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Abstract We follow a functional analytic approach to study the problem of chaotic behav-
iour in time-perturbed discontinuous systems whose unperturbed part has a piecewise C1

homoclinic solution that crosses transversally the discontinuity manifold. We show that if a
certain Melnikov function has a simple zero at some point, then the system has solutions that
behave chaotically. Application of this result to quasi periodic systems are also given.
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1 Introduction

One of fascinating phenomenon which may occur in nonlinear dynamical systems (NDSs) is
the existence of chaotic orbits with the consequent sensitive dependence of orbits on initial
conditions. Then of course it is rather difficult to predict asymptotic behaviour of orbits in the
future for such NDSs. Such a chaotic behaviour of solutions can be explained mathematically
by showing the existence of transversal homoclinic point of the time map of NDS with the
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corresponding invariant Smale horseshoe set. This chaos theory is well known [12,26] for
smooth NDSs. In general, however, it is not easy to show the existence of a transversal homo-
clinic point for a general NDSs. To this end the perturbation approach is a powerful method,
which is by now known as the Melnikov method for the persistence/bifurcation of either
periodics or homoclinics/heteroclinics [5,11,12,22,26]. Thus, bifurcation from homoclinic
orbits in perturbed smooth differential equations is well developed for hyperbolic equilibria.

On the other hand, non-smooth/discontinuous differential equations, i.e. equations where
the vector field is only piecewise smooth, occur in various situations as, for example, in
mechanical systems with dry frictions or with impacts. They also appear in control the-
ory, electronics, economics, medicine and biology (see [6,7,15–17] for more references).
Recently several papers appeared to extend the theory of chaos to differential equations with
piecewise smooth right-hand sides. To handle this kind of problem one has to face with the
new problem that stable and unstable manifolds may only be Lipschitz in the state variable
(even if they are possibly smooth with respect to parameters). So it is not clear what the
notion of transverse intersection of invariant manifolds would be.

Planar discontinuous differential equations are investigated in [1,14–16] using geometric,
analytic and numeric approaches. Piecewise linear three dimensional discontinuous differ-
ential equations are investigated in [4,20] where the reader can find more details. Weakly
discontinuous systems are studied in [10]. In [4] bifurcations of bounded solutions from
homoclinic orbits is investigated for time perturbed discontinuous differential equations in
any finite dimensional space. We anticipated that under the conditions of [4] not only the
existence of bounded solutions on R, but also chaotic solutions could occur. The purpose of
this paper is to justify this conjecture about the existence of chaotic solutions.

The plan of our paper is as follows. In Sect. 2, we introduce the problem together with
basic assumptions and state our main result (Theorem 2.2). The preparatory Sects. 3 and 4
deal with local analysis of dynamics close to homoclinic solutions of the unperturbed dis-
continuous differential equations. Basically Propositions 3.6, 3.8, 4.1 state that the piecewise
C1-smooth homoclinic orbit of the unperturbed equation is approximated/shadowed by a
family {zm(t)},m ∈ Z, of piecewise C1-smooth solutions of the perturbed equation with
small jumps at the discontinuity surface. A bifurcation function is then derived in the Sect. 5
by solving, essentially with the help of the Lyapunov–Schmidt method, the system obtained
by equating to zero all these jumps and those of two consecutive functions near the fixed
point to which the homoclinic solution is asymptotic. To apply Lyapunov–Schmidt method
we need to show few smoothness properties of the functions defining this system. However,
since the proof of these properties is quite technical, we decided to postpone it in Appendix A.

We obtain then the result that if the perturbed system satisfies some kind of recurrence
condition (cf. (2.6)), the existence of a simple zero of a certain Melnikov-like function guar-
antees existence of a continuous, piecewise C1-smooth solutions of the perturbed system
shadowed by the homoclinic orbit (see Theorem 2.2). Using the results of Sect. 5, chaos is
derived in Sect. 6 for general perturbations with applications to almost periodic, quasiperiodic
and periodic cases. Piecewise linear three dimensional discontinuous differential equations
motivated by [4,20] with quasiperiodic perturbations are finally studied in Sect. 7.

2 Setting of the Problem

Let � ⊂ R
n be a bounded open set in R

n and G(z) be a Cr -function on �̄, with r ≥ 2. We
set �± = {z ∈ � | ±G(z) > 0},�0 := {z ∈ � | G(z) = 0}. Let f±(z) ∈ Cr

b(�̄±) and
g ∈ Cr

b(R × �̄ × R), i.e. f± and g have uniformly bounded derivatives up to the r th order
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Fig. 1 The homoclinic cycle γ (t) of ẋ = f±(x) to equilibrium x = 0

on �̄± and R × �̄ × R, respectively. We also assume that the r th order derivatives of f±
and g are uniformly continuous. Let ε0 ∈ (0, 1). Throughout this paper ε will denote a real
parameter such that |ε| ≤ ε0. In particular ε is bounded.

Remark 2.1 For technical purposes, we Cr
b-smoothly extend f± on R

n, g on R
n+2 and γ±, γ0

on R in such a way that

sup{| f±(z)| | z ∈ R
n} ≤ 2 sup{| f±(z)| | z ∈ �̄±},

sup{|g(t, z, ε)| | (t, z, ε) ∈ R
n+2} ≤ 2 sup{|g(t, z, ε)| | t ∈ R, z ∈ �̄, |ε| ≤ ε0}.

We also assume that up to the r th order all the derivatives of the extended f± and g are
uniformly continuous and continue to keep the same notations for extended mappings and
functions.

We say that a function z(t) is a solution of the equation

ż = f±(z)+ εg(t, z, ε), z ∈ �̄±, (2.1)

if it is continuous, piecewise C1, satisfies Eq. (2.1) on�± and, moreover, the following holds:
if for some t0 we have z(t0) ∈ �0, then there exists r > 0 such that for any t ∈ (t0 −r, t0 +r)
with t �= t0, we have z(t) ∈ �− ∪�+. Moreover, if, for example z(t) ∈ �− for any t ∈ (t0 −
r, t0), then the left derivative of z(t) at t = t0 satisfies: ż(t−0 ) = f−(z(t0))+ εg(t0, z(t0), ε);
similarly, if z(t) ∈ �− for any t ∈ (t0, t0 + r), then ż(t+0 ) = f−(z(t0))+ εg(t0, z(t0), ε). A
similar meaning is assumed when z(t) ∈ �+ for either t ∈ (t0 −r, t0) or t ∈ (t0, t0 +r). Note
that, since z(t) /∈ �0 for t ∈ (t0 − r, t0 + r) \ {t0} we have either z(t) ∈ �− or z(t) ∈ �+
when t ∈ (t0 − r, t0) or t ∈ (t0, t0 + r).

We assume (see Fig. 1)

(H1) for ε = 0 Eq. (2.1) has the hyperbolic equilibrium x = 0 ∈ �− and a continuous
(not necessarily C1) solution γ (t) which is homoclinic to x = 0 and consists of three
branches

γ (t) =
⎧
⎨

⎩

γ−(t) if t ≤ −T̄
γ0(t) if − T̄ ≤ t ≤ T̄
γ+(t) if t ≥ T̄

where γ±(t) ∈ �− for |t | > T̄ , γ0(t) ∈ �+ for |t | < T̄ and

γ−(−T̄ ) = γ0(−T̄ ) ∈ �0, γ+(T̄ ) = γ0(T̄ ) ∈ �0;
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(H2) it results

G ′(γ (−T̄ )) f±(γ (−T̄ )) > 0, and G ′(γ (T̄ )) f±(γ (T̄ )) < 0.

According to (H1) and because of roughness of exponential dichotomies (see [8,22]) the
linear systems ẋ = f ′−(γ−(t))x and ẋ = f ′−(γ+(t))x have exponential dichotomies on
(−∞,−T̄ ] and [T̄ ,∞) respectively, that is projections P± : R

n → R
n and positive numbers

k ≥ 1 and δ > 0 exist such that the following hold:

‖X−(t)P− X−1− (s)‖ ≤ k e−δ(t−s) if s ≤ t ≤ −T̄
‖X−(t)(I − P−)X−1− (s)‖ ≤ k eδ(t−s) if t ≤ s ≤ −T̄
‖X+(t)P+ X−1+ (s)‖ ≤ k e−δ(t−s) if T̄ ≤ s ≤ t
‖X+(t)(I − P+)X−1+ (s)‖ ≤ k eδ(t−s) if T̄ ≤ t ≤ s

(2.2)

where X−(t) and X+(t) are the fundamental matrices of the linear systems ẋ =
f ′−(γ−(t))x, ẋ = f ′−(γ+(t))x , respectively, such that X−(−T̄ ) = X+(T̄ ) = I. Later
in this paper we will need to extend the validity of (2.2) to a larger set of values of s, t . So,
let us take, for example, u(t) = X+(t)(I − P+)X−1+ (s), with T̄ ≤ s ≤ t ≤ s + 2. Then:

u(t) = u(s)+
t∫

s

f ′−(γ+(τ ))u(τ ) dτ

and hence (using also |u(s)| ≤ k, see (2.2))

|u(t)| ≤ k + K−
t∫

s

|u(τ )| dτ

where K− = sup{ f ′−(γ+(t)) | t ≥ T̄ }. From Gronwall Lemma we obtain:

|X+(t)(I − P+)X−1+ (s)| ≤ k eK−(t−s) ≤ k̂ eδ(t−s) if T̄ ≤ s ≤ t ≤ s + 2

where, for example k̂ = k max{1, e2(K−δ)}. By similar arguments we prove that, possibly
replacing k with a larger value:

‖X−(t)P− X−1− (s)‖ ≤ k e−δ(t−s) if s − 2 ≤ s, t ≤ −T̄
‖X−(t)(I − P−)X−1− (s)‖ ≤ k eδ(t−s) if t − 2 ≤ s, t ≤ −T̄
‖X+(t)P+ X−1+ (s)‖ ≤ k e−δ(t−s) if T̄ ≤ s, t ≤ t + 2
‖X+(t)(I − P+)X−1+ (s)‖ ≤ k eδ(t−s) if T̄ ≤ s, t ≤ s + 2.

(2.3)

We now state our third assumption. It is a kind of nondegeneracy condition of the homoclin-
ic orbit γ (t) with respect to ẋ = f±(x), that reduces to the known notion of nondegeneracy
in the smooth case [5,22]. This is discussed in more details in [4, Sect. 3].

Let R0 : R
n → R

n be the projection onto N G ′(γ (T̄ )) along the direction of γ̇0(T̄ ), i.e.

R0w = w − G ′(γ (T̄ ))w
G ′(γ (T̄ ))γ̇0(T̄ )

γ̇0(T̄ )

and X0(t) be the fundamental solution of the linear system ż = f ′+(γ0(t))z,−T̄ ≤ t ≤ T̄ ,
satisfying X0(−T̄ ) = I.

Then let

S ′ = N P− ∩ N G ′(γ (−T̄ )) and S ′′ = RP+ ∩ N G ′(γ (T̄ )).
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Since γ̇−(−T̄ ) /∈ N G ′(γ (−T̄ )), dim N G ′(γ (−T̄ )) = n − 1 and γ̇−(−T̄ ) ∈ N P−, we have
dim[N P− + N G ′(γ (−T̄ ))] = n and hence:

dim S ′ = dim[N P− ∩ N G ′(γ (−T̄ ))]
= dim N P− + dim N G ′(γ (−T̄ ))− n = dim N P− − 1.

Similarly, from γ̇+(T̄ ) /∈ N G ′(γ (T̄ )), γ̇+(T̄ ) ∈ RP+ and dim N G ′(γ (T̄ )) = n − 1, we see
that

dim S ′′ = dim[RP+ ∩ N G ′(γ (T̄ ))]
= dim RP+ + dim N G ′(γ (T̄ ))− n = dim RP+ − 1.

We assume the following condition holds:

(H3) S ′′ + R0[X0(T̄ )S ′] has codimension 1 in RR0.

According to [4, Lemma 2.11] the linear subspaces S ′′ and S ′′′ = R0[X0(T̄ )S ′] intersect
transversally in RR0. Moreover, we have dim S ′′′ = dim S ′ and a unitary vector ψ ∈ RR0

exists such that

R
n = span {ψ} ⊕ N R0 ⊕ S ′′ ⊕ S ′′′ (2.4)

and

〈ψ, v〉 = 0, for any v ∈ S ′′ ⊕ S ′′′. (2.5)

The main result of this paper is the following:

Theorem 2.2 Assume that f±(z) and g(t, z, ε) are C2-functions with bounded derivatives
and that their second order derivatives are uniformly continuous. Let conditions (H1), (H2)
and (H3) hold. Then there exists a C2-function M(α) of the real variable α such that if
M(α0) = 0 and M′(α0) �= 0 for some α0 ∈ R, then the following holds: there exists
c̃1 > 0, ρ > 0 and ε̃ > 0 such that for any 0 �= ε ∈ (−̃ε, ε̃), there exists νε ∈ (0, |ε|) (cf.
(5.41)) such that for any increasing sequence T = {Tm}m∈Z that satisfies

Tm+1 − Tm > T̄ + 1 − 2δ−1 ln |ε| f or any m ∈ Z

along with the following recurrence condition

|g(t + T2m, z, 0)− g(t, z, 0)| < νε for any (t, z,m) ∈ R
n+1 × Z, (2.6)

there exist unique sequences α̂ = {α̂m}m∈Z, β̂ = {β̂m}m∈Z ∈ �∞(R) (depending on T and
ε, i.e. α̂ = α̂T (ε), β̂ = β̂T (ε)) such that sup

m∈Z

|α̂m − α0| < c̃1|ε|, sup
m∈Z

|β̂m − α0| < c̃1|ε| and

a unique solution z(t, T , ε) of Eq. (2.1) satisfying

sup
t∈[T2m−1+β̂m−1,T2m−T̄ +hatαm ]

|z(t)− γ−(t − T2m − α̂m)| < ρ

sup
t∈[T2m−T̄ +α̂m ,T2m+T̄ +β̂m ]

|z(t)− γ0(t − T2m − α̂m)| < ρ (2.7)

sup
t∈[T2m+T̄ +β̂m ,T2m+1+β̂m ]

|z(t)− γ+(t − T2m − β̂m)| < ρ.

We conclude this section with a remark on the projections of the dichotomies of the
systems ẋ = f ′(γ±(t))x on [T̄ ,∞) and (−∞,−T̄ ]. Let us set

P±(t) = X±(±t)P± X−1± (±t) (2.8)
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and let P0 be the projection of the dichotomy of the linear system ẋ = f ′(0)x on R. We have
(see [22])

lim
t→∞ ‖P±(t)− P0‖ = 0.

Thus T > T̄ exists such that:

N P+(t ′)⊕ RP−(t ′′) = R
n for any t ′, t ′′ ≥ T . (2.9)

We prove that a positive constant c̃ exists such that

max {|x+|, |x−|} ≤ c̃|x+ + x−| ∀(x+, x−) ∈ N P+(t ′)× RP−(t ′′). (2.10)

Since it is clear that |x++x−| ≤ 2 max {|x+|, |x−|} we get, then, that the two norms |x++x−|
and max{|x+|, |x−|} are equivalent.

To prove the statement (2.10) take 0 < υ < 1/2 and fix T > T̄ such that for any
t ′, t ′′ ≥ T > T̄ we have

‖P0 − P+(t ′)‖ ≤ υ, ‖P0 − P−(t ′′)‖ ≤ υ.

Next consider a linear mapping Aυ : R
n �→ R

n given by

Aυ z := (I − P+(t ′))z + P−(t ′′)z.

Note

Aυ z := z − [
(P+(t ′)− P0)+ (P0 − P−(t ′′)

]
z.

Since ‖(P+(t ′)− P0)+ (P0 − P−(t ′′)‖ ≤ 2υ < 1, Aυ is invertible and

‖Aυ‖ ≤ 1 + 2υ, ‖A−1
υ ‖ ≤ 1/(1 − 2υ).

So for any x ∈ R
n there is a unique z ∈ R

n such that

x = Aυ z = x+ + x−

where

x+ = (I − P+(t ′))z ∈ N P+(t ′) and x− = P−(t ′′)z ∈ RP−(t ′′).

Then

|x+| ≤ ‖I − P+(t ′)‖|z| ≤ ‖I − P+(t ′)‖‖A−1
υ ‖|x | ≤ ‖I − P0‖ + υ

1 − 2υ
|x |,

|x−| ≤ ‖P−(t ′′)‖|z| ≤ ‖P−(t ′′)‖‖A−1
υ ‖|x | ≤ ‖P0‖ + υ

1 − 2υ
|x |.

This proves (2.10) with, for example,

c̃ = max {‖I − P0‖ + υ, ‖P0‖ + υ‖}
1 − 2υ

≤ 1 + ‖P0‖ + υ

1 − 2υ
≤ 2(1 + ‖P0‖)

for υ ≤ 1+‖P0‖
1+4(1+‖P0‖) <

1
2 .
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3 Orbits Close to the Branches γ±(t)

Let ρ > 0 be a positive, sufficiently small number, α, β ∈ R two real numbers such that
|β − α| < min{1, 2T̄ }, and �∞T (R) be the space of doubly infinity sequences {Tm}m∈Z such
that Tm+1 − Tm ≥ T + 1 where T is chosen so that (2.9) holds. Note that Tm − T0 ≥ mT if
m is positive and Tm − T0 ≤ mT if m is negative.

In this section we show how to construct solutions z−
m(t) and z+

m(t) of (2.1) in the intervals
[T2m−1 + α − 1, T2m − T̄ + α] and [T2m + T̄ + β, T2m+1 + β + 1] respectively, in such a
way that

sup
t∈[T2m−1−1,T2m−T̄ ]

|z−
m(t + α)− γ−(t − T2m)| < ρ

sup
t∈[T2m+T̄ ,T2m+1+1]

|z+
m(t + β)− γ+(t − T2m)| < ρ.

(3.1)

Note T2m−1 + α − 1 < T2m − T̄ + α < T2m + T̄ + β < T2m+1 + β + 1. We show how
to construct z−

m(t) for t ∈ [T2m−1 + α − 1, T2m − T̄ + α], the construction of z+
m(t) for

t ∈ [T2m + T̄ + β, T2m+1 + β + 1] being similar.
Let

I −
m : = [T2m−1 − 1, T2m − T̄ ], I +

m := [T2m + T̄ , T2m+1 + 1],
I −
m,α : = [T2m−1 + α − 1, T2m − T̄ + α], (3.2)

I +
m,β : = [T2m + T̄ + β, T2m+1 + β + 1]

and set, for t ∈ I −
m

x(t) = z−
m(t + α)− γ−(t − T2m)

and

h−
m(t, x, α, ε) = f−(x + γ−(t − T2m))− f−(γ−(t − T2m)) (3.3)

− f ′−(γ−(t − T2m))x + εg(t + α, x + γ−(t − T2m), ε).

Then z−
m(t) satisfies Eq. (2.1) for t ∈ I −

m,α together with (3.1) if and only if x(t) is a solution,
in I −

m , of the equation

ẋ − f ′−(γ−(t − T2m))x = h−
m(t, x, α, ε), (3.4)

such that supt∈I −
m

|x(t)| < ρ.

Remark 3.1 According to Remark 2.1, we see that up to the r th order all derivatives of
h−

m(t, x, α, ε)with respect to (x, α, ε) are bounded and uniformly continuous in (x, α, ε) uni-
formly with respect to t ∈ I −

m and m ∈ Z. This statement easily follows from the fact that, for
t ≤ −T̄ , one has h−

m(t +T2m, x, α, ε) = f−(x +γ−(t))− f−(γ−(t))− f ′−(γ−(t))x +εg(t +
T2m +α, x +γ−(t), ε) and the conclusion holds as far as f (x) and g(t +T2m +α, x +γ−(t), ε)
are concerned.

We will need the following Lemma (see [2,19])

Lemma 3.2 Let the linear system ẋ = A(t)x have an exponential dichotomy on (−∞,−T̄ ]
with projection P, and let X (t) be its fundamental matrix such that X (−T̄ ) = I. Set P(t) :=
X (t)P X−1(t). Then for any continuous function h(t) ∈ C0([−T,−T̄ ]), ξ− ∈ N P and
ϕ− ∈ RP(−T ) the linear non homogeneous system

ẋ = A(t)x + h(t)
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has a unique solution x(t) such that

(I − P)x(−T̄ ) = ξ−
P(−T )x(−T ) = ϕ−

(3.5)

and this solution satisfies

x(t) = X (t)ξ− + X (t)P X−1(−T )ϕ− +
t∫

−T

X (t)P X−1(s)h(s)ds

−
T̄∫

t

X (t)(I − P)X−1(s)h(s)ds. (3.6)

Remark 3.3 From (2.2) and (3.6) we immediately obtain the following estimate for |x(t)|:

sup
−T ≤t≤−T̄

|x(t)| ≤ k

[

|ξ−| + |ϕ−| + 2δ−1 sup
−T ≤t≤−T̄

|h(t)|
]

. (3.7)

We apply Lemma 3.2 and Remark 3.3 with A(t) = f ′−(γ−(t − T2m)) in the interval I −
m

(instead of [−T,−T̄ ]). Note that the fundamental matrix X (t) and the projection P of the
dichotomy on (−∞, T2m − T̄ ] of the linear system ẋ = f ′−(γ−(t − T2m))x are X−(t − T2m)

and P−, respectively. Thus, in the notation of (2.8) and Lemma 3.2 we have

P−,m : = P(T2m−1 − 1) = X−(T2m−1 − T2m − 1)P− X−1− (T2m−1 − T2m − 1)

= P−(T2m − T2m−1 + 1).

Set:

‖x‖I −
m

= sup
t∈I −

m

|x(t)|.

Then a trivial application of Lemma 3.2 and (3.7) gives the following

Corollary 3.4 Let h(t) ∈ C0(I −
m ), ξ− ∈ N P− and ϕ− ∈ RP−,m. Then the linear non

homogeneous system

ẋ = f ′−(γ−(t − T2m))x + h(t)

has a unique solution x(t) ∈ C1(I −
m ) such that

(I − P−)x(T2m − T̄ ) = ξ−
P−,m x(T2m−1 − 1) = ϕ−.

(3.8)

Moreover this solution satisfies (see (3.7))

‖x(t)‖I −
m

≤ k
[
|ξ−| + |ϕ−| + 2δ−1‖h(t)‖I −

m

]
(3.9)
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and

x(t) = X−(t − T2m)ξ− + X−(t − T2m)P− X−1− (T2m−1 − 1 − T2m)ϕ−

+
t∫

T2m−1−1

X−(t − T2m)P− X−1− (s − T2m)h(s)ds

−
T2m−T̄∫

t

X−(t − T2m)(I − P−)X−1− (s − T2m)h(s)ds. (3.10)

Using Corollary 3.4 we define a map from C0(I −
m )× N P− × RP−,m × R

2 into C0(I −
m )

as

(x(t), ξ−, ϕ−, α, ε) �→ x̂(t) (3.11)

where y(t) = x̂(t) is the unique solution given by Corollary 3.4 of the equation

ẏ(t)− f ′−(γ−(t − T2m))y(t) = h−
m(t, x(t), α, ε)

that satisfies conditions (3.8). We observe that the map

(x(t), α, ε) �→ h−
m(t, x(t), α, ε)

is a Cr map from C0(I −
m )× R

2 into C0(I −
m ) (see [9]) and hence, from (3.10) we see that so

is the map (3.11) from C0(I −
m )× N P− × RP−,m × R

2 into C0(I −
m ).

Next, from (3.3) we obtain immediately:

‖h−
m(·, x, α, ε)‖ ≤ �−(|x |)|x | + N |ε| (3.12)

where

�−(r) = sup
{∣
∣ f ′−(x + γ−(t))− f ′−(γ−(t))

∣
∣ | t ≤ −T̄ , |x | ≤ r

}

is an increasing function such that �−(0) = 0 and

N = sup
{|g(t, z, ε)| | (t, z, ε) ∈ R

n+2}

and hence, using (3.9) we get:

‖x̂‖I −
m

≤ k
[
|ξ−| + |ϕ−| + 2δ−1�−(‖x‖I −

m
)‖x‖I −

m
+ 2δ−1 N |ε|

]
. (3.13)

Similarly, for fixed (ξ−, ϕ−, α, ε) ∈ N P− ×RP−,m ×R
2 and x1(t), x2(t) ∈ C0(I −

m )we see
that

‖x̂2 − x̂1‖I −
m

≤ 2kδ−1 [�−(r̄)+ N ′|ε|] ‖x2 − x1‖I −
m
, (3.14)

where r̄ = max{‖x1‖I −
m
, ‖x2‖I −

m
} and

N ′ = sup

{∣
∣
∣
∣
∂g

∂x
(t, z, ε)

∣
∣
∣
∣ | (t, z, ε) ∈ R

n+2
}

.

Thus if ρ > 0, |ξ−|, |ϕ−| and |ε| are sufficiently small, the map (3.11) is a Cr -contraction
in the ball of center x(t) = 0 and radius ρ in C0(I −

m ), which is uniform with respect to the
other parameters (ξ−, ϕ−, α, ε) and m ∈ Z.

Hence we obtain the following
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Proposition 3.5 Assume that conditions (H1), (H2) hold and let (ξ−, ϕ−, α, ε) ∈ N P− ×
RP−,m × R

2 and ρ > 0 be such that 2k
[|ξ−| + |ϕ−| + 2δ−1 N |ε|] ≤ ρ and 4kδ−1

[
�−(ρ)+ N ′|ε|] < 1. Then, for t ∈ I −

m , Eq. (3.4) has a unique bounded solution
x−

m (t) = x−
m (t, ξ−, ϕ−, α, ε) which is Cr in the parameters (ξ−, ϕ−, α, ε) and m ∈ Z,

and satisfies

‖x−
m (·, ξ−, ϕ−, α, ε)‖I −

m
≤ 2k

[|ξ−| + |ϕ−| + 2δ−1 N |ε|] ≤ ρ (3.15)

together with

(I − P−)x−
m (T2m − T̄ ) = ξ−, P−,m x−

m (T2m−1 − 1) = ϕ−.

Moreover the derivatives of x−
m (t, ξ−, ϕ−, α, ε) with respect to (ξ−, ϕ−, α, ε) are also

bounded in I −
m uniformly with respect to (ξ−, ϕ−, α, ε) and m ∈ Z and they are uniformly

continuous in (ξ−, ϕ−, α, ε) uniformly with respect to m and t ∈ I −
m .

Proof Only the last part of the statement needs to be proved. We know that x−
m (t, ξ−, ϕ−, α, ε)

is the unique fixed point of the map given by the right hand side of Eq. (3.10) with
h−

m(t, x(t), α, ε) instead of h(t). Since ξ− ∈ N P− we have |X−(t − T2m)ξ−| = |X−(t −
T2m)(I − P−)X−(−T̄ )ξ−| ≤ k eδ(t−T2m−T̄ )|ξ−| ≤ k|ξ−| for any t ∈ I −

m . A similar argument
shows that |X−(t − T2m)P− X−1− (T2m−1 − 1 − T2m)ϕ−| ≤ k|ϕ−| for any t ∈ I −

m . As a
consequence the right hand side of (3.10) consists of a bounded linear map in (ξ−, ϕ−), with
bound independent of m ∈ Z, and the nonlinear map from C0

b (I
−
m )× R × R:

(x(·), α, ε) �→
t∫

T2m−1−1

X−(t − T2m)P− X−1− (s − T2m)h
−
m(s, x(s), α, ε)ds

−
T2m−T̄∫

t

X−(t − T2m)(I − P−)X−1− (s − T2m)h
−
m(s, x(s), α, ε)ds

whose derivatives up to the r th order are bounded and uniformly continuous in (x, α, ε)
uniformly with respect to m because of the properties of h−

m(t, x, α, ε) (see Remark 3.1) and
(2.2). The proof is complete. ��

We are now ready to prove the main result of this section:

Proposition 3.6 Assume that conditions (H1), (H2) hold and let (ξ−, ϕ−, α, ε) ∈ N P− ×
RP−,m × R

2 and ρ > 0 be such that 2k
[|ξ−| + |ϕ−| + 2δ−1 N |ε|] ≤ ρ and 4kδ−1

[
�−(ρ)+ N ′|ε|] < 1. Then, for t ∈ I −

m,α , Eq. ż = f−(z) + εg(t, z, ε) has a unique
bounded solution z−

m(t) = z−
m(t, ξ−, ϕ−, α, ε) which is Cr in the parameters (ξ−, ϕ−, α, ε)

and satisfies

‖z−
m(· + α, ξ−, ϕ−, α, ε)− γ−(· − T2m)‖I −

m
≤ 2k

[|ξ−| + |ϕ−| + 2δ−1 N |ε|] ≤ ρ

(3.16)

together with

(I − P−)[z−
m(T2m − T̄ + α)− γ−(−T̄ )] = ξ−,

P−,m[z−
m(T2m−1 + α − 1)− γ−(T2m−1 − T2m − 1)] = ϕ−.

Moreover x−
m (t) := z−

m(t + α, ξ−, ϕ−, α, ε) − γ−(t − T2m) is the unique fixed point of the
map (3.10) and z−

m(t, ξ−, ϕ−, α, ε) and its derivatives with respect to (ξ−, ϕ−, α, ε) are also
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bounded in I −
m uniformly with respect to (ξ−, ϕ−, α, ε) and m ∈ Z, uniformly continuous in

(ξ−, ϕ−, α, ε) uniformly with respect to (t,m) with t ∈ I −
m ,m ∈ Z and satisfy:

∂z−
m

∂ξ−
(t + α, 0, 0, α, 0) = X−(t − T2m)(I − P−)

∂z−
m

∂ϕ−
(t + α, 0, 0, α, 0)ϕ− = X−(t − T2m)P− X−1− (T2m−1 − T2m − 1)ϕ−

∂z−
m

∂ε
(t + α, 0, 0, α, 0) =

t∫

T2m−1−1

X−(t − T2m)P− X−1− (s − T2m)

g(s + α, γ−(s − T2m), 0)ds

−
T2m−T̄∫

t

X−(t − T2m) (I − P−) X−1− (s − T2m)

g(s + α, γ−(s − T2m), 0)ds. (3.17)

Proof Setting x(t) := z−
m(t +α)−γ−(t −T2m) the existence of z−

m(t, ξ−, ϕ−, α, ε) satisfying
(3.16) follows from Proposition 3.5. Thus we only need to prove (3.17).

From (3.13) we see that x−
m (t, 0, 0, α, 0) = 0 and then differentiating equation (3.10)

with x−
m (t, ξ−, ϕ−, α, ε) instead of x(t) and h−

m(t, x−
m (t, ξ−, ϕ−, α, ε), α, ε) instead of h(t)

we see that

∂z−
m

∂ξ−
(t + α, 0, 0, α, 0)ξ− = ∂x−

m

∂ξ−
(t, 0, 0, α, 0)ξ− = X−(t − T2m)ξ−.

Similarly we obtain the rest of (3.17). ��
Remark 3.7 The function z−

m(t) = z−
m(t, ξ−, ϕ−, α, ε) is a bounded solution of Eq. (2.1) in

the interval I −
m,α as long as it remains in �− for t ∈ I −

m,α , and satisfies (3.16). However in
order that z−

m(t) ∈ �− for t ∈ I −
m,α it is sufficient that G(z−

m(T2m − T̄ + α)) = 0 (see [4, p.
345] for details).

Next, let

�+(r) : = sup
{∣
∣ f ′−(x + γ+(t))− f ′−(γ+(t))

∣
∣ | T̄ ≤ t, |x | ≤ r

}
,

P+,m : = P+(T2m+1 − T2m + 1)

= X+(T2m+1 − T2m + 1)P+ X+(T2m+1 − T2m + 1)−1, (3.18)

h+
m(t, x, β, ε) = f−(x + γ+(t − T2m))− f−(γ+(t − T2m))

− f ′−(γ+(t − T2m))x + εg(t + β, x + γ+(t − T2m), ε).

By an almost identical argument we show the following

Proposition 3.8 Assume that conditions (H1), (H2) hold and let (ξ+, ϕ+, β, ε) ∈ RP+ ×
N P+,m × R

2 and ρ > 0 be such that 2k
[|ξ+| + |ϕ+| + 2δ−1 N |ε|] ≤ ρ and 4kδ−1

[
�+(ρ)+ N ′|ε|] < 1. Then, for t ∈ I +

m,β , equation ż = f+(z) + εg(t, z, ε) has a unique

bounded solution z+
m(t) = z+

m(t, ξ+, ϕ+, β, ε) which is Cr in the parameters (ξ+, ϕ+, β, ε)
and satisfies

‖z+
m(· + β, ξ+, ϕ+, β, ε)− γ+(· − T2m)‖I +

m
≤ 2k

[|ξ+| + |ϕ+| + 2δ−1 N |ε|] ≤ ρ (3.19)
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together with

P+[z+
m(T2m + T̄ + β)− γ+(T̄ )] = ξ+,

(I − P+,m)[z+
m(T2m+1 + β + 1)− γ+(T2m+1 − T2m + 1)] = ϕ+.

Moreover x+
m (t) := z+

m(t + β, ξ+, ϕ+, β, ε) − γ+(t − T2m) is the unique fixed point of the
map

(x(t), ξ+, ϕ+, β, ε) �→ X+(t − T2m)ξ+
+X+(t − T2m) (I − P+) X−1+ (T2m+1 − T2m + 1)ϕ+

+
t∫

T2m+T̄

X+(t − T2m)P+ X−1+ (s − T2m)h
+
m(s, x(s), β, ε)ds

−
T2m+1+1∫

t

X+(t − T2m) (I − P+) X−1+ (s − T2m)h
+
m(s, x(s), β, ε)ds,

(3.20)

and z+
m(t, ξ+, ϕ+, β, ε) and its derivatives with respect to (ξ+, ϕ+, β, ε) are also bounded

in I +
m uniformly with respect to (ξ+, ϕ+, β, ε) and m ∈ Z, uniformly continuous in

(ξ+, ϕ+, β, ε) uniformly with respect to (t,m) with t ∈ I +
m ,m ∈ Z and satisfy:

∂z+
m

∂ξ+
(t + β, 0, 0, β, 0) = X+(t − T2m)P+

∂z+
m

∂ϕ+
(t + β, 0, 0, β, 0)ϕ+ = X+(t − T2m)(I − P+)X−1+ (T2m+1 − T2m + 1)ϕ+

∂z+
m

∂ε
(t + β, 0, 0, β, 0) =

t∫

T2m+T̄

X+(t − T2m)P+ X−1+ (s − T2m)

g(s + β, γ+(s − T2m), 0)ds

−
T2m+1+1∫

t

X+(t − T2m)(I − P+)X−1+ (s − T2m)

g(s + β, γ+(s − T2m), 0)ds. (3.21)

Remark 3.9 Note that z−
m(t, ξ−, ϕ−, α, ε) (resp. z+

m(t, ξ+, ϕ+, α, ε)) depends on m by means
of T2m−1 and T2m (resp. T2m and T2m+1). Thus we may also write x−(t, ξ−, ϕ−, α, ε, T2m,

T2m−1), x+(t, ξ+, ϕ+, α, ε, T2m, T2m+1) instead of x−
m (t, ξ−, ϕ−, α, ε), x+

m (t, ξ+, ϕ+, α, ε)
and say that x−(t, ξ−, ϕ−, α, ε, T2m, T2m−1), resp. x+(t, ξ+, ϕ+, α, ε, T2m, T2m+1), is uni-
formly continuous with respect to (ξ−, ϕ−, α, ε), resp. (ξ+, ϕ+, β, ε), uniformly with respect
to T2m, T2m−1, resp. T2m, T2m+1, and t ∈ I −

m , (resp. t ∈ I +
m ).

4 Orbits Close to the Branch γ0(t)

As in [4, Proposition 2.9] we can prove the following.
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Proposition 4.1 Assume that conditions (H1), (H2) hold. Then there exist positive constants
c, ε0 and ρ̃0 such that for anyα, β, ε ∈ R and ξ̄ ∈ R

n such that |β−α| < min{1, 2T̄ }, |ε| ≤ ε0

and |ξ̄ − γ0(−T̄ )| < ρ̃0, there exists a unique solution z0
m(t) = z0

m(t, ξ̄ , α, β, ε) of equation
ż = f+(z)+ εg(t, z, ε), for t ∈ [T2m − T̄ + α, T2m + T̄ + β] such that

z0
m(T2m − T̄ + α) = ξ̄

and

‖z0
m(t)− γ0(t − T2m − α)‖[T2m−T̄ +α,T2m+T̄ +β] ≤ c[|ξ̄ − γ0(−T̄ )| + 2Nδ−1|ε|]. (4.1)

Moreover z0
m(t, ξ̄ , α, β, ε) and its derivatives with respect to (ξ̄ , α, β, ε) are bounded in

[T2m − T̄ + α, T2m + T̄ + β] uniformly with respect to m ∈ Z, uniformly continuous in
(ξ̄ , α, β, ε), uniformly with respect to t ∈ [T2m − T̄ + α, T2m + T̄ + β],m ∈ Z, and have
the following properties:

(i) x0
m(t) = z0

m(t + α, ξ̄ , α, β, ε)− γ0(t − T2m) is a fixed point of the map

x(t) �→ X0(t − T2m)
[
ξ̄ − γ0(−T̄ )

]

+
t∫

T2m−T̄

X0(t − T2m)X
−1
0 (s − T2m)h

0
m(s, x(s), α, ε)ds (4.2)

where

h0
m(t, x, α, ε) = f+(x + γ0(t − T2m))− f+(γ0(t − T2m))− f ′+(γ0(t − T2m))x

+εg(t + α, x + γ0(t − T2m), ε);
(ii) the following equalities hold:

∂z0
m

∂α
(t, γ0(T̄ ), α, β, 0) = −γ̇0(t − T2m − α),

∂z0
m

∂β
(t, γ0(−T̄ ), α, β, 0) = 0

∂z0
m

∂ξ̄
(t, γ0(−T̄ ), α, β, 0) = X0(t − T2m − α) (4.3)

∂z0
m

∂ε
(t + α, γ0(−T̄ ), α, β, 0) =

t∫

T2m−T̄

X0(t − T2m)X
−1
0 (s − T2m)g(s + α,

γ0(s − T2m), 0) ds.

Sketch of the proof The statement concerning the existence of the solution z0
m(t) =

z0
m(t, ξ, α, β, ε) such that (4.1) holds, follows from the continuous dependence on the data.

Moreover the fact that x0
m(t) is a fixed point of the map (4.2) follows from the variation

of constants formula. The boundedness and continuity properties of z0
m(t, ξ, α, β, ε) follow

from the similar properties of h0
m(t, x, α, ε) as in Propositions 3.6, 3.8. Then, because of

uniqueness of fixed points we also get:

z0
m(t, γ0(−T̄ ), α, β, 0) = γ0(t − T2m − α)

from which the first two equalities of point (ii) easily follow. Differentiating (4.2) with respect
to ξ, ε respectively and using the fact that h0

m(t, x, α, 0) is of the second order in x , we derive
the other two equalities in (ii). ��
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Note that if

c[ρ̃0 + 2Nδ−1ε0] < ρ

from (4.1) we obtain:

sup{|z0
m(t + α)− γ0(t − T2m)| | t ∈ [T2m − T̄ , T2m + T̄ + β − α]} < ρ. (4.4)

Remark 4.2 Note that z0
m(t, ξ̄ , α, β, ε)) depends on m by means of T2m . Thus we may also

write z0(t, ξ̄ , α, β, ε, T2m) instead of z0
m(t, ξ̄ , α, β, ε) and say that z0(t, ξ̄ , α, β, ε, T2m) is

uniformly continuous in (ξ̄ , α, β, ε) uniformly with respect to T2m and t ∈ [T2m − T̄ +
α, T2m + T̄ + β].

5 The Bifurcation Equation

Let ε0 > 0, ρ̃0 > 0 and c > 0 be constants as in Proposition 4.1, C := max{c, 2k}, χ < 1
a positive constant that will be specified and fixed later and ρ0 ≤ cρ̃0 be the largest positive
number satisfying

4kδ−1
[

�±(ρ0)+ N ′δ
2NC

ρ0

]

≤ 1.

Next, let 0 < ρ < ρ0 and ερ := min
{
ρδ

2C N , ε0

}
. For any α = {αm}m∈Z ∈ �∞(R) and

ε ∈ (−ερ, ερ) we set

�∞ρ,α,ε : =
{
θ := {

(ϕ−
m , ϕ

+
m , ξ

−
m , ξ

+
m , ξ̄m, βm)

}

m∈Z
∈ �∞(R5n+1) :

(ϕ−
m , ϕ

+
m , ξ

−
m , ξ

+
m , ξ̄m, βm) ∈ RP−,m × N P+,m × N P− × RP+ × R

n+1,

2k
[|ξ±

m | + |ϕ±
m | + 2δ−1 N |ε|] < ρ, c[|ξ̄m − γ0(−T̄ )| + 2Nδ−1|ε|] < ρ,

sup
m∈Z

|αm+1 − βm | < χ

}

and

�∞ρ =
{
(θ, α, ε) ∈ �∞ρ,α,ε × �∞(R)× (−ερ, ερ) : α ∈ �∞χ

}

where

�∞χ =
{

α ∈ �∞(R) : sup
m∈Z

|αm − αm−1| < χ

}

.

Note that, because of the choice of ρ and ερ, �∞ρ,α,ε, �∞ρ and �∞χ are open nonempty subsets
of �∞(RP−,m ×N P+,m ×N P− ×RP+ ×R

n ×R), �∞(RP−,m ×N P+,m ×N P− ×RP+ ×
R

n × R)× �∞(R)× (−ερ, ερ) and �∞(R), respectively. In �∞ρ,α,ε we take the norm

‖θ‖ = ∥
∥
{
(ϕ−

m , ϕ
+
m , ξ

−
m , ξ

+
m , ξ̄m, βm)

}

m∈Z

∥
∥

= sup
m∈Z

max
{|ϕ−

m + ϕ+
m |, |ξ−

m |, |ξ+
m |, |ξ̄m |, |βm |} .

Let T = {Tm}m∈Z be given as in Sect. 3 and take (θ, α, ε) ∈ �∞ρ . In this section we want to
find conditions so that system (2.1) has a solution z(t) defined on R such that for any m ∈ Z

satisfies:
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‖z(t)− γ−(t − T2m − αm)‖ Ĩ −
m
< ρ

‖z(t)− γ0(t − T2m − αm)‖ Ĩ 0
m
< ρ

‖z(t)− γ+(t − T2m − βm)‖ Ĩ +
m
< ρ

where Ĩ −
m = [T2m−1 + αm − 1, T2m − T̄ + αm], I 0

m = [T2m − T̄ + αm, T2m + T̄ + βm] and
Ĩ +
m = [T2m + T̄ + βm, T2m+1 + βm].

We note that for any (θ, α, ε) ∈ �∞ρ assumptions of Propositions 3.6, 3.8 and 4.1 are
satisfied. Indeed we have

4kδ−1 [�±(ρ)+ N ′|ε|] < 4kδ−1 [�±(ρ)+ N ′ερ
]
< 4kδ−1

[

�±(ρ0)+ N ′δ
2NC

ρ0

]

≤ 1

along with |ε| < ε0 and

|ξ̄ − γ0(−T̄ )| < ρ

c
<
ρ0

c
≤ ρ̃0.

So according to the previous sections and because of uniqueness of the solutions
z+

m(t, ξ
+
m , ϕ

+
m , βm, ε), z−

m(t, ξ
−
m , ϕ

−
m , αm, ε) and z0

m(t, ξ̄m, αm, βm, ε)we see that such a solu-
tion can be found if and only if we are able to solve the infinite set of equations (m ∈ Z):
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z+
m(T2m+1 + βm, ξ

+
m , ϕ

+
m , βm, ε)− z−

m+1(T2m+1 + βm, ξ
−
m+1, ϕ

−
m+1, αm+1, ε) = 0

z0
m(T2m − T̄ + αm, ξ̄m, αm, βm, ε)− z−

m(T2m − T̄ + αm, ξ
−
m , ϕ

−
m , αm, ε) = 0

z0
m(T2m + T̄ + βm, ξ̄m, αm, βm, ε)− z+

m(T2m + T̄ + βm, ξ
+
m , ϕ

+
m , βm, ε) = 0

G(z−
m(T2m − T̄ + αm, ξ

−
m , ϕ

−
m , αm, ε)) = 0

G(z0
m(T2m + T̄ + βm, ξ̄m, αm, βm, ε)) = 0

G(z+
m(T2m + T̄ + βm, ξ

+
m , ϕ

+
m , βm, ε)) = 0.

(5.1)

Since T2m+1 + αm+1 − 1 < T2m+1 + βm , system (5.1) is well-posed. Note that, from Prop-
osition 4.1, the second of the above equations reads:

ξ̄m = z−
m(T2m − T̄ + αm, ξ

−
m , ϕ

−
m , αm, ε)

and gives the sequence {ξ̄m}m∈Z in terms of the sequences {ξ−
m }m∈Z, {ϕ−

m }m∈Z, {αm}m∈Z,
and ε. Moreover, if ρ is sufficiently small, z0

m(T2m + T̄ + βm, ξ̄m, αm, βm, ε) is close to
γ0(T̄ + βm − αm), while z+

m(T2m + T̄ + βm, ξ
+
m , ϕ

+
m , βm, ε) is close to γ+(T̄ ) = γ0(T̄ ). So

there is a positive constant χ < min
{
1, 2T̄

}
such that the 5th and the 6th equation in (5.1)

imply that the 3rd equation is equivalent to (see [4, Lemma 2.10])

R0[z0
m(T2m + T̄ + βm, ξ̄m, αm, βm, ε)− z+

m(T2m + T̄ + βm, ξ
+
m , ϕ

+
m , βm, ε)] = 0,

where R0 : R
n → R

n is the projection defined in Sect. 2. From now on, we fix such a χ .
Here we use the fact |βm − αm | < 2χ for any m ∈ Z, so γ0(T̄ + βm − αm) and γ0(T̄ ) are
sufficiently close for χ small enough uniformly for any m ∈ Z.

Let

�∞1 = �∞(Rn × R
n × RR0 × R × R × R)

with the norm

sup
m∈Z

max {|am |, |bm |, |cm |, |dm |, |em |, | fm |}

for {(am, bm, cm, dm, em, fm)}m∈Z ∈ �∞1 .
We define a map

GT ∈ Cr (�∞ρ , �∞1
)
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as

GT (θ, α, ε) = GT ({(ϕ−
m , ϕ

+
m , ξ

−
m , ξ

+
m , ξ̄m, βm)}m∈Z, {αm}m∈Z, ε) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z+
m(T2m+1 + βm, ξ

+
m , ϕ

+
m , βm, ε)− z−

m+1(T2m+1 + βm, ξ
−
m+1, ϕ

−
m+1, αm+1, ε)

ξ̄m − z−
m(T2m − T̄ + αm, ξ

−
m , ϕ

−
m , αm, ε)

R0[z0
m(T2m + T̄ + βm, ξ̄m, αm, βm, ε)− z+

m(T2m + T̄ + βm, ξ
+
m , ϕ

+
m , βm, ε)]

G(z−
m(T2m − T̄ + αm, ξ

−
m , ϕ

−
m , αm, ε))

G(z0
m(T2m + T̄ + βm, ξ̄m, αm, βm, ε))

G(z+
m(T2m + T̄ + βm, ξ

+
m , ϕ

+
m , βm, ε))

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
m∈Z

so that Eq. (5.1) reads

GT (θ, α, ε) = 0. (5.2)

From [9] it follows that GT is Cr and has bounded derivatives. More precisely, from
the continuity properties of the solutions z+

m(t, ξ
+
m , ϕ

+
m , βm, ε), z−

m(t, ξ
−
m , ϕ

−
m , αm, ε), and

z0
m(t, ξ̄m, αm, βm, ε) we see that GT (θ, α, ε) and its derivatives are bounded and uniformly

continuous in (θ, α, ε) uniformly with respect to T ∈ �∞T (R).
We also need to introduce further maps. For α ∈ �∞χ and m ∈ Z we define Lα,m :

RP−,m+1 ⊕ N P+,m → N P+(T2m+1 − T2m)⊕ RP−(T2m+2 − T2m+1 − αm + αm+1) as

Lα,m : (ϕ−
m+1, ϕ

+
m ) �→ X+(T2m+1 − T2m)(I − P+)X−1+ (T2m+1 − T2m + 1)ϕ+

m

−X−(T2m+1 − T2m+2 + αm − αm+1)P− X−1− (T2m+1 − T2m+2 − 1)ϕ−
m+1

and Hα : �∞ρ,α,ε → �∞1 as

Hαθ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Lα,m(ϕ−
m+1, ϕ

+
m )

ξ̄m − ξ−
m

R0[X0(T̄ )ξ̄m − ξ+
m ]

G ′(γ0(−T̄ ))ξ−
m

G ′(γ0(T̄ )) · [X0(T̄ )ξ̄m + γ̇0(T̄ )βm]
G ′(γ+(T̄ )) · ξ+

m

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
m∈Z

.

Note that since Tm+1 − Tm ≥ T + 1 and |αm+1 − αm | < χ < 1, we have (see (2.9))

RP−,m+1 ⊕ N P+,m =N P+(T2m+1 − T2m)⊕ RP−(T2m+2 − T2m+1 − αm + αm+1) = R
n .

Before giving our main result we state few properties of the maps here introduced. For any
α ∈ �∞χ , we set:

θα = {
(0, 0, 0, 0, γ0(−T̄ ), αm)

}

m∈Z
.

Then

G1) ‖GT (θα, α, 0)‖ ≤ 2kδ−1 e−δ(T −T̄ ) max{|γ̇−(−T̄ )|, |γ̇+(T̄ )|};
G2)

∥
∥ d

dα [GT (θα, α, 0)]∥∥ ≤ 2kδ−1 e−δ(T −T̄ )|γ̇−(−T̄ )|;
G3) Lα,m : R

n → R
n is a linear isomorphism satisfying:

‖Lα,m‖ ≤ kc̃, ‖L−1
α,m‖ ≤ kc̃ e2δ

and
∥
∥
∥
∥
∂

∂α
Lα,m

∥
∥
∥
∥ ≤ 2N−k and

∥
∥
∥
∥
∂

∂α
L−1
α,m

∥
∥
∥
∥ ≤ 2N−k3c̃2 e4δ

for a suitable constant c̃;
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G4) Hα : �∞ρ,α,ε → �∞1 is a bounded linear map and
∥
∥ ∂
∂α

Hα

∥
∥ ≤ 2N−k;

G5) ‖D1GT (θα, α, 0)− Hα‖ ≤ c̃3k e−δ(T −T̄ ) for a suitable constant c̃3.

Properties (G1)–(G5) will be proved in the Appendix A.
Next, given {(am, bm, cm, dm, em, fm)}m∈Z ∈ �∞1 we want to solve the linear equation

Hαθ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

am

bm

cm

dm

em

fm

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
m∈Z

(5.3)

that is the set of equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Lα,m(ϕ−
m+1, ϕ

+
m ) = am

ξ̄m − ξ−
m = bm

R0[X0(T̄ )ξ̄m − ξ+
m ] = cm

G ′(γ0(−T̄ ))ξ−
m = dm

G ′(γ0(T̄ )) · [X0(T̄ )ξ̄m + γ̇0(T̄ )βm] = em

G ′(γ+(T̄ )) · ξ+
m = fm .

(5.4)

To solve (5.4) we write:

ξ−
m = η⊥

m + μ−
m γ̇−(−T̄ ), m ∈ Z,

ξ+
m = ζ⊥

m + μ+
m γ̇+(T̄ ), m ∈ Z, (5.5)

where

{η⊥
m }m∈Z ∈ �∞(S ′), {ζ⊥

m }m∈Z ∈ �∞(S ′′), {μ±
m}m∈Z ∈ �∞(R),

and plug (5.5) into (5.4). We derive

(ϕ−
m+1, ϕ

+
m ) = L−1

α,mam

μ−
m = dm

G ′(γ−(−T̄ ))γ̇−(−T̄ )

μ+
m = fm

G ′(γ+(T̄ ))γ̇+(T̄ )
(5.6)

ξ̄m = η⊥
m + μ−

m γ̇−(−T̄ )+ bm

βm = em − G ′(γ0(T̄ ))X0(T̄ )ξ̄m

G ′(γ0(T̄ ))γ̇0(T̄ )

R0 X0(T̄ )η
⊥
m − ζ⊥

m = cm − μ−
m R0 X0(T̄ )γ̇−(−T̄ )

−R0 X0(T̄ )bm + μ+
m R0γ̇+(T̄ ).

Now we denote with Π : RR0 → S ′′ ⊕ S ′′′ ⊂ RR0 the orthogonal projection onto
S ′′ ⊕ S ′′′ along span{ψ} (recall that ψ ∈ RR0 = N G ′(γ (T )) is a unitary vector such that
(2.4) and (2.5) hold). In other words:
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(I −Π)w = 〈ψ,w〉ψ (5.7)

for anyw ∈ RR0. Assumption (H3) implies that the linear mapping S ′′ ⊕S ′ �→ S ′′ ⊕S ′′′ =
RΠ defined as (ζ⊥, η⊥) → −ζ⊥ + R0 X0(T̄ )η⊥ is invertible. So in order to solve (5.6), we
need to suppose

{(am, bm, cm, dm, em, fm)}m∈Z ∈ �∞(S iv)

where

S iv = {
(a, b, c, d, e, f ) ∈ R

2n × RR0 × R
3 : (I −Π)L(a, b, c, d, e, f ) = 0

}

and L : R
n × R

n × RR0 × R × R × R → RR0 is the linear map given by:

L(a, b, c, d, e, f ) = c − d

G ′(γ−(−T̄ ))γ̇−(−T̄ )
R0 X0(T̄ )γ̇−(−T̄ )

−R0 X0(T̄ )b + f

G ′(γ+(T̄ ))γ̇+(T̄ )
R0γ̇+(T̄ ). (5.8)

Note S iv is a codimension 1 linear subspace of R
2n ×RR0 ×R

3. Hence ψ̃ ∈ R
2n ×RR0 ×R

3

exists such that

span {ψ̃} ⊕ S iv = R
2n × RR0 × R

3.

Of course we can be more precise and take ψ̃ so that 〈ψ̃, v〉 = 0 for any v ∈ S iv , where
〈·, ·〉 is the usual scalar product on R

3n+3. To construct such a ψ̃ we note that, from (5.7),
it follows that (I −Π)Lv = 〈ψ, Lv〉ψ = 〈L∗ψ, v〉ψ , where we take the natural restriction
of 〈·, ·〉 onto RR0 ⊂ R

n . Thus v = (a, b, c, d, e, f ) ∈ S iv if and only if 〈L∗ψ, v〉 = 0 or
v ∈ {L∗ψ}⊥ and we can take

ψ̃ = L∗ψ/|L∗ψ |.
Let Π̃ : R

2n ×RR0 ×R
3 → S iv be the orthogonal projection onto S iv along span {ψ̃}. Then

(I − Π̃)v = 〈ψ̃, v〉ψ̃ = 〈L∗ψ, v〉
|L∗ψ | ψ̃ = 〈ψ, Lv〉

|L∗ψ | ψ̃.

We set

�∞ψ = �∞(span{ψ̃}) ⊂ �∞1 .

Let Πψ : �∞1 → �∞(S iv) be the projection onto �∞(S iv) along �∞ψ given by

Πψ
({(am, bm, cm, dm, em, fm)}m∈Z

) = {
Π̃(am, bm, cm, dm, em, fm)

}

m∈Z
.

Summarizing, we see from (5.6) that there is a continuous inverse H−1
α : �∞(S iv) �→ �∞2 ,

where

�∞2 =
{{
(ϕ−

m , ϕ
+
m , ξ

−
m , ξ

+
m , ξ̄m, βm)

}

m∈Z
∈ �∞

(
R

5n+1
)

:
(ϕ−

m , ϕ
+
m , ξ

−
m , ξ

+
m , ξ̄m, βm) ∈ RP−,m × N P+,m × N P− × RP+ × R

n+1, ∀m ∈ Z
}
.

Note that from (5.6) and it easily follows that
∥
∥H−1

α

∥
∥ and

∥
∥ ∂
∂α

H−1
α

∥
∥ ≤ ∥

∥ ∂
∂α

Hα

∥
∥ ‖H−1

α ‖2

are uniformly bounded with respect to α.
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Finally, we define projections onto RG ′(γ (T̄ )) and RG ′(γ (−T̄ )) respectively, as

(I − R+)w = G ′(γ (T̄ ))w
G ′(γ (T̄ ))γ̇+(T̄ )

γ̇+(T̄ )

(I − R−)w = G ′(γ (−T̄ ))w

G ′(γ (−T̄ ))γ̇−(−T̄ )
γ̇−(−T̄ ). (5.9)

Note that R+ is the projection onto N G ′(γ (T̄ )) along γ̇+(T̄ ) whereas R− is the projection
onto N G ′(γ (−T̄ )) along γ̇−(−T̄ ). Moreover, from [4, p. 358] we know that

P∗+ R∗+ψ = 0,
(
I − P∗−

)
R∗− X0(T̄ )

∗ R∗
0ψ = 0. (5.10)

Next we set:

ψ(t) =
⎧
⎨

⎩

X−1∗− (t)R∗− X0(T̄ )∗ R∗
0ψ if t ≤ −T̄

X−1∗
0 (t)X0(T̄ )∗ R∗

0ψ if −T̄ < t ≤ T̄
X−1∗+ (t)R∗+ψ if t > T̄

(5.11)

and

M(α) =
∞∫

−∞
ψ∗(t)g(t + α, γ (t), 0)dt. (5.12)

Using (5.10), we easily obtain:

|ψ(t)| ≤ ‖X−1∗+ (t)(I − P∗+)X∗+(T̄ )‖|R∗+ψ | ≤ k‖R+‖ e−δ(t−T̄ ) if t ≥ T̄

|ψ(t)| ≤ k‖R0 X0(T̄ )R−‖ eδ(t+T̄ ) if t ≤ −T̄ .
(5.13)

Thus M(α) is a well defined C2 function because of Lebesgue theorem.
We are now ready to state the following result.

Theorem 5.1 Assume f±(z) and g(t, z, ε) are Cr -functions with bounded derivatives and
that their r-order derivatives are uniformly continuous. Assume, moreover, that conditions
(H1), (H2) and (H3) hold.

Then given c0 > 0 there exist constants ρ0 > 0, χ > 0 and c1 > 0 such that for any
0 < ρ < ρ0, there is ε̄ρ > 0 such that for any ε, 0 < |ε| < ε̄ρ , for any increasing sequence
T = {Tm}m∈Z ⊂ R with Tm − Tm−1 > T̄ + 1 − 2δ−1 ln |ε| and such that

M
(
T2m + α0

m

) = 0∀m ∈ Z and inf
m∈Z

|M′ (T2m + α0
m

) | > c0 (5.14)

for some α0 = {α0
m}m∈Z ∈ �∞χ , there exist unique sequences {α̂m}m∈Z = {α̂m(T , ε)}m∈Z ∈

�∞χ (R) and {β̂m}m∈Z = {β̂m(T , ε)}m∈Z ∈ �∞(R) with |α̂m(T , ε) − α0
m | < c1|ε| and

|β̂m(T , ε) − α0
m | < c1|ε|∀m ∈ Z, and a unique bounded solution z(t) = z(T , ε)(t) of

system (2.1) such that

sup
t∈[T2m−1+β̂m−1,T2m−T̄ +α̂m ]

|z(t)− γ−(t − T2m − α̂m)| < ρ

sup
t∈[T2m−T̄ +α̂m ,T2m+T̄ +β̂m ]

|z(t)− γ0(t − T2m − α̂m)| < ρ

sup
t∈[T2m+T̄ +β̂m ,T2m+1+β̂m ]

|z(t)− γ+(t − T2m − β̂m)| < ρ
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for any m ∈ Z (cf. (2.7)). Hence z(t) is orbitally close to γ (t) in the sense that

dist(z(t), �) < ρ,

where � = {γ (t) | t ∈ R} is the orbit of γ (t) and dist(z, �) = inf t∈R |z − γ (t)| is the
distance of z from �.

Proof If ρ and ε̄ρ < ερ are sufficiently small then, for t ∈ I −
m,α , the solution z(t) we look

for must satisfy z(t) = z−
m(t, ξ−, ϕ−, α, ε) for some value of the parameters (ξ−, ϕ−, α, ε)

and similarly in the others intervals [T2m − T̄ + α, T2m + T̄ + β] and I +
m,β .

So, we solve Eq. (5.2) for (θ, α) ∈ �∞ρ,α,ε × �∞χ in terms of T and ε ∈ (−ε̄ρ , ε̄ρ). Set

FT (θ, α, ε) = GT (θ, α, ε)− Hα(θ − θα) = GT (θα, α, 0)

+ [GT (θ, α, 0)− GT (θα, α, 0)− D1GT (θα, α, 0)(θ − θα)]

+ (D1GT (θα, α, 0)− Hα) (θ − θα)+ ε

1∫

0

D3GT (θ, α, τε) dτ

where D3GT (θ, α, ε) denotes the derivative of GT with respect to ε. It is easy to see that

FT (θα, α, ε) = GT (θα, α, ε)

D1FT (θ, α, ε) = D1GT (θ, α, ε)− Hα

D1FT (θ1, α, ε)− D1FT (θ2, α, ε) = D1GT (θ1, α, ε)− D1GT (θ2, α, ε) (5.15)

D2FT (θ, α, ε) = D2GT (θ, α, ε)− ∂Hα

∂α
(θ − θα)− Hα

∂θα

∂α
.

For simplicity we also set:

μ = e−δ(T −T̄ ).

From the definition of FT (θ, α, ε) we see that Eq. (5.2) has the form

θ − θα + H−1
α ΠψFT (θ, α, ε) = 0 (5.16)

and
(
I −Πψ

)
FT (θ, α, ε) = 0. (5.17)

We denote with c(1)G , resp. c(2)G , upper bounds for the norms of the first order, resp. second
order, derivatives of GT (θ, α, ε), in �∞ρ . Thus for example

c(1)G = sup
(θ,α,ε)∈�∞ρ

{‖D1GT (θ, α, ε)‖, ‖D2GT (θ, α, ε)‖, ‖D3GT (θ, α, ε)‖}

and similarly for c(2)G . Then

GT (θ, α, 0)− GT (θα, α, 0)− D1GT (θα, α, 0)(θ − θα)

=
1∫

0

[D1GT (τθ + (1 − τ)θα, α, 0)− D1GT (θα, α, 0)] dτ(θ − θα)

η(θ, θα, α)(θ − θα),

where

‖η(θ, θα, α)‖ ≤ c(2)G ‖θ − θα‖.
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Hence, since

FT (θ, α, ε)− FT (θα, α, ε) =
1∫

0

[D1FT (τθ + (1 − τ)θα, α, ε)] dτ(θ − θα)

=
1∫

0

[D1FT (τθ + (1 − τ)θα, α, ε)− D1FT (θα, α, ε)]dτ(θ − θα)

+D1FT (θα, α, ε)(θ − θα)

=
1∫

0

[D1GT (τθ + (1 − τ)θα, α, ε)− D1GT (θα, α, ε)]dτ(θ − θα)

+[D1GT (θα, α, ε)− Hα](θ − θα) (5.18)

(see also (5.15)) we derive, using also (G5) and recalling μ = e−δ(T −T̄ ):

‖FT (θ, α, ε)− FT (θα, α, ε)‖ ≤ 1

2
c(2)G ‖θ − θα‖2 + (kc̃3μ+ c(2)G |ε|)‖θ − θα‖ (5.19)

and (see also (G1), (5.15))

‖FT (θ, α, ε)‖ ≤ c(2)G
2

‖θ − θα‖2 + (kc̃3μ+ c(2)G |ε|)‖θ − θα‖ + c(1)G |ε| + cγ μ (5.20)

where cγ = 2kδ−1 max{|γ̇−(−T̄ )|, |γ̇+(T̄ )|}. Note that cγ , c(1)G , c(2)G and c̃3 do not depend
on (α, T , ε) ∈ �∞χ × �∞T (R)× R.

Next, from (G4), (G5) and (5.15) we get

‖D1FT (θα, α, 0)‖ ≤ kc̃3μ

‖D1FT (θ, α, ε)− D1FT (θα, α, ε)‖ ≤ c(2)G ‖θ − θα‖
‖D2FT (θ, α, ε)− D2FT (θα, α, ε)‖ ≤

(
c(2)G + 2k N−

)
‖θ − θα‖. (5.21)

From (5.20) and (5.21) we conclude that

lim
(θ,ε,μ)→(θα,0,0)

FT (θ, α, ε) = 0

lim
(θ,ε,μ)→(θα,0,0)

D1FT (θ, α, ε) = 0

uniformly with respect to α.
Thus, if ρ̄0 > 0, μ0 > 0 and 0 < ε̄0 ≤ ερ are sufficiently small and 0 < μ < μ0, |ε| < ε̄0,

from the Implicit Function Theorem the existence follows of a unique solution θ = θT (α, ε)
of (5.16) which is defined for any α ∈ �∞χ , |ε| < ε̄0, 0 < μ ≤ μ0 and T = {Tm}m∈Z such

that Tm+1 − Tm > T + 1 where T − T̄ = −δ−1 lnμ. Moreover θT (α, ε) satisfies

sup
α,T ,ε

‖θT (α, ε)− θα‖ < ρ̄0 (5.22)

the sup being taken over all α, T and ε satisfying the above conditions. Next, using (5.16)
with θT (α, ε) instead of θ and (5.20), we see that:

‖θT (α, ε)− θα‖ ≤ ‖H−1
α Πψ‖‖FT (θT (α, ε), α, ε)‖

≤ ‖H−1
α Πψ‖

(
c(2)G
2

‖θT (α, ε)− θα‖2 + (kc̃3μ+ c(2)G |ε|)‖θT (α, ε)− θα‖ + c(1)G |ε| + cγ μ

)

.
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Hence if ρ̄0, μ0 and ε0 are so small that

‖H−1
α Πψ‖[c(2)G (ρ̄0 + 2ε0)+ 2kc̃3μ0] < 1 (5.23)

we obtain:

‖θT (α, ε)− θα‖ ≤ 2‖H−1
α Πψ‖(cγ μ+ c(1)G |ε|). (5.24)

Note that, since Π̃ is an orthogonal projection, it is enough that μ0, ε0 and ρ̄0 are chosen in
such a way that c(2)G (ρ̄0 + 2ε0)+ 2kc̃3μ0 < ‖H−1

α ‖−1.
Moreover, plugging (5.24) into (5.19) we obtain

‖FT (θT (α, ε), α, ε)− FT (θα, α, ε)‖ ≤ 2c(2)G ‖H−1
α Πψ‖2(cγ μ+ c(1)G |ε|)2

+2(kc̃3μ+ c(2)G |ε|)‖H−1
α Πψ‖(cγ μ+ c(1)G |ε|) ≤ �1(μ+ |ε|)2 (5.25)

where �1 > 0 is independent of (T , α, μ, ε). For example:

�1 = 2‖H−1
α Πψ‖ max{cγ , c(1)G , c(2)G , kc̃3}2

[
‖H−1

α Πψ‖c(2)G + 1
]
.

Next, differentiating the equality

θT (α, ε)− θα + H−1
α ΠψFT (θT (α, ε), α, ε) = 0

with respect to α we obtain:

∂

∂α
[θT (α, ε)− θα] = −H−1

α Πψ
∂

∂α
FT (θT (α, ε), α, ε)

−
[
∂

∂α
H−1
α Πψ

]

FT (θT (α, ε), α, ε)

= −H−1
α Πψ

{
∂

∂α
[FT (θT (α, ε), α, ε)− FT (θα, α, ε)]

+ ∂

∂α
[FT (θα, α, ε)− FT (θα, α, 0)] + ∂

∂α
GT (θα, α, 0)

}

−
[
∂

∂α
H−1
α Πψ

]

FT (θT (α, ε), α, ε). (5.26)

Then note that

∂

∂α
[FT (θT (α, ε), α, ε)− FT (θα, α, ε)]

= ∂

∂α

1∫

0

D1FT (τθT (α, ε)+ (1 − τ)θα, α, ε) dτ(θT (α, ε)− θα)

=
⎧
⎨

⎩

1∫

0

D2
1FT (τθT (α, ε)+ (1 − τ)θα, α, ε)

∂

∂α
[θT (α, ε)− θα]τ dτ

+
1∫

0

D2
1FT (τθT (α, ε)+ (1 − τ)θα, α, ε)

d

dα
θα dτ
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+
1∫

0

D1 D2FT (τθT (α, ε)+ (1 − τ)θα, α, ε) dτ

⎫
⎬

⎭
(θT (α, ε)− θα)

+
1∫

0

D1FT (τθT (α, ε)+ (1 − τ)θα, α, ε) dτ
∂

∂α
[θT (α, ε)− θα]. (5.27)

First we derive

∥
∥
∥
∥
∥
∥

1∫

0

D2
1FT (τθT (α, ε)+ (1 − τ)θα, α, ε)

∂

∂α
[θT (α, ε)− θα]τ dτ

∥
∥
∥
∥
∥
∥

≤
1∫

0

c(2)G τdτ

∥
∥
∥
∥
∂

∂α
[θT (α, ε)− θα]

∥
∥
∥
∥ = 1

2
c(2)G

∥
∥
∥
∥
∂

∂α
[θT (α, ε)− θα]

∥
∥
∥
∥ .

Next, from (5.21) we obtain

∥
∥
∥
∥
∥
∥

1∫

0

D1FT (τθT (α, ε)+ (1 − τ)θα, α, ε) dτ
∂

∂α
[θT (α, ε)− θα]

∥
∥
∥
∥
∥
∥

≤
⎛

⎝

1∫

0

‖D1FT (τθT (α, ε)+ (1 − τ)θα, α, ε)− D1FT (θα, α, ε)]‖ dτ

+‖D1FT (θα, α, ε)− D1FT (θα, α, 0)‖ + ‖D1FT (θα, α, 0)‖)
∥
∥
∥
∥
∂

∂α
[θT (α, ε)− θα]

∥
∥
∥
∥

≤
⎛

⎝

1∫

0

c(2)G ‖θT (α, ε)− θα‖ τ dτ + c(2)G |ε| + kc̃3μ

⎞

⎠

∥
∥
∥
∥
∂

∂α
[θT (α, ε)− θα]

∥
∥
∥
∥

≤
(

c(2)G

(
1

2
‖θT (α, ε)− θα‖ + |ε|

)

+ kc̃3μ

)∥
∥
∥
∥
∂

∂α
[θT (α, ε)− θα]

∥
∥
∥
∥ .

Finally, using (G4), (5.22) and (5.24), the identity

dθα
dα

= (0, 0, 0, 0, 0, I) (5.28)

and D1 D2FT (θ, α, ε) = D1 D2GT (θ, α, ε)− ∂Hα

∂α
, we conclude

∥
∥
∥
∥
∂

∂α
[FT (θT (α, ε), α, ε)− FT (θα, α, ε)]

∥
∥
∥
∥

≤ [c(2)G (ρ̄0 + ε0)+ kc̃3μ0]
∥
∥
∥
∥
∂

∂α
[θT (α, ε)− θα]

∥
∥
∥
∥

+4
(

c(2)G + k N−
)

‖H−1
α Πψ‖(cγ μ+ c(1)G |ε|). (5.29)
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Similarly, we obtain

∥
∥
∥
∥
∂

∂α
[FT (θα, α, ε)− FT (θα, α, 0)]

∥
∥
∥
∥ = |ε|

∥
∥
∥
∥
∥
∥

∂

∂α

1∫

0

D3FT (θα, α, τε) dτ

∥
∥
∥
∥
∥
∥

≤ 2c(2)G |ε|.

(5.30)

Now, since
∥
∥
∥
∥
∂

∂α
H−1
α Πψ

∥
∥
∥
∥ ≤ ‖H−1

α Πψ‖2
∥
∥
∥
∥
∂

∂α
Hα

∥
∥
∥
∥ ≤ 2k N−‖H−1

α Πψ‖2,

we derive, using also (G1), (5.25):
∥
∥
[
∂
∂α

H−1
α Πψ

]
FT (θT (α, ε), α, ε)

∥
∥ ≤ 2k N−‖H−1

α Πψ‖2·
· {‖FT (θT (α, ε), α, ε)− FT (θα, α, ε)‖ + ‖GT (θα, α, ε)‖}
≤ 2k N−‖H−1

α Πψ‖2
[
�1(μ+ |ε|)2 + cγ μ+ c(1)G |ε|

]
.

(5.31)

Plugging (5.29), (5.30), (5.31) into (5.26) and assuming, instead of (5.23), that

2‖H−1
α Πψ‖[c(2)G (ρ̄0 + ε̄0)+ kc̃3μ0] ≤ 1

we obtain
∥
∥ ∂
∂α

[θT (α, ε)− θα]
∥
∥ ≤ 2‖H−1

α Πψ‖
{

4
(

c(2)G + k N−
)

‖H−1
α Πψ‖(cγ μ+ c(1)G |ε|)

+2c(2)G |ε| + cγ μ+ 2k N−‖H−1
α Πψ‖

[
�1(μ+ |ε|)2 + cγ μ+ c(1)G |ε|

]}
≤ �2(μ+ |ε|)

(5.32)

where �2 is a positive constant that does not depend on (T , α, μ, ε). We now take

μ = ε2

that is T = T̄ − 2δ−1 ln |ε|. Note that, from (5.24), we get:

‖θT (α, ε)− θα‖ ≤ 2‖H−1
α Πψ‖(cγ |ε| + c(1)G )|ε|. (5.33)

Then, if we can solve the equation
(
I −Πψ

)
FT (θT (α, ε), α, ε) = 0 for α = αT (ε) =

{αm,T (ε)}m∈Z and define z±
m,T (t, ε), z0

m,T (t, ε) as z+
m(t, ξ

+
m , ϕ

+
m , βm, ε), z−

m(t, ξ
−
m , ϕ

−
m ,

αm, ε) and z0
m(t, ξ̄m, αm, βm, ε), with

θT (ε) = θT (αT (ε), ε)

instead of θ = {
(ϕ−

m , ϕ
+
m , ξ

−
m , ξ

+
m , ξ̄m, βm)

}

mZ
and with μ = ε2, we see that condition (2.7)

follows from (3.16), (3.19) and (4.4) provided |ε| < ερ , taking ερ smaller if necessary.
Thus to complete the proof of Theorem 5.1 we only need to show that the equation

(I −Πψ)FT (θT (α, ε), α, ε) = 0

can be solved for α in terms of ε ∈ (−ερ, ερ) and T satisfying the conditions of Theorem 5.1.
Now, from (5.33) we see that

lim
ε→0

(I −Πψ)FT (θT (α, ε), α, ε) = lim
ε→0

(I −Πψ)GT (θα, α, 0) = 0
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uniformly with respect to (α, T ) (since (G1) gives ‖GT (θα, α, 0)‖ ≤ cγ μ = cγ ε2). Hence
we are led to prove that the bifurcation function

1

ε
(I −Πψ)FT (θT (α, ε), α, ε) = 0 (5.34)

can be solved for α in terms of ε ∈ (−ερ, ερ), ε �= 0, and T satisfying the conditions of
Theorem 5.1.

We observe that, with μ = ε2, (5.25) reads:

‖FT (θT (α, ε), α, ε)− FT (θα, α, ε)‖ ≤ �1(1 + |ε|)2ε2.

Hence, using also (5.15) and (G1) with μ = e−δ(T −T̄ ) = ε2:

BT (α, ε) = 1

ε

(
I −Πψ

) {
FT (θα, α, ε)+ O(ε2)

}

= 1

ε

(
I −Πψ

) [GT (θα, α, ε)− GT (θα, α, 0)] + O(ε)

= (
I −Πψ

)
D3GT (θα, α, 0)+ O(ε)

where O(ε) is uniform with respect to (T , α).
Now we look at:

D1 BT (α, ε) = 1

ε
(I −Πψ)

∂

∂α
FT (θT (α, ε), α, ε). (5.35)

Subtracting

(

D2
1FT (θα, α, 0)

dθα
dα

+ D1 D2FT (θα, α, 0)

)

(θT (α, ε)− θα)

= d

dα
[D1FT (θα, α, 0)](θT (α, ε)− θα)

from both sides of (5.27) and using the uniform continuity of D2
1FT (θ, α, ε), D1 D2

FT (θ, α, ε) in (θ, α, ε), uniformly with respect to T we see that:

∥
∥
∥
∥
∂

∂α
FT (θT (α, ε), α, ε)− ∂

∂α
FT (θα, α, ε)

−
(

D2
1FT (θα, α, 0)

dθα
dα

+ D1 D2FT (θα, α, 0)

)

(θT (α, ε)− θα)

∥
∥
∥
∥

≤
((

c(2)G (‖θT (α, ε)− θα‖ + |ε|
)

+ kc̃3ε
2
) ∥∥
∥
∥
∂

∂α
(θT (α, ε)− θα)

∥
∥
∥
∥

+η(‖θT (α, ε)− θα‖ + |ε|)‖θT (α, ε)− θα‖
where η(r) → 0 as r → 0, uniformly with respect to (T , α, ε), So, using (5.33) and (5.32)
with μ = ε2 we obtain:

∂

∂α
FT (θT (α, ε), α, ε)− ∂

∂α
FT (θα, α, ε)− d

dα
[D1FT (θα, α, 0)](θT (α, ε)− θα) = o(ε)

(5.36)
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uniformly with respect to (α, T ). So, plugging (5.36) into (5.35), using (5.15) and (G2)with
μ = e−δ(T −T̄ ) = ε2, we obtain:

D1 BT (α, ε) = (I −Πψ)
∂

∂α

FT (θα, α, ε)− FT (θα, α, 0)

ε

+(I −Πψ)

{

ε−1 d

dα
[D1FT (θα, α, 0)][θT (α, ε)− θα]

}

+ o(1)

= d

dα
(I −Πψ)D3GT (θα, α, 0)

+(I −Πψ)

{

ε−1 d

dα
[D1GT (θα, α, 0)− Hα][θT (α, ε)− θα]

}

+ o(1)

o(1) being uniform with respect to α. But, differentiating (A.6) (cf. Appendix A) we see that

d

dα
(D1GT (θα, α, 0)− Hα) = {(Lαm, 0, 0, 0, 0, 0)}m∈Z

where

Lαm (̃α)(θ) = Lαm (̃α)(ϕ
−
m+1, ϕ

+
m , ξ

−
m+1, ξ

+
m , ξ̄m, βm)

= [
Ẋ−(T2m+1 − T2m+2 + αm − αm+1)(̃αm+1 − α̃m)

]
ξ−

m+1

+[γ̈−(T2m+1 − T2m+2 + αm − αm+1)(̃αm+1 − α̃m)]βm

≤ 2N−kδ−1(δ + |γ̇−(−T̄ )|)μ‖θ‖ ‖α̃‖ = O(ε2)‖θ‖‖α̃‖
and hence

∥
∥
∥
∥

d

dα
[D1GT (θα, α, 0)− Hα]

∥
∥
∥
∥ = O(ε2).

Summarizing, we obtain:

D1 BT (α, ε) = d

dα
[(I −Πψ)D3GT (θα, α, 0)] + o(1) (5.37)

uniformly with respect to α and T . We have then

lim
ε→0

BT (α, ε) = (I −Πψ)D3GT (θα, α, 0) = 1

|L∗ψ | 〈ψ, L D3GT (θα, α, 0)〉ψ̃

lim
ε→0

D1 BT (α, ε) = d

dα

1

|L∗ψ | 〈ψ, L D3GT (θα, α, 0)〉ψ̃

uniformly with respect to α and T (recall that L has been defined in (5.8)). To conclude the
proof of Theorem 5.1 we evaluate 〈ψ, L D3GT (θα, α, 0)〉. We have:

D3GT (θα, α, 0) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂z+
m
∂ε
(T2m+1 + αm, 0, 0, αm , 0)− ∂z−

m+1
∂ε

(T2m+1 + αm, 0, 0, αm+1, 0)

− ∂z−
m
∂ε
(T2m − T̄ + αm, 0, 0, αm , 0)

R0[ ∂z0
m
∂ε
(T2m + T̄ + αm, γ0(−T̄ ), αm, αm, 0)− ∂z+

m
∂ε
(T2m + T̄ + αm, 0, 0, αm, 0)]

G ′(γ (−T̄ )) ∂z−
m
∂ε
(T2m − T̄ + αm, 0, 0, αm, 0))

G ′(γ (T̄ )) ∂z0
m
∂ε
(T2m + T̄ + αm, γ0(−T̄ ), αm, αm, 0))

G ′(γ (T̄ )) ∂z+
m
∂ε
(T2m + T̄ + αm, 0, 0, αm, 0))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
m∈Z
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Thus:

L DεGT (θα, α, 0) = R0

{
∂z0

m

∂ε
(T2m + T̄ + αm, γ0(−T̄ ), αm, αm, 0)

−∂z+
m

∂ε
(T2m + T̄ + αm, 0, 0, αm, 0)

−G ′(γ (−T̄ )) ∂z−
m
∂ε
(T2m − T̄ + αm, 0, 0, αm, 0))

G ′(γ (−T̄ ))γ̇−(−T̄ )
X0(T̄ )γ̇−(−T̄ )

+X0(T̄ )
∂z−

m

∂ε
(T2m − T̄ + αm, 0, 0, αm , 0)

+G ′(γ (T̄ )) ∂z+
m
∂ε
(T2m + T̄ + αm, 0, 0, αm, 0))

G ′(γ (T̄ ))γ̇+(T̄ )
γ̇+(T̄ )

⎫
⎬

⎭

= R0

{
∂z0

m

∂ε
(T2m + T̄ + αm, γ0(−T̄ ), αm, αm, 0)

+X0(T̄ )R−
∂z−

m

∂ε
(T2m − T̄ + αm, 0, 0, αm, 0))

−R+
∂z+

m

∂ε
(T2m + T̄ + αm, 0, 0, αm, 0))γ̇+(T̄ )

}

= R0

{
∂z0

m

∂ε
(T2m + T̄ + αm, γ0(−T̄ ), αm, αm, 0)

+X0(T̄ )R−
∂z−

m

∂ε
(T2m − T̄ + αm, 0, 0, αm, 0))

}

−R+
∂z+

m

∂ε
(T2m + T̄ + αm, 0, 0, αm, 0))γ̇+(T̄ )

since RR+ ⊂ RR0. Next from Eqs. (3.17), (3.21), (4.3) we get:

∂z0
m

∂ε
(T2m + T̄ + αm, γ0(−T̄ ), αm, αm, 0)

=
T̄∫

−T̄

X0(T̄ )X
−1
0 (t)g(t + T2m + αm, γ0(t), 0)dt,

∂z−
m

∂ε
(T2m − T̄ + αm, 0, 0, αm , 0))

=
−T̄∫

T2m−1−T2m−1

P− X−1− (t)g(t + T2m + αm, γ−(t), 0)dt, (5.38)

∂z+
m

∂ε
(T2m + T̄ + αm, 0, 0, αm , 0))

= −
T2m+1−T2m+1∫

T̄

(I − P+)X−1+ (t)g(t + T2m + αm, γ+(t), 0)dt.
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As a consequence, using also (5.10), we get:

〈ψ, L D3GT (θα, α, 0)〉

= ψ∗

⎡

⎢
⎣

−T̄∫

T2m−1−T2m−1

R0 X0(T̄ )R− P− X−1− (t)g(t + T2m + αm, γ−(t), 0)dt

+
T̄∫

−T̄

R0 X0(T̄ )X
−1
0 (t)g(t + T2m + αm, γ0(t), 0)dt

+
T2m+1−T2m+1∫

T̄

R+(I − P+)X−1+ (t)g(t + T2m + αm, γ+(t), 0)dt

⎤

⎥
⎦ (5.39)

=
T2m+1−T2m+1∫

T2m−1−T2m−1

ψ∗(t)g(t + T2m + αm, γ (t), 0)dt

=
∞∫

−∞
ψ∗(t)g(t + T2m + αm, γ (t), 0)dt + O( e−δ(T +1))

=
∞∫

−∞
ψ∗(t)g(t + T2m + αm, γ (t), 0)dt + O(ε2)

where ψ(t) has been defined in (5.11). Thus we proved that

BT (α, ε) = 1

|L∗ψ | {M(αm + T2m)ψ̃}m∈Z + O(ε)

D1 BT (α, ε) = 1

|L∗ψ | {M
′(αm + T2m)ψ̃}m∈Z + o(1)

where O(ε) and o(1) are uniform with respect to α and T . Now assume that T = {Tm}m∈Z

and α0 = {α0
m}m∈Z satisfy the assumptions of Theorem 5.1. We have:

lim
ε→0

BT (α0, ε) = 0

lim
ε→0

D1 BT (α0, ε) = 1

|L∗ψ | {M
′(α0

m + T2m)ψ̃}m∈Z

uniformly with respect to T . That is ‖D1 BT (α0, ε)‖ > c0
2|L∗ψ | provided |ε| is sufficiently

small. From the Implicit Function Theorem we deduce the existence of 0 < ε̄ρ < ε0 such
that for any 0 �= ε ∈ (−ε̄ρ , ε̄ρ) and any sequence T = {Tm}m∈Z that satisfy the assumption
of Theorem 5.1 there exists a unique sequence α(T , ε) = {αm(T , ε)}m∈Z ∈ �∞χ such that
α(T , 0) = α0 and

BT (α(T , ε), ε) = 0.

Taking θT (ε) = θT (α(T , ε), ε) and

z(t) =
⎧
⎨

⎩

z−
m,T (t, ε) if t ∈ [T2m−1 + βm−1,T (ε), T2m − T̄ + αm,T (ε)]

z0
m,T (t, ε) if t ∈ [T2m − T̄ + αm,T (ε), T2m + T̄ + βm,T (ε)]

z+
m,T (t, ε) if t ∈ [T2m + T̄ + βm,T (ε), T2m+1 + βm,T (ε)]
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we see that z(t) satisfies the conclusion of Theorem 5.1 with α̂m = αm(T , ε) and β̂m =
βm(α(T , ε), ε). The proof is complete. ��
Remark 5.2 Functions M,M′ : R → R are bounded.

Remark 5.3 Following the above arguments, we can consider also cases when m̄ ∈ Z exists
such that either Tj = −∞∀ j ≤ 2m̄ − 1 or Tj = ∞∀ j ≥ 2m̄ + 1. Then Theorem 5.1 is
obviously modified (see (6.6), (6.7) and (6.8) below).

Remark 5.4 Here we emphasize that, during the proof of Theorem 5.1, we only used the fact
that f and g are C2 with bounded and uniformly continuous derivatives. We should need
higher derivatives if α0 is a degenerate root of MT (α) = {M (T2m + αm)}m∈Z, i.e. when
condition (5.14) fails.

We are now able to give the proof of Theorem 2.2. First we show the following preparatory
results.

Lemma 5.5 For any ε �= 0 there exists |ε| > νε > 0 such that if a sequence T = {Tm}m∈Z

satisfies (2.6) then also it holds

|D1g(t + T2m, z, 0)− D1g(t, z, 0)| < |ε| (5.40)

for any (t, z,m) ∈ R
n+1 × Z.

Proof of Lemma 5.5 Let ε �= 0. Take nε ∈ N and νε > 0 as

nε = 2

[‖D11g‖
|ε|

]

+ 1, νε := |ε|
4nε

(5.41)

and let T = {Tm}m∈Z be a sequence satisfying (2.6). Then we derive (see [18]):

|D1g(t + T2m, z, 0)− D1g(t, z, 0)|
≤
∣
∣
∣
∣D1g(t + T2m, z, 0)− nε

[

g

(

t + T2m + 1

nε
, z, 0

)

− g(t + T2m, z, 0)

]∣
∣
∣
∣

+
∣
∣
∣
∣D1g(t, z, 0)− nε

[

g

(

t + 1

nε
, z, 0

)

− g(t, z, 0)

]∣
∣
∣
∣

+nε

∣
∣
∣
∣g

(

t + T2m + 1

nε
, z, 0

)

− g

(

t + 1

nε
, z, 0

)∣
∣
∣
∣

+nε |g (t + T2m, z, 0)− g(t, z, 0)|

≤ nε

1/nε∫

0

|D1g (t + T2m + η, z, 0)− D1g(t + T2m, z, 0)| dη

+nε

1/nε∫

0

|D1g (t + η, z, 0)− D1g(t, z, 0)| dη + 2nενε

≤ ‖D11g‖
nε

+ 2nενε < |ε|.
The proof of Lemma 5.5 is complete. ��
Lemma 5.6 If ε �= 0 is sufficiently small then for any given sequence {Tm}m∈Z with the
properties of Lemma 5.5, a sequence {α0

m}m∈Z ∈ �∞χ exists satisfying (5.14) for some c0 > 0.
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Proof of Lemma 5.6 Let |M′(α0)| = 4c0. We have:

M(T2m + α) = M(α)+
∞∫

−∞
ψ∗(t)[g(t + T2m + α, γ (t), 0)− g(t + α, γ (t), 0)]dt

and hence:

|M(T2m + α)− M(α)| ≤ |ε|
∞∫

−∞
|ψ∗(t)|dt ≤ 2K δ−1|ε|

since |ψ∗(t)| ≤ K e−δ|t | for some K ≥ 1 (see (5.13)). Similarly, from (5.40) we get

|M′(T2m + α)− M′(α)| ≤ 2K δ−1|ε|.
Let χ/2 > δ1 > 0 be so small that M(α0 − δ1)M(α0 + δ1) < 0 and |M′(α)| ≥ 2c0 for
α ∈ [α0 −δ1, α

0 +δ1]. Then, there is an ε̃0 > 0 such that for 0 < |ε| < ε̃0 and for any m ∈ Z

the equation M(T2m + α) = 0 has a unique solution α0
m = α(T2m) ∈ (α0 − δ1, α

0 + δ1)

along with |M′(T2m + α)| ≥ c0 for α ∈ [α0 − δ1, α
0 + δ1]. The proof of Lemma 5.6 is

complete. ��
Now we proceed with the proof of Theorem 2.2. Using Lemma 5.6, assumptions of The-

orem 5.1 are verified and consequently, we obtain sequences {α̂m,T (ε)}, {β̂m,T (ε)}, and a
unique solution z(t) of Eq. (2.1) that satisfies (2.7). To prove that supm∈Z

|α̂m,T (ε)− α0| <
c1|ε| and supm∈Z

|β̂m,T (ε)−α0| < c1|ε| assume for simplicity that M′(α0) = 4c0 (a similar
argument applies when M′(α0) = −4c0). Then we have, since M′(T2m + α) > c0 for any
α ∈ [α0 − δ1, α0 + δ1]:

2K δ−1|ε| ≥

∣
∣
∣
∣
∣
∣
∣

α0
m∫

α0

M′(T2m + τ)dτ

∣
∣
∣
∣
∣
∣
∣

≥ c0|α0
m − α0|

hence

|α̂m,T (ε)− α0| ≤ |α̂m(T , ε)− α0
m | + |α0

m − α0| ≤ c1|ε| + 2K |ε|
δc0

= c̃1|ε|.
Similarly we get (possibly changing c̃1):

|β̂m,T (ε)− α0| ≤ c̃1|ε|.
The proof of Theorem 2.2 is complete.

Remark 5.7 By (5.41), we get νε ∼ ε2 in Theorem 2.2.

6 Chaotic Behaviour

Let E := {e : Z → {0, 1}} be the set of doubly infinite sequences of 0 and 1. We write
an element e ∈ E as e = {em}m∈Z. It is well known that E becomes a totally disconnected
compact metric space with the distance

d(e′, e′′) =
∑

m∈Z

|e′
m − e′′

m |
2|m|+1 .
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Let σ : E → E be the Bernoulli shift that is σ(e) := {em+1}m∈Z. Set

Ê : = {e ∈ E | inf{m ∈ Z | em = 1} = −∞, sup{m ∈ Z | em = 1} = ∞}
E+ : = {e ∈ E | inf{m ∈ Z | em = 1} > −∞, sup{m ∈ Z | em = 1} = ∞}
E− : = {e ∈ E | inf{m ∈ Z | em = 1} = −∞, sup{m ∈ Z | em = 1} < ∞}
E0 : = {e ∈ E | inf{m ∈ Z | em = 1} > −∞, sup{m ∈ Z | em = 1} < ∞} .

Note that Ê, E−, E+, E0 are invariant under the Bernoulli shift.
In this section we suppose for simplicity that assumptions of Theorem 5.1 are satisfied

with a technical condition ‖α0‖ < χ/2, i.e the following holds:

C) For any ε �= 0 sufficiently small there is a sequence T = {Tm}m∈Z such that Tm+1−Tm >

T̄ +1−2δ−1 ln |ε| along with the existence of anα0 = {α0
m}m∈Z ∈ �∞χ with ‖α0‖ < χ/2

and satisfying (5.14).

Let T = {Tm}m∈Z be as in assumption (C). Assume, first, that e ∈ Ê . Let {ne
m}m∈Z be a

fixed increasing doubly-infinite sequence of integers such that ek = 1 if and only if k = ne
m .

We define sequences T e = {T e
m}m∈Z and αe

0 = {α0e
m }m∈Z as

T e
m :=

{
T2ne

k
if m = 2k

T2ne
k−1 if m = 2k − 1

(6.1)

and similarly

α0e
m := α0

ne
m
. (6.2)

Note T e
m+1 − T e

m > T̄ + 1 − 2δ−1 ln |ε| for any m ∈ Z and MT e (α) has a simple zero
αe

0, i.e. (5.14) holds with exchanges T e ↔ T and αe
0 ↔ α0. Since |α0e

m+1 −α0e
m | < χ for any

m ∈ Z, assumptions of Theorem 5.1 are satisfied by MT e (α), T e and αe
0. Let z(t) = z(t, T e)

be the corresponding solution of Eq. (2.1) whose existence is stated in Theorem 5.1. Then
z(t) satisfies

sup
t∈[T e

2m−1+βe
m−1,T

e
2m−T̄ +αe

m ]
|z(t)− γ−(t − T e

2m − αe
m)| < ρ

sup
t∈[T e

2m−T̄ +αe
m ,T

e
2m+T̄ +βe

m ]
|z(t)− γ0(t − T e

2m − αe
m)| < ρ (6.3)

sup
t∈[T e

2m+T̄ +βe
m ,T

e
2m+1+βe

m ]
|z(t)− γ+(t − T e

2m − βe
m)| < ρ,

where the sequences αe = {αe
m}m∈Z and βe = {βe

m}m∈Z are determined as in Theorem 5.1
(note here we remove hats for notational simplicity).

Now, consider the sequence ñe
m := ne

m+1 instead of ne
m and denote with T̃ e, α̃e, β̃e and

α̃e
0 the corresponding sequences:

T̃ e
m = T e

m+2, α̃e
m = αe

m+1, β̃e
m = βe

m+1, α̃0e
m = α0e

m+1. (6.4)

Then MT̃ e (α) has a simple zero α̃e
0 and Theorem 5.1 is applicable. But clearly z̃(t) :=

z(t, T̃ e) satisfies the same set of estimates (6.3) and hence, because of uniqueness, z(t, T̃ e) =
z(t, T e) depends only on e and T (and not on the choice of ne

m). So we will write z(t, T , e)
instead of z(t, T e).
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Now, assume that e j = 1. Then j = ne
m for some m ∈ Z and (6.3) gives, provided |ε| is

sufficiently small:

|z(T2 j )− γ0(−α0
j )| ≤ |z(T2 j )− γ0(−αe

m)| + |γ0(−αe
m)− γ0(−α0

j )|
< ρ + sup

t∈R

|γ̇0(t)| |αe
m − α0

j | < ρ + c1|ε| sup
t∈R

|γ̇0(t)| < 3

2
ρ

since T e
2m = T2 j . On the other hand, if e j = 0, let m ∈ Z be such that ne

m < j < ne
m+1.

Then ne
m+1 − 1 ≥ j ≥ ne

m + 1 and so

T2 j − T2ne
m

− T̄ − βe
m ≥ T2ne

m+2 − T2ne
m

− T̄ − ‖α0‖ − c1|ε|
≥ T̄ + 2 − 4δ−1 ln |ε| − ‖α0‖ − c1|ε| > 0

and

T e
2m+1 + βe

m − T2 j ≥ T2ne
m+1−1 − T2ne

m+1−2 − ‖α0‖ − c1|ε|
≥ T̄ + 1 − 2δ−1 ln |ε| − ‖α0‖ − c1|ε| > 0

for 0 < |ε| � 1. Consequently, we have T2 j ∈ [
T e

2m + T̄ + βe
m, T e

2m+1 + βe
m

]
, and using

(6.3), we get

|z(T2 j )| ≤ |z(T2 j )− γ+(T2 j − T2ne
m

− βe
m)| + |γ+(T2 j − T2ne

m
− βe

m)| <
3

2
ρ

since T2 j −T2ne
m
−βe

m ≥ T2ne
m+2−T2ne

m
−‖α0‖−c1|ε| > 2T̄ +2−4δ−1 ln |ε|−‖α0‖−c1|ε| �

1 for 0 < |ε| � 1, and thus
∣
∣γ+(T2 j − T2ne

m
− βe

m)
∣
∣ < ρ/2. So z(t, T , e) has the following

property

|z(T2 j )− γ0(−α0
j )| < 3

2ρ if e j = 1
|z(T2 j )| < 3

2ρ if e j = 0
(6.5)

Next, assume e ∈ E+ and let again {ne
m}m∈Z be a fixed increasing sequence of integers such

that ek = 1 if and only if k = ne
m and limm→∞ ne

m = ∞. Corresponding to this sequence,
we define T e as in (6.1) and then we obtain αe and βe as in (6.3) with the difference that
T e

m = −∞ and αe
m = βe

m = 0 for any m < 2m̄ where m̄ is such that ene
m̄

= 1 and e j = 0 for
any j < ne

m̄ . According to this choice, by Remark 5.3, we obtain a solution z(t) = z(t, T e)

of Eq. (2.1) that satisfies (6.3) when m > m̄ whereas for m = m̄ it satisfies:

sup
t∈(−∞,T e

2m̄−T̄ +αe
m̄ ]

|z(t)− γ−(t − T e
2m̄ − αe

m̄)| < ρ

sup
t∈[T e

2m̄−T̄ +αe
m̄ ,T

e
2m̄+T̄ +βe

m̄ ]
|z(t)− γ0(t − T e

2m̄ − αe
m̄)| < ρ (6.6)

sup
t∈[T e

2m̄+T̄ +βe
m̄ ,T

e
2m̄+1+βe

m̄ ]
|z(t)− γ+(t − T e

2m̄ − βe
m̄)| < ρ.

Note, then, that if we take, as in the previous case, ñe
m = ne

m+1 and T̃ e, α̃e, β̃e as in (6.4),
then (6.3) holds with T̃ e instead T e, provided m > m̄ − 1 whereas (6.6) holds with T̃ e

2(m̄−1)

and T̃ e
2m̄−1 instead of T e

2m̄ and T e
2m̄+1 respectively. So in this case too we see that z(t, T e) =

z(t, T , e) depends only on (T , e) and not on the choice of the sequence ne
m . Moreover, (6.5)

holds also in this case. In fact if either e j = 1 or e j = 0 and there exists m ∈ Z such that
ne

m < j < ne
m+1 the same proof as before goes through. If, instead, e j = 0 and j < ne

m̄ , then
the estimate |z(T2 j )| < 3

2ρ follows from the first estimate in (6.6) since 2 j ≤ 2ne
m̄−2 and then
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T e
2 j −T e

2m̄ −αe
m̄ ≤ T e

2ne
m̄−2−T2ne

m̄
+‖α0‖+c1|ε| ≤ −2T̄ −2−4δ−1 ln |ε|+‖α0‖+c1|ε| � 0

for 0 < |ε| � 1.
Similarly, if e ∈ E− then by Remark 5.3, we obtain a solution z(t) = z(t, T e) of Eq. (2.1)

that satisfies (6.3) when m < m̄ whereas for m = m̄ it satisfies

sup
t∈(T e

2m̄−1,T
e
2m̄−T̄ +αe

m̄ ]
|z(t)− γ−(t − T e

2m̄ − αe
m̄)| < ρ

sup
t∈[T e

2m̄−T̄ +αe
m̄ ,T

e
2m̄+T̄ +βe

m̄ ]
|z(t)− γ0(t − T e

2m̄ − αe
m̄)| < ρ (6.7)

sup
t∈[T e

2m̄+T̄ +βe
m̄ ,∞)

|z(t)− γ+(t − T e
2m̄ − βe

m̄)| < ρ.

An argument similar to the previous one (in this case, we can take for example ñe
m = ne

m−1)
we see that z(t, T e) = z(t, T , e) depends only on (T , e) and not on the choice of the sequence
ne

m and (6.5) holds.
Next, assume that e ∈ E0 with e �= 0. Then there are m̄− < m̄+ such that ek = 0 if either

k < ne
m− or k > ne

m+ and Eq. (2.1) has a unique solution z(t, T e) such that (6.3) holds when
m̄− < m < m̄+ whereas when either m = m− or m = m+ it satisfies

sup
t∈(−∞,T e

2m̄−−T̄ +αe
m̄−]

|z(t)− γ−(t − T e
2m̄− − αe

m̄−)| < ρ

sup
t∈[T e

2m̄−−T̄ +αe
m̄− ,T

e
2m̄−+T̄ +βe

m̄−]
|z(t)− γ0(t − T e

2m̄− − αe
m̄)| < ρ

sup
t∈[T e

2m̄−+T̄ +βe
m̄− ,T

e
2m̄−+1+βe

m̄−]
|z(t)− γ+(t − T e

2m̄− − βe
m̄−)| < ρ

sup
t∈(T e

2m̄+−1,T
e
2m̄+−T̄ +αe

m̄+]
|z(t)− γ−(t − T e

2m̄+ − αe
m̄+)| < ρ

sup
t∈[T e

2m̄+−T̄ +αe
m̄+ ,T

e
2m̄++T̄ +βe

m̄+]
|z(t)− γ0(t − T e

2m̄+ − αe
m̄+)| < ρ

sup
t∈[T e

2m̄++T̄ +βe
m̄+ ,∞)

|z(t)− γ+(t − T e
2m̄+ − βe

m̄+)| < ρ.

(6.8)

Moreover z(t, T e) = z(t, T , e) depends only on (T , e) and not on the choice of ne
m and (6.5)

holds.
Finally, if e = 0, that is ek = 0 for any k ∈ Z, by [4, Remark 2.14] we define z(t, T , 0) =

u(t) as the unique bounded solution of (2.1) such that

sup
t∈R

|u(t)| < ρ. (6.9)

Now we are able to prove the following theorem:

Theorem 6.1 Let assumptions (H1), (H2), (H3) and (C) be satisfied. Let ρ > 0 be small.
Then for any ε �= 0 sufficiently small and for any e ∈ E , Eq. (2.1) has a unique solution
z(t, T , e, ε) that satisfies one among (6.3), (6.6), (6.7) or (6.8) and hence (6.5). Moreover,
setting T (k) := {Tn+2k}n∈Z, we have

z(t, T (k+1), σ (e), ε) = z(t, T (k), e, ε) (6.10)

for any t ∈ R and e ∈ E .
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Proof We only need to prove that (6.10) holds. Since z(t, T , e, ε) does not depend on the
choice of {ne

m}m∈Z we see that we can take nσ(e)m = ne
m −1 and then, setting T ′ = {Tm+2}m∈Z,

we have, if m = 2k:

T ′σ(e)
2k = T

2nσ(e)k +2
= T2ne

k
= T e

2k

and, if m = 2k − 1:

T ′σ(e)
2k−1 = T

2nσ(e)k +1
= T2ne

k−1 = T e
2k−1

that is

T ′σ(e) = T e. (6.11)

Hence we see that, for any t ∈ R and any e ∈ E , the following holds

z(t, T ′, σ (e), ε) = z(t, T , e, ε). (6.12)

Now, from the definition of T (k) we see that T (k+1) = T (k)′ thus (6.10) follows from (6.12).
The proof is complete. ��

Now we define Fk : R
n → R

n so that Fk(ξ) is the value at time T2(k+1) of the solution
z(t) of Eq. (2.1) such that z(T2k) = ξ :

ż = f±(z)+ εg(t, z, ε), z(T2k) = ξ (6.13)

and let Φk(e) := z(T2k, T (k), e, ε). Note that, according to assumption (H2), Fk is certainly
defined in neighborhood of the compact set {γ (t) | t ∈ R} ∪ {0}. Then we have:

Φk+1 ◦ σ(e) = z(T2(k+1), T (k+1), σ (e), ε) = z(T2(k+1), T (k), e, ε)

= Fk(z(T2k, T (k), e, ε)) = Fk ◦Φk(e). (6.14)

Note that (6.14) can be stated in the following way. Let

Sk =
{
(z(T2k, T (k), e, ε) | e ∈ E

}
, k ∈ Z.

It is standard to prove (see [22]) that Sk are compact in R
n and Φk : E �→ Sk are continuous

and clearly onto. Moreover, by (6.14), all Fk : Sk → Sk+1 are homeomorphisms.
Next, let e, e′ ∈ E be two different sequences in E . Then there exists j ∈ Z such that, for

example, e′
j = 0 and e j = 1. From [−χ/2, χ/2] ⊂ [−T̄ , T̄ ] and (6.5) we see that

∣
∣z(T2 j , T , e, ε)− z(T2 j , T , e′, ε)

∣
∣ ≥

∣
∣
∣γ0(−α0

j )

∣
∣
∣

−
∣
∣
∣z(T2 j , T , e, ε)− γ0(−α0

j )

∣
∣
∣− ∣

∣z(T2 j , T , e′, ε)
∣
∣

≥ ∣
∣γ0(−α0

m)
∣
∣− 3ρ ≥ min

t∈[−T̄ ,T̄ ]
|γ0(t)| − 3ρ > 0

provided ρ is sufficiently small. As a consequence z(T2 j , T , e, ε) �= z(T2 j , T , e′, ε) and,
since both are solutions of the same Eq. (2.1):

z(t, T , e, ε) �= z(t, T , e′, ε) (6.15)

for any t ∈ R. Thus we have proved that the map e �→ z(t, T , e, ε) is one-to-one. Hence if
Φk(e) = Φk(e′) then e = e′ since otherwise:

Φk(e) = z(T2k, T (k), e, ε) �= z(T2k, T (k), e′, ε) = Φk(e
′).

So Φk : E → Sk is one-to-one and a homeomorphism for any k ∈ Z.
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Summarizing, we get the next result.

Theorem 6.2 Assume (H1), (H2), (H3) and (C) hold. Then for any ε �= 0 sufficiently small,
the following diagrams commute:

E σ ��

Φk

��

E

Φk+1

��
Sk

Fk

�� Sk+1

for all k ∈ Z. Moreover, all Φk are homeomorphisms.

Sequences of 2-dimensional maps are also studied in [26].

Remark 6.3 We improve (6.3) as follows. First, assume that e j = 1, and e j+1 = 0. Then, if
j = ne

k , we have ne
k+1 > ne

k + 1 and then if

t ∈ [T2ne
k+1 + βe

k , T2ne
k+1−1 + βe

k ] = ∪2(ne
k+1−1)

j=2ne
k+1 [Tj + βe

k , Tj+1 + βe
k ],

we have t ∈ [T e
2k + T̄ + βe

k , T e
2k+1 + βe

k ] and

t − T e
2k − βe

k ∈ [T2ne
k+1 − T2ne

k
, T2ne

k+1−1 − T2ne
k
] ⊂ (T̄ + 1 − 2δ−1 ln |ε|,∞)

and hence if ε is small enough that |γ−(t)| < ρ for any t ≥ T̄ + 1 − 2δ−1 ln |ε|, by (6.3) we
get:

sup
t∈[Tj +βe

k ,Tj+1+βe
k ]

|z(t)− u(t)| < 3ρ

for any j ∈ {2ne
k + 1, . . . , 2(ne

k+1 − 1)}. On the other hand

sup
t∈[T2ne

k −1+βe
k−1,T2ne

k
+T̄ +βe

k ]
|z(t)− γ (t − T2ne

k
− αe

k)| < ρ

sup
t∈[T2ne

k
+T̄ +βe

k ,T2ne
k +1+βe

k ]
|z(t)− γ (t − T2ne

k
− βe

k )| < ρ

that is for t ∈ [Tj + βe
k , Tj+1 + βe

k ] the solution z(t) is close either to the homoclinic orbit
γ (t) or to the bounded solution according to e j = 1 or e j = 0. The cases e j = 0, e j+1 = 1
and e j = e j+1 = 1 can be similarly handled.

6.1 The Almost and Quasi Periodic Cases

In this section we assume that g(t, x, ε) is almost periodic in t uniformly in (x, ε) that is the
following holds:

(H4) For any ν > 0 there exists Lν > 0 such that in any interval of a length greater than
Lν there exists Tν which is an almost period for ν that is satisfying:

|g(t + Tν, x, ε)− g(t, x, ε)| < ν

for any (t, x, ε) ∈ R
n+2.
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In this section we suppose the existence of a simple zero α0 of M(α). Then following the
arguments of the proof of Theorem 2.2 we see that for any ε �= 0 sufficiently small there is
a sequence T ε = {T εm}m∈Z such that T εm+1 − T εm > T̄ + 1 + 4|α0| − 2δ−1 ln |ε| along with
the existence of αε = {αεm}m∈Z ∈ �∞ with ‖αε‖ ≤ 2|α0| and satisfying M(T ε2m + αεm) = 0
for any m ∈ Z and infm∈Z |M′(T ε2m + αεm)| > c0 for some c0 > 0. Then taking T2m =
T ε2m + αεm, T2m−1 = T ε2m−1, and α0 = 0, assumption (C) is satisfied. So applying Theorem
6.2, system (2.1) is chaotic for any ε �= 0 small. Summarizing we obtain the following
theorem.

Theorem 6.4 Assume that (H1)–(H4) hold and that the almost periodic Melnikov function
M(α) has a simple zero. Then system (2.1) is chaotic for any ε �= 0 sufficiently small.

Next, it is well known (see [13,21,23,25]) that near the hyperbolic equilibrium x = 0 of the
equation ẋ = f−(x) there exists a unique almost periodic solution of ẋ = f−(x)+εg(t, x, ε).
More precisely, given ρ > 0 there exists ε̄ > 0 such that for any |ε| < ε̄ equation ẋ =
f−(x) + εg(t, x, ε) has a solution u(t) = u(t, ε) such that |u(t)| < ρ for any t ∈ R and it
is almost periodic with common almost periods as g(t, x, ε), i.e. assumption (H4) holds in
addition with

|u(t + Tν)− u(t)| < ĉ0ν ∀m ∈ Z

for a positive constant ĉ0. Note that u(t) is the bounded solution of ẋ = f−(x)+ εg(t, x, ε)
mentioned in (6.9). Thus the conclusion of Remark 6.3 holds with the further property that
u(t) is almost periodic.

Results of this section generalize the deterministic chaos of [21,23,25,26] to the discon-
tinuous almost periodic system (2.1).

Finally, if g(t, x, ε) is quasi periodic in t that is the following holds:

H5) g(t, x, ε) = q(ω1t, . . . , ωmt, x, ε) for ω1, . . . , ωm ∈ R with q ∈ Cr
b(R

m+n+1,Rn)

and q(θ1, . . . , θm, x, ε) is 1-periodic in each θi , i = 1, 2, . . . ,m. Moreover, ωi , i =
1, 2, . . . ,m are linearly independent over Z, i.e. if

m∑

i=1
liωi = 0, li ∈ Z, i =

1, 2, . . . ,m, then li = 0, i = 1, 2, . . . ,m.

Then g(t, x, ε) satisfies assumption (H4) [18,21] and hence the conclusion of Theorem 6.4
holds.

6.2 The Periodic Case

Here we assume that g(t + p, z, ε) = g(t, z, ε) that is g(t, z, ε) is p-periodic. Then M(α)

is also p-periodic. We suppose the existence of a simple zero α0 of M(α). Then Theorem
2.2 is applicable with Tm = mT and 2T = r p for r � 1, r ∈ N. So:

T e
m =

{
2ne

k T if m = 2k
(2ne

k − 1)T if m = 2k − 1.

Since we can take nσ(e)m = ne
m − 1 we see that

T σ(e)m =
{

2ne
k T − 2T if m = 2k

(2ne
k − 1)T − 2T if m = 2k − 1

= T e
m − 2T

for any m ∈ Z. Again we denote with z(t) = z(t, T , e) the solution of Eq. (2.1) corresponding
to the sequence T e. Then Z(t) := z(t + 2T ) satisfies the equation

ż = f±(z)+ εg(t, z, ε)
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together with the estimates:

sup
t∈[T σ(e)2m−1+βe

m−1,T
σ(e)
2m −T̄ +αe

m ]
|Z(t)− γ−(t − T σ(e)2m − αe

m)| < ρ

sup
t∈[T σ(e)2m −T̄ +αe

m ,T
σ(e)
2m +T̄ +βe

m ]
|Z(t)− γ0(t − T σ(e)2m − αe

m)| < ρ (6.16)

sup
t∈[T σ(e)2m +T̄ +βe

m ,T
σ(e)
2m−1+βe

m ]
|Z(t)− γ+(t − T σ(e)2m − βe

m)| < ρ.

Thus, because of uniqueness:

α(T e, ε) = α(T σ(e), ε) ∈ �∞(R), β(T e, ε) = β(T σ(e), ε) ∈ �∞(R)
and z(t + 2T, T , e, ε) = z(t, T , σ (e), ε). Thus, using (6.10) and recalling that Tk = kT :

z(T2(k+1), T (k+1), e, ε) = z(T2k, T (k+1), σ (e), ε) = z(T2k, T (k), e, ε)

that is we see that

Φk(e) = Φ(e), Sk = S

are independent of k. Similarly, because of uniqueness and periodicity, the value at the time
T2(k+1) = 2(k + 1)T of the solution of (6.13) is the same as the value at time 2T of the
solution of

ż = f±(z)+ εg(t, z, ε), z(0) = ξ

that is also Fk(ξ) = F(ξ) are independent of k and we have:

Φ ◦ σ = F ◦Φ.
Summarizing we arrive at the following result.

Theorem 6.5 Assume g(t + p, z, ε) = g(t, z, ε) that is g(t, z, ε) is p-periodic. If ε �= 0 is
sufficiently small and there is a simple zeroα0 of M(α) then the following diagram commutes:

E σ ��

Φ

��

E

Φ

��
S

F
�� S

Here F = ϕr
ε = ϕε ◦ · · · ◦ ϕε (r times) is the rth iterate of the p-period map ϕε of (2.1),

r ∈ N, r � 1.

Theorem 6.5 generalizes the deterministic chaos of [12,22] to the discontinuous periodic
system (2.1).

7 Quasi Periodic Piecewise Linear Systems

In in section, we consider the example

ẋ =
{

Ax + ε (g1 sinω1t + g2 sinω2t) for ã · x < d,
Ax + b + ε (g1 sinω1t + g2 sinω2t) for ã · x > d

(7.1)
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of a quasi periodically perturbed piecewise linear 3-dimensional differential equation. Here
d > 0, ω1,2 > 0, ã, x, g1,2 ∈ R

3, ã · x is the scalar product in R
3.

Moreover, we consider the system (7.1) under the following assumptions

(i) A is an 3 × 3-matrix with semisimple eigenvalues λ1, λ2 > 0 > λ3 and with the
corresponding eigenvectors e1, e2, e3.

(ii) Let b = ∑3
i=1 bi ei and ai := ã · ei , i = 1, 2, 3. Then a1, b3 ≥ 0, a2, a3 > 0 and

b1, b2 < 0.

Remark 7.1 Certainly we can study more general systems

ẋ =

⎧
⎪⎪⎨

⎪⎪⎩

Ax + ε
m∑

k=1
gk sinωk t for ã · x < d,

Ax + b + ε
m∑

k=1
gk sinωk t for ã · x > d

but for simplicity we concentrate on (7.1) in this paper.

If either g1 = 0 or g2 = 0 or the ratio ω1
ω2

is rational, then we get the periodic case studied
in [4]. Theorem 6.5 of this paper, however, improve the result in [4] in the sense that here we
obtain chaotic behaviour of the solutions. Thus, we focus here on the case

(iii) g1 �= 0, g2 �= 0 and ω1/ω2 is irrational.

Given the vectors in R
3: x = ∑3

i=1 xi ei and y = ∑3
i=1 yi ei we define

〈x, y〉 =
3∑

i=1

xi yi .

Then 〈x, y〉 is a scalar product in R
3 that makes {e1, e2, e3} an orthonormal basis of R

3. From
now on we will write also (x1, x2, x3) for the vector x = ∑3

i=1 xi ei and hence we identify
e1, e2, e3 with (1, 0, 0), (0, 1, 0), (0, 0, 1) respectively.

Writing x = ∑3
i=1 xi ei and g j = ∑3

i=1 g ji ei , j = 1, 2, (7.1) has the form

ẋi =
⎧
⎨

⎩

λi xi + ε (g1i sinω1t + g2i sinω2t) for 〈a, x〉 < d,
λi xi + bi + ε (g1i sinω1t + g2i sinω2t) for 〈a, x〉 > d,
i = 1, 2, 3

(7.2)

where a = ∑3
i=1 ai ei and G(x) = 〈a, x〉 − d := ∑3

j=1 a j x j − d . Hence

�− =
{

(x1, x2, x3) ∈ R
3 |

3∑

i=1
ai xi < d

}

,

�+ =
{

(x1, x2, x3) ∈ R
3 |

3∑

i=1
ai xi > d

}

.

The following result is proved in [4].

Proposition 7.2 If conditions (i)–(ii) and the next ones

a3b3( e2λ3 T̄ − 1) = dλ3
2∑

j=1

a j b j
λ j
( e−2λ j T̄ − 1) = d

(7.3)
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hold, then system

ẋi =
⎧
⎨

⎩

λi xi for 〈a, x〉 < d,
λi xi + bi for 〈a, x〉 > d,
i = 1, 2, 3

(7.4)

has a homoclinic orbit to x = 0:

γ (t) =
⎧
⎨

⎩

γ−(t) if t ≤ −T̄
γ0(t) if − T ≤ t ≤ T̄
γ+(t) if t ≥ T̄

where

γ−(t) =
(

eλ1(t+T̄ )
(

e−2λ1 T̄ − 1
) b1

λ1
, eλ2(t+T̄ )

(
e−2λ2 T̄ − 1

) b2

λ2
, 0

)

,

γ0(t) =
((

eλ1(t−T̄ ) − 1
) b1

λ1
,
(

eλ2(t−T̄ ) − 1
) b2

λ2
,
(

eλ3(t+T̄ ) − 1
) b3

λ3

)

,

γ+(t) =
(

0, 0,
d

a3
eλ3(t−T̄ )

)

,

and conditions (H1), (H2) and (H3) are satisfied.

Moreover, we have [4]

S ′ = span{(a2,−a1, 0)},

X0(t) = X−(t) =
⎛

⎜
⎝

eλ1(t+T̄ ) 0 0
0 eλ2(t+T̄ ) 0
0 0 eλ3(t+T̄ )

⎞

⎟
⎠ , (7.5)

X+(t) =
⎛

⎜
⎝

eλ1(t−T̄ ) 0 0
0 eλ2(t−T̄ ) 0
0 0 eλ3(t−T̄ )

⎞

⎟
⎠ , (7.6)

X0(T )S ′ = span{w0}, with w0 :=
⎛

⎝
a2 e2λ1 T̄

−a1 e2λ2 T̄

0

⎞

⎠ , (7.7)

R0w = w − 〈a, w〉
〈a, γ̇0(T̄ )〉

γ̇0(T̄ ),

R+w = w − 〈a, w〉
〈a, γ̇+(T̄ )〉

γ̇+(T̄ ), (7.8)

R−w = w − 〈a, w〉
〈a, γ̇−(−T̄ )〉 γ̇−(−T̄ ).

Using the above formulas we obtain (see [4])

Proposition 7.3 Let assumptions (i)–(ii) hold and suppose (7.3) is satisfied. Then the func-
tion ψ(t) of (5.11) for the system (7.4) reads

ψ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

e−λ3(t+T̄ )〈A3, a ∧ R0w0〉e3 if t ≤ −T̄
|a|2

〈a,γ̇0(T̄ )〉 X0(−t)[γ̇0(T̄ ) ∧ R0w0] if −T̄ < t ≤ T̄

|a|2
a3

X−1+ (t)[e3 ∧ R0w0] if t > T̄

(7.9)
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where X0(t), X+(t), w0, R0 are given by (7.5), (7.6), (7.7), (7.8), respectively, and

A3 = R0 X0(T̄ )R−e3. (7.10)

The computation of the vector A3 is really messy even in an example as simple as this,
so we don’t proceed further with its computation now, but will do it later when we fix some
particular values of the parameters.

So we are in position to apply Theorem 5.1. Writing g j for the vector (g j1 g j2 g j3), we
get the Melnikov function (5.12)

M(α) =
∞∫

−∞

[
sinω1(t + α)ψ∗(t)g1 + sinω2(t + α)ψ∗(t)g2

]
dt

= sin(αω1)

∞∫

−∞
cos(ω1t)ψ∗(t)g1 dt + cos(αω1)

∞∫

−∞
sin(ω1t)ψ∗(t)g1 dt (7.11)

+ sin(αω2)

∞∫

−∞
cos(ω2t)ψ∗(t)g2 dt + cos(αω2)

∞∫

−∞
sin(ω2t)ψ∗(t)g2 dt

= A1(ω1) sin(ω1α +�1(ω1))+ A2(ω2) sin(ω2α +�2(ω2))

where

Ai (ωi ) :=

√
√
√
√
√

⎛

⎝

∞∫

−∞
cosωi tψ∗(t)gi dt

⎞

⎠

2

+
⎛

⎝

∞∫

−∞
sinωi tψ∗(t)gi dt

⎞

⎠

2

for i = 1, 2. Now we consider the following two possibilities:

1. Either A1(ω1) �= 0, A2(ω2) = 0 or A1(ω1) = 0, A2(ω2) �= 0. Then M(α) has the
simple zero α0 = −�i (ωi )/ωi , i = 1, 2, respectively.

2. A1(ω1) �= 0 and A2(ω2) �= 0. Let si := sgnAi (ωi ) ∈ {−1, 1}, i = 1, 2. Then
s1ω1 A1(ω1)+s2ω2 A2(ω2) = ω1|A1(ω1)|+ω2|A2(ω2)| > 0. Since cos 1−si

2 π = si and

sin 1−si
2 π = 0 for i = 1, 2 and ω1/ω2 is irrational, from [18] the existence follows of α0

(as a matter of fact infinitely many α0 exists) such that ωiα0 +�i (ωi ) are near to 1−si
2 π

modulo 2π, i = 1, 2, and M(α0) = 0 while M′(α0) ≥ s1ω1 A1(ω1)+s2ω2 A2(ω2)
2 > 0.

Hence also in this case we have a simple zero of M(α).

Consequently if A1(ω1) and A1(ω1) do not vanish simultaneously, Theorem 6.4 applies and
we conclude that (7.1) behaves chaotically for any ε �= 0 sufficiently small. Next, we note
that Ai (ωi ) �= 0 if and only if

Φi (ωi ) :=
∞∫

−∞
e−ωi t ıψ∗(t)gi dt �= 0. (7.12)

We know that Φi (ω) are analytic. Consequently, when functions Φi (ω) are not identically
zero, they have at most countable many positive zeroes with possible accumulations at +∞
[24]. Summarizing, we get the following result.
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Theorem 7.4 Let assumptions (i)–(iii) hold and suppose (7.3) holds. WhenΦ1(ω)andΦ2(ω)

are not both identically zero, then there is an at most countable set {ω̃ j } ⊂ (0,∞) with pos-
sible accumulating point at +∞ such that if ω1, ω2 ∈ (0,∞) \ {ω̃ j } then system (7.1) is
chaotic for any ε �= 0 sufficiently small.

Since in general, the above formulas are rather difficult, now we consider the following
concrete example still following [4].

Example 7.5 We take

a1 = 0, a2 = a3 = 1, λ1 = 2, λ2 = 1, λ3 = −1

b1 = b2 = −1, b3 = 1, d = 3/4. (7.13)

Then we have (see [4]) T̄ = ln 2 and :

Φi (ω) = −256 sin(ω ln 2)

3(ω2 + 1)
(ω(gi2 + gi3)+ ı(gi2 − gi3)) . (7.14)

So for the parameters (7.13),Φi (ω) is identically zero if and only if gi2 = gi3 = 0. Otherwise,
it has only the simple positive zeroes ω̃ j = π j/ ln 2, j ∈ N. As a consequence of Theorem
7.4 we get the following

Corollary 7.6 Consider (7.1) with parameters (7.13) and iii) holds. If either gi2 �= 0 or
gi3 �= 0 for some i ∈ {1, 2} and ω1, ω2 �= π j/ ln 2,∀ j ∈ N then system (7.1) is chaotic for
any ε �= 0 small.

Example 7.7 On the other hands, for the following set of parameters

a1 = a2 = a3 = 1, b1 = b2 = −1, b3 = 13/8,
λ1 = 2, λ2 = 1, λ3 = −1, d = 39/32,

(7.15)

we get (see [4]) T = ln 2 and

Φi (ω) = 26−ıω(13 · 4ıω − 10)(gi1 + 2gi2 + gi1ω
2 + gi2ω

2 − 2gi3 + ω2gi3 − ı(gi2 + 3gi3)ω)

17(ω − ı)(ω − 2ı)(1 − ıω)

for i = 1, 2. Clearly, for the parameters (7.15),Φi (ω) is not identically zero. If gi2 �= −3gi3

then Φi (ω) has no positive roots. If gi2 = −3gi3 then Φi (ω) has the only positive root

ωi1 =
√

gi1−8gi3
2gi3−gi1

provided gi1−8gi3
2gi3−gi1

> 0. As a consequence of Theorem 7.4 we obtain the
following

Corollary 7.8 Consider (7.1) with parameters (7.15) and iii) holds. If one of the following
conditions is satisfied

. gi2 �= −3gi3,

. gi2 = −3gi3, gi1 = 2gi3 �= 0,

. gi2 = −3gi3, gi1 �= 2gi3,
gi1−8gi3
2gi3−gi1

< 0,

. gi2 = −3gi3, gi1 �= 2gi3,
gi1−8gi3
2gi3−gi1

> 0 and ωi �=
√

gi1−8gi3
2gi3−gi1

,

for some i ∈ {1, 2} then system (7.1) is chaotic for any ε �= 0 small.

Remark 7.9 Parameters (7.13) and (7.15) give Examples 7.5 and 7.7 for which Φi (ω) is
either identically zero, or it has infinitely many positive roots, or it has no positive roots, or
it has finitely many positive roots.
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Remark 7.10 If Φ1(ω1) = 0 and Φ2(ω2) = 0 then M(α) is identically zero then a second-
order Melnikov function must be derived as in [3]. But those computations should be very
awkward for (7.1), so we omit them.

Finally when g1 �= 0, g2 �= 0 and ω1/ω2 is rational, then we get different situation. For
instance, consider Example 7.5 with ω1 = 1, ω2 = 3 and gi2 = gi3, i = 1, 2. Thus (7.1) is
2π-periodic and

M(α) = Φ1(1) sin α +Φ2(3) sin 3α = sin α − 1

3
sin 3α = 4

3
sin3 α

provided Φ1(1) = 1 and Φ2(3) = − 1
3 . From (7.14) we derive

g12 + g13 = − 3

128 sin(ln 2)
,

g22 + g23 = 5

384 sin(3 ln 2)
.

Then the Melnikov function is M(α) = 4
3 sin3 α and it has only the zero α0 = 0 in [−π, π]

which is nonsimple but it has Brouwer index 1. So Theorem 6.4 is not applicable, but we still
could get a chaos for (7.1) with ε �= 0 small as in [2].
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2/0124/10.

Appendix A

Proof of the Properties (G1)–(G5)

Here we prove the properties (G1)–(G5) of the maps GT (θ, α, ε),Lα,m and Hα . First we
prove G1). From (3.16), (3.19), (4.1), and G(γ±(±T̄ )) = 0, γ±(±T̄ ) = γ0(±T̄ ), we get

GT (θα, α, 0) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ+(T2m+1 − T2m)− γ−(T2m+1 − T2m+2 + αm − αm+1)

0
0
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
m∈Z

.

Now, for t ≥ T we have

|γ+(t)| ≤
∞∫

t

|γ̇+(s)|ds ≤
∞∫

t

k e−δ(s−T̄ )|γ̇+(T̄ )|ds = kδ−1 e−δ(t−T̄ )|γ̇+(T̄ )|

and similarly

|γ−(t)| ≤ kδ−1 eδ(t+T̄ )|γ̇−(−T̄ )|
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for any t ≤ −T̄ . Thus

|γ+(T2m+1 − T2m)− γ−(T2m+1 − T2m+2 + αm − αm+1)| ≤
kδ−1 e−δ(T2m+1−T2m−T̄ )|γ̇+(T̄ )| + kδ−1 eδ(T2m+1−T2m+2+T̄ +1)|γ̇−(−T̄ )| ≤
2kδ−1 e−δ(T −T̄ ) max{|γ̇−(−T̄ )|, |γ̇+(T̄ )|}

from which (G1) easily follows. Similarly we get:

d

dα
[GT (θα, α, 0)]̃α =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ̇−(T2m+1 − T2m+2 + αm − αm+1)(̃αm+1 − α̃m)

0
0
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
m∈Z

that proves (G2). Next, from Propositions 3.6, 3.8, 4.1, the equality R0γ̇0(T̄ ) = 0 and the
identities

P− X−1− (T2m−1 − T2m − 1)ϕ−
m = X−1− (T2m−1 − T2m − 1)ϕ−

m ,

(I − P+)X−1+ (T2m+1 − T2m + 1)ϕ+
m = X−1+ (T2m+1 − T2m + 1)ϕ+

m

(A.1)

(that follow from ϕ−
m ∈ RP−,m, ϕ+

m ∈ N P+,m), we see that the derivative D1GT of GT with
respect to θ ∈ �∞ρ,α,ε at the point (θα, α, 0) is given by

D1GT (θα, α, 0)θ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Lα(ϕ−
m+1, ϕ

+
m , ξ

−
m+1, ξ

+
m , ξ̄m, βm)

ξ̄m − ξ−
m − X−1− (T2m−1 − T2m − 1)ϕ−

m
R0[X0(T̄ )ξ̄m − ξ+

m − X−1+ (T2m+1 − T2m + 1)ϕ+
m ]

G ′(γ0(−T̄ ))[ξ−
m + X−1− (T2m−1 − T2m − 1)ϕ−

m ]
G ′(γ0(T̄ )) · [X0(T̄ )ξ̄m + γ̇0(T̄ )βm]

G ′(γ+(T̄ )) · [ξ+
m + X−1+ (T2m+1 − T2m + 1)ϕ+

m ]

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

m∈Z

where θ = {(ϕ−
m , ϕ

+
m , ξ

−
m , ξ

+
m , ξ̄m, βm)}m∈Z and

Lα(ϕ−
m+1, ϕ

+
m , ξ

−
m+1, ξ

+
m , ξ̄m, βm) = X+(T2m+1 − T2m)ξ

+
m

−X−(T2m+1 − T2m+2 + αm − αm+1)ξ
−
m+1 − γ̇−(T2m+1 − T2m+2 + αm − αm+1)βm

+X+(T2m+1 − T2m)(I − P+)X−1+ (T2m+1 − T2m + 1)ϕ+
m

−X−(T2m+1 − T2m+2 + αm − αm+1)P− X−1− (T2m+1 − T2m+2 − 1)ϕ−
m+1.

Then, using again (A.1) we obtain:
∣
∣
∣X−1+ (T2m+1 − T2m + 1)ϕ+

m

∣
∣
∣ ≤ k e−δ(T2m+1−T2m−T̄ +1)|ϕ+

m | ≤ k e−δ(T −T̄ +2)|ϕ+
m |

∣
∣
∣X−1− (T2m−1 − T2m − 1)ϕ−

m

∣
∣
∣ ≤ k e−δ(T2m−T2m−1+1−T̄ )|ϕ−

m | ≤ k e−δ(T −T̄ +2)|ϕ−
m |.

(A.2)

Moreover,

|X+(T2m+1 − T2m)ξ
+
m | = |X+(T2m+1 − T2m)P+ X−1+ (T̄ )ξ+

m | ≤ k e−δ(T −T̄ +1)|ξ+
m |

(A.3)
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and, since |αm − αm+1| < 1 implies that T2m+2 − T2m+1 − αm + αm+1 ≥ T > T̄ :

|X−(T2m+1 − T2m+2 + αm − αm+1)ξ
−
m+1|

= |X−(T2m+1 − T2m+2 + αm − αm+1)(I − P−)X−1− (−T̄ )ξ−
m+1|

≤ k e−δ(T −T̄ )|ξ−
m+1|, (A.4)

|γ̇−(T2m+1 − T2m+2 + αm − αm+1)| ≤ k e−δ(T −T̄ )|γ̇−(−T̄ )|
for any m ∈ Z. Next,

X−(T2m+1 − T2m+2 + αm − αm+1)P− X−1− (T2m+1 − T2m+2 − 1)ϕ−
m+1

∈ RP−(T2m+2 − T2m+1 − αm + αm+1),

X+(T2m+1 − T2m)(I − P+)X−1+ (T2m+1 − T2m + 1)ϕ+
m

∈ N P+(T2m+1 − T2m),

and (see (2.9))

N P+(T2m+1 − T2m)⊕ RP−(T2m+2 − T2m+1 − αm + αm+1) = R
n .

Hence the linear map

Lα,m : (ϕ−
m+1, ϕ

+
m ) �→ X+(T2m+1 − T2m)(I − P+)X−1+ (T2m+1 − T2m + 1)ϕ+

m

−X−(T2m+1 − T2m+2 + αm − αm+1)P− X−1− (T2m+1 − T2m+2 − 1)ϕ−
m+1

is a linear isomorphism from RP−,m+1 ⊕ N P+,m = R
n into N P+(T2m+1 − T2m) ⊕

RP−(T2m+2 − T2m+1 − αm + αm+1) = R
n whose inverse is given by:

L−1
α,m : (ϕ̃−

m+1, ϕ̃
+
m ) �→ X+(T2m+1 − T2m + 1)(I − P+)X−1+ (T2m+1 − T2m)ϕ̃

+
m

−X−(T2m+1 − T2m+2 − 1)P− X−1− (T2m+1 − T2m+2 + αm − αm+1)ϕ̃
−
m+1.

Then we note that (see (2.3)):

|X−(T2m+1 − T2m+2 − 1)P− X−1− (T2m+1 − T2m+2 + αm − αm+1)ϕ̃
−
m+1|

≤ k eδ(1+αm−αm+1)|ϕ̃−
m+1| ≤ k eδ(1+χ)|ϕ̃−

m+1|;
|X+(T2m+1 − T2m + 1)(I − P+)X−1+ (T2m+1 − T2m)ϕ̃

−
m+1| ≤ k eδ|ϕ̃−

m+1|
and

∂
∂α

Lα,m(ϕ−
m+1, ϕ

+
m )α = − f ′− (γ−(T2m+1 − T2m+2 + αm − αm+1)) ·

X−(T2m+1 − T2m+2 + αm − αm+1)P− X−1− (T2m+1 − T2m+2 − 1)ϕ−
m+1(αm − αm+1).

Thus we obtain (see also (2.10)):

|Lα,m(ϕ−
m+1, ϕ

+
m )| ≤ k e−δ|ϕ+

m | + k e−δ(1−χ)|ϕ−
m+1| ≤ kc̃|ϕ+

m + ϕ−
m+1|

|L−1
α,m(ϕ̃

−
m+1, ϕ

+
m )| ≤ k eδ|ϕ+

m | + k eδ(1+χ)|ϕ̃−
m+1| ≤ kc̃ e2δ|ϕ+

m + ϕ−
m+1|

| ∂
∂α

Lα,m(ϕ−
m+1, ϕ

+
m )| ≤ 2N−k|ϕ−

m+1|

for N− := supx∈Rn | f−(x)|. So, using also ∂
∂α

L−1
α,m = L−1

α,m ◦ ∂
∂α

Lα,m ◦ L−1
α,m we see that

(G3) holds. Next, using (A.3), (A.4):
∣
∣Lα(ϕ−

m+1, ϕ
+
m , ξ

−
m+1, ξ

+
m , ξ̄m, βm)− Lα,m(ϕ−

m+1, ϕ
+
m )
∣
∣

≤ k e−δ(T −T̄ )(2 + |γ̇−(−T̄ )|)‖θ‖ (A.5)
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(recall θ = {(ϕ−
m , ϕ

+
m , ξ

−
m , ξ

+
m , ξ̄m, βm)}m∈Z). Furthermore it is easily seen that

∂

∂α
Hαθ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂
∂α

Lα,m(ϕ−
m+1, ϕ

+
m )

0
0
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
m∈Z

and so (G4) readily follows from (G3). Finally, (G5) follows from

[D1GT (θα, α, 0)− Hα]θ

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Lα(ϕ−
m+1, ϕ

+
m , ξ

−
m+1, ξ

+
m , ξ̄m, βm)− Lα,m(ϕ−

m+1, ϕ
+
m )

−X−1− (T2m−1 − T2m − 1)ϕ−
m

−R0 X−1+ (T2m+1 − T2m + 1)ϕ+
m

G ′(γ0(−T̄ ))X−1− (T2m−1 − T2m − 1)ϕ−
m

0
G ′(γ+(T̄ ))X−1+ (T2m+1 − T2m + 1)ϕ+

m

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

m∈Z

,
(A.6)

(A.2) and (A.5) with

c̃3 := max
{
2 + |γ̇−(−T̄ )|, ‖R0‖ e−2δ, |G ′(γ+(T̄ ))| e−2δ, |G ′(γ0(−T̄ ))| e−2δ} .
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