors and climate control systems. The temperature regulation in a domain is
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Fig. 1 The hysteresis operator H

performed via heating (or cooling) elements on the boundary of the domain. The regime of
the heating elements on the boundary is based on the registration of thermal sensors inside
the domain and obeys a hysteresis law.

Let v(x, t) denote the temperature at the point x of a bounded domain Q ⊂ R
n at the

moment t . We define the mean temperature v̂(t) by the formula

v̂(t) =
∫

Q
m(x)v(x, t) dx,

where m is a given function from the Sobolev space H1(Q) (see Condition 2.1 for another
technical assumption on m(x)).

In our prototype model, we assume that the function v(x, t) satisfies the heat equation

vt (x, t) = �v(x, t) (x ∈ Q, t > 0) (1.1)

and a boundary condition which involves a hysteresis operator H depending on the mean
temperature v̂.

The hysteresis H(v̂)(t) is defined as follows (cf. [19,26] and the accurate definition and
Fig. 1 in Sect. 2). One fixes two temperature thresholds α and β (α < β). If v̂(t) ≤ α, then
H(v̂)(t) = 1 (the heating is switched on); if v̂(t) ≥ β, then H(v̂)(t) = −1 (the cooling is
switched on); if the mean temperature v̂(t) is between α and β, then H(v̂)(t) takes the same
value as “just before.” We say that the hysteresis operator switches when it jumps from 1
to −1 or from −1 to 1. The corresponding time moment is called the switching moment.
Note that the hysteresis phenomenon takes place along with the nonlocal effect caused by
averaging of the function v(x, t) over Q.

To be definite, let us assume that one regulates the heat flux through the boundary ∂Q.
Then the boundary condition is of the form

∂v

∂ν
= K (x)H(v̂)(t) (x ∈ ∂Q, t > 0), (1.2)

where ν is the outward normal to ∂Q at the point x, K is a given smooth real-valued function
(distribution of the heating elements on the boundary).

A similar mathematical model was originally proposed in [9,10]. Generalizations to var-
ious phase-transition problems with hysteresis were studied in [4,5,7,15,20]. Some related
issues of optimal control were considered in [3]. The most important questions here concern
the existence and uniqueness of solutions, the existence of periodic solutions, and long-time
behavior of solutions. The latter two questions are especially difficult.

In the case of a one-dimensional domain Q (a finite interval, n = 1), the periodicity was
studied in [8,11,18,23]. Problems with hysteresis on the boundary of a multidimensional
domain (n ≥ 2) turn out to be much more complicated. Although one can relatively easily
prove the existence (and sometimes uniqueness) of solutions, the issue of finding periodic
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solutions is still an open question. The main difficulty here is related to the fact that, in
general, the solution does not depend on the initial data continuously. The reason is that the
solution may intersect the “switching” hyperplane {ϕ̂ = α} or {ϕ̂ = β} nontransversally
(cf. [2,25], where the same phenomenon occurs for ordinary differential equations). This
leads to discontinuity of the corresponding Poincaré map. As a result, most methods based
on fixed-point theorems do not apply to the Poincaré map.

One possible way to overcome the nontransversality is to consider a continuous model
of the hysteresis operator. This was done in [12], where a thermocontrol problem with the
Preisach hysteresis operator in the boundary condition was considered and the existence of
periodic solutions and global attractors were established. Note that the periodicity and the
long-time behavior of solutions were also studied in [17,28] in the situation where a hysteresis
operator enters a parabolic equation itself (see also [27] and the references therein).

The first results about periodic solutions of thermocontrol problems in multidimensional
domains with discontinuous hysteresis were obtained in [13]. In [14], a new approach was
proposed. It is based on regarding the problem as an infinite-dimensional dynamical system.
By using the Fourier method, one can reduce the boundary-value problem for the parabolic
equation to infinitely many ordinary differential equations, whose solutions are coupled with
each other via the hysteresis operator.

In [14], the existence of a unique periodic solution of the thermocontrol problem is proved
for sufficiently large β−α. This periodic solution possesses certain symmetry, is stable, and
is a global attractor. A similar result was established for arbitrary α and β, but m(x) being
close to a constant. The idea was to find an invariant region for the corresponding Poincaré
map and prove that the Poincaré map is continuous on that region. This turns out to be true
for sufficiently large β − α. However, one can construct examples with small β − α, where
an invariant region exists and even is an attracting set, but the Poincaré map is not continuous
on it.

In the present paper, we will show that the requirement for β − α to be large enough is
essential. We will prove that if β − α is small, then unstable periodic solutions may appear.
In particular, they may have a saddle structure. To construct those solutions, we will develop
a general procedure which yields all periodic solutions (with two switchings on the period)
in an explicit form. This procedure works even in the presence of discontinuity caused by
the above nontransversality. In particular, it allows one to find periodic solutions on which
the Poincaré map is discontinuous.

To study stability of periodic solutions (in particular, to find unstable ones), we propose
a method which allows one to reduce the original system to an invariant subsystem. The
dimension of this subsystem is equal to the number of nonvanishing modes in the Fourier
decomposition of the m(x). If m(x) has finitely many nonvanishing modes, then one can
explicitly write down the linearization of the reduced system and find all the eigenvalues.
They provide complete information about the stability of the periodic solution.

The invariant subsystem corresponding to the nonvanishing modes of m(x) is called guid-
ing. The remaining subsystem is called guided. We prove that the full system (i.e., the original
problem) has a periodic solution whenever the guiding system has one. Moreover, the peri-
odic solution of the full system is a global attractor (is stable, uniformly exponentially stable)
whenever the periodic solution of the guiding system possesses those properties. We call these
results conditional existence of periodic solutions, conditional attractivity, and conditional
stability, respectively. The above “guiding-guided” decomposition is a result of independent
interest. It generalizes the results of [13], where m(x) ≡ const (in our terminology, this
corresponds to m(x) which has only one nonvanishing mode).
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The paper is organized as follows. In Sect. 2, we define the hysteresis operator, formulate
the problem, introduce a notion of solution, recall some properties of the solutions, and reduce
the problem to an infinite-dimensional dynamical system. In the end of Sect. 2, we define the
guiding and the guided subsystems and introduce the corresponding decomposition of the
phase space (the Sobolev space H1(Q)). Most results of this section are proved in [14].

In Sect. 3, we give a notion of periodic solution with two switchings on the period. By
using the Poincaré maps of the guiding system and the full system, we prove conditional
existence of periodic solutions, conditional attractivity, and conditional stability. The latter
two results are proved under assumption that the periodic solution of the guiding system
intersects the hyperplanes {ϕ̂ = α} and {ϕ̂ = β} at the switching moments transversally. The
transversality implies the continuity (and even the Fréchet differentiability) of the Poincaré
maps in a neighborhood of the periodic solution. However, we require neither that this neigh-
borhood be invariant under the Poincaré map, nor that the Poincaré map be continuous in a
(bigger) invariant neighborhood (which exists due to [14]).

In Sect. 4, we show that any periodic solution with two switchings on the period possesses
a symmetry in the phase space. By using this symmetry, we develop an algorithm which
allows us

1. to construct all periodic solutions (with two switchings on the period) in an explicit form
for any given α and β;

2. to find a sufficient condition under which periodic solutions exist for all sufficiently small
β − α.

3. to define bifurcation points where periodic solutions may appear or disappear; a role of
a bifurcation parameter is played either by the period or by the difference β − α;

Furthermore, using the results about the guiding-guided decomposition from Sect. 3, we
construct examples in which periodic solutions are stable or unstable, respectively. In the
“unstable” case, we show that they may have a saddle structure.

As a conclusion, we note that the developed method can also be applied to the study of
the Dirichlet or Robin boundary conditions. Moreover, one can study the problem where the
heat flux through the boundary (in the case of the Neumann boundary condition) changes
continuously. Mathematically, this means that the boundary condition (1.2) is replaced by

∂v

∂ν
= K (x)u(t) (x ∈ ∂Q, t > 0),

au′(t)+ u(t) = H(v̂)(t)
with a > 0 (cf. [9,10,13,23]).

2 Setting of the Problem: Reduction to Infinite Dynamical System

2.1 Setting of the Problem

Let Q ⊂ R
n (n ≥ 1) be a bounded domain with smooth boundary. Let L2 = L2(Q). Denote

by H1 = H1(Q) the Sobolev space with the norm

‖ψ‖H1 =
(∫

Q
(|ψ(x)|2 + |∇ψ(x)|2) dx

)1/2

.

Let H1/2 = H1/2(∂Q) be the space of traces on ∂Q of the functions from H1.
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Consider the sets QT = Q × (0, T ) and 	T = ∂Q × (0, T ), T > 0. Fix functions
K ∈ H1/2 and m ∈ H1 and real numbers α and β, β > α.

For any function ϕ(x) or v(x, t) (x ∈ Q, t ≥ 0), the symbol ˆ will refer to the “average”
of the function:

ϕ̂ =
∫

Q
m(x)ϕ(x) dx, v̂(t) =

∫
Q

m(x)v(x, t) dx .

Let v(x, t) denote the temperature at the point x ∈ Q at the moment t ≥ 0 satisfying the
heat equation

vt (x, t) = �v(x, t) ((x, t) ∈ QT ) (2.1)

with the initial condition

v|t=0 = ϕ(x) (x ∈ Q) (2.2)

and the boundary condition

∂v

∂ν

∣∣∣
	T

= K (x)H(v̂)(t) ((x, t) ∈ 	T ). (2.3)

Here ν is the outward normal to 	T at the point (x, t) and H is a hysteresis operator, which
we now define.

We denote by BV (0, T ) the Banach space of real-valued functions having finite total
variation on the segment [0, T ] and by Cr [0, T ) the linear space of functions which are
continuous on the right in [0, T ). We introduce the hysteresis operator (cf. [19,26])

H : C[0, T ] → BV (0, T ) ∩ Cr [0, T )

by the following rule. For any g ∈ C[0, T ], the function h = H(g) : [0, T ] → {−1, 1} is
defined as follows. Let Xt = {t ′ ∈ (0, t] : g(t ′) = α or β}; then

h(0) =
{

1 if g(0) < β,

−1 if g(0) ≥ β

and for t ∈ (0, T ]

h(t) =

⎧⎪⎨
⎪⎩

h(0) if Xt = ∅,

1 if Xt �= ∅ and g(max Xt ) = α,

−1 if Xt �= ∅ and g(max Xt ) = β

(see Fig. 1). A point τ such that H(g)(τ ) �= H(g)(τ − 0) is called a switching moment of
H(g).

We assume throughout that the following condition holds.

Condition 2.1 The coefficient K (x) in the boundary condition (2.3) and the weight function
m(x) satisfy ∫

∂Q
K (x) d	 > 0,

∫
Q

m(x) dx > 0. (2.4)

Remark 2.1 From the physical viewpoint, the function K (x) characterizes the density of
the heating (or cooling) elements on the boundary and m(x) characterizes the density of
thermal sensors in the domain. Clearly, inequalities (2.4) hold in the physically relevant case
K (x) ≥ 0 for a.e. x ∈ ∂Q, K (x) �≡ 0, and m(x) ≥ 0 for a.e. x ∈ Q,m(x) �≡ 0.
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2.2 Functional Spaces and the Solvability of the Problem

For any Banach space B, denote by C([a, b]; B) (a < b) the space of B-valued functions
continuous on the segment [a, b] with the norm

‖u‖C([a,b];B) = max
t∈[a,b] ‖u(t)‖B

and by L2((a, b); B) the space of L2-integrable B-valued functions with the norm

‖u‖L2((a,b);B) =
(∫ b

a
‖u(t)‖B dt

)1/2

.

We introduce the anisotropic Sobolev space H2,1(Q × (a, b)) = {v ∈ L2((a, b); H2) :
vt ∈ L2((a, b); L2)} with the norm

‖v‖H2,1(Q×(a,b)) =
(∫ b

a
‖v(·, t)‖2

H2 dt +
∫ b

a
‖vt (·, t)‖2

L2
dt

)1/2

.

Taking into account the results of the interpolation theory (see, e.g., [21, Chap. 1, Sects. 1–
3, 9], we make the following remarks.

Remark 2.2 The continuous embedding H2,1(Q ×(a, b)) ⊂ C([a, b], H1) takes place. Fur-
thermore, for any v ∈ H2,1(Q × (a, b)) and τ ∈ [a, b], the trace v|t=τ ∈ H1 is well defined
and is a bounded operator from H2,1(Q × (a, b)) to H1.

Remark 2.3 Consider two functions v1 ∈ H2,1(Q × (a, b)) and v2 ∈ H2,1(Q × (b, c)),
where a < b < c. Let v(·, t) = v1(·, t) for t ∈ (a, b) and v(·, t) = v2(·, t) for t ∈ (b, c).
Then v ∈ H2,1(Q × (a, c)) if and only if v1|t=b = v2|t=b.

Definition 2.1 A function v(x, t) is called a solution of problem (2.1)–(2.3) in QT with the
initial data ϕ ∈ H1 if v ∈ H2,1(QT ) and v satisfies Eq. 2.1 a.e. in QT and conditions (2.2),
(2.3) in the sense of traces.

Definition 2.2 We say that v(x, t) (t ≥ 0) is a solution of problem (2.1)–(2.3) in Q∞ if it is
a solution in QT for all T > 0.

The following result about the solvability of problem (2.1)–(2.3) is proved in [14, Theorem
2.2].

Theorem 2.1 Let ϕ ∈ H1 and ‖ϕ‖H1 ≤ R (R > 0 is arbitrary). Then there exists a unique
solution v of problem (2.1)–(2.3) in Q∞ and the following holds for any T > 0.

1. One has

‖v(·, t)‖H1 ≤ c0‖v‖H2,1(QT )
≤ c1(‖ϕ‖H1 + ‖K‖H1/2), (2.5)

where c0 = c0(T ) > 0 and c1 = c1(T ) > 0 do not depend on ϕ and R;
2. The interval (0, T ] contains no more than finitely many switching moments t1 < t2 <
. . . < tJ of H(v̂). Moreover,

ti − ti−1 ≤ t∗ + 2(β − α)

m0 K0
, i = 1, 2, . . . , (2.6)

where t∗ depends on m and R but does not depend on ϕ, T, α, β;

ti − ti−1 ≥ τ ∗, i =
{

1, 2, . . . , J if ϕ̂ ≤ α or ϕ̂ ≥ β,

2, 3, . . . , J if α < ϕ̂ < β,
(2.7)
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where

τ ∗ = const
(β − α)2

‖m‖2
L2

(2.8)

with const > 0 depending on R rather than on m, ϕ, T, α, β; in (2.6) and (2.8), t0 = 0.

2.3 Reduction to Infinite-Dimensional Dynamical System

Due to Theorem 2.1, the study of the solutions of problem (2.1)–(2.3) with hysteresis can be
reduced to the study of the solutions of parabolic problems without hysteresis by considering
the time intervals between the switching moments ti .

Thus, if H(v̂)(t) ≡ 1, then problem (2.1)–(2.3) takes the form

vt (x, t) = �v(x, t) ((x, t) ∈ QT ), (2.9)

v(x, 0) = ϕ(x) (x ∈ Q), (2.10)
∂v

∂ν

∣∣∣
	T

= K (x) ((x, t) ∈ 	T ). (2.11)

If H(v̂)(t) ≡ −1, one should replace K (x) by −K (x) in (2.11).

Definition 2.3 A function v(x, t) is called a solution of problem (2.9)– (2.11) in QT if
v ∈ H2,1(QT ) and v satisfies Eq. 2.9 a.e. in QT and conditions (2.10), (2.11) in the sense of
traces.

It is well known that there is a unique solution v ∈ H2,1(QT ) of problem (2.9)–(2.11).
Now we give a convenient representation of solutions of problem (2.9)–(2.11) in terms of

the Fourier series with respect to the eigenfunctions of the Laplacian.
Let {λ j }∞j=0 and {e j (x)}∞j=0 denote the sequence of eigenvalues and the corresponding

system of real-valued eigenfunctions (infinitely differentiable in Q) of the spectral problem

−�e j (x) = λ j e j (x) (x ∈ Q),
∂e j

∂ν

∣∣∣
∂Q

= 0. (2.12)

It is well known that 0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λ j ≤ . . . , e0(x) ≡ (mes Q)−1/2 > 0,
and the system of eigenfunctions {e j }∞j=0 can be chosen to form an orthonormal basis for

L2. Then, the functions e j/
√
λ j + 1 form an orthonormal basis for H1.

Remark 2.4 In what follows, we will use the well-known asymptotics for the eigenvalues
λ j = L j2/n + o( j2/n) as j → +∞ (L > 0 and n is the dimension of Q).

Any functionψ ∈ L2 can be expanded into the Fourier series with respect to e j (x), which
converges in L2:

ψ(x) =
∞∑
j=0

ψ j e j (x), ‖ψ‖2
L2

=
∞∑
j=0

|ψ j |2, (2.13)

where ψ j = ∫
Q ψ(x)e j (x) dx . If ψ ∈ H1, then the first series in (2.13) converges to ψ in

H1 and

‖ψ‖2
H1 =

∞∑
j=0

(1 + λ j )|ψ j |2. (2.14)
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Denote

m j =
∫

Q
m(x)e j (x) dx, K j =

∫
∂Q

K (x)e j (x) dx ( j = 0, 1, 2, . . . ). (2.15)

Note that m0, K0 > 0 due to Condition 2.1. We also note that K j are not the Fourier coeffi-
cients of K (x). However, the following is proved in [14]:

∞∑
j=1

(
|K j |2
λ2

j

+ |K j |2
λ j

)
≤ c‖K‖2

H1/2 , (2.16)

where c > 0 does not depend on K .

Remark 2.5 Using (2.14) and (2.16), we obtain the estimate

∞∑
j=1

|m j K j | ≤ c‖m‖H1‖K‖H1/2 ,

which will often be used later on.

The numbers m j and K j play an essential role when one describes the thermocontrol
problem in terms of an infinite-dimensional dynamical system. The following result is true
(see [14, Lemma 2.2]).

Theorem 2.2 Let ϕ ∈ H1. Then the following assertions hold.

1. The solution v of problem (2.9)–(2.11) can be represented as the series

v(x, t) =
∞∑
j=0

v j (t)e j (x), t ≥ 0, (2.17)

where v j (t) = ∫
Q v(x, t)e j (x) dx and v j (t) satisfy the Cauchy problem

v̇ j (t) = −λ jv j (t)+ K j , v j (0) = ϕ j (˙ = d/dt, j = 0, 1, 2 . . . ). (2.18)

The series in (2.17) converges in H1 for all t ≥ 0.
2. The mean temperature v̂(t) is represented by the absolutely convergent series

v̂(t) =
∞∑
j=0

m jv j (t), t ≥ 0, (2.19)

which is continuously differentiable for t > 0.

Remark 2.6 In what follows, we will also use the explicit formulas for the solutions of
Eq. 2.18

v0(t) = ϕ0 + K0t, v j (t) =
(
ϕ j − K j

λ j

)
e−λ j t + K j

λ j
, j = 1, 2, . . . .

Formally, relations (2.18) can be obtained by multiplying (2.9) by e j (x), integrating by

parts over Q, and substituting v(x, t) =
∞∑
j=0

v j (t)e j (x). The rigorous proof is given in [14].
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Fig. 2 The plane spanned by
e0 = (1, 0, 0, . . . ) and
m = (m0,m1,m2, . . . )

Fig. 3 The plane spanned by ei
and e j , i �= j, i, j ≥ 1

A geometrical interpretation of the dynamics of v0(t), v1(t), . . . is as follows. We choose
the orthonormal basis in L2 (which is orthogonal in H1) consisting of the eigenfunctions
e0, e1, e2, . . .. Then, in the coordinate form, we have

e0 = (1, 0, 0, 0, . . . ), e1 = (0, 1, 0, 0, . . . ), e2 = (0, 0, 1, 0, . . . ), . . .

and (cf. (2.17))

ϕ = (ϕ0, ϕ1, ϕ2, . . . ), v(·, t) = (v0(t), v1(t), v2(t), . . . ).

Consider the plane going through the origin and spanned by the vector e0 = (1, 0, 0, . . . )
and the vector m = (m0,m1,m2, . . . ) (if they are parallel, i.e., m1 = m2 = · · · = 0, then
we consider an arbitrary plane containing e0). We note that the angle between the vectors m
and e0 is acute (their scalar product is equal to m0 > 0). Clearly, the orthogonal projection

of the hyperspace ϕ̂ =
∞∑
j=0

m jϕ j = α (or β) on this plane is a line (see Fig. 2).

Due to (2.18), v0(t) “goes” from the left to the right with the constant speed K0 > 0,
while v j (t) exponentially converge to K j/λ j (see Fig. 3).

Due to Theorem 2.2, the original problem (2.1)–(2.3) can be written as follows:

v̇0(t) = H(v̂)(t)K0, v0(0) = ϕ0,

v̇ j (t) = −λ jv j (t)+ H(v̂)(t)K j , v j (0) = ϕ j ( j = 1, 2 . . . ). (2.20)

Equations (2.20) define an infinite-dimensional dynamical system for the functions v j (t).
These functions are “coupled” via formula (2.19) for the mean temperature, which is the
argument of the hysteresis operator H.

2.4 Invariant Subsystem and “Guiding-Guided” Decomposition

In this subsection, we show that if some coefficients m j vanish, then the system (2.20) has
an invariant subsystem.

123



932 J Dyn Diff Equat (2011) 23:923–960

We introduce the sets of indices

J = { j ∈ N : m j �= 0}, J0 = { j ∈ N : m j = 0}.
Clearly, {0} ∪ J ∪ J0 = {0, 1, 2, . . . }.

Note that, for any solution v(x, t) of problem (2.1)–(2.3), we have (cf. (2.19))

v̂(t) =
∑

j∈{0}∪J

m jv j (t), t ≥ 0.

Therefore, the dynamics of v j (t), j ∈ {0}∪J, does not depend on the functions v j (t), j ∈ J0,
and is described by the invariant dynamical system

v̇0(t) = H(v̂)(t)K0, v0(0) = ϕ0,

v̇ j (t) = −λ jv j (t)+ H(v̂)(t)K j , v j (0) = ϕ j ( j ∈ J). (2.21)

The dynamics of v j (t), j ∈ J0, is described by the system

v̇ j (t) = −λ jv j (t)+ H(v̂)(t)K j , v j (0) = ϕ j ( j ∈ J0), (2.22)

where the hysteresis operator H depends only on the functions v j (t) from the system (2.21).

Definition 2.4 We say that the system (2.21) is guiding, while the system (2.22) is guided
(by (2.21)).

In what follows, we will use the following notation. For any number ϕ0 and (possibly,
infinite-dimensional) vectors {ϕ j } j∈J and {ϕ j } j∈J0 (ϕ j ∈ R), we denote

ϕ = {ϕ j } j∈J, ϕ̃ = {ϕ j } j∈{0}∪J, ϕ0 = {ϕ j } j∈J0 .

Thus, e.g., ṽ(t) and v0(t) will represent the solutions of the guiding system (2.21) and the
guided system (2.22), respectively.

The above decomposition of the system (2.20) implies the corresponding decomposition
of the phase space H1:

H1 = R × V × V0 = Ṽ × V0, (2.23)

where the norms in V, Ṽ , and V0 are given by

‖ϕ‖V =
⎛
⎝∑

j∈J

(1 + λ j )|ϕ j |2
⎞
⎠

1/2

, ‖ϕ̃‖Ṽ =
⎛
⎝ ∑

j∈{0}∪J

(1 + λ j )|ϕ j |2
⎞
⎠

1/2

,

‖ϕ0‖V0 =
⎛
⎝∑

j∈J0

(1 + λ j )|ϕ j |2
⎞
⎠

1/2

. (2.24)

Further we show that Definition 2.4 is quite natural. In particular, we prove that if z̃(t) is
a periodic solution of the guiding system (2.21), then there exists a periodic solution of the
full system (2.20) of the form (z̃(t), z0(t)). Moreover, the latter is stable if and only if z̃(t) is
a stable periodic solution of the guiding system (2.21).

As an application of this result, assuming that the set J is finite, we will construct a peri-
odic solution z(x, t) with small period such that z̃(t) is an unstable periodic solution of the
guiding system (2.21). Clearly, z(x, t) will be unstable in this case, too.
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3 Periodic Solutions

3.1 Conditional Existence of Periodic Solution

We begin with a definition of periodic solutions (with two switchings on the period) of
problem (2.1), (2.3). Recall that the symbol ˆ refers to the “average” of the function (see
Sect. 2.1).

Definition 3.1 A function z(x, t) is called an (s, σ )-periodic solution (with period T = s+σ )
of problem (2.1), (2.3) if there is a function ψ ∈ H1 such that the following holds:

1. ψ̂ = α,
2. z(x, t) is a solution of problem (2.1)–(2.3) (in Q∞) with the initial data ψ ,
3. there are exactly two switching moments s and T of H(ẑ) on the interval (0, T ] (such

that ẑ(s) = β and ẑ(T ) = α),
4. z(x, T ) = z(x, 0) (= ψ(x)).

Definition 3.2 If z(x, t) is an (s, σ )-periodic solution of problem (2.1), (2.3) and T = s +σ ,
then the sets

	 = {z(·, t), t ∈ [0, T ]}, 	̃ = {z̃(t) : t ∈ [0, T ]}, 	0 = {z0(t) : t ∈ [0, T ]}.
are called the trajectories of z(x, t), z̃(t), and z0(t), respectively.

We also consider two parts of the trajectory corresponding to the hysteresis value H(ẑ) = 1
and −1:

	1 = {z(·, t), t ∈ [0, s]}, 	2 = {z(·, t), t ∈ [s, T ]}.
Similarly, one introduces the sets 	̃ j and 	0 j , j = 1, 2.

Remark 3.1 It follows from the definition of the hysteresis operator H and from Defini-
tion 3.1 that if z(x, t) is an (s, σ )-periodic solution with period T = s + σ of problem (2.1),
(2.3), then

H(ẑ)(t) = 1, t ∈ [0, s); H(ẑ)(t) = −1, t ∈ [s, T ).

Further in this section, we establish the connection between periodic solutions of the
guiding system (2.21) and those of the full system (2.20). The definitions of (s, σ )-peri-
odic solutions for the guiding system (2.21) and for the full system (2.20) are analogous to
Definition 3.1.

The following theorem generalizes Theorem 4.4 in [13], where m0 �= 0 and m1 = m2 =
· · · = 0 (i.e., J = ∅ and J0 = N).

Theorem 3.1 Let z̃(t) be an (s, σ )-periodic solution of the guiding system (2.21). Then there
exists a unique function z0(t) such that (z̃(t), z0(t)) is an (s, σ )-periodic solution of the full
system (2.20) (which generates an (s, σ )-periodic solution z(x, t) of problem (2.1), (2.3)).

Proof We recall that the spaces Ṽ and V0 form the decomposition of H1 (cf. (2.23)).
We introduce a nonlinear operator MT : V0 → V0 as follows. For any ϕ0 ∈ V0, we

consider the element (z̃(0),ϕ0) ∈ H1. By Theorem 2.1 and the invariance of the guiding
system (2.21), there is a unique solution of the full system (2.20), which is of the form
(z̃(t), v0(t)) ∈ H1. Clearly, v0(t) is a solution of the guided system (2.22). We set

MT (ϕ0) = v0(T ), T = s + σ.
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Fig. 4 The operators Pα and P = PβPα on the planes (e0,m) and (ei , e j ), i �= j

We claim that MT is a contraction map. Indeed, let ϕ1
0,ϕ

2
0 ∈ V0 and let v1

0(t) and v2
0(t)

be the corresponding solutions of the guided system (2.22). Since the mean temperature
is defined via z̃(t) and does not depend on v1

0(t) and v2
0(t), it follows that the difference

w0(t) = v1
0(t)− v2

0(t) satisfies the equations

ẇ j (t) = −λ jw j (t), w j (0) = ϕ1
j − ϕ2

j ( j ∈ J0).

Therefore,

‖MT (ϕ
1
0)− MT (ϕ

2
0)‖2

V0
= ‖w0(T )‖2

V0
=

∑
j∈J0

(1 + λ j )e
−2λ j T

|ϕ1
j − ϕ2

j |2 ≤ e−2T ‖ϕ1
0 − ϕ2

0‖2
V0
,

where  = min
j∈J0

λ j > 0.

Thus, MT has a unique fixed point ψ0 ∈ V0, which yields the desired (s, σ )-periodic
solution (z̃(t), z0(t)) of the full system (2.20). ��

Further, we will study the connection between the stability and attractivity of solutions of
the guiding system and the guided and full systems. To do so, we need to define the Poincaré
maps of the respective systems.

3.2 The Poincaré Maps

In this subsection, we introduce the Poincaré maps for the full system (2.20) and for the
guiding system (2.22). It is proved in [14] that the stability of a periodic solution of the
full system follows from the stability of the corresponding fixed point of the Poincaré map.
Therefore, we will concentrate on the properties of the Poincaré map.

We consider nonlinear operators (see Fig. 4)

Pα : {ϕ ∈ H1 : ϕ̂ < β} → {ϕ ∈ H1 : ϕ̂ = β},
Pβ : {ϕ ∈ H1 : ϕ̂ > α} → {ϕ ∈ H1 : ϕ̂ = α}

defined as follows.
Let ϕ ∈ H1, ϕ̂ < β, and let v(x, t) be the corresponding solution of problem (2.1)–

(2.3) in (Q∞). Due to Theorem 2.1, there exists the first switching moment t1 such that
v̂(t1) = β and there are no other switchings on the interval (0, t1). In other words, the func-
tion vα(x, t) := v(x, t) is a solution of the initial boundary-value problem on the interval
(0, t1):
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vαt (x, t) = �vα(x, t) ((x, t) ∈ Qt1), (3.1)

vα(x, 0) = ϕ(x) (x ∈ Q), (3.2)
∂vα

∂ν
= K (x) ((x, t) ∈ 	t1). (3.3)

We set Pα(ϕ) = vα(·, t1).
The operator Pβ is defined in a similar way. Let ϕ ∈ H1 and ϕ̂ > α. As before, there is a

moment τ2 > 0 and a function vβ(x, t) such that vβ(x, t) is a solution of the problem

v
β
t (x, t) = �vβ(x, t) ((x, t) ∈ Qτ2), (3.4)

vβ(x, 0) = ϕ(x) (x ∈ Q), (3.5)

∂vβ

∂ν
= −K (x) ((x, t) ∈ 	τ2), (3.6)

v̂β(τ2) > α for t < τ2, and v̂β(τ2) = α. We set Pβ(ϕ) = vβ(·, τ2).
We introduce the Poincaré map for problem (2.1)–(2.3), or, equivalently, for the full

system (2.20)

P : {ϕ ∈ H1 : ϕ̂ < β} → {ϕ ∈ H1 : ϕ̂ = α},
P = PβPα.

We also introduce the operator (functional) t1 : {ϕ ∈ H1 : ϕ̂ < β} → R given by

t1(ϕ) = the first switching moment of H(v̂) for system (2.1)–(2.3).

We will use the following result (see Remark 4.3 in [14]).

Lemma 3.1 Let z(x, t) be a periodic solution of problem (2.1), (2.3). If

d ẑ

dt
�= 0 at the switching moments,

then the operators Pα(ϕ),P(ϕ), and t1(ϕ) are continuously differentiable in a neighbor-
hood of 	1 ∩ {ϕ ∈ H1 : ϕ̂ < β}. The operator Pβ(ϕ) is continuously differentiable in a
neighborhood of 	2 ∩ {ϕ ∈ H1 : ϕ̂ > α}.

We denote by Ẽ : H1 → Ṽ the orthogonal projector from H1 onto Ṽ .
Similarly to the operators Pα,Pβ,P, and t1, we introduce the operators �̃α, �̃β, �̃, and

t̃1, respectively, corresponding to the invariant guiding system (2.21) and defined on the
elements from Ṽ . Due to the invariance of (2.21), we have

�̃α(ϕ̃) = ẼPα(ϕ̃,ϕ0), �̃β(ϕ̃) = ẼPβ(ϕ̃,ϕ0), �̃(ϕ̃) = ẼP(ϕ̃,ϕ0), t̃1(ϕ̃) = t1(ϕ̃,ϕ0)

∀ϕ̃ ∈ Ṽ , ∀ϕ0 ∈ V0.

We say that �̃ is the guiding Poincaré map.
The following theorem shows that the stability of (exponential convergence to) a fixed

point of the guiding Poincaré map �̃ implies the stability of (exponential convergence to)
the fixed point of the Poincaré map P of the full system.

First, we introduce some notation. Let z(x, t) be an (s, σ )-periodic solution with period
T = s + σ of problem (2.1), (2.3) and (z̃(t), z0(t)) the corresponding periodic solution of
the full system (2.20). We denote

ψ̃ = z̃(0), ψ0 = z0(0).
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Let v(x, t) be another solution of problem (2.1)–(2.3) such that v̂(0) = α, and let
(ṽ(t), v0(t)) be the corresponding solution of the full system (2.20). The initial data will
be denoted by

ϕ̃ = ṽ(0), ϕ0 = v0(0)

and the consecutive switching moments by t1, t2, . . .. We also set t0 = 0.

Theorem 3.2 Suppose that

dẑ

dt
�= 0 at the switching moments.

1. For any δ0 > 0, there exists δ̃ > 0 such that if ṽ(ti ) remain in the δ̃-neighborhood of ψ̃
for even i and in the δ̃-neighborhood of z̃(s) for odd i (i = 0, 1, 2, . . .), then, for all ϕ0
in the δ0-neighborhood ofψ0, v0(ti ) remain in the δ0-neighborhood ofψ0 for even i and
in the δ0-neighborhood of z0(s) for odd i ;

2. Let

‖ṽ(ti )− ψ̃‖Ṽ + ‖ṽ(ti+1)− z̃(s)‖Ṽ ≤ k̃q̃ i , i = 0, 2, 4 . . . , (3.7)

for some 0 < q̃ < 1 and k̃ > 0 which do not depend on i . Then, for any neighborhood
V0 of ψ0 and for all ϕ0 ∈ V0,

‖v0(ti )− ψ0‖V0 + ‖v0(ti+1)− z(s)‖V0 ≤ k0qi
0, i = 0, 2, 4 . . . , (3.8)

where 0 < q0 = q0(q̃) < 1 and k0 = k0(k̃,V0, q̃) > 0 do not depend on ϕ̃ and ϕ0 in
the corresponding neighborhoods.

In the proof of this theorem, we will use the following technical lemma.

Lemma 3.2 Let a sequence b0, b2, b4, . . . of nonnegative numbers satisfies the inequalities

bi+2 ≤ ζbi + kνi , i = 0, 2, 4, . . . ,

where k > 0 and 0 < ζ, ν < 1 do not depend on i . Then there are numbers 0 < q =
q(ζ, ν) < 1 and c = c(ζ, ν, q) > 0 which do not depend on i such that

bi ≤ (b0 + c)qi , i = 0, 2, 4, . . . .

Proof Let γ = max(ζ, ν2). Clearly, 0 < γ < 1. Then

bi+2 ≤ γ bi + kγ i/2, i = 0, 2, 4, . . . .

Consider the sequence ci = biγ
−i/2. It satisfies

ci+2 ≤ ci + kγ−1 ≤ c0 + k1i,

where k1 > 0 does not depend on ci and i , which yields the desired estimate of bi . ��
Proof of Theorem 3.2

1. Let us prove assertion 1.

1a. By assumption, s = t̃1(ψ̃) is the first switching moment of H(ẑ). Denote by τ =
t1 = t̃1(ϕ̃) the first switching moment of H(v̂). By Lemma 3.1, t̃1(ϕ̃) is continu-
ously differentiable in a sufficiently small δ̃1-neighborhood of ψ̃ . Hence,

|τ − s| ≤ k1‖ϕ̃ − ψ̃‖Ṽ ≤ k1δ̃, (3.9)

where k1 > 0 depends on δ̃1 but does not depend on δ̃ ≤ δ̃1.
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1b. Using Remark 2.6 and the fact that, for any ε > 0, there is dε > 0 such that

(a + b)2 ≤ (1 + ε)a2 + dεb
2,

we obtain

‖v0(τ )− z0(s)‖2
V0

=
∑
j∈J0

(1 + λ j )|v j (τ )− z j (s)|2

=
∑
j∈J0

(1 + λ j )

∣∣∣∣
(
ϕ j − K j

λ j

)
e−λ j τ −

(
ψ j − K j

λ j

)
e−λ j s

∣∣∣∣
2

≤ (1 + ε)
∑
j∈J0

(1 + λ j )|ϕ j − ψ j |2e−2λ j τ

+dε
∑
j∈J0

(1 + λ j )

∣∣∣∣ψ j − K j

λ j

∣∣∣∣
2 ∣∣e−λ j τ − e−λ j s

∣∣2
. (3.10)

Now we fix ε > 0 such that

ζ = (1 + 2ε)e−2s < 1, (3.11)

where  = min
j∈J0

λ j > 0. Further, taking into account (3.9), we choose δ̃ > 0 so

small that

(1 + ε)e−2λ j τ ≤ (1 + 2ε)e−2s . (3.12)

Combining (3.10), (3.11), and (3.12) yields

‖v0(τ )− z0(s)‖2
V0

≤ ζ‖ϕ0 − ψ0‖2
V0

+ dε
∑
j∈J0

(1 + λ j )

∣∣∣∣ψ j − K j

λ j

∣∣∣∣
2

∣∣e−λ j τ − e−λ j s
∣∣2
. (3.13)

Using (2.16), (2.24), and estimate (3.9), we deduce from (3.13)

‖v0(τ )− z0(s)‖2
V0

≤ ζ δ2
0 + k2(δ̃),

where k2(δ̃) > 0 and k2(δ̃) → 0 as δ̃ → 0. In particular, this implies that v0(t1) =
v0(τ ) belongs to the δ0-neighborhood of z0(s), provided that δ̃ = δ̃(δ0) is suffi-
ciently small.
In the same way, one can now show that v0(t2) belongs to the δ0-neighborhood of
ψ0 = z0(T ). By induction, we obtain assertion 1.

2. Now we prove that

‖v0(ti )− ψ0‖V0 ≤ k0qi
0, i = 0, 2, 4 . . . . (3.14)

The rest part of estimate (3.8) can be proved analogously.

2a. First, we assume that ṽ(0) is in a sufficiently small δ̃-neighborhood of ψ̃ . Then,
similarly to (3.13), we have for even i

‖v0(ti+1)− z0(s)‖2
V0

≤ ζ‖v0(ti )− ψ0‖2
V0

+ dε
∑
j∈J0

(1 + λ j )

∣∣∣∣ψ j − K j

λ j

∣∣∣∣
2

∣∣e−λ j τi+1 − e−λ j s
∣∣2
, (3.15)
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where τi+1 = ti+1 − ti = t̃1(ṽ(ti )). Using the differentiability of t̃1 and esti-
mate (3.7), we have

|τi+1 − s| ≤ k1‖ṽ(ti )− ψ̃‖Ṽ ≤ k3q̃ i (3.16)

Due to (3.16), we can assume that τi+1 ≥ s/2. Then, taking into account (3.16),
we have

∣∣e−λ j τi+1 − e−λ j s
∣∣ ≤ λ j e

−λ j s/2|τi+1 − s| ≤ k4q̃ i .

Combining this inequality with (3.15), (2.24), and (2.16) yields

‖v0(ti+1)− z0(s)‖2
V0

≤ ζ‖v0(ti )− ψ0‖2
V0

+ k5q̃2i .

Making one more step and using the last inequality, we obtain

‖v0(ti+2)− ψ0‖2
V0

≤ ζ‖v0(ti+1)− z0(s)‖2
V0

+ k5q̃2i

≤ ζ(ζ‖v0(ti )− ψ0‖2
V0

+ k5q̃2i )+ k5q̃2i

≤ ζ 2‖v0(ti )− ψ0‖2
V0

+ k6q̃2i . (3.17)

Due to Lemma 3.2, the latter inequality implies (3.14).
2b. Now we take an arbitrary ṽ(0) in the k̃-neighborhood of ψ̃ . Due to (3.7), there

exists an even number I (which does not depend on ṽ(0)) such that ṽ(tI ) is in the
δ̃-neighborhood of ψ̃ . Then the inequality in (3.14) holds for i = I, I +2, I +4, . . .
due to part 2a of the proof.
Theorem 2.1 implies the existence of θ > 0 (which depends on k̃ and V0 but does
not depend on ṽ(0) and v0(0)) such that tI ≤ θ . Furthermore, Theorem 2.1 implies
that

max
t∈[0,θ ] ‖v0(t)‖V0 ≤ k7(θ, k̃,V0) = k8(k̃,V0).

Hence, the inequality in (3.14) holds for i = 0, 2, 4, . . .. ��

Remark 3.2 It follows from the proof of Lemma 3.2 that the convergence rate q is greater
than γ 1/2 = max(ζ 1/2, ν) but can be chosen arbitrarily close to this number.

Therefore, the convergence rate q0 in estimate (3.8) is greater than max
(
e−s, e−(T −s),

q̃
)

but can be chosen arbitrarily close to this number.

3.3 Conditional Attraction and Stability of Periodic Solution

Let z(x, t) and v(x, t) be the same as above, but now we do not assume that v̂(0) is necessarily
equal to α.

The following theorem shows that the convergence to the periodic orbit in the guiding
system implies the convergence to the corresponding periodic orbit in the full system. Thus,
we call the phenomenon in that theorem the conditional attraction.

For the trajectories, we will use the notation given in Sect. 3.1.

Theorem 3.3 Suppose that

dẑ

dt
�= 0 at the switching moments.
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Let {
dist(ṽ(t), 	̃1) ≤ k̃q̃ t if H(v̂)(t) = 1,

dist(ṽ(t), 	̃2) ≤ k̃q̃ t if H(v̂)(t) = −1,

for some 0 < q̃ < 1 and k̃ > 0. Then, for any bounded set V0 in V0, there exist 0 < q =
q(q̃) < 1 and k = k(k̃,V0, q̃) > 0 such that, for all ϕ0 ∈ V0 and t ≥ 0,{

dist(v(·, t), 	1) ≤ kqt if H(v̂)(t) = 1,

dist(v(·, t), 	2) ≤ kqt if H(v̂)(t) = −1,

Proof

1. Suppose we have shown that

‖v(·, ti )− z(·, 0)‖H1 + ‖v(·, ti+1)− z(·, s)‖H1 ≤ kqi , i = 0, 2, 4 . . . ,

(3.18)

where 0 < q = q(q̃) < 1 and k = k(k̃,V0, q̃) > 0. Then, using Lemma 3.1 and arguing
as in the proof of Theorem 4.3 in [14], we complete the proof.
So, let us prove estimate (3.18).

2. Consider the intersection of the closure of 	̃1 with the set {ϕ̃ ∈ Ṽ : ϕ̂ = β}. This inter-
section consists of the single point z̃(s), where s is the switching moment of the periodic
solution.
Since dẑ

dt

∣∣∣
t=s

�= 0, it follows from the implicit function theorem that there exist a number

L > 0 and a sufficiently small number d0 > 0 such that if

|β − ẑ(τ )| ≤ d

for some d ≤ d0 and τ ∈ [0, s], then

|τ − s| ≤ Ld.

3. Consider i = 1, 3, 5, . . .. By assumption, there exists τ ∈ [0, s] such that

‖ṽ(ti )− z̃(τ )‖Ṽ ≤ k̃q̃ ti . (3.19)

This inequality together with the Cauchy–Bunyakovskii inequality implies that there
exists a constant C1 > 0 such that

|β − ẑ(τ )| = |v̂(ti )− ẑ(τ )| ≤ C1k̃q̃ ti . (3.20)

3a. First, we assume that ti ≥ θ , where θ > 0 is so large that C1k̃q̃θ ≤ d0 (d0 is the
number from part 2 of the proof). Then, due to part 2 of the proof, we have

|τ − s| ≤ LC1k̃q̃ ti . (3.21)

It was proved in [14, Lemma 4.6] that the periodic solution z̃(t) is uniformly Lips-
chitz-continuous on [0, T ], which (together with (3.21)) implies that

‖z̃(τ )− z̃(s)‖Ṽ ≤ C2k̃q̃ ti (3.22)

for some C2 > 0.
Estimates (3.19) and (3.22) yield

‖ṽ(ti )− z̃(s)‖Ṽ ≤ k̃(1 + C2)q̃
ti for ti ≥ θ.
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Taking into account (2.7), we have

‖ṽ(ti )− z̃(s)‖Ṽ ≤ k̃1q̃ i
1 for ti ≥ θ, (3.23)

where k̃1 ≥ k̃ and 0 < q̃1 < 1.
3b. For ti ≤ θ , we have

‖ṽ(ti )− z̃(s)‖Ṽ ≤ dist(ṽ(ti ), 	̃1) ≤ k̃. (3.24)

Combining (3.23) and (3.24) yields

‖ṽ(ti )− z̃(s)‖Ṽ ≤ k̃2q̃ i
1 for all ti .

Applying similar arguments to ṽ(ti+1) and z̃(0) and using Theorem 3.2, we
obtain (3.18). ��

Now we discuss the phenomenon of conditional stability. When studying the stability of
periodic solutions, one considers its small neighborhood. When doing so, one has to take
into account the initial state of the hysteresis operator.

Definition 3.3 An (s, σ )-periodic solution z(x, t) of problem (2.1), (2.3) is stable if, for any
neighborhoods U1 of 	1 and U2 of 	2 in H1, there exist neighborhoods V1 of 	1 and V2 of
	2 in H1 such that if

ϕ ∈ V1, ϕ̂ < β or ϕ ∈ V2, ϕ̂ ≥ β,

then the solution v(x, t) of problem (2.1)–(2.3) in Q∞ with the initial data ϕ satisfies for all
t ≥ 0: {

v ∈ U1 if H(v̂)(t) = 1,

v ∈ U2 if H(v̂)(t) = −1.

An (s, σ )-periodic solution is unstable if it is not stable.

Definition 3.4 An (s, σ )-periodic solution z(x, t) of problem (2.1), (2.3) is uniformly expo-
nentially stable if it is stable and there exist neighborhoods W1 of 	1 and W2 of 	2 in H1

and numbers 0 < q < 1 and k > 0 such that if

ϕ ∈ W1, ϕ̂ < β or ϕ ∈ W2, ϕ̂ ≥ β,

then the solution v(x, t) of problem (2.1)–(2.3) in Q∞ with the initial data ϕ satisfies{
dist(v(·, t), 	1) ≤ kqt if H(v̂)(t) = 1,

dist(v(·, t), 	2) ≤ kqt if H(v̂)(t) = −1

for all t ≥ 0 uniformly with respect to ϕ.

Let z̃(t) be an (s, σ )-periodic solution of the guiding system (2.21). Then, by Theorem 3.1,
there exists a unique function z0(t) such that (z̃(t), z0(t)) is an (s, σ )-periodic solution of
the full system (2.20). We denote by z(x, t) the corresponding (s, σ )-periodic solution of
problem (2.1), (2.3).

Theorem 3.4 Suppose that

dẑ

dt
�= 0 at the switching moments.

Then the following assertions are equivalent.
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1. The periodic solution z(x, t) of problem (2.1), (2.3) is stable (uniformly exponentially
stable).

2. The periodic solution z̃(t) of the guiding system (2.21) is stable (uniformly exponentially
stable).

3. The element z̃(0) is a stable (uniformly exponentially stable) fixed point of the Poincaré
map �̃.

Proof Implication 1 ⇒ 2 is obvious.
Implication 2 ⇒ 3 is proved similarly to the proof of Theorem 3.3.
To prove implication 3 ⇒ 1, one should use Lemma 3.1 and Theorem 3.2 and argue as in

the proof of Lemma 4.7 and Theorem 4.4 in [14]. ��

4 Symmetric Periodic Solutions

4.1 Preliminary Considerations

It was noted in [14] that any (s, σ )-periodic solution possesses a certain symmetry, provided
that it is unique. In fact a much stronger result holds, namely, we show that any (s, σ )-periodic
solution possesses symmetry.

We underline that the results in the previous sections did not depend on the symmetry of
periodic solutions, but the results of this section do. In particular, by exploiting the symmetry,
we give an algorithm for finding all periodic solutions with two switchings on the period.
Using their explicit form, we will study their stability.

Definition 4.1 An (s, σ )-periodic solution z(x, t) of problem (2.1), (2.3) is called symmetric
if z j (0) = −z j (s), j = 1, 2, . . ..

Lemma 4.1 Let z(x, t) be an (s, σ )-periodic solution of problem (2.1), (2.3). Then s = σ

and z(x, t) is symmetric.

Proof Let ψ(x) = z(x, 0) = z(x, s + σ) and ξ(x) = z(x, s).
By Remark 2.6,

ξ0 = ψ0 + K0s, (4.1)

ξ j =
(
ψ j − K j

λ j

)
e−λ j s + K j

λ j
, j ≥ 1. (4.2)

Applying Remark 2.6 (with K j replaced by −K j ), we conclude that

ψ0 = ξ0 − K0σ, (4.3)

ψ j =
(
ξ j + K j

λ j

)
e−λ jσ − K j

λ j
, j ≥ 1. (4.4)

Equalities (4.1) and (4.3) imply that s = σ . Summing up (4.2) and (4.4) and taking into
account that s = σ , we see that
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ψ j + ξ j = (ψ j + ξ j )e
−λ j s, j ≥ 1.

Hence, ξ j = −ψ j , and z(x, t) is symmetric. ��
Remark 4.1 Lemma 4.1 shows that the period (and the second switching time) of any
(s, σ )-periodic solution is uniquely determined by the first switching time and vice versa.
Therefore, we will say “T -periodic solution” or just “periodic solution” instead of saying
“symmetric (s, s)-periodic solution with period T = 2s”.

In [14], it was shown that there is a number δ1 ≥ 0 such that if β − α > δ1, then there
exists a periodic solution of problem (2.1), (2.3). Furthermore, there is a number δ2 ≥ δ1

such that if β − α > δ2, then there exists a unique periodic solution of problem (2.1), (2.3);
moreover, it is stable, and is a global attractor. Both numbers δ1 and δ2 depend on Q,m, and
K .

In this section, we will formulate a sufficient condition which may hold for arbitrarily
small β −α and still provides the existence of (symmetric) periodic solutions. We will show
that these solutions may be both stable and unstable.

Lemma 4.2 Let z(x, t) be a solution of problem (2.1)–(2.3) with the initial data ψ, ψ̂ = α,
and let s > 0 be the first switching moment of H(ẑ). If

z j (s) = −ψ j , j = 1, 2, . . . ,

then z(x, t) is a (symmetric)2s-periodic solution of problem (2.1), (2.3).

Proof

1. First, we show that there are no switchings for t ∈ (s, 2s) and that the second switching
occurs exactly for t = 2s. To do so, we have to show that ẑ(t) > α, or, equivalently,
ẑ(s)− ẑ(t) < β − α for t ∈ (s, 2s). Using Remark 2.6 (with K j replaced by −K j ) and
the assumption that z j (s) = −ψ j , we have for t ∈ (s, 2s)

z j (t) =
(

z j (s)+ K j

λ j

)
e−λ j (t−s) − K j

λ j
=

(
−ψ j + K j

λ j

)
e−λ j (t−s) − K j

λ j
,

j = 1, 2, . . . ,

z0(t) = z0(s)− K0(t − s) = ψ0 + 2K0s − K0t. (4.5)

Therefore, taking into account (2.19), we have

ẑ(s)− ẑ(t) = m0 K0(t − s)+
∞∑
j=0

m j

(
ψ j − K j

λ j

) (
e−λ j (t−s) − 1

)

= m0 K0σθ +
∞∑
j=0

m j

(
ψ j − K j

λ j

) (
e−λ j θ − 1

) = ẑ(θ)− ψ̂, (4.6)

where θ = t − s ∈ (0, s). But ẑ(θ)− ψ̂ < β − α for θ ∈ (0, s) and ẑ(s)− ψ̂ = β − α

(because s is the first switching moment by assumption).
2. Now we show that z(x, 2s) = ψ(x). Indeed, using (4.5) and the assumption that z j (s) =

−ψ j , we obtain

z j (2s) = −
[(
ψ j − K j

λ j

)
e−λ j s + K j

λ j

]
= −z j (s) = ψ j , j = 1, 2, . . . ,

z0(2s) = ψ0.

��
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4.2 Construction of Symmetric Periodic Solutions

Lemma 4.2 allows one to explicitly find all (s, s)-periodic solutions according to the following
algorithm.

Step 1. For each s > 0, we find the (unique) ψ j = ψ j (s) such that v j (s) = −ψ j for
j = 1, 2, . . ., assuming that H(v̂) ≡ 1 on the interval [0, s). To do so, we solve the
equation (cf. Remark 2.6)(

ψ j − K j

λ j

)
e−λ j s + K j

λ j
= −ψ j ,

which yields

ψ j = ψ j (s) = − K j

λ j
· 1 − e−λ j s

1 + e−λ j s . (4.7)

We note that ψ j (0) = 0 and ψ j (s) monotonically decreases and tends to −K j/λ j

as s → +∞.
Step 2. We find the (unique) ψ0 = ψ0(s) such that ψ̂ = α. To do so, we solve the equation

m0ψ0 +
∞∑
j=1

m jψ j = α,

which yields

ψ0 = ψ0(s) = 1

m0

⎛
⎝α −

∞∑
j=1

m jψ j (s)

⎞
⎠ . (4.8)

Note that the function ψ with the Fourier coefficients given by (4.7) and (4.8)
belongs to H1. This follows from (2.14) and (2.16).

Step 3. If the solution1 v(x, t) = v(x, t; s) of problem (2.9)–(2.11) with the initial data
ψ = ψ(s) is such that H(v̂) does not switch for t < s and switches at the moment
t = s, then, by Lemma 4.2, there exists a 2s-periodic solution z(x, t; s) (which
coincides with v(x, t; s) for t ≤ s).
The switching condition is

∞∑
j=0

m jv j (s) = β,

or, equivalently,

F(s) := m0 K0s + 2
∞∑
j=1

m j
K j

λ j
· 1 − e−λ j s

1 + e−λ j s = β − α. (4.9)

To check that the switching does not occur before s, we note that, due to Remark 2.6, the
mean temperature v̂(t; s) corresponding to the initial condition (4.7), (4.8) is given by

v̂(t; s) =
∞∑
j=0

m jv j (t; s) = α + m0k0t + 2
∞∑
j=1

m j
K j

λ j
· 1 − e−λ j t

1 + e−λ j s .

1 Here and further, we sometimes write s after the semicolon to explicitly indicate that the function depends
on the chosen first switching time s as on a parameter.
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Therefore, the condition v̂(t; s) = β is equivalent to

m0k0t + 2
∞∑
j=1

m j
K j

λ j
· 1 − e−λ j t

1 + e−λ j s = β − α.

Taking into account equality (4.9), we see that the condition v̂(t; s) = β is equivalent to the
following:

H(t, s) := m0k0(t − s)+ 2
∞∑
j=1

m j
K j

λ j
· e−λ j s − e−λ j t

1 + e−λ j s = 0. (4.10)

Moreover, the fulfillment of the inequality H(t, s) < 0 for all t ∈ (0, s) is necessary and
sufficient for the absence of switching moments before the time moment s.

Definition 4.2 We will say that F(s) and H(t, s) are the first and the second characteris-
tic functions, while (4.9) and (4.10) are the first and the second characteristic equations,
respectively.

The first and the second characteristic equations will play a fundamental role in the descrip-
tion of periodic solutions and their bifurcation sets (see Theorems 4.1 and 4.2 below).

The following lemmas describe some properties of the characteristic functions.

Lemma 4.3

1. F(s) is continuous for s ≥ 0 and analytic for s > 0,
2. F(0) = 0, F(s) increases for all sufficiently large s > 0, and lim

s→+∞ F(s) = +∞,

3. for each β − α > 0, the first characteristic equation (4.9) has finitely many roots,
4. the positive zeroes of F(s) are isolated and may accumulate only at the origin.

Proof 1. The series in (4.9) is absolutely and uniformly convergent for Re s ≥ 0 due to the
Cauchy–Bunyakovskii inequality and (2.16). Therefore, F(s) is continuous for s ≥ 0
and analytic for s > 0.
Assertion 2 is now straightforward.
To prove assertion 3, we note that, for β − α > 0, the (positive) roots of the first char-
acteristic equation (4.9) cannot accumulate at the origin. This follows by the continuity
and the relation F(0) = 0. The roots cannot accumulate at infinity either (due to the
monotonicity for large s). Therefore, all the roots belong to a compact separated from
the origin. Now the analyticity for s > 0 implies assertion 3.
Assertion 4 follows from the analyticity of F(s) for s > 0 and from the monotonicity
for large s. ��

Similarly, one can prove the following lemma.

Lemma 4.4

1. H(t, s) is continuous for s ≥ 0, 0 ≤ t ≤ s,
2. for each s > 0, H(t, s) is analytic in t for t > 0,
3. H(0, s) = −F(s) and H(s, s) ≡ 0,
4. if s > 0 and F(s) > 0, then the second characteristic equation (4.10) has no more than

finitely many roots in t for t ∈ (0, s).

Taking into account Lemmas 4.1, 4.3, and 4.4, we formulate the above algorithm as the
following theorem (also mind Remark 4.1).
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Theorem 4.1

1. For a given β − α > 0, there are no more than finitely many periodic solutions of
problem (2.1), (2.3), which we denote z(1), . . . , z(N ).

2. All the periodic solutions z(1), . . . , z(N ) are symmetric.
3. If s1, . . . , sN are half-periods of z(1), . . . , z(N ), respectively, then s1, . . . , sN are the roots

of the first characteristic equation (4.9).
4. Let sN+1, . . . , sN1 be positive roots of the first characteristic equation (4.9) different from

s1, . . . , sN . Then

(a) H(t, s j ) < 0 for all t ∈ (0, s j ) if j = 1, . . . , N,
(b) H(t; s j ) = 0 for some t ∈ (0, s j ) if j = N + 1, . . . , N1.

In particular, Theorem 4.1 implies that a positive root s j of the first characteristic equa-
tion (4.9) “generates” a 2s j -periodic solution if and only if H(t, s j ) < 0 for all t ∈ (0, s j ).

Now we will keep the domain Q and the functions m(x) and K (x) fixed, while allow the
thresholds α and β vary. We will classify the existence of all periodic (i.e., (s, s)-periodic)
solutions with respect to the parameter s and with respect to the parameter β − α. By the
existence of a periodic solution for a given s > 0 we mean that there exist numbers α < β

(depending on s) such that problem (2.1), (2.3) with these α and β admits an (s, s)- or,
equivalently, a 2s-periodic solution.

First, we show that one can divide the positive s-semiaxis into intervals (whose union is
denoted by L) in the following way. For every interval L ′ ⊂ L , either there are no 2s-periodic
solutions for all s ∈ L ′ or there is exactly one 2s-periodic solution for every s ∈ L ′, which
smoothly depends on s in L ′. The complement S of the union L of all those intervals will
consist of points of possible bifurcation with respect to s (half-period). It will be a compact
set. Typically, S will consist of finitely many points (see Examples 4.1).

The compact set � = F(S) will consist of points of possible bifurcation with respect
to the parameter β − α. This set divides the positive (β − α)-semiaxis into open intervals
(whose union is denoted by �). For β − α in an interval �′ ⊂ �, the number of periodic
solutions remains constant and they smoothly depend on β − α ∈ �′ (see Example 4.1).

First, we introduce the set

S0 = {s > 0 : F(s) = 0}.
Due to Lemma 4.3, the set S0 consists of no more than countably many points, which may
accumulate only at the origin.

To introduce the next set, we denote for s > 0

τ(s) = {t ∈ (0, s) : H(t, s) = 0}. (4.11)

By Lemma 4.4, τ(s) consists of finitely many roots of the equation H(t, s) = 0 on the
interval t ∈ (0, s), provided that F(s) > 0.

Consider the set

S1 = {s > 0 : F(s) > 0, τ (s) = ∅ and Ht (t, s)|t=s = 0}.
Thus, S1 consists of those s for which the corresponding trajectory v(x, t; s) intersects the
hyperplane ϕ̂ = β for the first time at the moment s and touches it nontransversally at this
moment. Note that any number s ∈ S1 generates a 2s-periodic solution.

Consider the set

S2 = {s > 0 : F(s) > 0, τ (s) �= ∅, and Ht (t, s)|t=t ′ = 0 ∀t ′ ∈ τ(s)}.
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Thus, S2 consists of those s for which the corresponding trajectory v(x, t; s) intersects the
hyperplane ϕ̂ = β for the first time before the moment s and touches it nontransversally
at each of the intersection moments (before s). None of the numbers s ∈ S2 generate a
2s-periodic solution.

We also introduce the set

S3 = {s > 0 : F(s) > 0 and F ′(s) = 0}.
We note that the set S3 consists of no more than countably many isolated points which may
accumulate only at the origin. This follows from the analyticity of F(s) for s > 0 and from
the monotonicity for large s.

Now we set

L = (0,∞) \ S0 ∪ S1 ∪ S2.

and

� = F(S1 ∪ S2 ∪ S3), � = (0,∞) \�.
We note that the above sets Si , L and �,� do not depend on s or β − α. They only depend
on m j , K j , and λ j . We also note that the sets S0, . . . S3 and � are bounded. Indeed, S0 and
S3 are bounded because F(s) monotonically increases for sufficiently large s. Furthermore,
it is proved in [14] that, for sufficiently large β − α (hence for sufficiently large s), the first

switching moment for v(x, t; s) is equal to s and d v̂(t;s)
dt

∣∣∣
t=s

> 0. Therefore, S2 and S3 are

also bounded. The boundedness of S0, . . . , S3 implies the boundedness of �.

Theorem 4.2

1. Let L ′ be an open interval in L. Then either there are no 2s-periodic solutions for all
s ∈ L ′ or, for any s ∈ L ′, there is a unique 2s-periodic solution z(x, t; s) of prob-
lem (2.1), (2.3). Moreover, the initial value z(x, 0; s) smoothly depends on s ∈ L ′(in the
H1-topology).

2. Let�′ be an open interval in�. Then the number of periodic solutions of problem (2.1),
(2.3) remains constant for all β − α ∈ �′. The initial values of those solutions and the
first switching times continuously depend on β − α ∈ �′(in the H1-topology).

Proof

1. Let L ′ be an open interval in L . For any s ∈ L ′, we denote by v̂(t; s) the mean temperature
corresponding to the initial condition (4.7), (4.8). We recall that

v̂(t; s) = β

if and only if

H(t, s) = 0.

Fix an arbitrary s′ ∈ L ′. Then s′ /∈ S0, i.e., F(s′) �= 0. If F(s′) < 0, then F(s) < 0 for
all s ∈ L ′ (otherwise, F(s) = 0 for some s ∈ L ′, but then s ∈ S0, which is impossible).
In this case, every s ∈ L ′ does not generate a periodic solution.
Assume that F(s) > 0.
Consider the sets τ(s) given by (4.11) for s ∈ L ′. We claim that if τ(s′) = ∅, then
τ(s) = ∅ in a sufficiently small neighborhood of s′; if τ(s′) �= ∅, then τ(s) �= ∅ in a
sufficiently small neighborhood of s′. Indeed:
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1a. Let τ(s′) = ∅. Suppose that there is a sequence si converging to s and a sequence
ti ∈ (0, si ) such that H(ti , si ) = 0. Taking a subsequence if needed, we can assume
that ti → t ′ ∈ (0, s′]. Thus, by continuity of H(t, s), we have

H(t ′, s′) = 0 (4.12)

Since τ(s′) = ∅ and s′ /∈ S1, we have Ht (t, s′)|t=s′ �= 0. Therefore, by the implicit
function theorem and by the identity H(s, s) ≡ 0, it follows that, in a neighborhood
of the point (s′, s′), the only root (in t) of the equation H(t, s) = 0 is t = s. Hence,
all ti lie outside a fixed neighborhood of s′, which means that t ′ < s′. Together
with (4.12), this yields τ(s′) �= ∅. This contradiction proves that τ(s) = ∅ in a
sufficiently small neighborhood of s′.

1b. Now let τ(s′) �= ∅. Since s′ /∈ S2, there is t ′ < s′ such that H(t ′, s′) = 0 and
Ht (t, s′)|t=t ′ �= 0. By the implicit function theorem the equation H(t, s) = 0
admits a solution t = t (s) in a neighborhood of s′ such that t ′ = t (s′). By reg-
ularity, t (s) < s if the neighborhood is small enough. Therefore, τ(s) �= ∅ in a
sufficiently small neighborhood of s′.

To complete the proof of assertion 1, we choose an arbitrary compact interval in L ′, cover
each point of it by the above neighborhood and take a finite subcovering.
The smooth dependence of the initial value of the periodic solution on s ∈ L ′ follows
from the explicit formulas (4.7) and (4.8).

2. Let �′ be an open interval in �.
Fix an arbitrary b′ ∈ �′. Since b > 0, Lemma 4.3 implies that the first characteristic
equation F(s) = b′ has finitely many (say, N1) positive roots s′

1, . . . , s′
N1

. Since b′ /∈ �,
it follows that s′

j /∈ S3, i.e., F ′(s′
j ) �= 0. Therefore, for b in a neighborhood of b′, there

exist exactly N1 positive roots s1 = s1(b), . . . , sN1 = sN1(b) of the first characteristic
equation F(s) = b, which smoothly depend on b.
Further, we assume that there are N (N ≤ N1) numbers s′

1, . . . , s′
N for which the min-

imal root of the equation H(t, s′
j ) = 0 on the interval (0, s′

j ) is equal to s′
j . As before,

this means that s′
j generate 2s′

j -periodic solutions for j = 1, . . . , N and do not generate
periodic solutions for j = N + 1, . . . , N1 (cf. Theorem 4.1).
Since b′ > 0 and b′ /∈ �, it follows that s′

j /∈ S0 ∪ S1 ∪ S2 ( j = 1, . . . , N1). Therefore,
similarly to part 1 of the proof, for all b in a neighborhood of b′, the numbers s j = s j (b)
generate 2s j -periodic solutions for j = 1, . . . , N and do not generate periodic solutions
for j = N + 1, . . . , N1.
To complete the proof of assertion 2, we choose an arbitrary compact interval in�′, cover
each point b′ of it by the above neighborhood and take a finite subcovering. ��

Remark 4.2 Theorem 4.2 indicates the ways a new periodic solution may appear or an exist-
ing periodic solution may disappear, i.e., bifurcation occurs.

When varying the parameter s, bifurcation may occur only if s ∈ S0 ∪ S1 ∪ S2.

1. The condition s ∈ S0 implies that α and β coalesce.
2. The condition s ∈ S1 corresponds to the tangential approach of the trajectory v(x, t; s)

to the hyperplane ϕ̂ = β = α + F(s). At the point s, the periodic solution exists. In the
literature on switching (or hybrid) systems, such a bifurcation is usually called “grazing
bifurcation”. The corresponding Poincaré map will be discontinuous at this point.

3. The condition s ∈ S2 also corresponds to the tangential approach of the trajectory
v(x, t; s) to the hyperplane ϕ̂ = β = α + F(s). However, at the point s, the periodic
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solution does not exists. The switching occurs before the trajectory comes in the “sym-
metric” position. This bifurcation can also be called “grazing bifurcation”.

When varying the parameter β−α > 0, bifurcation may occur if a point s ∈ F−1(β−α)
belongs to S1, S2, or S3.

Grazing bifurcation occurs on S1 and S2 as described above.
If s ∈ S3 \ (S1 ∪ S2), then a new root of the first characteristic equation (4.9) may appear

and then split into two roots (or two existing roots may merge into one and then disappear)
as β−α crosses the value F(s). If the first switching moment for v(x, t; s) is equal to s (i.e.,
H(t, s) < 0 for t < s or, equivalently, τ(s) = ∅), then a new periodic solution will appear
and then split into two (or the two existing periodic solutions will merge into one and then
disappear). This corresponds to a fold bifurcation.

On the other hand, if the first switching moment forv(x, t; s) is less than s (i.e., H(t, s) = 0
for some t < s or, equivalently, τ(s) �= ∅), then no bifurcation happens.

We consider an example illustrating Theorems 4.1 and 4.2.

Example 4.1 Let Q be a one-dimensional domain, e.g., Q = (0, π), cf. [8–11,23]. Let the
boundary condition (2.3) be given by

vx (0, t) = 0, vx (π, t) = H(v̂)(t).
From the physical point of view, these boundary conditions model a thermocontrol process
in a rod with heat-insulation on one end and a heating (cooling) element on the other.

It is easy to find that

λ0 = 0, e0 =
√

1

π
, K0 = e0(π) =

√
1

π
,

λ j = j2, e j (x) =
√

2

π
cos j x, K j = e j (π) = (−1) j

√
2

π
, j = 1, 2, . . . .

Let m0 = 2,m1 = m2 = 4, and m3 = m4 = · · · = 0. Then the bifurcation diagram is
depicted in Fig. 5.

Let m0 = 3.2,m1 = m2 = 4, and m3 = m4 = · · · = 0. Then the bifurcation diagram is
depicted in Fig. 6.

“Evolution” of periodic solutions with respect to the parameter β − α is visualized in
Fig. 7.

In [14], it was shown that there exists a unique periodic solution if β − α is large enough.
Moreover, it is stable and is a global attractor. To conclude this section, we prove that a
periodic solution can also exist for arbitrarily small β − α. Further, we will show that such
a solution need not be stable.

Assume that the following condition holds.

Condition 4.1 The functions m ∈ H1 and K ∈ H1/2 satisfy

M :=
∞∑
j=0

m j K j =
∫
∂Q

m(x)K (x) d	 > 0.

The convergence of the sum follows from Remark 2.5. The equality follows from the defini-
tion of m j and K j . The essential requirement of Condition 4.1 is the positivity of the sum, or,
equivalently, of the integral. From the physical viewpoint, this condition implies the presence
of thermal sensors on a part of the boundary where the heating elements are.

123



J Dyn Diff Equat (2011) 23:923–960 949

Fig. 5 Bifurcation diagram for m0 = 2,m1 = m2 = 4, and m3 = m4 = · · · = 0. For any s > 0, there exists
a unique 2s-periodic solution if the graph of F is bold at the point s and there are no 2s-periodic solutions
otherwise. For any β − α > 0, there exist one or two periodic solutions depending on whether the horizontal
line levelled at β − α intersects the bold part of the graph of F at one or two points, respectively. Point A
(s ≈ 0.26, β − α ≈ 0.23) on the graph corresponds to s ∈ S1. There exists a corresponding 2s-periodic
solution, whose trajectory is tangent to the hyperplane ϕ̂ = β at the moment s (see the le f t inset). Point B
(s ≈ 4.10, β − α ≈ 0.04) on the graph corresponds to s ∈ S2; there does not exist a 2s-periodic solution
for this s. However, if one did not switch when v̂(t; s) tangentially intersected the hyperplane ϕ̂ = β at the
moment s, but switched only when v̂(t; s) intersected the hyperplane ϕ̂ = β for the second time (at some
moment s1 > s), then the resulting trajectory would be 2s1 periodic. Such a trajectory is referred to as a
“ghost” trajectory (see the right inset)

Theorem 4.3 Let Condition 4.1 hold. Then there exist numbers ω > 0 and σ > 0 such
that, for any β − α ≤ ω, there exists a 2s-periodic solution z(x, t) = z(x, t; s) of prob-
lem (2.1), (2.3) such that s ≤ σ . On the interval (0, ω], the function s = s(β − α) is strictly
monotonically increasing and s → 0 as β − α → 0.

Proof

1. By Condition 4.1, F ′(0) =
∞∑
j=0

m j K j > 0. Therefore, for sufficiently small β − α > 0,

the equation F(s) = β −α has a unique solution s > 0 in a small right-hand side neigh-
borhood (0, σ ] of the origin. Clearly, the function s = s(β − α) possesses the properties
from the theorem.
Consider the solution v(x, t) = v(x, t; s) of problem (2.1)–(2.3) with the initial data
ψ = ψ(s) defined in Steps 1–3 above.
To complete the proof, it remains to show that v̂(t) = v̂(t; s) < β for t < s and apply
Theorem 4.1.

2. Using representation (2.19), Remark 2.6, and formulas (4.7), we have for t ≤ s

d v̂(t; s)

dt
= m0 K0 +

∞∑
j=1

m j K j
2e−λ j t

1 + e−λ j s = M +
∞∑
j=1

m j K j

(
2e−λ j t

1 + e−λ j s − 1

)
.

(4.13)

123



950 J Dyn Diff Equat (2011) 23:923–960

Fig. 6 Bifurcation diagram for m0 = 3.2,m1 = m2 = 4, and m3 = m4 = · · · = 0. For any s > 0, there
exists a unique 2s-periodic solution if the graph of F is bold at the point s and there are no 2s-periodic solutions
otherwise. For any β−α > 0, there exist one, two, or three periodic solutions depending on whether the hori-
zontal line levelled at β−α intersects the bold part of the graph of F at one, two, or three points, respectively.
Points A (s ≈ 0.75, β−α ≈ 0.51) and B (s ≈ 1.74, β−α ≈ 0.26) on the graph correspond to s ∈ S2. In each
of these points, a 2s-periodic solution does not exist. However, if one did not switch when v̂(t; s) tangentially
intersected the hyperplane ϕ̂ = β at the moment s, but switched only when v̂(t; s) intersected the hyperplane
ϕ̂ = β for the second time (at some moment s1 > s), then the resulting trajectory would be 2s1 periodic. Such
a trajectory is referred to as a “ghost” trajectory (see the insets). Point C (s ≈ 0.55, β−α ≈ 0.56) corresponds
to the fold bifurcation, where two periodic solutions merge into one and disappear as β − α increases and
crosses the critical value ≈ 0.56

Using Remark 2.5, one can easily check that the absolute value of the series on the
right-hand side is less than M/2 for sufficiently small s and t ≤ s. Therefore, v̂(t; s)
is monotonically increasing until the first switching moment. Thus, the first switching
occurs for t = s. ��

We stress that Theorem 4.3 ensures the uniqueness of a periodic solution with a small first
switching time s (hence small β − α). However, the theorem does not forbid the existence
of other periodic solutions with large period and large β − α.

Remark 4.3 It is an open question whether one can choose the functions m(x) and K (x) and
the parameters α and β in such a way that problem (2.1), (2.3) has no periodic solutions.

4.3 Stability of Periodic Solutions

In this section, we will show that the thermocontrol problem with hysteresis may admit
unstable periodic solutions.

For simplicity, we assume that only finitely many Fourier coefficients m j do not vanish
(but see Remark 4.7).
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Fig. 7 Visualization of
“evolution” of periodic solutions
with respect to the parameter
β − α for
m0 = 3.2,m1 = m2 = 4, and
m3 = m4 = · · · = 0. For each
β − α, the horizontal plane
represents the phase space H1

with periodic solutions. Points A
and B correspond to apparition
(or termination) of periodic
solutions, while point C
corresponds to the fold
bifurcation (cf. Fig. 6)

Condition 4.2 There is N ≥ 1 such that

J = {m0,m1, . . . ,m N }.
Clearly, modifications needed if J consists of other Fourier coefficients m j are trivial.

Remark 4.4 The fulfilment of Condition 4.2 implies that m ∈ H1. Moreover, the sum in
Condition 4.1 becomes finite:

N∑
j=0

m j K j > 0.

Remark 4.5 If N = 0, i.e., J = {m0}, then it is easy to see that the (one-dimensional) guiding
system (2.21) has a unique periodic solution for any α and β and this solution is uniformly
exponentially stable. By Theorems 3.1 and 3.4, the same is true for the original problem (2.1),
(2.3).

Assume that Condition 4.2 holds. Let z(x, t) be a 2s-periodic solution of problem (2.1),
(2.3). Denote by z̃(t) = (z0(t), z(t)) the corresponding 2s-periodic solution of the guiding
system (2.21). Let us study the map �̃α and the Poincaré map �̃ (see Sect. 3) of the guiding
system (2.21) in a neighborhood of z̃(0).

First of all, we consider the projections of these operators onto the N -dimensional space
V (see (2.23)).

We consider the orthogonal projector

E : Ṽ → V

given by Eϕ̃ = ϕ, where

ϕ̃ = {ϕ j }N
j=0, ϕ = {ϕ j }N

j=1.

123



952 J Dyn Diff Equat (2011) 23:923–960

Fig. 8 The projection operator E
and the lifting operators Rα and
Rβ

Fig. 9 The operators �α and
� = �β�α in the space
V = Span(e1, e2, . . . , eN )

We also introduce the lifting operator

Rα : V → Ṽ

given by

Rα(ϕ) =
(
α

m0
− 1

m0

N∑
k=1

mkϕk, {ϕ j }N
j=1

)
.

Thus, RαE(ϕ̃) = ϕ̃ for ϕ̃ ∈ Ṽ such that
N∑

j=0
m jϕ j = α, and ERα(ϕ) = ϕ for ϕ ∈ V (see

Fig. 8).
Denote by �α : V → V the “projection” of �̃α onto V given by

�α(ϕ) = E�̃αRα(ϕ).

Similarly, one can define the operators Rβ and �β .
The operators E,Rα , and Rβ are continuously (and even infinitely) differentiable. There-

fore, the operators �α and �β are also continuously differentiable, provided so are �̃α and
�̃β .

We introduce the operator � : V → V by the formula

�(ϕ) = E�̃Rα(ϕ).

The following property of � is straightforward (see Fig. 9):

� = �β�α.
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It is easy to see that the point ψ = z(0) is a fixed point of the map � acting in the
N -dimensional space V .

In the formulation of the following results, we will use the following functions:

Q j = Q j (s) = 2e−λ j s

1 + e−λ j s , Q = Q(s) = m0 K0 +
N∑

j=1

m j K j Q j (s). (4.14)

We note that, due to (4.13), we have at the switching moment s

dẑ(t)

dt

∣∣∣
t=s

= Q(s). (4.15)

In particular, this implies that Q(s) ≥ 0.

Theorem 4.4 Let Condition 4.2 hold, and let z(x, t) be a 2s-periodic solution of prob-
lem (2.1), (2.3). Assume that Q(s) > 0. Then z(x, t) is stable (uniformly exponentially
stable) if and only if the fixed point z(0) of the map � is so.

Proof Due to (4.15), we have dẑ(t)
dt

∣∣∣
t=s

> 0. By symmetry, dẑ(t)
dt

∣∣∣
t=2s

< 0. Now it remains

to apply the formula �̃i (ϕ̃) = (Rα�i E)(ϕ̃) and Theorem 3.4. ��

To study the stability of the point ψ = z(0), we consider the derivative of � at the point
ψ .

Lemma 4.5 Let Condition 4.2 hold. If Q(s) > 0, then the operator �α : V → V is
differentiable in a neighborhood of ψ = z(0) and the derivative

Dψ�α(ψ) : V → V

at the point ψ = z(0) is given by

Dψ�α(ψ)ϕ =
N∑

j=1

e−λ j sϕ j e j (x)+ 1

Q(s)

(
N∑

k=1

mk
(
1 − e−λk s)ϕk

)
N∑

j=1

K j Q j (s)e j (x),

(4.16)

where e1(x), . . . , eN (x) form the basis in V and Q j (s) and Q(s) are defined in (4.14).

Proof Since Q(s) > 0, it follows from (4.15) that dẑ(t)
dt

∣∣∣
t=s

> 0. Therefore, applying

Lemma 4.2 in [14], we have

Dψ�α(ψ)ϕ =
N∑

j=1

e−λ j sϕ j e j (x)+
(

dẑ(t)

dt

∣∣∣
t=s

)−1
(

N∑
k=1

mk
(
1 − e−λk s)ϕk

)

N∑
j=1

λ j e
−λ j s

(
K j

λ j
− ψ j

)
e j (x).

Taking into account equalities (4.7), (4.14), and (4.15), we obtain the desired representa-
tion (4.16). ��
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Remark 4.6 Due to Lemma 4.5, the linear operator Dψ�α(ψ) is represented in the basis
e1(x), . . . , eN (x) by the (N × N )-matrix A = A(s) of the form

A =

⎛
⎜⎜⎜⎜⎝

1 − E1 + S1σ1 S1σ2 S1σ3 . . . S1σN

S2σ1 1 − E2 + S2σ2 S2σ3 . . . S2σN

S3σ1 S3σ2 1 − E3 + S3σ3 . . . S3σN

. . . . . . . . . . . . . . .

SNσ1 SNσ2 SNσ3 . . . 1 − EN + SNσN

⎞
⎟⎟⎟⎟⎠ , (4.17)

where

E j = E j (s) = 1 − e−λ j s, S j = S j (s) = K j Q j (s)

Q(s)
, σ j = σ j (s) = m j E j (s).

(4.18)

Note that A(0) is the identity matrix.

The following lemma results from Lemma 4.5 and from the symmetry of the periodic
solution z(x, t).

Lemma 4.6 Let Condition 4.2 hold, and let Q(s) > 0. Then the operator � : V → V is
differentiable in a neighborhood of ψ = z(0) and the derivative

Dψ�(ψ) : V → V

at the point ψ = z(0) is given in the basis e1(x), . . . , eN (x) by the matrix A2, where A is
defined in (4.17).

Denote the eigenvalues of the matrix A = A(s) by μi = μi (s), i = 1, . . . , N .
The main result of this section is the following theorem. In particular, we will use it to

construct unstable periodic solutions.

Theorem 4.5 Let Condition 4.2 hold, and let z(x, t) be a 2s-periodic solution of prob-
lem (2.1), (2.3). Assume that Q(s) > 0. Then the following assertions are true.

1. All the eigenvalues μi of the matrix A satisfy μi �= 1.
2. If |μi | < 1 for all i = 1, . . . N, then the 2s-periodic solution z(x, t) of problem (2.1),

(2.3) is uniformly exponentially stable.
3. If there is an eigenvalue μk such that |μk | > 1, then the 2s-periodic solution z(x, t) of

problem (2.1), (2.3) is unstable.

Proof Assertion 1 follows from Lemma 4.7 below. It is known [16] that, under assump-
tions of items 2 and 3, a fixed point is, respectively, stable or unstable. By Theorem 4.4 and
Lemma 4.6, this fact implies assertions 2 and 3. ��
Corollary 4.1 Let Conditions 4.1 and 4.2 hold. Then, for all sufficiently small β − α > 0,
there exists a 2s-periodic solution z(x, t) of problem (2.1), (2.3) and assertions 1–3 in The-
orem 4.5 are true.

Proof The existence of z(x, t) follows from Theorem 4.3. Moreover, we have shown in the
proof of Theorem 4.3 that Q(s) > 0 for all sufficiently small β − α > 0, provided that Con-
dition 4.1 holds. Thus, the hypothesis of Theorem 4.5 are true. Therefore, the conclusions
are also true. ��
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Now we prove the following auxiliary result, which we have already used in the proof of
Theorem 4.5.

Lemma 4.7 Let Condition 4.2 hold. If Q(s) �= 0, then the eigenvalues μi of A satisfy

N∏
i=1

(μi − 1) = (−1)N m0 K0

Q

N∏
i=1

Ei ,

where Q is defined in (4.14) and Ei in (4.18).

Proof Substituting σ j = m j E j , we have

N∏
i=1

(μi − 1) = |A − I| =
N∏

i=1

Ei · |B|,

where

B =

⎛
⎜⎜⎜⎜⎝

S1m1 − 1 S1m2 S1m3 . . . S1m N

S2m1 S2m2 − 1 S2m3 . . . S2m N

S3m1 S3m2 S3m3 − 1 . . . S3m N

. . . . . . . . . . . . . . .

SN m1 SN m2 SN m3 . . . SN m N − 1

⎞
⎟⎟⎟⎟⎠

and | · | stands for the determinant of a matrix.
Let us compute the determinant of B:

|B|=m1

∣∣∣∣∣∣∣∣∣∣

S1 S1m2 S1m3 . . . S1m N

S2 S2m2 − 1 S2m3 . . . S2m N

S3 S3m2 S3m3 − 1 . . . S3m N

. . . . . . . . . . . . . . .

SN SN m2 SN m3 . . . SN m N − 1

∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣

S2m2 − 1 S2m3 . . . S2m N

S3m2 S3m3 − 1 . . . S3m N

. . . . . . . . . . . .

SN m2 SN m3 . . . SN m N − 1

∣∣∣∣∣∣∣∣
.

To find the determinant of the first matrix, we multiply its first column by m j and subtract it
from the j th column for all j = 2, . . . , N . As a result, we have

|B| = (−1)N−1S1m1 −

∣∣∣∣∣∣∣∣

S2m2 − 1 S2m3 . . . S2m N

S3m2 S3m3 − 1 . . . S3m N

. . . . . . . . . . . .

SN m2 SN m3 . . . SN m N − 1

∣∣∣∣∣∣∣∣
.

Similarly decomposing the second determinant, we obtain (after finitely many steps)

|B| = (−1)N−1(S1m1 + · · · + SN m N − 1) = (−1)N m0 K0

Q
.

��
Remark 4.7 Let us discuss modifications needed in the case of infinite set J in Condition 4.2.
The construction of the maps �α,�β,� is quite similar and the modifications are obvious.
The conclusion of Theorem 4.4 with the modified map � remains true.

Formula (4.16) for the Fréchet derivative Dψ�α(ψ) remains the same but the sums
become infinite. Their convergence follows from Remark 2.4. Formally, the linear operator
Dψ�α(ψ) can be represented as the matrix A (see (4.17)), which now becomes infinite-
dimensional.

123



956 J Dyn Diff Equat (2011) 23:923–960

It is proved in [14] that the operators�α,�β,� are compact. Therefore, the same is true
for their Fréchet derivatives. In particular, this means that the spectrum of Dψ�α(ψ) consists
of no more than countably many eigenvalues, which may accumulate only at the origin. Thus,
assertions 2 and 3 in Theorem 4.5 remain true (possibly with N = ∞ in assertion 2).

4.4 Corollaries

In this subsection, we assume that Condition 4.1 holds and that β−α > 0 and s > 0 are suf-
ficiently small. Then Q(s) > 0 and a 2s-periodic solution z(x, t) exists. Using Theorem 4.5,
we provide some explicit conditions of its stability or instability. Moreover, we will show
that a periodic solution may have a saddle structure.

The case N = 0 is trivial (see Remark 4.5), so we begin with the case N = 1.

Corollary 4.2 Let Condition 4.2 hold with N = 1. Then, for any β − α > 0, there exists
a unique periodic solution z(x, t) of problem (2.1), (2.3). The solution z(x, t) is uniformly
exponentially stable.

Proof

1. By using the explicit formulas (Rermark 2.6) for the trajectories, we see that, for any
trajectory v(x, t), the function v̂(t) either increases for all t > 0 or first decreases and
than increases. In particular, this implies that dv/dt > 0 at the first switching moment.

2. One can directly verify that the first characteristic function

F(s) := m0 K0s + 2m1
K1

λ1
· 1 − e−λ1s

1 + e−λ1s

satisfies one of the two conditions:

(a) F(s) > 0 and increases for all s > 0, or
(b) there is s∗ > 0 such that F(s) < 0 for 0 < s < s∗ and F(s) > 0 and increases for

all s > s∗.

In both cases, the equation F(s) = β − α has exactly one positive root s1.
3. Due to the observation in part 1 of the proof, the second characteristic function

H(t, s) := m0k0(t − s)+ 2m1
K1

λ1
· e−λ1s − e−λ1t

1 + e−λ1s
= 0

satisfies the inequality H(t, s1) < 0 for all t < s1. Therefore, by Theorem 4.1, there is a
unique 2s1 periodic solution of problem (2.1), (2.3).

3. To prove its stability, we note that the matrix A consists of one element μ1. It satisfies
(due to Lemma 4.7 or by direct computation)

μ1 = 1 − E1 + S1σ1 = 1 − (1 − e−λ1s1)
m0 K0

Q
,

where Q > 0 due to (4.15) and the observation in part 1 of the proof. If we show that
μ1 ∈ (−1, 1), then the stability result will follow from Theorem 4.5.
Clearly, μ1 �= 1 for s1 > 0. One can also show that μ1 �= −1 for s1 > 0. To do so,
one can check for example that the equation μ1 = −1 uniquely determines m1 K1 as a
function of the other parameters. Then substituting it into the formula for F(s1) yields
the contradiction F(s1) < 0.
Since μ1 �= ±1, μ1 ∈ (−1, 1) for sufficiently large s1, and μ1 continuously depends on
s1, it follows that μ1 ∈ (−1, 1) for any s1. ��
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Now we consider the case N = 2.

Corollary 4.3 Let Condition 4.2 hold with N = 2, and let

M = m0 K0 + m1 K1 + m2 K2 > 0. (4.19)

Then, for all sufficiently small β − α > 0, there exists a 2s-periodic solution z(x, t) of
problem (2.1), (2.3) uniquely determined by Theorem 4.3. If

(M − m1 K1)λ1 + (M − m2 K2)λ2 < 0, (4.20)

then |μ1|, |μ2| > 1 and z(x, t) is unstable for all sufficiently small β − α > 0. If

(M − m1 K1)λ1 + (M − m2 K2)λ2 > 0, (4.21)

then |μ1|, |μ2| < 1 and z(x, t) is exponentially stable for all sufficiently small β − α > 0.

Proof

1. The matrix A is a (2 × 2)-matrix. Therefore, it has two eigenvalues μ1 and μ2, which
are either both real or complex conjugate. Denote δ = δ1,2 = μ1,2 − 1. Clearly, δ1,2 are
the eigenvalues of A − I; hence, they are the roots of the quadratic equation

δ2 − tr (A − I)δ + |A − I| = 0. (4.22)

Let us compute tr (A − I) and |A − I|. Due to (4.17) and (4.18),

tr (A − I) = E1

(
−1 + m1 K1 Q1

Q

)
+ E2

(
−1 + m2 K2 Q2

Q

)
.

On the other hand, formulas (4.18) and (4.14) imply that E j = λ j s + O(s2), and
Q j (s) = 1 + O(s), and Q(s) = M + O(s). Therefore,

tr (A − I) = s(λ1 + O(s))

(
−1 + m1 K1

M
+ O(s)

)
+ s(λ2 + O(s))

×
(

−1 + m2 K2

M
+ O(s)

)
= −(Ls + O(s2)), (4.23)

where

L = M−1((M − m1 K1)λ1 + (M − m2 K2)λ2).

Further, by Lemma 4.7,

|A − I| = E1 E2
m0 K0

Q
= s2(λ1 + O(s))(λ2 + O(s))

(
m0 K0

M
+ O(s)

)

= J 2s2 + O(s3), (4.24)

where

J 2 = λ1λ2
m0 K0

M
.

It follows from (4.23) and (4.24) that Eq. 4.22 is equivalent to the following:

δ2 + (Ls + O(s2))δ + J 2s2 + O(s3) = 0.

Thus,

μ1,2 = 1 − Ls

2
± s

√
L2 − 4J 2 + O(s)

2
+ O(s2).
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2. If inequality (4.20) holds, then L < 0 and Reμ1,2 > 1 for all small s > 0.
Assume that inequality (4.21) holds, i.e., L > 0. If L2 − 4J 2 + O(s) ≥ 0, then the
eigenvalues μ1,2 are real and belong to the interval (0, 1). If L2 − 4J 2 + O(s) < 0, then
μ1,2 are complex conjugate and

(Reμ1)
2 + (Imμ1)

2 = 1 − Ls + O(s2) < 1,

i.e., |μ1,2| < 1. ��
Example 4.2 Consider the problem described in Example 4.1.

Let m0 > 0,m1 = m2 > 0, and m3 = m4 = · · · = 0. Then condition (4.19) holds.
Therefore, condition (4.20), which implies the instability of the periodic solution for small
s, takes the form

m0

m1
<

√
2
λ2 − λ1

λ2 + λ1
= 3

√
2

5
,

while condition (4.21), which implies the uniform exponential stability of the periodic solu-
tion for small s, takes the form

m0

m1
>

√
2
λ2 − λ1

λ2 + λ1
= 3

√
2

5
.

Finally, we show that periodic solutions can be unstable for N ≥ 3. Moreover, if N is
odd, they may have a saddle structure.

Corollary 4.4 Let Condition 4.2 hold with N ≥ 3, and let

M =
N∑

j=0

m j K j > 0. (4.25)

Then, for all sufficiently small β − α > 0, there exists a 2s-periodic solution z(x, t) of
problem (2.1), (2.3) uniquely determined by Theorem 4.3. If

N∑
j=1

(M − m j K j )λ j < 0, (4.26)

then z(x, t) is unstable.
If we additionally assume that N is odd, then there is an eigenvalue of Dψ�(z(0)) with

real part greater than 1 and a real eigenvalue in the interval (0, 1).

Proof

1. The matrix A is an (N × N )-matrix. Due to (4.17), (4.18), and (4.26),

N∑
j=1

μ j = tr A = N +
N∑

j=1

(S j m j − 1)E j

= N − M−1
N∑

j=1

(M − m j K j )λ j s + O(s2) > N

for sufficiently small s > 0. Therefore, the real part of at least one eigenvalue is greater
than 1. By Theorem 4.5, this implies the instability of z(x, t).
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2. Now we additionally assume that N is odd. By Lemma 4.7,

N∏
j=1

(μ j − 1) < 0.

Since N is odd, the set of eigenvalues of A consists of an odd number of real eigenvalues
μ1, . . . , μL (1 ≤ L ≤ N ) and (N − L)/2 pairs of complex conjugate eigenvalues.
Therefore,

L∏
j=1

(μ j − 1) < 0.

Hence, there is at least one eigenvalue, e.g., μ1, which is real and is less than 1. Taking
into account thatμ j (0) = 1 andμ j (s) continuously depend on s, we see thatμ1 ∈ (0, 1).
Applying Lemma 4.6, we complete the proof. ��
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