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Abstract We study traveling waves for reaction diffusion equations on the spatially dis-
crete domain Z

2. The phenomenon of crystallographic pinning occurs when traveling waves
become pinned in certain directions despite moving with non-zero wave speed in nearby
directions. In [19] it was shown that crystallographic pinning occurs for all rational direc-
tions, so long as the nonlinearity is close to the sawtooth, which itself was considered in
[6]. In this paper we show that crystallographic pinning holds in the horizontal and vertical
directions for bistable nonlinearities which satisfy a specific computable generic condition.
The proof is based on dynamical systems. In particular, it relies on an examination of the
heteroclinic chains which occur as singular limits of wave profiles on the boundary of the
pinning region.

Keywords Lattice differential equation · Traveling wave · Pinning · Heteroclinic orbit ·
Bogdanov–Takens singularity

1 Introduction

The setting for this paper is traveling waves for lattice differential equations of reaction dif-
fusion type. A lattice differential equation (LDE) is an infinite system of coupled ordinary
differential equations, where each ODE represents the dynamics at a single point on a spatial
lattice. A simple LDE is
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u̇i = d(ui+1 + ui−1 − 2ui )− f (ui ) (1.1)

where i ∈ Z is a spatial index, d ∈ R is the coupling constant, f : R → R is a given func-
tion, and each ui is a function of a single variable t . If d > 0 then Eq. 1.1 may be regarded
as a reaction-diffusion equation: The first term d(ui+1 + ui−1 − 2ui ) is a discrete second
derivative which provides the diffusion, while the second term f (ui ) is the reaction term.

If we denote d = 1
h2 , then Eq. 1.1 is obtained from the PDE

ut = uxx − f (u) (1.2)

upon replacing the term uxx by a standard central difference approximation with grid size h.
The limit h → 0, that is d → ∞ in Eq. 1.1, corresponds at least formally to Eq. 1.2. In this
study we are interested in spatially discrete systems such as (1.1) which are not necessarily
close to the PDE limit in this sense, namely d need not be large, although we do assume
d > 0. In fact, without loss we may take d = 1 by rescaling time and redefining f . This
normalization serves to emphasize that the grid is not particularly small and is not meant to
approximate a continuum. Thus we study the equation

u̇i = ui+1 + ui−1 − 2ui − f (ui ) (1.3)

and its higher-dimensional analogs in what follows.
Lattice models are widely used in applications such as solid state physics, materials sci-

ence, and physiology; see [4,12,14,21,26] and the references therein.
We assume the nonlinearity f is of bistable type, in particular that

f (±1) = 0, f (a) = 0, f ′(±1) > 0, f ′(a) < 0,

f (u) > 0 for u ∈ (−1, a) ∪ (1,∞),

f (u) < 0 for u ∈ (−∞,−1) ∪ (a, 1), (1.4)

for some a ∈ (−1, 1). Generally, only the values of u for |u| ≤ 1 will be rele-
vant for our arguments, but in several places (in particular some arguments by contra-
diction) it will be convenient to assume that f (u) is smoothly extended for |u| > 1,
with the sign condition as in (1.4). We in fact take a family of bistable functions
f = f (u, a) parameterized by a ∈ (−1, 1), in addition satisfying the monotonicity
condition

∂ f

∂a
(u, a) > 0 for u ∈ (−1, 1) and a ∈ (−1, 1) (1.5)

in a. To be precise, let us define a set N of functions by

N = { f : [−1, 1] × (−1, 1) → R | f (·, ·) is C2 smooth, with f (·, a)

satisfying (1.4) for every (u, a) ∈ [−1, 1] × (−1, 1), and (1.5) holding}.
We say that f : [−1, 1] × (−1, 1) → R is a normal family if f ∈ N . We do not endow
the set N with a topology, although we shall do so with certain subsets of N . The parameter
a ∈ (−1, 1) is known as the detuning parameter. The function

f (u, a) = (u2 − 1)(u − a)

furnishes a simple example of a normal family.
The bistable reaction term f in Eq. 1.3 pushes the system toward spatial heterogeneity;

it forces ui toward +1 when ui > a and toward −1 when ui < a. By contrast, the diffu-
sion term ui+1 + ui−1 − 2ui promotes spatial homogeneity, forcing ui toward the average
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1
2 (ui+1 + ui−1) of its neighbors. This competition between reaction and diffusion, spatial
heterogeneity and spatial homogeneity, is what gives reaction diffusion equations of bistable
type the richness to support both spatially chaotic patterns [9] and traveling waves [19].

By a traveling wave solution of Eq. 1.3 we mean a solution of the form

ui (t) = φ(i − ct), i ∈ Z, (1.6)

for some function φ : R → R, the so-called wave profile, and some c ∈ R, the wave speed. In
this paper we consider monotone traveling waves which connect the spatially homogeneous
equilibria at ±1, that is, φ satisfies the boundary conditions

φ(−∞) = −1, φ(∞) = 1, (1.7)

and φ(ξ) is monotone in ξ .
Substitution of (1.6) into (1.3) shows that the function φ must satisfy the wave profile

equation

− cφ′(ξ) = φ(ξ + 1)+ φ(ξ − 1)− 2φ(ξ)− f (φ(ξ), a) (1.8)

for ξ ∈ R if c �= 0, or for ξ ∈ Z if c = 0. Conversely, any solution of (1.8) generates a
traveling wave solution of (1.3). Note that Eq. 1.8 is a differential-difference equation if
c �= 0, and a difference equation if c = 0. This difference in character of the wave profile
equation between c = 0 and c �= 0 is one of the chief reasons that the LDE (1.3) exhibits
behavior which is not present in the PDE (1.2).

In the PDE case (1.2) with x ∈ R, traveling wave solutions have the form u(t, x) =
φ(x − ct) where φ satisfies the ordinary differential equation

− cφ′ = φ′′ − f (φ, a). (1.9)

For both the LDE (1.3) and PDE (1.2) problems above, it is known that there is a unique
wavespeed c at which a monotone traveling wave exists, that is, a monotone solution to either
Eqs. 1.8 or 1.9, which satisfies the boundary conditions (1.7). Of course the wave speed
c = c(a) depends on the parameter a ∈ (−1, 1) as does the wave profile φ(ξ) = φ(ξ ; a).
Moreover, the wave speed is continuous and nondecreasing in a. In the PDE case c(a) is
strictly increasing, in fact c′(a) > 0 for all a ∈ (−1, 1). The LDE case differs from the PDE
case in that the wave speed may be zero for an open set of a. In particular, there are quantities

−1 ≤ a− ≤ a+ ≤ 1

such that

c(a) = 0 for a ∈ [a−, a+] ∩ (−1, 1),

c(a) > 0 for a ∈ (a+, 1),

c(a) < 0 for a ∈ (−1, a−),

with c(a) depending smoothly on a and c′(a) > 0, both whenever c(a) �= 0. In case a strict
inequality a− < a+ holds, we say that pinning or propagation failure occurs; the wave is
pinned and cannot propagate when a is between these values. The interval (a−, a+) is called
the pinning interval and its length measures the severity of the pinning. Pinning was observed
by Bell [4], Bell and Cosner [5], and Keener [18] and has been studied extensively (see for
example [3,7,13,22]).

To see why pinning can occur in the LDE case, observe that when c = 0 Eq. 1.8 reduces
to a pure difference equation

0 = φ(ξ + 1)+ φ(ξ − 1)− 2φ(ξ)− f (φ(ξ), a), ξ ∈ Z,
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which is equivalent to the discrete-time dynamical system

qn+1 = 2qn − rn + f (qn, a),

rn+1 = qn

under the transformation rn = φ(n) and qn = φ(n + 1). A solution of (1.8) satisfying the
boundary conditions (1.7) thus corresponds to a heteroclinic connection between the equi-
libria (−1,−1) ∈ R

2 and (1, 1) ∈ R
2 in this dynamical system. As both these equilibria are

saddles, such a heteroclinic connection may lie on a transverse intersection of their stable
and unstable manifolds, in which case this connection will persist as a varies in some inter-
val, with c(a) = 0 throughout this interval. The maximal interval on which the connection
persists is thus [a−, a+].

By contrast, pinning does not occur for the PDE (1.2) because here the traveling wave
corresponds to a saddle-saddle connection in the continuous time planar dynamical system
(1.9). Such heteroclinic solutions do not generally persist under perturbations, and in fact
c(a) = 0 for a unique value of a.

Our interest is in propagation failure for LDE’s as it occurs in higher-dimensional lattices
such as Z

k ⊆ R
k . The phenomena here are more subtle because all of the quantities mentioned

thus far—the wave speed c, the wave profile φ, and the pinning interval (a−, a+)—depend
now on the direction of propagation. We take the lattice Z

2, for which the analog of Eq. 1.3
is

u̇i, j = (�u)i, j − f (ui, j , a), (1.10)

with the nonlinearity f as before. Here the coordinate (i, j) indexes a spatial point in Z
2,

each ui, j is a function of t as before, and the discrete laplacian � is given by

(�u)i, j = ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui, j . (1.11)

A traveling wave solution of (1.10) is a solution of the form

ui, j (t) = φ(iκ + jσ − ct)

for some (κ, σ ) ∈ R
2 \ {(0, 0)}, termed the direction vector, and some function φ : R → R.

The wave profile equation satisfied by φ now takes the form

− cφ′(ξ) = φ(ξ + σ)+ φ(ξ − σ)+ φ(ξ + κ)+ φ(ξ − κ)− 4φ(ξ)− f (φ(ξ), a).

(1.12)

It is known that for each direction vector (κ, σ ) ∈ R
2 \ {0} and each a ∈ (−1, 1), there is a

unique wave speed c = c(a, (κ, σ )) such that Eq. 1.12 admits a monotone solution satisfying
the boundary conditions (1.7). Moreover, when c �= 0 this solution φ = φ(ξ ; a, (κ, σ )) is
unique up to translation [20]. The wave speed c(a, (κ, σ )) depends continuously on a and
on (κ, σ ). For each (κ, σ ) it is nondecreasing in a, and as before is smooth in a and satisfies
∂c(a,(κ,σ ))

∂a > 0 when c(a, (κ, σ )) �= 0. Also as before, we have quantities a± = a±(κ, σ )
characterized by

[a−(κ, σ ), a+(κ, σ )] ∩ (−1, 1) = {a ∈ (−1, 1) | c(a, (κ, σ )) = 0}.
Writing (κ, σ ) = (r cos θ, r sin θ) for some r > 0 and θ ∈ R, one easily checks by rescaling
the independent variable ξ in (1.12) by a factor r that

c(a, (r cos θ, r sin θ)) = rc(a, (cos θ, sin θ)), a±(r cos θ, r sin θ) = a±(cos θ, sin θ).

We will sometimes abuse notation by writing a±(θ) instead of a±(r cos θ, r sin θ).
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The functions a±(θ) are the central objects of study in this paper. For definiteness we
study a+(θ). Although c(a, (κ, σ )) depends continuously on both a and (κ, σ ), the function
a+(θ) need not depend continuously on θ . However, a+(θ) is upper semi-continuous in θ ,
that is,

lim sup
θ→θ0

a+(θ) ≤ a+(θ0) (1.13)

holds for every θ0. This is an immediate consequence of the continuity of the function c(·, ·).
Definition We say that crystallographic pinning occurs for the system (1.10) in the direction
θ0 in case either the inequality (1.13) is strict, or the analogous inequality for a−(θ) is strict.

For the sawtooth function f0(u, a) = u − sgn(u − a) it was shown in [6] that crys-
tallographic pinning occurs in every direction θ0 for which tan θ0 is rational. It was then
established in [19] that for any such direction, if f is sufficiently close to the sawtooth func-
tion then crystallographic pinning occurs in that direction. Numerical studies [16] suggest
that crystallographic pinning occurs in the vertical and horizontal directions when f is the
cubic nonlinearity; see also [11].

The goal of this paper is to give a specific generic condition on a general nonlinearity f
under which crystallographic pinning occurs at θ0 = 0, that is, with (κ, σ ) = (1, 0). This is
given in Theorem 1.1 below. Before stating that result, let us introduce two conditions which
will be needed. These conditions do not necessarily hold for an arbitrary f , but rather will
be taken as hypotheses in our main result.

Condition A There exists p ∈ 	∞(Z), denoted p = {pn}n∈Z, satisfying

pn+1 + pn−1 − 2pn = f (pn, a+(0)), n ∈ Z, (1.14)

and which also satisfies the boundary and monotonicity conditions

lim
n→±∞ pn = ±1, pn ≤ pn+1 for n ∈ Z. (1.15)

Moreover, such p is unique up to a shift in the index n.

Condition B Condition A holds. Further, if v ∈ 	∞(Z) \ {0} satisfies

vn+1 + vn−1 − 2vn = f ′(pn, a+(0))vn, n ∈ Z, (1.16)

where p is as in Condition A and where we denote f ′(u, a) = ∂ f (u,a)
∂u , then the series

B = 1

2

∞∑

n=−∞
f ′′(pn, a+(0))v3

n (1.17)

converges and its limit satisfies satisfies B �= 0.

We now state the main results of this paper.

Theorem 1.1 Assume that Condition B holds. Then the inequality (1.13) is strict at θ0 = 0
and so crystallographic pinning occurs in the direction θ0 = 0.

Theorem 1.2 Condition B is generic in the following sense. Fix any f0 ∈ N and define the
set

C2+ = {γ ∈ C2[−1, 1] | γ (u) > 0 for every u ∈ [−1, 1]}, (1.18)
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noting that for every γ ∈ C2+ we have f ∈ N , where f (u, a) = γ (u) f0(u, a). Let the set
C2+ be endowed with the usual C2 topology, and so making it an open subset of the Banach
space C2[−1, 1]. Then the set G( f0) ⊆ C2+ defined as

G( f0) = {γ ∈ C2+ | γ f0 satisfies Condition B}
is a residual subset of C2+.

The next two propositions provide a partial verification of Conditions A and B under gen-
eral conditions. In particular, the existence of at least one (although not necessarily unique)
p ∈ 	∞(Z) satisfying (1.14) and (1.15) is shown in Proposition 1.3, while in Proposition 1.4
the convergence of the series (1.17) is shown for any v ∈ 	∞(Z) as in the statement of
Condition B.

Proposition 1.3 Assume that c(a, (1, 0)) = 0, equivalently, that a ∈ [a−(0), a+(0)]. Then
there exists p ∈ 	∞(Z) satisfying

pn+1 + pn−1 − 2pn = f (pn, a), n ∈ Z, (1.19)

along with (1.15). Moreover, any such monotone p is strictly monotone, that is pn < pn+1

for all n ∈ Z.

Proof The difference Eq. 1.19 is nothing more than the wave profile Eq. 1.12 with c = 0 and
θ = 0, that is, (κ, σ ) = (1, 0). As c(a, (1, 0)) = 0, this equation has a monotone heteroclinic
solution joining ±1. It only remains to show that this solution is strictly monotone.

To show strict monotonicity, suppose to the contrary that pm+1 = pm for some m ∈ Z.
Then f (pm, a) = pm−1 − pm ≤ 0. But f (pm, a) = f (pm+1, a) = pm+2 − pm+1 ≥ 0.
Therefore f (pm, a) = f (pm+1, a) = 0 and pm−1 = pm = pm+1 = pm+2. Continuing in
this fashion, we see that pn is constant in n, which contradicts the fact that it is a heteroclinic
connection between −1 and +1. �


Equation 1.16 can be expressed as Lv = 0, with the operator L ∈ L(	∞(Z)) given by

L = S + S−1 − 2I − f ′(p, a+(0)). (1.20)

Here S ∈ L(	∞(Z)) is the shift operator defined as

(SX)n = xn+1 for X = {xn}n∈Z ∈ 	∞(Z),
and by a slight abuse of notation f ′(p, a+(0)) ∈ L(	∞(Z)) denotes the diagonal operator
with entries f ′(pn, a+(0)).

Proposition 1.4 Assume that Condition A holds, with p as stated there, and let L ∈
L(	∞(Z)) be as in (1.20). Then there exists v ∈ 	∞(Z) \ {0} satisfying (1.16), that is,
Lv = 0. The vector v is unique up to scalar multiple, and thus

ker(L) = {av | a ∈ R}.
Further, v can be chosen to satisfy

vn > 0, n ∈ Z,

and its coordinate enjoys the estimate

vn ≤ Kμ|n|, n ∈ Z, (1.21)
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for some K > 0 and 0 < μ < 1. Thus v ∈ 	1(Z), and we may normalize v to satisfy
〈v, v〉 = 1 where 〈·, ·〉 denotes the duality (dot product) between 	1(Z) and 	∞(Z). The
operator L is Fredholm with index zero, with range

ran(L) = {w ∈ 	∞(Z) | 〈v,w〉 = 0},
and its spectrum satisfies

σ(L) ∩ (0,∞) = ∅.
Note that the exponential estimate (1.21) on vn implies the absolute convergence of the

sum (1.17) defining the quantity B in Condition B.
The proof of Proposition 1.4 will be given in Sect. 3. We remark that even if Condition A

does not hold, so p in Proposition 1.4 is not unique, we believe the statement of this result
to be true, with v depending on p.

To prove crystallographic pinning as in Theorem 1.1 we must prove that the inequality
(1.13) is strict. In our proof of Theorem 1.1 we shall assume that (1.13) is an equality for
θ0 = 0 and that Condition A holds, and proceed to show that B = 0. An important step in
this proof is the analysis of the second order difference equation

Xm+1 + Xm−1 − 2Xm + (S + S−1 − 2I )Xm − f (Xm, a+(0)) = 0, m ∈ Z, (1.22)

where Xm ∈ 	∞(Z) for each m. We write the vector Xm in coordinate form as Xm =
{xn,m}n∈Z where each xn,m is a scalar, and the operator S acts on the index n so that (SXm)n =
xn+1,m . In this way, Eq. 1.22 is effectively a difference equation in xn,m involving both indi-
ces n and m. The function f (·, a) : 	∞(Z) → 	∞(Z) in (1.22) is again a slight abuse of
notation, where we evaluate the nonlinear scalar function f (·, a) : R → R coordinatewise,
that is, f (Xm, a)n = f (xn,m, a).

Equation 1.22 arises when we consider the monotone traveling wave φε which propagates
in the direction (1, ε) with speed c, and we adjust the detuning parameter a = aε so that c is
appropriately small. This provides an infinite family of transition layers appearing at the inte-
gers ξ = n (after an appropriate shift), and to capture these layers we let φεn(ζ ) = φε(εζ+n).
Under this rescaling the differential-difference Eq. 1.12 becomes the infinite system

− c

ε
(φεn)

′(ζ ) = φεn(ζ + 1)+ φεn(ζ − 1)+ φεn+1(ζ )+ φεn−1(ζ )− 4φεn(ζ )− f (φεn(ζ ), a),

(1.23)

where each φεn(ζ ) corresponds to the layer at ξ = n. By choosing a = aε so that c = ε2, the
system (1.23) again develops an infinite family of transition layers spaced (in the limit) a unit
distance apart, that is, we have “layers within layers.” (This secondary scaling in our analysis
takes the form (2.11).) Let us also remark that solutions of PDE’s with nested families of
transition layers has been related to solutions of variational problems on tori [2,23,27]. The
vector Xm = { lim

ε→0
φεn(m)}n∈Z ∈ 	∞(Z) captures the values of the plateaus between these

secondary layers, and if it is the case that (1.13) is an equality, then the sequence {Xm}m∈Z

satisfies Eq. 1.22. The vectors Xm form a monotone heteroclinic orbit, having limits X±∞
which are approached from above as m → −∞ and below as m → ∞, and in the event
that Condition A holds, it is the case that X∞ = SX−∞ = p, with p as in Condition A.
Furthermore, the limiting point p possesses a two-dimensional center manifold as an equi-
librium of the difference Eq. 1.22. Theorem 1.1 is proved by showing that if B �= 0, then the
dynamics on the center manifold has a Bogdanov–Takens normal form, specifically (4.32),
(4.33). This in turn is shown to preclude the possibility of monotone limits to p from both
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above and below, and thus to preclude the monotone heteroclinic orbit {Xm}m∈Z. It follows
that B = 0, as desired.

We remark that we restrict attention to the special angle θ0 = 0, corresponding to wave
motion in the horizontal direction, as the case of other directions involves analysis which
is beyond the scope of this paper. In particular, for the case of a general rational direction,
namely that tan θ0 is either rational or infinite so that we may choose (κ, σ ) ∈ Z

2 \ {(0, 0)}
for the direction vector, the analog of (1.22) is a difference equation of order 2 max{|κ|, |σ |}.
In the case of an irrational direction, namely where tan θ0 is an irrational number, there is no
finite-dimensional analog of Eq. 1.22.

This paper is organized as follows. In Sect. 2 we construct the heteroclinic solution
{Xm}m∈Z to Eq. 1.22, assuming that (1.13) is an equality and that Condition A holds. In
Sect. 3 we prove Proposition 1.4, which develops information about the linearization of
Eq. 1.22 at the equilibrium p. This proof relies on properties of resolvent positive operators.
In Sect. 4 the center manifold reduction along with associated shadowing properties is given
for Eq. 1.22. In Sect. 5 we prove Theorem 1.1 by showing that B = 0 must hold if (1.13) is
an equality. Finally, in Sect. 6 we use transversality methods to prove Theorem 1.2, namely
that Conditions A and B hold generically for normal families of operators.

2 Doubly Heteroclinic Orbits

Throughout this section we assume that f is a normal family, in particular satisfying (1.4)
and (1.5). We study the LDE (1.10), keeping the notation as before.

Lemma 2.1 The inequalities −1 < a−(0) and a+(0) < 1 are strict. That is, there is a δ > 0
such that c(a, (1, 0)) < 0 for a ∈ (−1,−1 + δ] and c(a, (1, 0)) > 0 for a ∈ [1 − δ, 1).

Proof Without loss we show that a+(0) < 1. The conclusions about c follow directly from
this. We proceed by contradiction. Assume that a+(0) = 1. Thus c(a) ≤ 0 for every a ∈
(−1, 1), where we denote c(a) = c(a, (κ, σ )) with the horizontal direction (κ, σ ) = (1, 0).
Thus the corresponding wave profile φ(ξ) = φ(ξ ; a, (1, 0)) satisfies

φ(ξ + 1)+ φ(ξ − 1)− 2φ(ξ)− f (φ(ξ), a) ≥ 0 (2.1)

by (1.12). Without loss we may assume that

φ(ξ) ≤ 0 for ξ < 0, φ(ξ) ≥ 0 for ξ > 0, (2.2)

after an appropriate translation of ξ . Now take any sequence an → 1 and let φn(ξ) be the
corresponding wave profile, which is nondecreasing in ξ and takes values in [−1, 1]. Then
Helly’s Selection Theorem asserts that there exists a subsequence (which we still denote by
φn) such that φn converges pointwise on R. That is,

lim
n→∞φn(ξ) = φ∗(ξ)

holds for every ξ ∈ R, for some nondecreasing function φ∗ : R → [−1, 1]. Fixing such a
subsequence, from (2.1) we see that

φn(ξ + 1)+ φn(ξ − 1)− 2φn(ξ) ≥ αn = min
u∈[−1,1] f (u, an),

for every ξ ∈ R, where the above equality serves as the definition of αn . Clearly αn → 0 as
n → ∞, so upon taking this limit we have

φ∗(ξ + 1)+ φ∗(ξ − 1)− 2φ∗(ξ) ≥ 0, ξφ∗(ξ) ≥ 0, (2.3)
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for ξ ∈ R, where (2.2) has been used for the second inequality. Moreover, the first inequality
in (2.3) is strict for those ξ for which φ∗(ξ) �= ±1. One sees this from (2.1), since upon
fixing any such ξ we have that f (φn(ξ), an) is strictly positive and bounded away from zero
for large n. Now take any ξ ∈ R and denote δn = φ∗(ξ + n)− φ∗(ξ + n − 1). Then the first
inequality in (2.3) implies that δn+1 ≥ δn for every n ∈ Z. Thus if δ1 > 0 we have

φ∗(ξ + n)− φ∗(ξ) =
n∑

k=1

δk ≥ nδ1 → ∞

as n → ∞, which contradicts the boundedness of φ∗. It follows that δ1 = 0, and thus
φ∗(ξ + 1) = φ∗(ξ) for every ξ ∈ R. But φ∗ is monotone and thus constant on R, and with
the second inequality in (2.3) we conclude that φ∗(ξ) = 0 for every ξ ∈ R. Thus the first
inequality in (2.3) is an equality for every ξ ∈ R, however, this contradicts our assertion
above that the first inequality in (2.3) is strict whenever φ∗(ξ) �= ±1. This contradiction
completes the proof. �


Lemma 2.2 Let q ∈ 	∞(Z) satisfy

qn+1 + qn−1 − 2qn = f (qn, a), n ∈ Z, (2.4)

for some a ∈ (−1, 1). Assume also that qn ≤ qn+1 for every n ∈ Z. Then either

lim
n→±∞ qn = ±1, (2.5)

or else q is a constant sequence with qn = q0 ∈ {−1, a, 1} for every n.

Proof Denoting q±∞ = lim
n→±∞qn , which are finite quantities, we have f (q±∞, a) = 0 from

(2.4), and hence q±∞ ∈ {−1, a, 1}. It is thus enough to prove that (a) it is impossible for
both q−∞ = −1 and q∞ = a to hold simultaneously; and (b) it is impossible for both
q−∞ = a and q∞ = 1 to hold simultaneously. Without loss we only prove (a), so assume
to the contrary that q−∞ = −1 and q∞ = a. Noting that f (qn, a) ≥ 0 for every n ∈ Z and
denoting δn = qn − qn−1, we have from (2.4) that

δn+1 = δn + f (qn, a) ≥ δn ≥ 0. (2.6)

As {qn}n∈Z is not a constant sequence, necessarily δm > 0 for some m. But then δm+k ≥ δm

for every k ≥ 0 by (2.6), hence

qm+k − qm−1 =
k∑

i=0

δm+i ≥ (k + 1)δm → ∞

as k → ∞, contradicting boundedness of qm+k . �


Proposition 2.3 Assume that Condition A holds, with p as stated there. Then the 	∞(Z)-
valued ODE

−�′ = (S + S−1 − 2I )�− f (�, a+(0)) (2.7)

admits a heteroclinic solution � : R → 	∞(Z) with limits

lim
ζ→−∞�(ζ) = S−1 p, lim

ζ→∞�(ζ) = p.
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Moreover, there exists such a solution �(ζ) = {φn(ζ )}n∈Z satisfying the monotonicity con-
dition

φn(ζ ) < φn(ζ + δ) for δ > 0,

for every n ∈ Z and ζ ∈ R.

Proof Choose b ∈ (−1, 1)\{a} so that also b �= p j for every j ∈ Z, with p as in Condition A.
We shall consider the monotone traveling wave φε = φε(ξ) = φε(ξ ; aε, (1, 0)) traveling
in the direction (1, 0) with appropriately chosen aε and normalized by a translation so that
φε(0) = b. For sufficiently small ε choose aε so that c = c(aε, (1, 0)) = ε. Such a choice is
possible by the continuity of the function c and by Lemma 2.1. Note that lim

ε→0
aε = a+(0).

Let φεn(ζ ) = φε(εζ + n), and substitute into (1.8) to obtain

−(φεn)′(ζ ) = φεn+1(ζ )+ φεn−1(ζ )− 2φεn(ζ )− f (φεn(ζ ), aε).

For each n, as ε varies φεn constitute a bounded equicontinuous family and thus by Ascoli’s
Theorem and a diagonalization argument, we have the limit

lim
ε→0

φεn(ζ ) = φn(ζ )

for some subsequence of ε, holding uniformly on compact ζ -intervals for every n ∈ Z. Let-
ting �(ζ) = {φn(ζ )}n∈Z we obtain (2.7). The monotonicity of the original wave profile φε

together with the scaling ζ = εξ + n implies the monotonicity condition

φn(ζ ) ≤ φn(ζ + δ) ≤ φn+1(ζ ), δ > 0, (2.8)

holds for all ζ ∈ R and all n ∈ Z. We now show that this monotonicity is strict, as in the
statement of the proposition. Suppose to the contrary thatφn(ζ0) = φn(ζ0+δ) for some n ∈ Z

and some δ > 0, and some ζ0 ∈ R. Since each φn is non-decreasing we have φn(ζ ) = φn(ζ0)

for every ζ ∈ [ζ0, ζ0 +δ]. It is then a consequence of (2.7) that φn+1(ζ )+φn−1(ζ ) is constant
in [ζ0, ζ0 + δ], and so both φn±1(ζ ) are constant in that interval as these functions are non-
decreasing. By induction we see that the vector �(ζ) is in fact constant in this interval, and
so (2.7) at ζ = ζ0 rewrites as (S + S−1 − 2I )�(ζ0)− f (�(ζ0), a+(0)) = 0. Thus the point
�(ζ0) ∈ 	∞(Z) is an equilibrium of Eq. 2.7, and by uniqueness we must have�(ζ) = �(ζ0)

for every ζ ∈ R. Lemma 2.2 now applies to the vector q = �(ζ0) due to the monotonicity
of φn(ζ0) in n. Because q0 = φ0(0) = b �∈ {−1, a, 1} it follows that (2.5) holds. Thus by
the uniqueness (up to translation) of the vector p in Condition A, we have that q = S j p for
some j ∈ Z. But then b = q0 = p j contradicts the choice of b. Thus the first inequality in
(2.8) is strict, as desired. Note that the second inequality in (2.8) is also strict.

We now establish the boundary conditions for �(ζ). It is a consequence of (2.8) that
the limits φn(±∞) = lim

ζ→±∞φn(ζ ) exist. Taking these limits in (2.7) gives (S + S−1 −
2I )�(±∞) − f (�(±∞), a+(0)) = 0. Again Lemma 2.2 applies, and this time due to
the strict monotonicity we have (2.5) for both vectors �(±∞). As �(−∞) ≤ �(∞) and
�(−∞) �= �(∞) it follows that �(−∞) = S j p and �(∞) = Sk p for some integers
j < k, with p given by Condition A. However, we also have that �(∞) ≤ S�(−∞) from
the second inequality in (2.8), and so k ≤ j + 1. Thus k = j + 1. By reindexing n, namely
by replacing �(ζ) with S−k�(ζ), we obtain the desired boundary conditions. �

Proposition 2.4 Assume that the inequality (1.13) is an equality at θ0 = 0. Also assume that
Condition A holds, with p as stated there. Then the 	∞(Z)-valued difference Eq. 1.22 admits
a heteroclinic orbit {Xm}m∈Z with limits

123



J Dyn Diff Equat (2010) 22:79–119 89

lim
m→±∞ Xm = X±∞, X−∞ = S−1 p, X∞ = p, (2.9)

in the space 	∞(Z). Moreover Xm = {xn,m}n∈Z satisfies the lexicographic monotonicity
property

pn−1 = xn,−∞ < xn,m < xn,m+1 < xn,∞ = pn, n,m ∈ Z. (2.10)

Proof We shall consider the monotone traveling wave φε = φε(ξ) = φ(ξ ; aε, (1, ε)), which
propagates in direction (κ, σ ) = (1, ε), taking an appropriately chosen a = aε. Note that the
angle θ corresponding to this direction is θ = arctan ε, and so the upper value of the pinning
range is located at a = a+(θ) = a+(arctan ε).

To be precise, fix a sequence εk → 0 with εk �= 0 such that

lim
k→∞ a+(θk) = a+(0)

for θk = arctan εk , by the equality assumption in (1.13). For the remainder of this proof we
shall select ε only from the sequence εk , suppressing the index k for notational simplicity. For
sufficiently small ε choose a = aε so that the wave speed is given by c(aε, (1, ε)) = ε2. Such
a choice is possible by the continuity of the function c = c(a, (κ, σ )) and by Lemma 2.1.
Indeed, one has c(a+(arctan ε), (1, ε)) = 0 while c(1− δ, (1, ε)) > 0 is bounded away from
zero as ε → 0, by Lemma 2.1. Let ā = lim

ε→0
aε , where the limit is taken along a subsequence if

necessary. Certainly aε > a+(arctan ε) for all ε and therefore ā ≥ lim
θ→0

a+(arctan ε) = a+(0).
Similarly, continuity of the function c implies that c(ā, (1, 0)) = 0, so ā ≤ a+(0). Thus
ā = a+(0).

Now fix b ∈ (p−1, p0) so that b �= a+(0). Of course b �= pn for every n. By translating
the argument ξ of φε, we may assume without loss that φε(0) = b. Let

φεn,m(ζ ) = φε(ε2ζ + εm + n). (2.11)

As φε(ξ) satisfies Eq. 1.12 with c = ε2, with a = aε , and with (κ, σ ) = (1, ε), we see that
the functions φεn,m(ζ ) satisfy the LDE

− (φεn,m)
′ = φεn,m+1 + φεn,m−1 + φεn+1,m + φεn−1,m − 4φεn,m − f (φεn,m, aε). (2.12)

Note in particular that all arguments of the functions φεi, j in (2.12) are evaluated at the same
point ζ , and so (2.12) is an infinite-dimensional ODE. By Ascoli’s Theorem and a diagonal-
ization argument, we have the limit

lim
ε→0

φεn,m(ζ ) = φn,m(ζ )

for some subsequence of ε, holding uniformly on compact ζ -intervals for every n and m.
The limiting function φn,m satisfies the same LDE (2.12), but with a+(0) in the argument
of f . Of course, φ0,0(0) = b. The monotonicity of the original wave profile φε(ξ), and the
particular scaling ξ = ε2ζ + εm +n of the argument, imply that our limiting functions enjoy
the lexicographic montonicity condition

φn,m(ζ ) ≤ φn,m(ζ + δ) ≤ φn,m+k(ζ ) ≤ φn+1,m(ζ − δ) for k ≥ 1 and δ > 0, (2.13)

and every n,m ∈ Z and ζ ∈ R. Indeed, one sees that for any given such k, δ, n, m, and ζ ,
the inequalities (2.13) hold for φεn,m for small ε. Define now

xn,m = lim
ζ→∞φn,m(ζ ), Xm = {xn,m}n∈Z ∈ 	∞(Z).
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Certainly these limits exist, and of course |xn,m | ≤ 1. Additionally lim
ζ→∞φ

′
n,m(ζ ) = 0 from

the differential Eq. 2.12. From this one easily sees that taking the limit ζ → ∞ in (2.12)
yields the difference Eq. 1.22, which may also be written as

(�x)n,m = f (xn,m, a+(0)), (n,m) ∈ Z
2, (2.14)

where � is the discrete laplacian (1.11) on Z
2. The ordering xn,m ≤ xn,m+k ≤ xn+1,m for

k ≥ 1, which follows from (2.13), implies that xn,±∞ = lim
m→±∞xn,m exist and that

xn,−∞ ≤ xn,m ≤ xn,m+1 ≤ xn,∞, xn,∞ ≤ xn+1,−∞, (2.15)

for every n and m. One sees that the vectors X−∞ = {xn,−∞}n∈Z and X∞ = {xn,∞}n∈Z both
satisfy the conditions of Lemma 2.2 with a = a+(0).

Also observe that

x0,−1 ≤ b ≤ x0,0. (2.16)

The second inequality in (2.16) holds because φ0,0(ζ ) ≥ φ0,0(0) = b for ζ ≥ 0. The first
inequality in (2.16) follows by taking (n,m) = (0,−1)with k = 1, and ζ = 0, in the second
inequality of (2.13), to give φ0,−1(δ) ≤ φ0,0(0) = b. One then lets δ → ∞.

We next show that the first three inequalities in (2.15) are strict. Suppose that xn,m =
xn,m+1 for some n and m. Then by Eq. 2.14

0 = (�x)n,m+1 − (�x)n,m

= (xn+1,m+1 − xn+1,m)+ (xn−1,m+1 − xn−1,m)+ (xn,m+2 − xn,m−1).

Each of the three differences in the final line of the above equation are nonnegative by
(2.15), and so we have that

xn+1,m = xn+1,m+1, xn−1,m = xn−1,m+1,

xn,m−1 = xn,m = xn,m+1 = xn,m+2.

It is clear by repeating the procedure that we may conclude that

xn,m = xn,0 (2.17)

for every n and m, namely, that Xm = X0 is constant in m. Thus X±∞ = X0, and as
noted this vector satisfies the conditions of Lemma 2.2 with a = a+(0). We also have, from
(2.16) and (2.17), that x0,0 = b ∈ (−1, 1) \ {a+(0)}, and so it follows from Lemma 2.2 that

lim
n→±∞xn,0 = ±1. By the uniqueness assumption on p in the statement of the proposition,

we have that X0 = Sk p for some k ∈ Z. But then b = x0,0 = pk , which contradicts the
choice of b. We thus conclude that xn,m < xn,m+1 for every n and m, and hence the first
three inequalities in (2.15) are strict.

One thus has xn,−∞ < xn,∞ ≤ xn+1,−∞ < xn+1,∞ for every n, and this implies that
xn,−∞ < xn+1,−∞ and xn,∞ < xn+1,∞. Applying Lemma 2.2 again, to both X−∞ and X∞,
we conclude that each of these vectors are shifts of p, say

X−∞ = S j p, X∞ = Sk p,

for some j and k. As xn,−∞ < xn,∞ we have that S j p ≤ Sk p with S j p �= Sk p, and so
j < k. As xn,∞ ≤ xn+1,−∞ we have that Sk p ≤ S j+1 p, hence k ≤ j + 1. Thus j = k − 1.
Further,

pk−1 = (Sk−1 p)0 = (S j p)0 = x0,−∞ < x0,0 = b < x0,∞ = (Sk p)0 = pk,
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and so k = 0 by the choice of b. This implies that xn,−∞ = pn−1 and xn,∞ = pn , to give
the result. �


3 The Proof of Proposition 1.4

For each pair (q, a) ∈ 	∞(Z) × (−1, 1) we may linearize Eq. 2.4 about q to obtain an
associated operator Lq(a) ∈ L(	∞(Z)) given by

Lq(a) = S + S−1 − 2I − f ′(q, a), (3.1)

where f ′(q, a) denotes the diagonal operator with entries f ′(qn, a). Proposition 1.4 concerns
the operator Lq(a) with a = a+(0) and with q = p as in (1.14), (1.15). We first examine the
spatial dynamics associated with the difference equation Lq(a)v = 0.

Generally, we shall denote Lq = Lq(a) when the value of a is clear.

Lemma 3.1 Let D ∈ L(	∞(Z)) be the diagonal operator D = diag{dn}n∈Z, where we
assume the existence of the limits and the sign conditions

lim
n→±∞ dn = d±∞, d±∞ > 0.

Then the operator T = S+S−1 −2I − D is Fredholm of index zero. Moreover, the dimension
of the kernel of T is either zero or one. Furthermore, elements v ∈ ker(T ) of the kernel enjoy
the estimate

|vn | ≤ Kμ|n|, n ∈ Z, (3.2)

for some K > 0 and 0 < μ < 1, and in addition,

vn �= 0 for all large |n| (3.3)

for nontrivial elements of the kernel. If v is a nontrivial element of the kernel then

ran(T ) = {w ∈ 	∞(Z) | 〈v,w〉 = 0}, (3.4)

with ran(T ) = 	∞(Z) if ker(T ) = {0}.
If q ∈ 	∞(Z) satisfies lim

n→±∞qn = ±1 and a ∈ (−1, 1), then all the above

claims hold for the operator T = λI − Lq , where Lq = Lq(a), provided that λ >

max{− f ′(1, a),− f ′(−1, a)}.
Finally, the same conclusions hold if we consider the operator T , or λI − Lq , lying in the

space L(Q0) instead of L(	∞(Z)), where

Q0 = {x ∈ 	∞(Z) | lim
n→±∞ xn = 0}.

Proof The arguments below apply equally to operators in the space L(	∞(Z)), and in the
space L(Q0).

Consider the second order difference equation

xn+1 + xn−1 − (2 + dn)xn = 0 (3.5)

associated to the operator T . This difference equation is asymptotically hyperbolic, that is,
all roots μ of the limiting characteristic equations

μ+ μ−1 − (2 + d±∞) = 0 (3.6)
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satisfy |μ| �= 1. Indeed, one easily checks this by noting the left-hand side of (3.6) is negative
wheneverμ = eiθ . In fact the two roots of this equation have the formμ = μ± andμ = μ−1± ,
satisfying 0 < μ± < 1 < μ−1± , for each choice of sign + or −, and so this equation is of
saddle type.

Asymptotic hyperbolicity of Eq. 3.5 now implies that this equation admits dichotomies
whose stable and unstable subspaces are each one-dimensional, both for n → ∞ and for
n → −∞. This and the above remarks about the roots of (3.6) in turn imply that the kernel
of T is at most one-dimensional, that any kernel element necessarily decays at the rate (3.2)
for some K > 0 and 0 < μ < 1, and that T is Fredholm.

In particular, the proof that T is Fredholm follows by adapting the techniques of Palmer
[25] for ODE’s to the setting of difference equations. Palmer proved that a differential oper-
ator of the form Lx(t) = ẋ(t) − A(t)x(t), where A(t) is a bounded continuous coefficient
matrix, is Fredholm if and only if it admits exponential dichotomies on both half lines. (Here
the operator L acts from the space of bounded C1 functions on the line with bounded first
derivative, into the space of bounded continuous functions.) The techniques of Palmer’s proof
carry over to difference operators of the form (3.5), with appropriate modifications. We omit
the details.

To prove that the Fredholm index of T is zero, consider the operator T − λI . For every
λ ≥ 0 this operator satisfies the same conditions in the statement of the lemma as T does,
and so it too is Fredholm, necessarily with the same index as T . But T − λI is invertible for
λ > ‖T ‖, and so has index zero. Thus the index of T also is zero. In particular, if ker(T ) = {0}
then ran(T ) = 	∞(Z).

To prove (3.4) in the case that ker(T ) contains a nontrivial element v, note that if w ∈
ran(T ), say w = T y, then 〈v,w〉 = 〈v, T y〉 = 〈T ∗v, y〉 = 0, where T ∗ ∈ L(	1(Z)) has the
same formula as does T , but considered in the space 	1(Z). This now proves an inclusion for
the formula (3.4). But both spaces in this formula have the same codimension, in particular
codim ran(T ) = dim ker(T ) = 1, as the Fredholm index of T is zero. We conclude that (3.4)
is valid, as claimed.

To prove that (3.3) holds for any nontrivial element of ker(T ), consider such an element v.
Suppose for some n ≥ n0 that vn+1 > vn ≥ 0, where n0 is large enough that dm ≥ 0 for every
m > n0. Then from the difference Eq. 3.5 at n + 1 we have that vn+2 − vn+1 ≥ vn+1 − vn ,
and so vn+2 > vn+1 ≥ 0. Upon repeating this procedure, we conclude that vn+k − vn+k−1

is a nondecreasing and strictly positive sequence for k ≥ 1. But this forces vm → ∞ as
m → ∞, which is false. Thus the assumption that vn+1 > vn ≥ 0 for some n ≥ n0 is
impossible. Similarly, vn+1 < vn ≤ 0 cannot occur for any n ≥ n0. Thus if vn = 0 for some
n ≥ n0, necessarily vn+1 = 0. However, in light of the difference Eq. 3.5, this forces vm = 0
for every m ∈ Z, which contradicts the assumption that v is nontrivial. We thus conclude
that vn �= 0 for all n ≥ n0. Similarly, vn �= 0 for all sufficiently large negative n, as claimed.

To establish the penultimate claim of the lemma, we note that the operator Lq − λI has
the same form as T in the statement of the lemma, with

d±∞ = f ′(q±∞, a)+ λ = f ′(±1, a)+ λ.

Thus Lq − λI is Fredholm with index zero so long as λ > max{− f ′(1, a),− f ′(−1, a)}, as
desired. �


The proof of Proposition 1.4 relies on the theory of resolvent positive operators, which we
now briefly outline.
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Recall that a closed convex subset K of a Banach Space X is called a cone if it is closed
under positive linear combinations and if also K ∩ (−K) = {0}. A cone K is a called a total
cone if in addition, its linear span {x1 − x2 | x1, x2 ∈ K} is dense in X .

Let K ⊆ X be a cone. An element x ∈ X is called positive with respect to K, denoted
x ≥ 0, if x ∈ K, and we write x1 ≥ x2 to mean x1 − x2 ≥ 0, for x1, x2 ∈ X . The relation ≥
thus defines a partial order on X . A linear operator T ∈ L(X ) is called positive if T (K) ⊆ K,
that is, T x ≥ 0 whenever x ≥ 0. We similarly write T ≥ 0 to denote that T is a positive
operator, and T1 ≥ T2 when T1 − T2 ≥ 0. An operator T is called resolvent positive if there
exists � ∈ R such that λ ∈ ρ(T ) and (λI − T )−1 ≥ 0 whenever λ ≥ �.

Resolvent positive operators satisfy the following nice property [19,24,29]. A proof of
the following result can be found, for example, in Proposition 4.7 of [19].

Proposition 3.2 Let K be a total cone in a Banach Space X and let T ∈ L(X ) be resolvent
positive with respect to K. Then

σ(T ) ∩ R �= ∅.
Further, let

λ0 = sup(σ (T ) ∩ R).

Then either λ0 is an eigenvalue of T and there exists an associated positive eigenvector v,
that is

T v = λ0v, v ∈ K \ {0},
or else the operator λ0 I − T is not Fredholm.

In what follows, whenever we take X = 	∞(Z), then we let K be the cone of non-negative
sequences, namely those x = {xn}n∈Z with xn ≥ 0 for every n.

Lemma 3.3 If T ∈ L(X ) satisfies T ≥ −σ I for some σ ∈ R, then T is resolvent positive. In
particular, the operator Lq(a) in Eq. 3.1 is of this form for any q ∈ 	∞(Z) and a ∈ (−1, 1),
and hence is resolvent positive.

Proof For a general operator T as in the statement of the lemma, write T = B − σ I where
B ≥ 0. Then

(λI − T )−1 = ((λ+ σ)I − B)−1 = 1

λ+ σ

∞∑

k=0

Bk

(λ+ σ)k

converges for λ+ σ > ‖B‖, and is a sum of positive operators hence is positive.
For the specific operator Lq we see that taking σ ≥ 2 + max{ f ′(u, a) | − 1 ≤ u ≤ 1}

gives Lq ≥ −σ I , as desired. �

Proposition 3.4 Suppose that q ∈ 	∞(Z) and a ∈ (−1, 1) are as in the statement of
Lemma 3.1. Then σ(Lq) ∩ R �= ∅. Assume additionally that the quantity

λ0 = sup(σ (Lq) ∩ R) (3.7)

satisfies

λ0 > max{− f ′(1, a),− f ′(−1, a)}. (3.8)
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Then λ0 is an eigenvalue of Lq and λ0 I − Lq has a one-dimensional kernel, and so

ker(λ0 I − Lq) = {av | a ∈ R}
for some v ∈ 	∞(Z) \ {0}. Further, the eigenvector v can be chosen to satisfy vn > 0 for all
n ∈ Z, and there are constants K > 0 and 0 < μ < 1 such that vn ≤ Kμ|n| for all n ∈ Z,
and so also v ∈ 	1(Z). Finally, the operator λ0 I − Lq is Fredholm with index zero, with
range

ran(λ0 I − Lq) = {w ∈ 	∞(Z) | 〈v,w〉 = 0}. (3.9)

Proof The operator Lq is resolvent positive by Lemma 3.3 and so Proposition 3.2implies
that σ(Lq)∩R �= ∅. Now assume that the inequality (3.8) holds. Then λ0 I − Lq is Fredholm
with index zero, by Lemma 3.1. Thus Proposition 3.2 implies that λ0 is an eigenvalue of Lq

with an associated eigenvector v ∈ K \ {0}, that is, with v �= 0, and vn ≥ 0 for every n ∈ Z.
It follows from Lemma 3.1 that λ0 is simple and that v enjoys exponential decay in n, and
that moreover the formula (3.9) for the range holds.

It remains to prove that the strict inequality vn > 0 holds for every n. If this is false, then
there exists some k ∈ Z for which vk = 0, and with either vk+1 > 0 or vk−1 > 0. In any
case, both vk±1 ≥ 0. But then

0 = ((λ0 I − Lq)v)k = λ0vk − vk+1 − vk−1 + (2 + f ′(qk, a))vk < 0,

a contradiction. �

Proof of Proposition 1.4 It follows from Proposition 3.4 that it suffices to show that λ0 = 0
for the quantity in (3.7), taking q = p and a = a+(0), and thus with the operator L =
L p(a+(0)) as in Eq. 1.20.

Let us first show that λ0 ≤ 0. Assuming to the contrary that λ0 > 0, let v ∈ 	∞(Z) be
the associated positive eigenvector as in Proposition 3.4. Also let �(ζ) = S�(ζ)− p, with
�(ζ) as in Proposition 2.3 , so that �(ζ) ≥ 0 with �(ζ) �= 0. Then from Eq. 2.7 we have

−� ′ = (S + S−1 − 2I )� − f (� + p, a+(0))+ f (p, a+(0))

which can be rewritten as

−� ′ = L� − E(ζ ),

E(ζ ) = f (�(ζ )+ p, a+(0))− f (p, a+(0))− f ′(p, a+(0))�(ζ ).

Now v ∈ 	1(Z) by the exponential decay of vn , and so we may take the inner (duality)
product 〈·, ·〉 of the above equation with v. Denoting this byw(ζ ) = 〈v,�(ζ )〉, we have that

− w′(ζ ) = 〈v, L�(ζ)〉 − 〈v, E(ζ )〉
= 〈L∗v, s�(ζ)〉 − 〈v, E(ζ )〉
= λ0w(ζ )− e(ζ ), (3.10)

where e(ζ ) = 〈v, E(ζ )〉. Also note that w(ζ ) > 0 for every ζ . Now

En(ζ ) = f (ψn(ζ )+ pn, a+(0))− f (pn, a+(0))− f ′(pn, a+(0))ψn(ζ )

and so there exists K > 0 such that

|En(ζ )| ≤ Kψn(ζ )
2 ≤ K‖�(ζ)‖ψn(ζ )
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with ‖ · ‖ denoting the norm in 	∞(Z). Thus

|e(ζ )| ≤
∞∑

n=−∞
vn |En(ζ )| ≤ K‖�(ζ)‖

∞∑

n=−∞
vnψn(ζ ) = K‖�(ζ)‖w(ζ ),

where the positivity of v and of �(ζ) is crucial in obtaining this inequality. From this and
from (3.10) we have that

−w′(ζ ) ≥ (λ0 − K‖�(ζ)‖)w(ζ ),
and in particular, −w′(ζ ) ≥ λ0

2 w(ζ ) for all sufficiently negative ζ , since �(ζ) → 0 as
ζ → −∞. However, this is impossible as w(ζ ) → 0 as ζ → −∞ with w(ζ ) > 0 for every
ζ . This contradiction proves that λ0 ≤ 0.

To complete the proof that λ0 = 0, we prove that λ0 ≥ 0. Assume to the contrary that
λ0 < 0. Then 0 �∈ σ(L) from the definition of λ0 and so L is invertible. This fact together with
the Implicit Function Theorem allows us to solve Eq. 2.4 for q = q(a) ∈ 	∞(Z) depending
smoothly on a, for a near a+(0), and with q(a) = p at a = a+(0). To be specific, assume
that such q(a) is defined for a ∈ U , where U ⊆ (−1, 1) is an open interval containing the
point a+(0). (We reserve the right below to decrease U by taking a smaller neighborhood of
a+(0).) Let us recall here the strict inequalities −1 < a+(0) < 1 from Lemma 2.1, which
will also be used below.

It is enough to show that qn(a) depends monotonically on n, that is, qn(a) ≤ qn+1(a) for
every n ∈ Z and a ∈ U . Indeed, if this holds then for every a ∈ U we have a monotone
solution of Eq. 1.12 at (κ, σ ) = (1, 0) with c = 0, and this implies that U is a subset of the
pinning region (a−(0), a+(0)). However, this contradicts the fact that U is a neighborhood
of a+(0).

Let us prove strict monotonicity in n for n ≥ 0, the proof of monotonicity for n ≤ 0 being
similar. Fix a sufficiently large integer N and sufficiently small ε > 0, such that

pN >
1 + a+(0)

2
> a + ε, ‖q(a)− p‖ < ε, pn+1 − pn > 2ε, (3.11)

holds for every a ∈ U and for 0 ≤ n < N . One easily does this by first choosing N to satisfy
the first inequality in (3.11), then choosing ε, and then possibly decreasing the neighborhood
U . We claim that qn+1(a) > qn(a) for every n ≥ 0 and a ∈ U . For such a, first observe that

qn+1(a)− qn(a) > pn+1 − pn − 2ε > 0, 0 ≤ n < N ,

by (3.11). Also observe that

qn(a) > pn − ε ≥ pN − ε >
1 + a+(0)

2
− ε > a, n ≥ N , (3.12)

again by (3.11). Now assume for some a ∈ U that there exists m ≥ N such that qm+1(a)−
qm(a) ≤ 0. Take m to be the least such integer, and so qm(a) − qm−1(a) > 0. Then
from Eq. 2.4 at n = m we have that f (qm(a), a) < 0, and so from (3.12) we have that
qm(a) ∈ (a, 1). Two cases now arise, and we shall rule out each of them in turn. For the
first case, there exists j > m such that q j+1(a) − q j (a) > 0. Take j to be the least such
integer, and so q j (a) − q j−1(a) ≤ 0, which with Eq. 2.4 implies that f (q j (a), a) > 0.
However, from the choice of j and from (3.12) it follows that a < q j (a) ≤ qm(a) < 1,
which implies that f (q j (a), a) < 0, a contradiction. We now consider the second case, in
which q j+1(a) − q j (a) ≤ 0 for every j > m. Then the limit q j (a) → q∞(a) exists as a
nonincreasing sequence for j ≥ m, and upon taking the limit n → ∞ in Eq. 2.4 we have
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that f (q∞(a), a) = 0, hence q∞(a) ∈ {−1, a, 1}. But (3.12) implies that q∞(a) > a, and
so q∞(a) = 1. On the other hand, q∞(a) ≤ qm(a) < 1, and this is a contradiction. With
this, the proof of the proposition is complete. �


The fact that λ0 = 0 will allow us to make a center manifold reduction. The positivity of
the kernel element v will allow us to make use of the center manifold reduction to induce a
sign condition on f . The next section is devoted to constructing the center manifold.

4 A Center Manifold Reduction

So long as Condition A holds and (1.13) is an equality at θ0 = 0, then Proposition 2.4 guaran-
tees that the difference Eq. 1.22 admits a monotone increasing solution Xm which converges
to p as m → ∞. Similarly, the solution of (1.22) given by SXm is also monotone increasing
in m and converges (downward) to p as m → −∞. Our aim is to close the argument by
showing that such dynamical behavior can occur only when B = 0 for the quantity in Con-
dition B, and thus can only happen when Condition B fails. In other words, when Condition
B holds and so B �= 0, then the inequality (1.13) is strict at θ0 = 0 and so crystallographic
pinning occurs in the direction θ0 = 0.

Our approach is to consider the difference equation

Ym+1 = 2Ym − Ym−1 − (S + S−1 − 2I )Ym

+ f (p + Ym, a+(0))− f (p, a+(0)), (4.1)

which is satisfied by both Ym = Xm − p and also by Ym = SX−m − p whenever Xm sat-
isfies (1.22). We shall show that when Condition A holds, then the system (4.1) possesses a
two-dimensional center manifold at the origin. Moreover, this center manifold contains two
monotone orbits which approach zero from below and above, and toward which the orbits
Xm − p and SX−m − p, respectively, obtained in Proposition 2.4 converge exponentially
fast as m → ∞. A convexity argument then shows that the existence of one of these orbits
forces B ≤ 0 and the other forces B ≥ 0, thus B = 0 must hold.

The first step in this process is the construction of a smooth center manifold. The following
theorem is a discrete-time version of Theorem 4.1 in [31]. For details see [17] in the case
where Z is a Hilbert space.

Theorem 4.1 [Center Manifold Theorem] Let Z be a Banach space and let A ∈ L(Z) sat-
isfy the following spectral gap condition: There exists α > 0 such that for each λ ∈ σ(A)
either |λ| = 1 or | log |λ|| > α. Denote by Zc and Zh the associated center and hyperbolic
subspaces of Z, corresponding to spectra with |λ| = 1 and |λ| �= 1, respectively. Assume that
Zc is finite dimensional. Let g : Z → Z be a Ck-smooth function for some 1 ≤ k < ∞ and
satisfy g(0) = 0 and Dg(0) = 0. Then there exist neighborhoods �c ⊆ Zc and �h ⊆ Zh

of the origin in these subspaces, and a Ck mapping ψ : �c → �h with ψ(0) = 0 and
Dψ(0) = 0, such that the following properties hold:

• If zc
n ∈ �c for 0 ≤ n ≤ N + 1 satisfies the reduced system

zc
n+1 = Aczc

n + πcg(zc
n + ψ(zc

n)) (4.2)

for 0 ≤ n ≤ N, and if we let zn = zc
n + ψ(zc

n), then zn satisfies the full system

zn+1 = Azn + g(zn) (4.3)

for 0 ≤ n ≤ N.
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• If zn satisfies the full system (4.3) and also zn ∈ � for all n ∈ Z, then πhzn = ψ(πczn)

and zc
n = πczn satisfies the reduced system (4.2) for every n ∈ Z.

In the above statements, we let πc and πh denote the canonical projections with respect to
the decomposition Z = Zc ⊕ Zh, and Ac = πc A and Ah = πh A are the corresponding
operators on these subspaces. We also denote � = {zc + zh | zc ∈ �c and zh ∈ �h}, which
is a neighborhood of the origin in Z.

When Theorem 4.1 holds, we call the set

W c = {zc + ψ(zc) | zc ∈ �c} ⊆ �

a local center manifold for the full system (4.3), and the system (4.2) restricted to this set
is called the reduced system. We only outline the proof of this result. For more details, see
[17,30,31].

Sketch of Proof The full evolution Eq. 4.3 may be written in terms of its center, stable, and
unstable parts, where we decompose Z = Zc ⊕ Zh = Zc ⊕ (Zs ⊕ Zu) in this fashion. We
generally denote z◦ = π◦z, with A◦ = π◦ A and g◦(z) = π◦g(z), where π◦ denotes the
spectral projection onto Z◦, with ◦ representing c, h, s, or u. We thus have

zc
n+1 = Aczc

n + gc(zn),

zs
n+1 = As zs

n + gs(zn),

zu
n+1 = Au zu

n + gu(zn),

for the full Eq. 4.3, and we have that zn = zc
n + zs

n + zu
n . The corresponding variation of

constants formulae are

zc
n = (Ac)nzc

0 +
n−1∑

j=0

(Ac)n−1− j gc(z j ),

zs
n = (As)nzs

0 +
n−1∑

j=0

(As)n−1− j gs(z j ),

zu
n = (Au)nzu

0 +
n−1∑

j=0

(Au)n−1− j gu(z j ), (4.4)

where if n ≤ 0 we interpret
∑n−1

j=0 = −∑−1
j=n , with

∑−1
j=0 the empty sum. We begin the

proof by restricting attention to the case where the orbit {zn}n∈Z is bounded for all n ∈ Z.
In this case, upon multiplying the second (stable) equation in (4.4) by (As)−n and letting
n → −∞, and also multiplying the third (unstable) equation in (4.4) by (Au)−n and letting
n → ∞, we obtain

zs
0 =

−1∑

j=−∞
(As)−1− j gs(z j ),

zu
0 = −

∞∑

j=0

(Au)−1− j gu(z j ), (4.5)
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and then substituting (4.5) into the second and third equations of (4.4) gives

zs
n =

n−1∑

j=−∞
(As)n−1− j gs(z j ),

zu
n = −

∞∑

j=n

(Au)n−1− j gu(z j ). (4.6)

Combining (4.6) with the first equation in (4.4) thus gives

zn = (Ac)nzc
0 +

n−1∑

j=0

(Ac)n−1− j gc(z j )

+
n−1∑

j=−∞
(As)n−1− j gs(z j )−

∞∑

j=n

(Au)n−1− j gu(z j ). (4.7)

We regard (4.7) as a fixed point equation for the trajectory {zn}n∈Z with zc
0 as a parameter.

For each ζ > 0 define the Banach space Yζ of sequences z = {zn}n∈Z in Z by

Yζ = {z : Z → Z | ‖z‖ζ < ∞}, ‖z‖ζ = sup
n∈Z

e−ζ |n|‖zn‖Z ,

with ‖ · ‖ζ being the norm in Yζ . Also define G : Zc × Yα → Yα to be the right hand side
of Eq. 4.7, with arguments zc

0 ∈ Zc and z = {zn}n∈Z ∈ Yα , with α as in the statement of
the theorem. Thus the fixed points of G(zc

0, ·) are solutions of (4.7). It is not hard to show
that G(zc

0, ·) is a contraction mapping, so long as the Lipschitz constant of g is sufficiently
small. Assuming this, denote the unique fixed point of G(zc

0, ·) by �(zc
0) ∈ Yα , and let

ψ : Zc → Zh be given by ψ(zc
0) = πh[�(zc

0)0]. Observe that zc
n = πc[�(zc

0)n] solves
the reduced system (4.2) and that zn = πc[�(zc

0)n] +ψ(πc[�(zc
0)n]) solves the full system

(4.3).
The difficult part is proving that ψ is smooth. Since we are using the uniform contraction

mapping principle, we obtain that the fixed point � is only as smooth in zc
0 as the uniform

contraction mapping G is. The Nemytskii operator associated to g is in general not smooth as
a mapping from Yα to itself. However, it is Ck-smooth as a mapping from Yζ to Yα whenever
kζ < α. Using this fact, one may show with a clever application of the Fiber Contraction
Theorem to the map G that � : Zc → Yα is Ck-smooth, and thus ψ : Zc → Zh is
Ck-smooth.

To complete the theorem, it remains only to remove the assumption that the Lipschitz
constant of g is small. This is done by considering the modified system

zn+1 = Azn + g̃(zn) (4.8)

where g̃(z) = g(z)χ(z). Here χ(z) = χ0(
‖zc‖
ε
)χ0(

‖zh‖
ε
) where χ0 : [0,∞) → R is a

smooth cutoff function which is identically +1 on [0, 1] and vanishes identically on [2,∞).
By choosing ε small enough, we can make the Lipschitz constant of g as small as we wish
on the region on which χ(z) is nonzero, and it follows from what we have sketched above
that the system (4.8) has a global center manifold. As for smoothness of this manifold, recall
that in general Banach spaces need not have smooth norms. However, as we have assumed
that Zc is finite dimensional, we may assume that its norm is smooth. Thus χ(z) depends
smoothly on zc, but in general is only Lipschitz in zh . It follows that χ and thus G(zc

0, ·)
is smooth in the region ‖zh‖ < ε where the cutoff function in the hyperbolic direction is
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constant. One now uses exponential estimates on the map G to show that ‖�(zc
0)n‖ < ε for

all coordinates of the fixed point �(zc
0) of G(zc

0, ·), whenever ‖zc
0‖ < ε. With this and the

above remarks about smoothness, it follows thatψ(zc
0) depends smoothly on zc

0 for ‖zc
0‖ < ε.

Taking�c and�h to be the balls of radius ε in Zc and Zh centered at the origin, the result now
follows. �


In addition to the existence of a smooth local center manifold, our proof of Theorem 1.1
requires the following shadowing lemma which guarantees that each orbit which stays close
to the center manifold approaches an orbit on the center manifold exponentially fast. This is
classical, and generally a consequence of the existence of a center-stable foliation. We do not
require the full apparatus here so we provide an independent proof for the specific estimate
that we need. The proof is similar to the construction of a stable manifold.

Lemma 4.2 [Shadowing Lemma] Consider the setting of Theorem 4.1, with α > 0 as in the
statement of that result. Then there exists a neighborhood� ⊆ Z of the origin such that any
forward solution z = {zn}n≥0 ⊆ � to the full system (4.3) which lies in� possesses an expo-
nentially close shadow on the center manifold. More precisely, there exists a positive constant
K such that for any such solution to Eq. 4.3, there exists a sequence yc = {yc

n}n≥0 ⊆ Zc

which satisfies the reduced system (4.2) and such that

‖zn − yc
n − ψ(yc

n)‖ ≤ K e−αn‖z0 − zc
0 − ψ(zc

0)‖, n ≥ 0.

Proof The proof breaks up naturally into two parts. First we show that zn approaches the
center manifold exponentially fast. Then we show that zn differs from a particular orbit on
the center manifold by an exponentially decreasing amount. Throughout, we work in a suf-
ficiently small neighborhood � of the origin in Z. In what follows we shall let �̃ denote the
neighborhood which was denoted by� in the statement of Theorem 4.1, and which contains
the center manifold. We shall let � denote a (possibly) smaller neighborhood � ⊆ �̃ which
will be constructed below and for which the statement of the present lemma is valid. We shall
otherwise keep the same notation as in the proof of Theorem 4.1.

We first introduce new coordinates (zc, w) replacing (zc, zh) in a neighborhood of the
origin, wherew ∈ Zh replaces zh and is defined byw = zh −ψ(zc), and with the coordinate
zc unchanged. Thus w = 0 if and only if z lies on the center manifold, in this neighborhood,
and we have z = zc +ψ(zc)+w. The evolution equation for the full system (4.3) written in
the new coordinates takes the form

zc
n+1 = Aczc

n + gc(zc
n + ψ(zc

n)+ wn),

wn+1 = Ahwn + Ahψ(zc
n)+ gh(zc

n + ψ(zc
n)+ wn)

−ψ(Aczc
n + gc(zc

n + ψ(zc
n)+ wn)). (4.9)

It is a consequence of the invariance of the center manifold that ψ satisfies the functional
relation

ψ(Acu + gc(u + ψ(u))) = Ahψ(u)+ gh(u + ψ(u)),

and it follows from this that we may rewrite the system (4.9) as

zc
n+1 = Aczc

n + g̃c(zc
n, wn),

wn+1 = Ahwn + g̃h(zc
n, wn),
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where g̃c and g̃h are given by

g̃c(u, w) = gc(u + ψ(u)+ w),

g̃h(u, w) = gh(u + ψ(u)+ w)− gh(u + ψ(u))

+ψ(Acu + gc(u + ψ(u)))− ψ(Acu + gc(u + ψ(u)+ w)).

Observe that g̃h(u, 0) = 0 identically, and also that Dg̃h(0, 0) = 0 since Dg(0) = 0 and
Dψ(0) = 0.

Now letws = π sw andwu = πuw denote the projections ofw onto the stable and unstable
subspaces, and so w = ws +wu . Let g̃s(u, w) = π s g̃h(u, w) and g̃u(u, w) = πu g̃h(u, w),
and note that g̃s(u, 0) = 0 and g̃u(u, 0) = 0 identically, and that Dg̃s(0, 0) = 0 and
Dg̃u(0, 0) = 0. Much as in the proof of Theorem 4.1, we may write the variation of con-
stants formulae

ws
n = (As)nws

0 +
n−1∑

j=0

(As)n−1− j g̃s(zc
j , w j ),

wu
n = −

∞∑

j=n

(Au)n−1− j g̃u(zc
j , w j ), (4.10)

although we take a finite sum here for the stable part in contrast to the proof of Theorem 4.1.
(We have also omitted the formula for zc

n as it will not be needed here.) Adding the two
formulae in (4.10) gives

wn = (As)nws
0 +

n−1∑

j=0

(As)n−1− j g̃s(zc
j , w j )−

∞∑

j=n

(Au)n−1− j g̃u(zc
j , w j ), (4.11)

for every n ≥ 0, and which is valid for any forward orbit z = {zn}n≥0 lying in �̃.
We wish to show that the coordinateswn decay exponentially to zero provided the sequence

zn lies in a sufficiently small neighborhood � of the origin. Our approach is to regard the
coordinates zc

n and also ws
0 as known, and to consider Eq. 4.11 as a fixed point problem for

the bounded sequence w = {wn}n≥0. More precisely, we shall show this sequence is in fact
a fixed point both in a space of bounded sequences, and also in a space of exponentially
decaying sequences.

To this end, for any ζ ≥ 0 define the Banach space Rh
ζ of one-sided sequences in Zh

Rh
ζ = {r : N0 → Zh | ‖r‖ζ < ∞}, ‖r‖ζ = sup

n≥0
eζn‖rn‖Z , (4.12)

where N0 = {0, 1, 2, . . .}. (Contrast the definition of this space of one-sided decaying se-
quences, with that of Yζ which has two-sided growing sequences. We trust that the same
notation ‖ · ‖ζ for the two norms will not lead to confusion.) Next, with α as in the statement
of the theorem, there exist γ > α and C > 0 such that

‖(As)n‖, ‖(Au)−n‖ ≤ Ce−γ n, n ≥ 0. (4.13)

Now fix a neighborhood � ⊆ �̃ of the origin and take small enough quantities ε and δ such
that the following all hold. First,

‖ws‖ ≤ ε

2C
whenever z ∈ �, (4.14)
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where as usual ws = π sw with w = zh − ψ(zc). Next,

‖Dr g̃s(zc, r)‖, ‖Dr g̃u(zc, r)‖ ≤ δ

whenever z ∈ � and r ∈ Zh with ‖r‖ ≤ ε, (4.15)

with Dr denoting the derivative with respect to the second argument. Here r need not be
the w-coordinate arising from z as above, but rather is an arbitrary point in the closed ε-ball
about the origin in Zh . Finally, we require that the inequality (4.18) below with (4.16) should
hold both for ζ = α and for ζ = 0. It is easily seen that all this can be accomplished by first
fixing δ, and then ε, and then taking � sufficiently small.

Now let {zn}n≥0 ⊆ � be as in the statement of the lemma, with wn = zh
n − ψ(zc

n) as
usual. Denote the closed ε-ball about the origin in Rh

ζ by

Bζ (ε) = {r = {rn}n≥0 ∈ Rh
ζ | ‖r‖ζ ≤ ε},

and define a map G : Bζ (ε) → Rh
ζ by setting

G(r)n = (As)nws
0 +

n−1∑

j=0

(As)n−1− j g̃s(zc
j , r j )−

∞∑

j=n

(Au)n−1− j g̃u(zc
j , r j )

for n ≥ 0. Of course it must be shown that G(r) actually lies in Rh
ζ . We show this, and will

also bound the Lipschitz constant of the map G, which will give conditions under which G
is a contraction mapping.

Fix ζ satisfying 0 ≤ ζ < γ and take any r, r ∈ Bζ (ε). Then ‖rn − rn‖ ≤ e−ζn‖r − r‖ζ ,
and using (4.13) and (4.15) we have that

‖G(r)n − G(r)n‖
≤ Cδ

n−1∑

j=0

e−γ (n−1− j)e−ζ j‖r − r‖ζ + Cδ
∞∑

j=n

e−γ ( j+1−n)e−ζ j‖r − r‖ζ

< C̃(ζ )Cδe−ζn‖r − r‖ζ
after a short calculation, where

C̃(ζ ) = eζ

1 − e−(γ−ζ ) + e−γ

1 − e−(γ+ζ ) . (4.16)

Thus we have that

‖G(r)− G(r)‖ζ ≤ C̃(ζ )Cδ‖r − r‖ζ .
Next note that the sequence (As)nws

0, which is G(0), lies in the space Rh
ζ with the bound

‖G(0)‖ζ ≤ C‖ws
0‖ ≤ ε

2
(4.17)

on its norm, from (4.13) and (4.14). It follows immediately that if

C̃(ζ )Cδ ≤ 1

2
(4.18)

holds, then G is a contraction mapping of Bζ (ε) into itself, and thus has a fixed point. In fact,
we have assumed this to be the case for the choices ζ = 0 and ζ = α. Moreover, we have that
Bα(ε) ⊆ B0(ε) and so the fixed points in these two balls are identical, namely, the bounded
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sequence {wn}n≥0 obtained from the original orbit {zn}n≥0 and which satisfies (4.11). Thus
{wn}n≥0 in fact lies in Bα(ε). Additionally, as the contraction constant of G in this ball is
bounded by 1

2 , it follows that ‖w‖α ≤ 2‖G(0)‖α , which with (4.17) yields the bound

‖wn‖ ≤ 2Ce−αn‖ws
0‖.

We now show the existence of a shadow orbit {yc
n}n≥0, as in the statement of the lemma. As

this part of the proof is very similar to the part above, and in particular involves a contraction
mapping in a similar space Rc

ζ , we only sketch the argument. Here Rc
ζ and its norm ‖ · ‖ζ

are defined as before (4.12), except that the elements of Rc
ζ are sequences r : N0 → Zc in

the space Zc. We write un = yc
n − zc

n . As zc
n satisfies the first equation in (4.9) and we wish

yc
n to satisfy the reduced Eq. 4.2, then un must satisfy

un+1 = Acun + ĝ(zc
n, un)+ qn (4.19)

where

ĝ(zc, u) = g̃c(zc + u, 0)− g̃c(zc, 0), qn = g̃c(zc, 0)− g̃c(zc, wn).

A sufficient condition for (4.19) to hold for n ≥ 0, with un decaying exponentially, is that

un = Qn −
∞∑

j=n

(Ac)n−1− j ĝ(zc
j , u j ) (4.20)

where

Qn = −
∞∑

j=n

(Ac)n−1− j q j .

In particular, one has the (growing) estimate

‖(Ac)−n‖ ≤ Ceκn, n ≥ 0,

where κ > 0 can be taken arbitrarily small, and where C = C(κ). One checks that {qn}n≥0

and thus {Qn}n≥0 belong to the space Rc
α , and also that Eq. 4.20 possesses a fixed point near

the origin in this space. This concludes the sketch of the proof of the existence of a shadow
orbit and hence the proof of the lemma. �

The existence of a center manifold for our particular system (1.22) follows from the Center
Manifold Theorem upon checking that we have a spectral gap at the unit circle. The follow-
ing lemma establishes the existence of a spectral gap and in addition characterizes the center
subspace for a class of difference equations which includes (1.22). Here and below, we let
col(· , ·) denote a column vector in the usual fashion.

Lemma 4.3 Let L ∈ L(X ) be an operator for which 0 ∈ σ(L) is an isolated point of the
spectrum, and let π0 ∈ L(X ) denote the spectral projection onto the spectral subspace of X
corresponding to this point. Let Z = X × X and define A ∈ L(Z) by

A =
(

2I − L −I

I 0

)
.

Then 1 ∈ σ(A) is an isolated point in the spectrum of A, and the spectral projection� ∈ L(Z)
corresponding to this point is given by

� =
(
π0 0

0 π0

)
. (4.21)
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Also, if there exists β1 > 0 such that

σ(L) ⊆ {λ ∈ C | Re λ < −β1} ∪ {0} (4.22)

then there exists β2 > 0 such that

σ(A) ⊆ {λ ∈ C | ||λ| − 1| > β2} ∪ {1}. (4.23)

Finally, if the operator L is Fredholm of index zero and has a one-dimensional generalized
kernel spanned by v ∈ X \ {0}, that is ker(L) = {av | a ∈ R} with v �∈ ran(L), then

ran(π0) = {av | a ∈ R}, ran(�) = {col(av, bv) | (a, b) ∈ R
2},

are the above-mentioned spectral subspaces of L and A, and they have dimension one and
two, respectively.

Proof We first show that

σ(A) ⊆ {λ ∈ C \ {0} | 2 − λ− λ−1 ∈ σ(L)}. (4.24)

Suppose that λ �= 0 is such that 2 −λ−λ−1 �∈ σ(L), and denote �(λ) = ((2 −λ−λ−1)I −
L)−1. We claim that

(λI − A)−1 =
(−λI I

−I (2 − λ)I − L

) (
λ−1�(λ) 0

0 λ−1�(λ)

)
, (4.25)

and thus λ �∈ σ(A). Indeed, this is straightforwardly proved by multiplying the above matrix
product by λI − A, to obtain the identity matrix after a brief calculation. We omit the details.
Thus (4.24) follows from this, and from the fact that 0 �∈ σ(A), which holds because

A−1 =
(

0 I

−I 2I − L

)
.

It now follows from (4.24), and from the easily-checked fact that 2 −λ−λ−1 �= 0 whenever
λ �= 1, that if λ = 1 belongs to the spectrum of A then it is an isolated point of the spectrum.

It is also easy to establish (4.23) assuming that (4.22) holds. Indeed, with (4.22) holding
assume that λ ∈ σ(A) \ {1}. Then 2 −λ−λ−1 ∈ σ(L) \ {0} and so 2 − Re(λ+λ−1) < −β1.
Writing λ = |λ|eiθ , we see that

|λ| + |λ|−1 ≥ (|λ| + |λ|−1) cos θ = Re(λ+ λ−1) > 2 + β1.

Denoting the two positive roots of r + r−1 = 2 + β1 by r± with r− < 1 < r+, we have that
either |λ| < r− or |λ| > r+, and thus (4.23) holds with β2 = min{1 − r−, r+ − 1}.

We next calculate the spectral projection � for A corresponding to the point λ = 1. (At
this point we do not yet know that 1 ∈ σ(A), however, this fact will follow when we show
that � �= 0.) For sufficiently small r we have that

� = 1

2π i

∫

|λ−1|=r

(λI − A)−1 dλ.

We calculate the above integral for each of the four block entries of the matrix (4.25), but
for simplicity we shall only provide the details for one of the entries, as the approach for the
others is similar. We take the lower right-hand entry
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�2,2 = 1

2π i

∫

|λ−1|=r

((2 − λ)I − L)λ−1�(λ) dλ

= 1

2π i

∫

|ν|=r

(L + (ν − 1)I )(ν2 I + (ν + 1)L)−1 dν, (4.26)

with ν = λ − 1, as one sees after a short calculation using the above formula for �(λ). We
apply the projections π0 and π1, where we denote π1 = I − π0, to the second integral in
(4.26) to get

π j�2,2 = 1

2π i

∫

|ν|=r

(L j + (ν − 1)I )(ν2 I + (ν + 1)L j )−1 dν (4.27)

for j = 1, 2, where L j = π j L is regarded as an operator on the spectral subspaceπ j X ⊆ X ,
and we separately calculate these contour integrals. Now 0 �∈ σ(L1), and thus the integrand
(L1 + (ν − 1)I )(ν2 I + (ν + 1)L1)−1 in (4.27) is holomorphic in ν in a neighborhood of
ν = 0. Thus the integral vanishes by Cauchy’s Theorem, and so π1�2,2 = 0. On the other
hand, for the case j = 0 we have σ(L0) = {0}, and so the integrand is holomorphic for all
complex ν except ν = 0. In this case we may increase the radius r of the contour arbitrarily,
again by Cauchy’s Theorem. Upon doing so, and then scaling ν, we write the integral in the
equivalent form

π0�2,2 = 1

2π i

∫

|ν|=1

ν−1((rν)−1 L0 + (1 − (rν)−1)I )(I + ((rν)−1 + (rν)−2)L0)−1 dν.

In the limit r → ∞ we obtain

π0�2,2 = 1

2π i

∫

|ν|=1

ν−1 I dν = I,

which is the identity operator on the space π0X . It thus follows that �2,2 = π0. The
proofs for the remaining three cases are similar, in which one shows that �1,1 = π0 and
�1,2 = �2,1 = 0. This establishes (4.21).

The final statement of the lemma follows immediately from the fact that with L having
the Fredholm properties described, we have X = ker(L)⊕ ran(L), and so the range of the
spectral projection π0 is the one-dimensional subspace ker(L) ⊆ X spanned by v. �


In the following proposition we construct a center manifold for the difference Eq. 4.1 and
compute the reduced equations on it. To begin, let us rewrite (4.1) as a system in the product
space Z = X × X where X = 	∞(Z), namely

Ym+1 = (2I − L)Ym − Wm + g(Ym),

Wm+1 = Ym, (4.28)

where L = L p(a+(0)) is the operator in (1.20) and where g : X → X is given by

g(Y ) = f (p + Y, a+(0))− f (p, a+(0))− f ′(p, a+(0))Y. (4.29)

Thus we have the system Zm+1 = AZm+G(Zm)with Z ∈ Z, and A ∈ L(Z) and G : Z → Z
given by

Z =
(

Y

W

)
, A =

(
2I − L −I

I 0

)
, G(Z) =

(
g(Y )

0

)
.
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The following center manifold reduction holds for this system.

Proposition 4.4 Let Condition A hold and take v as in Proposition 1.4. Then the system
(4.28), (4.29) in the space Z satisfies the conditions of Theorem 4.1(the Center Manifold
Theorem) with the associated center and hyperbolic subspaces Zc and Zh of Z given by

Zc = X c × X c, X c = {av | a ∈ R},
Zh = X h × X h, X h = {x ∈ X | 〈v, x〉 = 0}, (4.30)

and with a center manifold W c ⊆ Z given by

W c = {col(ηv + ψ1(η, ω), ωv + ψ2(η, ω)) | (η, ω) ∈ �c ⊆ R
2} (4.31)

for smooth functions ψi : �c → X h satisfying ψi (0) = 0 and Dψi (0) = 0, where�c ⊆ R
2

is a neighborhood of the origin. The reduced system on W c, in the coordinates (η, ω) ∈ �c,
has the form

ηm+1 = 2ηm − ωm + γ (ηm, ωm),

ωm+1 = ηm, (4.32)

where γ : �c → R satisfies

γ (η, ω) = 〈v, g(ηv + ψ1(η, ω))〉 = Bη2 + o(|η|2 + |ω|2), (4.33)

where B ∈ R is the quantity (1.17) in Condition B.

Proof Proposition 1.4 implies that the operator L = L p(a+(0)) satisfies all the conditions
of Lemma 4.3, including (4.22), along with the Fredholm condition and statements about its
kernel and range, and with the spectral projection π0 ∈ L(X ) given by π0x = 〈v, x〉v. It
thus follows by Lemma 4.3 and because G(0) = 0 and DG(0) = 0, that the conditions of
Theorem 4.1 (the Center Manifold Theorem) hold for the system (4.28) with Zc and Zh as
in (4.30). Thus there exists a center manifold (4.31) with functions ψi as stated.

All that remains is to verify the form of the reduced system. We take

Zm =
(

Ym

Wm

)
=

(
ηmv + ψ1(ηm, ωm)

ωmv + ψ2(ηm, ωm)

)

in W c, and similarly with Zm+1, in the system (4.28). We then apply the projection� given
by (4.21), that is, we take the inner product of each equation with v. In doing so we note
that 〈v,ψi (η, ω)〉 = 0 identically since the range of ψi lies in X h , and also that 〈v, x〉 = 0
for every x ∈ ran(L), by Proposition 1.4. This directly gives (4.32) with the first equality in
(4.33). The second equality in (4.33) follows from the fact that g(0) = 0 and Dg(0) = 0,
and also ψ1(0, 0) = 0 and Dψ1(0, 0) = 0, which implies that

〈v, g(ηv + ψ1(η, ω))〉 = 1

2
〈v, D2g(0)(v, v)〉η2 + o(|η|2 + |ω|2),

where D2g(0)(·, ·) denotes the usual bilinear form of the second derivative. Continuing, we
have

〈v, D2g(0)(v, v)〉 = 〈v, f ′′(p, a+(0))(v, v)〉 =
∞∑

n=−∞
f ′′(pn, a+(0))v3

n = 2B,

to give the result as claimed. This completes the proof. �
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5 The Proof of Theorem 1.1

Theorem 1.1 now follows from a convexity argument applied to the reduced equations. The
only remaining preparatory results guarantee that the shadow orbits corresponding to Xm − p
and SX−m − p are not identically zero.

The following lemma, which is related to an exercise in Coddington and Levinson’s classic
text (see Exercise 28 on p. 103 of [10]), will allow us to prove that Xm decays only polyno-
mially fast, hence its shadow orbit on the center manifold whose existence is guaranteed by
Lemma 4.2 is not the zero orbit.

Lemma 5.1 Let dn for n ≥ 1 be a sequence of real numbers which satisfies
∞∑

n=1

n3|dn | < ∞, (5.1)

and consider the difference equation

xn+1 = (2 + dn)xn − xn−1. (5.2)

Then given any initial condition (x0, x1) ∈ R
2, there exist quantities (P, Q) ∈ R

2 such that

xn = Pn + Q + o(1) (5.3)

as n → ∞. Conversely, given any (P, Q) ∈ R
2, there exists a unique initial condition

(x0, x1) ∈ R
2 such that (5.3) holds. In particular, if lim

n→∞xn = 0 then xn = 0 for every n.

Proof Let {xn}n≥0 satisfy (5.2) and denote un = col(xn+1, xn) for n ≥ 0. Let Un be the
transition matrix

Un = U + dn+1�, U =
(

2 −1

1 0

)
, � =

(
1 0

0 0

)
,

and so un+1 = Unun . Note here that

U n =
(

n + 1 −n

n −n + 1

)
(5.4)

for every integer n, as is easily proved by induction. Now let vn = U−nun and observe that
vn evolves according to the equation

vn+1 = (I + Rn)vn, Rn = dn+1U−(n+1)�U n = dn+1

(−n(n + 1) n2

−(n + 1)2 n(n + 1)

)
,

by a simple calculation. Next, if n ≥ m ≥ 0 let

Tn,m = (I + Rn−1)(I + Rn−2) · · · (I + Rm) (5.5)

with Tn,n = I , and so vn = Tn,mvm . Observe that

‖Tn,m‖ ≤
n−1∏

j=m

(1 + ‖R j‖) ≤ exp

⎛

⎝
n−1∑

j=m

‖R j‖
⎞

⎠ ,

‖Tn,m − I‖ ≤
⎛

⎝
n−1∏

j=m

(1 + ‖R j‖)
⎞

⎠ − 1 ≤ exp

⎛

⎝
n−1∑

j=m

‖R j‖
⎞

⎠ − 1.

(5.6)
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The first inequality in the second line of (5.6) may require a brief explanation. This inequality
is obtained by first expanding the matrix product in (5.5), then subtracting the term I , thereby
obtaining a polynomial in the matrices R j . Next one takes the norm of this polynomial, and
passes the norm across all the terms, obtaining the same polynomial but now in the scalar
quantities ‖R j‖. The polynomial so obtained is the second term in the second line of (5.6),
as desired.

We have for some C1 > 0 that ‖Rn‖ ≤ C1(1 + n2)|dn+1| for every n ≥ 0, and so from
(5.1) and (5.6) there exists C2 > 0 such that ‖Tn,m‖ ≤ C2 for every n ≥ m ≥ 0. Further,

‖Tn,0 − Tm,0‖ = ‖(Tn,m − I )Tm,0‖ ≤ C2

⎛

⎝exp

⎛

⎝
n−1∑

j=m

‖R j‖
⎞

⎠ − 1

⎞

⎠

≤ C2

⎛

⎝exp

⎛

⎝
∞∑

j=m

C1(1 + j2)|d j+1|
⎞

⎠ − 1

⎞

⎠ = rm

with the above equation serving as the definition of the quantity rm . As lim
m→∞rm = 0, it

follows that Tn,0 is a Cauchy sequence of matrices, so the limit T∞,0 = lim
n→∞Tn,0 exists. The

vectors vn as well possess a limit

v∞ = lim
n→∞ vn = T∞,0v0 = T∞,0u0.

Let us also note the estimate

mrm ≤ mC3

∞∑

j=m

j2|d j+1| ≤ C3

∞∑

j=m

j3|d j |

for some C3 > 0, which follows from the Mean Value Theorem, and which, with (5.1),
implies that lim

m→∞mrm = 0. We thus have that

un = U nvn = U nv∞ + U n(vn − v∞),

and as ‖U n‖ ≤ C4(n + 1) for some C4 > 0, by (5.4), we have that

‖U n(vn − v∞)‖ ≤ C4(n + 1)‖Tn,0 − T∞,0‖‖u0‖
≤ C4(n + 1)rn‖u0‖ → 0, as n → ∞.

Thus un = U nv∞ + o(1), and denoting v∞ = col(A, B) it follows directly from (5.4) that
the second coordinate of un , which is xn , has the form

xn = An − B(n − 1)+ o(1).

This proves (5.3) with P = A − B and Q = B.
The converse is proved more or less by following the above steps in reverse. Namely,

given (P, Q) ∈ R
2, then let v∞ = col(A, B) where A = P + Q and B = Q, and let

u0 = T −1
∞,0v∞. We note that the matrix T∞,0 is invertible as det(I + R j ) = 1 for every j ,

and thus det Tn,m = 1 for every n ≥ m ≥ 0, and thus det T∞,0 = 1. The required initial
condition is thus u0 = col(x1, x0), and we see that it is unique.

The final sentence in the statement of the lemma follows in particular from the uniqueness
of (x0, x1) for a given (P, Q). �
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Proposition 5.2 Let xn for n ≥ 0 be a sequence of numbers satisfying

xn+1 − 2xn + xn−1 = Mx2
n + ρ(xn−1, xn, xn+1), n ≥ 1, (5.7)

and

xn �= 0 for infinitely many n, lim
n→∞ xn = 0, (5.8)

where M �= 0 and where the function ρ : R
3 → R is C2 and satisfies

ρ(β−, β0, β+) = o(|β−|2 + |β0|2 + |β+|2) (5.9)

at the origin. Then

3Mxn > Mxn−1 > Mxn > 0 for all large n.

Let us remark that we expect in fact lim
n→∞

xn
xn−1

= 1 should hold in the above proposition,

although do not need this fact.

Proof Without loss, we shall assume that M > 0, as the case M < 0 follows by considering
the sequence −xn in place of xn .

We first show that

(xn−1, xn, xn+1) �= (0, 0, 0) for all large n. (5.10)

If (5.10) is false, then there are infinitely many n for which xn−1 = xn = xn+1 = 0 but
xn+2 �= 0, in light of the first statement in (5.8). For such n, Eq. 5.7 with n + 1 replacing n
takes the form xn+2 = ρ(0, 0, xn+2), and so

ρ(0, 0, xn+2)

xn+2
= 1. (5.11)

However, Eq. 5.11 cannot hold for infinitely many n in light of (5.9) and the second statement
in (5.8). With this contradiction (5.10) is proved.

We next show that for all sufficiently large n, the two inequalities

xn+1 ≤ xn, xn−1 ≤ xn, (5.12)

cannot simultaneously hold. Define a function H1 : R
3 → R by

H1(β+, β0, β−) = β2+ + β2− + Mβ2
0 + ρ(β0 − β2−, β0, β0 − β2+),

and note that H1 has a strict local minimum H1(0, 0, 0) = 0 at the origin, by (5.9). Now if n
is such that both inequalities in (5.12) hold, let β± = (xn − xn±1)

1/2 and observe that Eq. 5.7
becomes H1(β+, xn, β−) = 0 for this n. If n is large enough this forces β± = xn = 0 due
to the strict local minimum of H1 and the limit in (5.8), and thus xn−1 = xn = xn+1 = 0.
But this cannot happen for infinitely many n by (5.10). Thus the inequalities (5.12) cannot
simultaneously hold for arbitrarily large n.

It follows from the failure of (5.12) for all large n that the sequence xn is eventually
monotone. In fact, either

xn > xn+1 > 0 for all large n, (5.13)

or else

xn < xn+1 < 0 for all large n. (5.14)
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We wish to prove (5.13), so let us assume to the contrary that (5.14) holds. We claim that

xn+1 − 2xn + xn−1 < 0 for infinitely many n. (5.15)

If (5.15) is false, then we have that xn+1 − xn ≥ xn − xn−1 > 0 for all large n. Thus there
exists δ > 0 such that xn+1 − xn ≥ δ for all large n. However, this forces xn → ∞ as
n → ∞, which is false. This establishes (5.15).

Still assuming (5.14), for every n for which the inequality in (5.15) holds let β± and β0

be such that

β+ = −xn+1, β0 = xn+1 − xn, β2− = −xn+1 + 2xn − xn−1.

We have that β+ > 0 and β0 > 0, and from Eq. 5.7 that

0 = β2− + M(β0 + β+)2 + ρ(−β+ − 2β0 − β2−,−β+ − β0,−β+)
> β2− + Mβ2

0 + Mβ2+ + ρ(−β+ − 2β0 − β2−,−β+ − β0,−β+)
= H2(β+, β0, β−), (5.16)

with the above formula serving as the definition of the function H2 : R
3 → R. The function

H2 has a strict local minimum H2(0, 0, 0) = 0 at the origin by (5.9), and with (5.16) this
forces β± = β0 = 0 if n is sufficiently large. But this contradicts β+ > 0 as noted above,
and so (5.13) is established, as desired.

To complete the proof we must show that 3xn ≥ xn−1 for all large n. Upon dividing
Eq. 5.7 by xn−1, we have that

− 2xn

xn−1
+ 1 <

xn+1 − 2xn

xn−1
+ 1 = Mx2

n + ρ(xn−1, xn, xn+1)

xn−1
→ 0

as n → ∞, in light of the ordering xn−1 > xn > xn+1 > 0 established above. Thus
1 − 2xn

xn−1
< 1

3 for all large n, to give the result. �

It is a consequence of Lemma 5.1that the orbits Xm guaranteed by Proposition 2.4 decay

to p as m → ∞, or to S−1 p as m → −∞, at a subexponential rate, as the following result
shows.

Proposition 5.3 Assume that the inequality (1.13) is an equality at θ0 = 0. Also assume that
Condition A holds, with p as stated there, and let Xm be the solution to (1.22) guaranteed
by Proposition 2.4. Let Ym = Xm − p. Then

∞∑

m=0

m3‖Ym‖ = ∞. (5.17)

The same conclusion holds if instead we let Ym = SX−m − p.

Proof For definiteness we take Ym = Xm − p. Also, we shall denote the coordinates of
Ym ∈ 	∞(Z) by Ym = {yn,m}n∈Z. Let v ∈ 	∞(Z) \ {0} be as in Proposition 1.4, so of course
v ∈ 	1(Z), and let ym = 〈v, Ym〉. From the strict positivity vn > 0 of Proposition 1.4 and the
strict ordering (2.10) and the limits (2.9) in Proposition 2.4, it follows that

ym < 0, lim
m→∞ ym = 0. (5.18)

Also, Ym satisfies (4.1), so it follows using (1.16) that ym satisfies

ym+1 = (2 + dm)ym − ym−1
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where

dm = 〈v, f (p + Ym, a+(0))− f (p, a+(0))− f ′(p, a+(0))Ym〉
ym

.

Here we have used the fact that

〈v, (S + S−1 − 2I )Ym〉 = 〈(S + S−1 − 2I )v, Ym〉
= 〈 f ′(p, a+(0))v, Ym〉 = 〈v, f ′(p, a+(0))Ym〉.

We note that the conclusion of Lemma 5.1 fails for the sequence ym , in light of (5.18), and
so necessarily

∞∑

m=0

m3|dm | = ∞. (5.19)

By the Mean Value Theorem there are quantities εm,n ∈ [ym,n, 0] such that

f (pn + yn,m, a+(0))− f (pn, a+(0))− f ′(pn, a+(0))yn,m

= f ′′(pn + εn,m, a+(0))y2
n,m,

and we note that pn + εn,m ∈ [pn + yn,m, pn] = [xn,m, pn] ⊆ [−1, 1]. Thus

|dm | = 1

|ym |

∣∣∣∣∣

∞∑

n=−∞
vn f ′′(pn + εn,m, a+(0))y2

n,m

∣∣∣∣∣

≤ K‖Ym‖
|ym |

∞∑

n=−∞
vn |yn,m | = K‖Ym‖, (5.20)

where K > 0 is an upper bound for | f ′′(u, a+(0))| in the interval [−1, 1]. Note in particular,
in the final equality in (5.20), that we have used the fact that vn > 0 and yn,m < 0. With this,
the desired conclusion (5.17) follows from (5.19) and (5.20). �


With these rates of convergence established, we may now compare the orbit Ym to its
shadow on the center manifold.

Proof of Theorem 1.1 Suppose that Condition A holds but that the inequality (1.13) is in
fact an equality, and so crystallographic pinning does not occur in the direction θ0 = 0. We
will show that condition B fails, namely, that B = 0 for the quantity B in formula (1.17).
Therefore assume to the contrary that B �= 0.

With the above assumptions, let Xm denote the solution of (1.22) guaranteed by Prop-
osition 2.4. We first let Ym = Xm − p, and so Ym satisfies (4.1), equivalently, Zm =
col(Ym, Ym−1) satisfies the system (4.28), (4.29). Note also that Ym approaches zero mono-
tonically from below as m → ∞. It is a consequence of Lemma 4.2 (the Shadowing Lemma)
and Proposition 4.4 that there exists a sequence {ηm}m≥m0 for some sufficiently large m0,
such that

ηm+1 − 2ηm + ηm−1 = γ (ηm, ηm−1) (5.21)

for m ≥ m0 + 1, and such that

‖Vm‖ ≤ K e−αm, Vm = Ym − ηmv − ψ1(ηm, ηm−1), (5.22)

for some positive constants K and α, where the above equality serves as the definition of
Vm ∈ 	∞(Z). Thus the sequence ηmv+ψ1(ηm, ηm−1) for large m is the shadow orbit on the
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center manifold to the given orbit Ym , with the function ψ1(η, ω) as in Proposition 4.4, and
where Eq. 5.21 is simply (4.32) rewritten.

Now Proposition 5.3 implies that we have the divergent sum (5.17). In light of the estimate
(5.22), the analogous sum for Vm converges, so it follows that

δm = ‖Vm‖
‖Ym‖ → 0 for some subsequence m = m j → ∞,

where the above equality serves to define δm . Note further that there exist arbitrarily large m
such that ηm �= 0. Thus Proposition 5.2 applies to the sequence ηm , using the form (4.33) of
the function γ (η, ω) and the fact that B �= 0 is assumed, and we thereby conclude that

3Bηm > Bηm−1 > Bηm > 0 for all large m. (5.23)

Dividing the equation in (5.22) by ηm and using the inequalities immediately above gives

lim
m→∞

Ym − Vm

ηm
= v, (5.24)

with the term arising from ψ1(ηm, ηm−1) disappearing in the limit. Further, for terms with
m = m j in the subsequence we have

‖Vm j ‖ = δm j ‖Ym j ‖ ≤ δm j ‖Ym j − Vm j ‖ + δm j ‖Vm j ‖
and hence

‖Vm j ‖ ≤ δm j

1 − δm j

‖Ym j − Vm j ‖ (5.25)

and so from (5.24) and (5.25) it follows that

lim
j→∞

Vm j

ηm j

= 0, lim
j→∞

Ym j

ηm j

= v. (5.26)

Now let ym = 〈v, Ym〉. Then taking the inner product with v in the second limit in (5.26)
gives lim

j→∞η
−1
m j

ym j = 1, hence from (5.23) that

Bym j > 0 for all large j. (5.27)

Noting that Xm ≤ p with Xm �= p, hence Ym ≤ 0 with Ym �= 0, for every m, and because
vn > 0 for every n, we have that ym < 0. Thus with (5.27) we conclude that B < 0.

We now repeat the above argument but instead taking Ym = SX−m − p. The only differ-
ence occurs at the end, when we note that Ym ≥ 0 with Ym �= 0, and so ym > 0 for every m,
which leads to the conclusion that B > 0. This is a contradiction, and with this the theorem
is proved. �


6 Genericity: The Proof of Theorem 1.2

The purpose of this section is to prove Theorem 1.2. Recall that we denote the set of normal
families of bistable nonlinearities by N . Given f0 ∈ N , we consider f ∈ N of the form
f (u, a) = γ (u) f0(u, a) where γ ∈ C2+, and we wish to show that Condition B holds for
such f , for a residual set of γ in C2+. Below, Propositions 6.3 and 6.4 will establish that
the set A of γ for which Condition A holds is a residual set. Then Propositions 6.5 and 6.6
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will establish that Condition B holds on a residual set of A, thereby completing the proof of
Theorem 1.2.

The basic tool used here is the Abraham Transversality Theorem (see Theorem 19.1 in
[1], Theorem 10.3 in Chapter 2 of [8], and Theorem 2.7 in Chapter 3 of [15]), an extension of
which is stated as Theorem 6.1 below. If Y ⊆ X is a closed subspace of a Banach space X , we
say Y is complemented in X if there exists a closed subspace Z ⊆ X such that X = Y ⊕ Z .
Certainly any subpace of either finite dimension or finite codimension is complemented, but
subspaces which are not complemented do exist. If F : U → W is a smooth map between
two Banach manifolds U and W , and M ⊆ W is a smooth submanifold of W (with these man-
ifolds possibly infinite dimensional), then we say that F is transverse to M on a set K ⊆ U if
whenever F(x) ∈ M for some x ∈ K , then ran(DF(x))+ TF(x)M = TF(x)W (this sum of
subspaces need not be a direct sum), and the space�x = {x ∈ TxU | DF(x)x ∈ TF(x)M} is
complemented in TxU . (For purposes of this definition smooth means C1.) If F is transverse
to M as above, then for some neighborhood O ⊆ U with K ⊆ O , the set N = F−1(M)∩ O
is a submanifold of U , with Tx N = �x for every x ∈ N .

We also recall the Smale Density Theorem (see Theorem 1.3 of [28]), which states that
if F : U → W is a Cr (for some r ≥ 1) map between Banach manifolds U and W , with U
and W Lindelöf, and if further DF(x) is a Fredholm operator of index j for every x ∈ U ,
then the set of regular values of F is a residual subset of W provided that r > j .

Theorem 6.1 [Abraham Transversality Theorem] Let F : U × V → W be a Cr map, where
U, V , and W are Cr Banach manifolds. Assume also that U and V are Lindelöf spaces (for
example, affine subspaces of or open subsets of a separable Banach space). Suppose that
M ⊆ W is a Cr submanifold of W and that F is transverse to M on U × V . Further suppose
that for each (x, λ) ∈ U × V for which F(x, λ) ∈ M, the map

πD1 F(x, λ) ∈ L(TxU, TF(x,λ)W/TF(x,λ)M)

is Fredholm of index j , and that r > max{ j, 0}, where

π ∈ L(TF(x,λ)W, TF(x,λ)W/TF(x,λ)M)

is the canonical projection onto the quotient space, and where D1 F(x, λ) denotes the deriv-
ative with respect to the first argument x. Let Fλ : U → W denote the map Fλ(x) = F(x, λ)
for each λ ∈ V . Then

{λ ∈ V | Fλ is transverse to M on U }
is a residual subset of V .

Sketch of Proof The set � = F−1(M) is a submanifold of U × V with T(x,λ)� = {(x, λ) ∈
TxU × TλV | πDF(x, λ)(x, λ) = 0}, and certainly � is Lindelöf. Consider the map � :
� → V given by �(x, λ) = λ. Then one shows that λ ∈ V is a regular value of � if and
only if Fλ is transverse to M on U . Further, the derivative D�(x, λ) ∈ L(T(x,λ)�, TλV ) is
Fredholm with index j . By the Smale Density Theorem, the set of regular values λ of� is a
residual subset of V . �

In what follows we shall let

Q0 = {q ∈ 	∞(Z) | lim
n→±∞ qn = 0},

Q1 = {q ∈ 	∞(Z) | lim
n→±∞ qn = ±1},

Q2 = {(p, q) ∈ Q1 × Q1 | p �= Skq for every k ∈ Z}.
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Note that Q1 is a Banach manifold which is Lindelöf, and that Tq Q1 = Q0. The following
result implies that in a trivial fashion, Q2 is also a Banach manifold which is Lindelöf, and
that T(p,q)Q2 = Q0 × Q0.

Lemma 6.2 The set Q2 is an open subset of Q1 × Q1.

Proof Take a sequence of points (p j , q j ) ∈ (Q1 × Q1) \ Q2 in the complement of Q2,
where p j = {p j,n}n∈Z and q j = {q j,n}n∈Z. Assume these converge (p j , q j ) → (p0, q0) to
some (p0, q0) ∈ Q1 × Q1. We must show that (p0, q0) �∈ Q2.

We have that p j = Sk j q j for some sequence of integers k j , from the definition of Q2.
By passing to a subsequence, we may assume that either k j = k ∈ Z is independent of j , or
else k j → ∞ as j → ∞, or else k j → −∞ as j → ∞.

If k j = k, then clearly p0 = Skq0, and so (p0, q0) �∈ Q2, as desired. Thus suppose that
k j → ∞ as j → ∞. Then for any fixed n we have

|p j,n − q0,n+k j | ≤ |p j,n − q j,n+k j | + |q j,n+k j − q0,n+k j |
≤ ‖p j − Sk j q j‖ + ‖Sk j (q j − q0)‖ → 0

as j → ∞. But also p j,n − q0,n+k j → p0,n − 1 as j → ∞ since q0 ∈ Q1, and so p0,n = 1.
However, this contradicts the fact that p0 ∈ Q1.

We omit the case in which k j → −∞, as it is similar to the previous case. With this, the
proof is complete. �


In what follows we shall let Da denote the derivative with respect to the parameter a, with
prime ′ denoting the derivative with respect to u as usual, for the two arguments (u, a) of f .

Proposition 6.3 Fix any f ∈ N , and define G f : Q2 × (−1, 1) → Q1 × Q1 by

G f (p, q, a) =
(
(S + S−1 − 2I )p − f (p, a)

(S + S−1 − 2I )q − f (q, a)

)
.

Suppose that G f is transverse to {(0, 0)} on Q2 × (−1, 1). Then Condition A holds.

Proof We prove the contrapositive. Suppose that Condition A fails. Then there exists (p, q) ∈
Q2 such that G f (p, q, a+(0)) = (0, 0). It suffices to prove that G f is not transverse to {(0, 0)}
at the point (p, q, a+(0)), namely, that the derivative DG f (p, q, a+(0)) is not surjective.
We have that

DG f (p, q, a+(0))(p, q, a) =
(

L p p − Da f (p, a+(0))a

Lqq − Da f (q, a+(0))a

)
(6.1)

where the operators L p = L p(a+(0)) and Lq = Lq(a+(0)) are as in (3.1), although here
considered as an element of L(Q0) rather than L(	∞(Z)). By Lemma 3.1 both L p and Lq

are Fredholm with index zero and kernels of dimension either zero or one. It follows from
an argument using the Implicit Function Theorem, similar to that used in the proof of Prop-
osition 1.4, that the dimension of the kernel of each of these operators is in fact one, and
thus

codim ran(L p) = codim ran(Lq) = 1

for the codimensions of the ranges in the space Q0. From this and the formula (6.1), it follows
immediately that the range of DG f (p, q, a+(0)) has codimension either one or two. Thus
DG f (p, q, a+(0)) is not surjective, as desired. �
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Recall now the set C2+ given by (1.18), which is endowed with the usual C2 topology.

Proposition 6.4 Fix any f0 ∈ N , and define G̃ f0 : Q2 × (−1, 1)× C2+ → Q1 × Q1 by

G̃ f0(p, q, a, γ ) =
(
(S + S−1 − 2I )p − γ (p) f0(p, a)

(S + S−1 − 2I )q − γ (q) f0(q, a)

)
.

Then G̃ f0 is transverse to {(0, 0)} on Q2 × (−1, 1)× C2+.

Proof Let us denote the dependence of the operator Lq = Lq(a) in (3.1) on the nonlinearity
f by

L f,q = L f,q(a) = S + S−1 − 2I − f ′(q, a), (6.2)

for f ∈ N . Now take any (p, q, a, γ ) ∈ Q2 × (−1, 1)×C2+ for which G̃ f0(p, q, a, γ ) = 0.
Denoting f (u, a) = γ (u) f0(u, a), we have that

DG̃ f0(p, q, a, γ )(p, q, a, γ ) =
(

L f,p p − Da f (p, a)a − γ (p) f0(p, a)

L f,qq − Da f (q, a)a − γ (q) f0(q, a)

)
. (6.3)

By Lemma 3.1 both L f,p and L f,q are Fredholm with index zero and kernels of dimension
either zero or one, considered here as elements of L(Q0). We must prove that the operator
DG̃ f0(p, q, a, γ ) is surjective. Denote by vp any nonzero element of the kernel ker(L f,p),
if such exists, and similarly with vq as a nontrivial element of ker(L f,q).

Three cases now arise. In the first case we suppose that both L f,p and L f,q are isomor-
phisms, and so surjectivity is immediate.

In the second case we assume exactly one of these operators is an isomorphism, say L f,q

for definiteness, and so the operator L f,p has a nontrivial kernel element vp . Moreover, the
range of L f,p is characterized as

ran(L f,p) = {w ∈ Q0 | 〈vp, w〉 = 0}
by Lemma 3.1. If it is not the case that DG̃ f0(p, q, a, γ ) is surjective then the first line in
(6.3) is annihilated by vp , for every choice of (p, a, γ ). In particular, taking p = 0 and
a = 0, and γ to be a function for which

γ (pn) =
{

0, n �= k,

1, n = k,
(6.4)

for some integer k, we have that

0 = 〈vp, γ (p) f0(p, a)〉 = vp,k f0(pk, a). (6.5)

But f0(pk, a) �= 0 for all large k, and so (6.5) implies that vp,k = 0 for all large k. This
contradicts Lemma 3.1, which states that vp,k �= 0 for all large k.

It remains only to consider the case where neither L f,p nor L f,q are isomorphisms, and
so the vectors vp and vq , respectively, annihilate their ranges of these operators. Then if
the derivative DG̃ f0(p, q, a, γ ) is not surjective, its range is annihilated by some nontrivial
combination of vp and vq . To be precise, there exist constants τp and τq , not both zero, such
that

0 = τp〈vp, L f,p p − Da f (p, a)a − γ (p) f0(p, a)〉
+τq 〈vq , L f,qq − Da f (q, a)a − γ (q) f0(q, a)〉
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for every (p, q, a, γ ). Taking p = q = 0 and a = 0 gives

0 = τp

∞∑

n=−∞
vp,nγ (pn) f0(pn, a)+ τq

∞∑

n=−∞
vq,nγ (qn) f0(qn, a)

for every γ . If one of the coefficients τp or τq is zero, say τq = 0, then choosing a function
γ as in (6.4) and arguing as before yields a contradiction. Thus assume that both τp �= 0 and
τq �= 0. If there exist arbitrarily large k for which the point pk is distinct from all the points
q j , that is, pk �= q j for every j ∈ Z, then we may choose γ satisfying (6.4) and additionally
satisfying γ (q j ) = 0 for every j ∈ Z. This now gives Eq. 6.5, and so vp,k = 0 for such k.
However, this contradicts Lemma 3.1.

Thus we have that for every sufficiently large integer k, there exists an integer j , such
that pk = q j . Necessarily j = jk is uniquely determined from k, and jk → ∞ as k → ∞.
Reversing the roles of p and q imply that also, for every sufficiently large integer j , there
exists an integer k = k j such that q j = pk j . It follows immediately that there exists some
integer m such that pk = qk+m for all sufficiently large k. As both p and q satisfy the dif-
ference Eq. 1.19, we conclude that pk = qk+m for every k ∈ Z, that is, p = Smq . But this
contradicts the fact that (p, q) ∈ Q2, and completes the proof. �

In what follows, let us denote

Fred1,1 = {� ∈ L(Q0) | � is a Fredholm operator

of index zero, with dim ker(�) = 1}.
It is known that Fred1,1 is a C∞ submanifold of L(Q0) of codimension one. Moreover, if
� ∈ Fred1,1 then the tangent space of Fred1,1 at this point is given by

T�Fred1,1 = {� | �v ∈ ran(�) whenever v ∈ ker(�)}.
Proposition 6.5 Fix any f ∈ N , and suppose that Condition A holds for f . Define F f :
Q1 × (−1, 1) → Q1 × L(Q0) by

F f (p, a) =
(
(S + S−1 − 2I )p − f (p, a)

S + S−1 − 2I − f ′(p, a)

)
.

Also define the manifold

M = {0} × Fred1,1 ⊆ Q1 × L(Q0).

Then f satisfies Condition B if and only if F f is transverse to M at the point (p, a+(0)),
where p is as in the statement of Condition A.

Proof In what follows p is as in Condition A, with L p = L p(a+(0)), so L p ∈ Fred1,1.
Also, let v ∈ Q0 be the kernel element as in the statement of Proposition 1.4. Then one sees
immediately that

TL p Fred1,1 = {� ∈ L(Q0) | 〈v,�v〉 = 0}, L p = S + S−1 − 2I − f ′(p, a+(0)).

We now compute

DF f (p, a+(0))(p, a) =
(

L p p − Da f (p, a+(0))a

− f ′′(p, a+(0))p − Da f ′(p, a+(0))a

)
.
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Thus F f is transverse to M at (p, a+(0)) if and only if, for every choice of w ∈ Q0 and
� ∈ L(Q0), there exists (p, a) ∈ Q0 × R, and � ∈ TL p Fred1,1, such that

w = L p p − Da f (p, a+(0))a,
� = − f ′′(p, a+(0))p − Da f ′(p, a+(0))a +�. (6.6)

Note that the existence of � satisfying the second line in (6.6) is equivalent to the equation

〈v,�v〉 + 〈v, f ′′(p, a+(0))(p, v)〉 + 〈v, Da f ′(p, a+(0))(a, v)〉 = 0. (6.7)

Further note that we have

〈v, f ′′(p, a+(0))(v, v)〉 = 2B,

where B is the quantity (1.17) in Condition B.
To prove the lemma, suppose first that Condition B holds, and let w and � be given

as above. Then the first equation in (6.6) can be solved for some p and a if and only if
〈v,w〉 = −〈v, Da f (p, a+(0))〉a, equivalently,

a = − 〈v,w〉
〈v, Da f (p, a+(0))〉 . (6.8)

Here we have used the fact that f is a normal family, in particular that Da f (u, a) > 0 in
(−1, 1) × (−1, 1), and also Proposition 1.4, in particular that vn > 0, to conclude that the
denominator is nonzero. With this choice of a there exists p satisfying the first equation in
(6.6), and moreover, p is uniquely determined up to an additive multiple of v. Thus fixing a
particular choice p̃ of p, we see that the general form of p is p = p̃ +λv for arbitrary λ ∈ R.
Thus Eq. 6.7 takes the form

〈v,�v〉 + 〈v, f ′′(p, a+(0))( p̃, v)〉 + 2λB + 〈v, Da f ′(p, a+(0))(a, v)〉 = 0 (6.9)

with the above choices of a and p. As B �= 0 is assumed, there is a unique choice of λ solving
this equation, as desired.

Now assume that Condition B does not hold, and so B = 0. Taking w = 0 above forces
a = 0, by (6.8), and so necessarily p = λv to satisfy the first equation in (6.6). Equation 6.9
takes the form 〈v,�v〉 = 0. However, this equation is not satisfied for every�, which implies
the transversality condition fails, as claimed. �


Proposition 6.6 Fix any f0 ∈ N , and define F̃ f0 : Q1 × (−1, 1)× C2+ → Q1 × L(Q0) by

F̃ f0(p, a, γ ) =
(
(S + S−1 − 2I )p − γ (p) f0(p, a)

S + S−1 − 2I − (γ (p) f0(p, a))′

)
.

Then F̃ f0 is transverse to M on Q1 × (−1, 1) × C2+, where M is as in the statement of
Proposition 6.5.

Proof As before, let L f,q = L f,q(a) denote the operator (6.2). Then, denoting f (u, a) =
γ (u) f0(u, a) in what follows, we compute the derivative

DF̃ f0(p, a, γ )(p, a, γ ) =
(

L f,p p − γ (p)Da f0(p, a)a − γ (p) f0(p, a)

− f ′′(p, a)p − Da f ′(p, a)a − (γ (p) f0(p, a))′

)
.
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Thus F̃ f0 is transverse to M at a point (p, a, γ ) for which F̃ f0(p, a, γ ) ∈ M if and only if,
for every choice of w ∈ Q0 and � ∈ L(Q0), there exist (p, a, γ ) ∈ Q0 × R × C2[−1, 1],
such that

w = L f,p p − γ (p)Da f0(p, a)a − γ (p) f0(p, a),

〈v,�v〉 + 〈v, f ′′(p, a)(p, v)〉 + 〈v, Da f ′(p, a)(a, v)〉
+ 〈v, (γ (p) f0(p, a))′v〉 = 0, (6.10)

much as in (6.6) and (6.7). Here v is a nontrivial element of the kernel of L f,p , and is uniquely
determined up to scalar multiple (which we fix) as L f,p = S+S−1−2I − f ′(p, a) ∈ Fred1,1.
We note that there is no assurance that vn > 0 for the coordinates.

Given any such w and �, first choose a = 0. Next, fix k large enough that both vk �= 0
(which can be done by Lemma 3.1) and f (pk , a) �= 0, and choose γ ∈ C2[−1, 1] to satisfy

γ (pn) =
{

0, n �= k,

γ 0, n = k,
γ ′(pn) =

{
0, n �= k,

γ 1, n = k,

with the quantities γ 0 and γ 1 to be chosen shortly. There exists p satisfying the first equation
in (6.10) if and only if 〈v,w〉 = −〈v, γ (p) f0(p, a)〉, or equivalently,

γ 0 = − 〈v,w〉
vk f0(pk, a)

.

Taking this value for γ 0, we now fix the choice of p as well. In particular, we note that
although we have not yet chosen γ 1, the choice of this quantity will not affect p as the first
equation in (6.10) does not involve γ ′(p).

Finally, we make the unique choice of γ 1 so that the second equation in (6.10) holds, and
one sees that the required value is

γ 1 = −〈v,�v〉 + 〈v, f ′′(p, a)(p, v)〉 + v2
kγ

0 f ′
0(pk , a)

v2
k f0(pk, a)

.

With this, the proof is complete. �

Proof of Theorem 1.2 With f0 ∈ N , we apply the Abraham Transversality Theorem to the
maps G̃ f0 and F̃ f0 in Propositions 6.4 and 6.6, respectively. What must be checked is that the
appropriate operators are Fredholm with the appropriate index. For the map G̃ f0 we consider
the derivative D1,2,3G̃ f0(p, q, a, γ ) taken with respect to the first three arguments p, q , and
a, but not γ (as γ plays the role of λ in the above statement of the Transversality Theorem).
As noted in the proof of Proposition 6.4, the operators L f,p and L f,q are Fredholm with index
zero, and from this it follows easily, using the formula (6.3), that D1,2,3G̃ f0(p, q, a, γ ) is
Fredholm of index one. Thus the Transversality Theorem applies as the map G̃ f0 is C2.

For the map F̃ f0 we must follow the derivative D1,2 F̃ f0(p, a, γ ) taken with respect to p
and a, with the projection which annihilates the tangent space TL p Fred1,1. This gives the
operator

πD1,2 F̃ f0(p, a, γ )(p, a) =
(

L f,p p − γ (p)Da f0(p, a)a

−〈v, f ′′(p, a)(p, v)+ Da f ′(p, a)(a, v)〉

)
, (6.11)

where v is the kernel element of L f,p . Again L f,p has index zero, and as the second coor-
dinate in the range of (6.11) is scalar, it follows that the operator (6.11) has Fredholm index
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zero. Again the Transversality Theorem applies as the map F f0 is C1. It follows directly
that for a residual set of γ ∈ C2+ the maps Gγ f0 and Fγ f0 are transverse to {(0, 0)} and
to M , respectively, on their domains, and thus that Condition B holds for γ f0. With this
Theorem 1.2 is proved. �
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