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Abstract The existence of weak sinks in mixed parabolic-lattice systems on the real line is
established for systems that incorporate discrete coupling on an underlying lattice in addition
to continuous diffusion. Sinks can be thought of as interfaces that separate two spatially peri-
odic structures with different wave numbers: the corresponding modulated wave train is time
periodic in the frame that moves with the speed of the interface. In this paper, the existence of
weak sinks is proved that connect wave trains with almost identical wave number. The main
difficulty is the global coupling between points on the underlying lattice, since its presence
turns the equation solved by sinks into an ill-posed functional differential equation of mixed
type.

Keywords Lattice differential equations · Functional differential equations of mixed type ·
Modulated waves · Travelling waves

1 Introduction

In this paper we consider the partially discrete reaction-diffusion system

∂t y(x, t) = γ ∂xx y(x, t)+
N∑

j=0

A j y(x + n j , t)+ g(y(x, t)), (1.1)

which mixes a continuous Laplacian with a discrete Laplacian on a one-dimensional lattice.
In particular, we take x ∈ R, y(x, t) ∈ R

n and A j ∈ R
n×n . We require γ > 0, but allow

the shifts n j ∈ Z to be both positive and negative. We are especially interested in wave train
solutions to (1.1). Such solutions can be written in the form
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y(x, t) = u(ωt − kx) (1.2)

for some 2π-periodic function u. Here ω stands for the temporal frequency of the wave train,
while k denotes the spatial wave number. In general, these solutions will persist as the wave
number k is varied, giving rise to a one-parameter family of wave train solutions to (1.1) that
we will write in the form

y(x, t) = u(ωnl(k)t − kx; k). (1.3)

The function ωnl is referred to as the nonlinear dispersion relation.
Let us consider two nearby wave numbers k− and k+. The main goal of this paper is to

construct solutions to (1.1) that are periodic in time when viewed in an appropriate co-moving
coordinate frame and that ‘connect’ the wave train u(ωnl(k−)t − k−x; k−) at x ≈ −∞ to the
wave train u(ωnl(k+)t − k+x; k+) at x ≈ ∞. In particular, we will look for solutions of the
form y(x, t) = u∗(x − c∗t, ω∗t), that behave as

u∗(x − c∗t, ω∗t)→ u (ωnl(k±)t − k±x − ϑ±; k±) (1.4)

as x → ±∞, while satisfying the periodicity condition u∗(ξ, τ ) = u∗(ξ, τ + 2π).
The existence of modulated waves that satisfy these properties has already been estab-

lished for the reaction-diffusion system (1.1) without the shifted arguments, i.e., in the situa-
tion where A j = 0 for 0 ≤ j ≤ N . This was achieved in [17] by using the spatial-dynamical
approach developed by Kirchgässner [38] and applying a center manifold result due to Mielke
[49]. In order to outline this construction, let us introduce new functions v and w that take
values in an appropriate space of 2π -periodic functions and write v(ξ)(τ ) = u∗(ξ, τ ) and
w(ξ)(τ ) = ∂ξu∗(ξ, τ ). In the absence of the shifted terms in (1.1), the search for modulated
waves leads to the equation

∂ξ v(ξ)(·) = w(ξ)(·),
−γ ∂ξw(ξ)(·) = c∗w(ξ)(·)− ω∗∂τ v(ξ)(·)+ g (v(ξ)(·)) . (1.5)

After fixing a wave number k0, we write c∗ = ω′
nl(k0) and consider temporal frequencies

ω∗ = ωnl(k0)− k0c∗ + ω, (1.6)

in which ω shares the sign of ω′′
nl(k0) and has small absolute value. For any such value of ω,

there exist two wave numbers k± = k±(ω) such that the choices v±(ξ)(τ ) = u(τ−k±ξ ; k±)
lead to solutions of (1.5). These wave numbers are distinct if ω �= 0 and satisfy the limits
k±(ω)→ k0 as ω → 0. Under some generic assumptions, the results in [49] can be applied
to construct, for ω as above, a two dimensional center manifold M that captures all solu-
tions to (1.5) that remain orbitally close to the periodic function (v0, w0). Here v0(ξ)(τ ) =
u(−k0ξ+τ ; k0) andw0(ξ)(τ ) = −k0u′(−k0ξ+τ ; k0). Of course, this manifold will contain
the two solutions (v±, Dξ v±) mentioned above.

The crucial observation that allows the dynamics on this center manifold to be explicitly
analyzed, is that the change of variables σ = τ − k0ξ turns the periodic solution (v0, w0)

and its spatial translates into a ring of equilibria for the transformed version of (1.5). Exploit-
ing this change of variables allows one to derive a two dimensional ODE that describes the
dynamical behaviour on M. The desired modulated wave can subsequently be read off from
this ODE.

The results in [49] however cease to apply in the presence of the shifted terms. This situa-
tion was partially remedied in [33], where center manifolds were constructed for differential
equations involving such shifted terms. Unfortunately, these manifolds are as of yet unable to
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capture solutions that merely remain orbitally close to a prescribed periodic solution. In addi-
tion, the results in [33] do not cover differential equations posed on general Hilbert spaces.
For these reasons, we deviate from the approach in [17] and choose to work directly with the
transformed coordinates (ξ, σ ) in this paper. This choice ensures that the variational equation
that is encountered has autonomous instead of periodic coefficients. After constructing an
appropriate global center manifold, the analysis in [17] can be carried over to the current
setting.

The primary motivation for the inclusion of the shifted terms in (1.1) comes from the wish
to understand and classify the structure of solutions to so-called lattice differential equations
(LDEs). Such equations are infinite systems of ordinary differential equations indexed by
points on a spatial lattice. A typical example is given by the discrete Nagumo equation

u̇i (t) = α[ui−1(t)+ ui+1(t)− 2u(t)] − (u(t)2 − 1)(u(t)− ρ), (1.7)

for some −1 < ρ < 1, which arises when one discretizes the scalar reaction diffusion
equation

yt = �y − (y2 − 1)(y − ρ) (1.8)

on a one-dimensional lattice with spacing h = α−1/2. In the literature, the discrete Nagumo
equation has served as a prototype system for investigating the properties of LDEs. We men-
tion here the work of Mallet-Paret [44,45], who analyzed travelling wave solutions to this
equation connecting the two equilibria u = ±1 and found that in general there exist nontrivial
intervals of the detuning parameter ρ for which the wave speed satisfies c = 0 and hence the
waves fail to propagate.

It turns out that propagation failure is one of many features that distinguish LDEs from
their continuous counterparts. The relatively rich structure of LDEs, combined with the abil-
ity to incorporate nonlocal interactions into a model, have presented a strong motivation for
the study of such systems. At present, models involving LDEs can be found in many scien-
tific disciplines, including chemical reaction theory [21,41], image processing and pattern
recognition [14], material science [2,8] and biology [3,36]. Apart from these modelling con-
siderations, LDEs also arise when one studies numerical methods to solve PDEs and analyzes
the effects of the employed spatial discretization [5–7,19].

Since travelling waves provide a convenient starting point in the analysis of LDEs, they
have attracted considerable interest during the past two decades. Early papers on the subject
by Chi, Bell and Hassard [10] and by Keener [37] were followed by many others which devel-
oped the basic theory; see, for example, [9,13,27,34,35,42,44–46,60,62,63]. To appreciate
the difficulties that arise, let us plug the travelling wave Ansatz ui = φ(i − ct) into the
LDE (1.7). We find that the profile φ must satisfy the following scalar functional differential
equation of mixed type (MFDE),

− cφ′(ξ) = α[φ(ξ + 1)+ φ(ξ − 1)− 2φ(ξ)] − (
φ(ξ)2 − 1

)
(φ(ξ)− ρ) . (1.9)

Although φ is R-valued, the relevant state space associated to (1.9) is necessarily infinite
dimensional. A typical choice is given by X tw = C([−1, 1],R), although the Hilbert space
L2([−1, 1],R) has also been used in the literature. The linearization of (1.9) around a wave
profile φ will in general be ill-posed [28], which prevents the use of the semigroup tech-
niques developed for retarded differential equations [15]. For this reason, one needs to resort
to Fredholm techniques and exponential dichotomies when analyzing linear MFDEs. These
tools were developed for use in an MFDE setting by Mallet Paret [43], Verduyn Lunel [46]
and Härterich et al. [28]. In [32,33] these results were used in a nonlinear setting to construct
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center manifolds around equilibria and periodic solutions to MFDEs posed on the finite
dimensional spaces C

n and R
n . For a detailed discussion of these issues we refer to [30].

This paper is intended primarily as a step towards understanding modulated wave solu-
tions to LDEs, which are a logical next stop on the way upwards from travelling waves in
the chain of complexity. As one would expect, such a step is accompanied by an increase
in complexity of the equations that need to be analyzed. Indeed, upon introducing the new
functions v(ξ)(σ ) = u∗(ξ, σ + k0ξ) and w(ξ)(σ ) = D1u∗(ξ, σ + k0ξ), the system to solve
becomes

∂ξ v(ξ)(·) = w(ξ)(·)+ k0∂σ v(ξ)(·),
−γ ∂ξw(ξ)(·) = k0∂σw(ξ)(·)+ c∗w(ξ)(·)− ω∗∂σ v(ξ)(·)

+
N∑

j=0

A jv(ξ + n j )(· − n j k0)+ g (v(ξ)(·)) . (1.10)

This equation now contains shifts with respect to both ξ and σ . There exists a ring of equi-
librium solutions

(vϑ(ξ)(·), wϑ(ξ)(·)) = (
u(ϑ + · ; k0),−k0u′(ϑ + · ; k0)

)
, (1.11)

parametrized by ϑ ∈ R. In order to construct modulated waves, we will need to consider
the state space Xmw = C([nmin, nmax], H). Here nmin = min{n j }, nmax = max{n j } and H
stands for a Hilbert space that encodes pairs of 2π -periodic functions, which will be fixed in
the sequel.

The fact that we are forced to use Xmw instead of X tw presents two immediate compli-
cations. To understand the first of these, let us consider any φ ∈ C(R,R) that solves (1.9).
The differential equation then immediately implies that φ′ ∈ C(R,R) and allows bounds
on φ to be turned into bounds on φ′. The presence of the derivatives with respect to σ in
(1.10) however prevents the use of such direct bootstrapping methods. As a consequence,
special care needs to be taken when constructing solution operators to linear inhomogeneous
systems and we will need additional smoothness on the part of the nonlinearity g.

The second complication caused by the use of Xmw is that it is no longer easy to construct
and analyze characteristic functions. Indeed, substituting φ(ξ) = 1 + βezξ into (1.9) and
keeping only terms that are linear in β, we find the characteristic equation �ch(z) = 0, in
which

�ch(z) = −cz − α[ez + e−z − 2] + 2(1 − ρ). (1.12)

By now, a lot is known about the root distribution and asymptotic behaviour of such quasi-
polynomials [4,15]. A very useful feature is that in vertical strips in the complex plane, the
uniform estimates �ch(z) = −cz I + O(1) hold as Im z → ±∞. This allows us to obtain
uniform bounds on �ch(z)−1 for large |Im z|, which considerably eases the construction of
Greens functions to solve linear MFDEs [43]. However, upon plugging the analogous An-
satz into (1.10), we shall see in the sequel that we need to look for pairs (z, v) for which
Lch(z)v = 0. Here v is a 2π -periodic function and the characteristic operator Lch(z) for
z ∈ C is given by

Lch(z)v = [zc∗ + γ z2 − (ω∗ + k0c∗ + 2γ k0z)D + γ k2
0 D2]v

+
N∑

j=0

A j e
zn j v(· − n j k0)+ Dg (u(· ; k0)) v. (1.13)
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Let us note that for γ = 0, this expression reduces to

Lch(z)v = [zc∗ − (ω∗ + k0c∗)D]v +
N∑

j=0

A j e
zn j v(· − n j k0)+ Dg (u(· ; k0)) v. (1.14)

Consider any two integers � ∈ Z and �k ∈ Z. Under the transformation ṽ = exp[i�k·]v
and z̃ = z + ik0�k + 2π i�, we have

exp[−i�k·]Lch (̃z)̃v = Lch(z)v + i (2πc∗�− ω∗�k) v. (1.15)

Let us suppose that Lch(z0) admits an eigenvalue λwith Re λ = Re z0. If ω∗ and πc∗ are not
rationally related, then in view of (1.15) we can have no hope of obtaining a uniform bound
on Lch(z)−1 on the vertical line Re z = Re z0. In fact, this is precisely the reason that we
have to exclude γ = 0 in (1.1). We emphasize here that this issue is unrelated to the usual
artificial ambiguity that surrounds Floquet exponents.

We remark that in [1,18,31] an additional second order dispersion term of order γ was
also added to LDEs to allow for the numerical computation of travelling waves. The feasi-
bility of this approach was established in [31], where conditions were given under which the
limit γ → 0 yields solutions to the original LDE. The present set up can hence be seen as a
step towards obtaining information on (1.1) with γ = 0, by analyzing the path γ → 0. Let
us emphasize here that there are also physical reasons to introduce a second order term in
(1.1). Indeed, such a term arises naturally if we consider systems that have local as well as
nonlocal interactions. In addition, it allows continuation techniques to be used to study the
effect of moving from a continuous to a discrete model. An example of such an approach can
be found in [20].

Aside from the technical issues connected to the state space Xmw, the most important
challenge that needs to be overcome in the present work is the construction of a global center
manifold for functional differential equations of mixed type. To set the scene, let us first
sketch such a construction for the planar ODE

y′(ξ) = f (y(ξ)) , (1.16)

in which f : R
2 → R

2 is a smooth function. For any ϑ ∈ R, we write ρ(ϑ) ∈ SO2(R
2)

for the linear operator that rotates vectors v ∈ R
2 around the origin by the angle ϑ . Let us

suppose that f is invariant under these transformations, i.e.,

ρ(−ϑ) f (ρ(ϑ)v) = f (v) (1.17)

for all v ∈ R
2 and ϑ ∈ R. In addition, let us suppose that (1.16) admits an equilibrium

solution y �= 0, which in view of (1.17) implies the existence of an entire circle of equilibria
{ρ(ϑ)y}ϑ∈R.

A simple differentiation yields the identity D f (y)Dρ(0)y = 0, showing that the matrix
D f (y) admits zero as an eigenvector. If the algebraic multiplicity of this zero eigenvector is
two, then one may hope to find solutions to (1.17) that remain close to the circle {ρ(ϑ)y}ϑ∈R.
To capture such solutions, let us write

y(ξ) = ρ(θ(ξ))[y + u(ξ)], (1.18)

in which θ : R → R is a smooth function that is chosen in such a way that |y(ξ)− ρ(θ(ξ))y|
is minimized for every ξ ∈ R. This choice yields the normalization condition

〈Dρ(0)y, u(ξ)〉 = 0 (1.19)
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for every ξ ∈ R, where 〈, 〉 denotes the standard inner product on R
2. Differentiating (1.18),

plugging the result into (1.16) and using (1.17) yields

θ ′(ξ)Dρ(0)[y + u(ξ)] + u′(ξ) = f (y + u(ξ)) . (1.20)

Using this expression to differentiate (1.19), we find

θ ′(ξ) = [〈Dρ(0)y, Dρ(0)y〉 + 〈Dρ(0)y, Dρ(0)u(ξ)〉]−1〈Dρ(0)y, f (y + u(ξ))〉.
(1.21)

We hence see that the function θ can be completely eliminated from (1.20), yielding an
autonomous differential equation for u that can be analyzed using standard center manifold
theory. This approach was initiated by Krupa in [39]. Related developments for compact
symmetry groups can be found in [11,24,51], while [23,25,48,54,55] contain results that
apply in the presence of non-compact symmetries.

Let us now return to the setting of MFDEs and consider the prototype system

y′(ξ) = f (y(ξ), y(ξ − 1), y(ξ + 1)) , (1.22)

in which y takes values in a Hilbert space H that contains 2π-periodic functions. There
are two main problems that preclude the use of the approach sketched above in this setting.
The first issue concerns the operator Dρ(0). In our MFDE setting, the symmetry acts as
[ρ(ϑ)y(ξ)](σ ) = y(ξ)(ϑ + σ), which implies that Dρ(0)y(ξ) = ∂σ y(ξ). The nonlinear
term θ ′(ξ)Dρ(0)u(ξ) in (1.20) hence loses an order of smoothness compared to u, which
in our setting would prevent the use of the standard Lyapunov-Perron fixed point method to
construct the center manifold. The second problem is caused by the advanced and retarded
terms present in (1.22), which break the mechanism by which the variable θ was previously
eliminated from (1.20). Indeed, the equivalent of (1.20) in the MFDE setting will depend not
only on θ ′(ξ), but also on the quantities θ(ξ ± 1).

The first of these problems can be resolved by writing

y(ξ) = ρ(θ(ξ))y + u(ξ) (1.23)

and arguing much as above to obtain the coupled system

θ ′(ξ) = [〈Dρ(0)y, Dρ(0)y〉 + 〈Dρ(θ(ξ))y, u(ξ)〉]−1〈Dρ(θ(ξ))y, f (θξ , uξ )〉,
(1.24a)

u′(ξ) = − θ ′(ξ)Dρ(θ(ξ))y + f (θξ , uξ ), (1.24b)

in which

f (θξ , uξ ) = f
(
ρ(θ(ξ))y + u(ξ), ρ(θ(ξ − 1))y + u(ξ − 1), ρ(θ(ξ + 1))y + u(ξ + 1)

)
.

(1.25)

Notice that the problematic term involving the operator Dρ(0) applied to u has indeed dis-
appeared. The linearization of (1.24b) with respect to u however continues to include a
dependence on θ . The main technical tool that is developed in this paper is the construction
of a center manifold that contains all solutions (θ, u) with sufficiently small u to a system
of the form (1.24). The variable θ does not have to be bounded, although we remark that θ ′
will automatically be small whenever u is small.
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We remark here that our constructions are closely related to singular perturbation theory.
Indeed, the classical Fenichel theorems established in [22] consider a fast-slow ODE of the
form

θ ′ = εgs(θ, u, ε),

u′ = gf (θ, u, ε), (1.26)

that for ε = 0 admits a manifold of equilibria given by gf (ϑ, ũ(ϑ), 0) = 0 for some smooth
ũ. One of the principal questions addressed by the theory is the persistence of the invariant
manifold M0 = {(ϑ, ũ(ϑ))} as ε becomes nonzero. Fenichel’s first theorem [22] states that
whenever (1.26) is normally hyperbolic, the invariant set M0 can be extended smoothly to
a center manifold Mε = {(ϑ, ũε(ϑ))}, defined for small ε > 0, that captures all solutions
to (1.26) that remain in the neighbourhood of M0. This condition of normal hyperbolici-
ty requires the eigenvalues of the linearizations D2gf (ϑ, ũ(ϑ), 0) to be uniformly bounded
away from the imaginary axis.

By now a rich literature has developed concerning the existence and persistence of center
manifolds for rather general normally-hyperbolic invariant sets [16,29,40,47,52,59]. For our
purposes however, normal hyperbolicity is too restrictive, as the dynamical behaviour that
we will be interested in is generated precisely by the extra center directions available for u in
(1.24b). An important result in this respect was obtained by Chow et al. [12], who constructed
center manifolds for a general class of invariant sets without requiring normal hyperbolicity
to hold.

Unfortunately, most of the center manifold results mentioned above were obtained using
the so-called Hadamard graph transform technique [26], which is very geometrical in nature.
Indeed, as a crucial part of these constructions, the vector field must be modified to ensure
that it points outwards at the boundary of a neighbourhood of the invariant set under con-
sideration. However, in the infinite dimensional setup that we will use to analyze MFDEs,
the vector field does not even map into the underlying state space. In addition, we mention
that the construction in [12] utilizes finite dimensional results such as Whitney’s embedding
theorem [57] and Nash’s embedding theorem [50].

For these reasons, we prefer to construct center manifolds using Lyapunov-Perron type
techniques, which are far more analytical and thus easier to generalize to our infinite dimen-
sional setting. The work of Sakamoto [53] is very interesting in this respect, as it proves Feni-
chel’s first theorem using a fixed point argument on appropriate weighted function spaces.
However, his construction breaks down as soon as normal hyperbolicity is lost. The crucial
ingredient that we will use to generalize Sakamoto’s approach was inspired by the work of
Yi [61], where exponential dichotomies are used to construct integral manifolds for nonau-
tonomous ODE versions of (1.24), again under a normal hyperbolicity condition. Instead of
attempting to construct a center manifold by solving a single fixed point problem, we will
use a two-stepped approach and set up two distinct fixed point equations. Taken together, the
results will yield the desired invariant manifold for (1.24). More specifically, we will assume
that the center manifold can be written in the form M = {(ϑ, ũ(ϑ, b))} for some prescribed
ũ, in which ϑ ∈ R and b ∈ [−ε, ε]. Using this form, we will show that the dynamics for the
pair (ϑ, b) are uniquely fixed, which allows us to check if ũ indeed yields a valid invariant
manifold. This latter criterion can be reformulated as a fixed point problem for ũ.

Our constructions here depend heavily on the center manifold theory for equilibrium
solutions to MFDEs that was developed in [32]. In particular, in Sect. 7 we will rely on [32,
Theorem 2.2] to analyze the dynamical behaviour of the pair (ϑ, b), which is given by an
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MFDE. In addition, the constructions in [32, Sect. 5] will be needed to solve (1.24a) and find
θ whenever u is prescribed.

In Sect. 2 we formulate our main result that establishes the existence of modulated wave
solutions to (1.1). After dealing with some preliminary issues in Sect. 3, we derive the rele-
vant version of the coupled system (1.24) in Sect. 4. In Sect. 5 we consider the linearization
of (1.24b) for constant functions θ and use Laplace and Fourier transforms to construct a
solution operator. This forms the basis for Sect. 6, where we again consider the linearization
of (1.24b) but now allow θ to vary. Finally, in Sect. 7 we construct the desired center manifold
using the approach sketched above.

2 Main Results

We recall our main partially discrete reaction-diffusion system

∂t y(x, t) = γ ∂xx y(x, t)+
N∑

j=0

A j y(x + n j , t)+ g (y(x, t)) , (2.1)

in which γ > 0, x ∈ R, n j ∈ Z, y(x, t) ∈ R
n and A j ∈ R

n×n . We will make the following
assumption on the nonlinearity g.

(Hg) The nonlinearity g : R
n → R

n is Cr -smooth for some integer r ≥ 5.

Let us first focus our attention on wave train solutions to (2.1), i.e., solutions that can be writ-
ten in the form y(x, t) = u(ωt − kx) for some wave number k, frequency ω and 2π-periodic
profile u ∈ C(R,Rn). To facilitate the search for these solutions, we introduce the family of
Hilbert spaces

Hs = {v ∈ L2
per([0, 2π ],Rn) | D�v ∈ L2

per([0, 2π],Rn) for 1 ≤ � ≤ s}, (2.2)

parametrized by integers s ≥ 0. We also introduce the shift operator Tϑ : Hs → Hs for any
ϑ ∈ R, which acts as

[Tϑv](σ ) = v(ϑ + σ) (2.3)

after extending v in a periodic fashion. We will consider the functional F : H2×R×R → H0

that is given by

F(u, ω, k)(ζ ) = −γ k2u′′(ζ )+ ωu′(ζ )−
N∑

j=0

A j u(ζ − n j k)− g (u(ζ )) (2.4)

and look for u ∈ H2 that have F(u, ω, k) = 0. Here ζ should be interpreted as the wave
variable associated to (2.1), i.e., ζ = ωt − kx . Let us write L(u, ω, k) : H2 → H0 for the
operator associated to the linearization of (2.4), which is given by

[L(u, ω, k)v](ζ ) = −γ k2v′′(ζ )+ ωv′(ζ )−
N∑

j=0

A jv(ζ − n j k)− Dg (u(ζ )) v(ζ ). (2.5)

We are interested in situations where (2.4) admits a nondegenerate solution, as is made precise
in the following assumption.
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(HF) There exist quantities k0 �= 0, ω0 ∈ R and u0 ∈ H2 such that F(u0, ω0, k0) = 0. In
addition, the linear operator L(u0, ω0, k0) : H2 → H0 admits a simple eigenvalue
λ = 0.

Note that L(u0, ω0, k0)u′
0 = 0, hence (HF) implies that u′

0 /∈ R (L(u0, ω0, k0)). This obser-
vation can be used to establish the existence of a family of wave train solutions, as our first
result shows. We remark here that all the lemmas stated in this section will be proved in
Sect. 3.

Lemma 2.1 Consider the equation (2.4) and suppose that the assumptions (Hg) and (HF)
are satisfied. Then there exist an open set V ⊂ R that has k0 ∈ V and 0 /∈ V , together
with two functions ωnl : V → R and u : V → Hr+2, such that for all k ∈ V we have
F(u(k), ωnl(k), k) = 0. The function ωnl is Cr -smooth, while for every integer 0 ≤ � ≤ k,
the map u is C� smooth when viewed as a map into Hr+2−�. The pairs (ω, u) thus obtained
are locally unique up to translations. In particular, if F(u, ω, k) = 0 for some k near k0, ω

near ωnl(k) and u orbitally close to u(k), then ω = ωnl(k) and u = Tϑu(k) for some ϑ ∈ R.

The result above allows us to define the so-called group velocity that is given by cg(k) =
ω′

nl(k), together with the phase velocity cp(k) = ωnl(k)/k. We will use the shorthands
cg = cg(k0) and cp = cp(k0). In addition, throughout the sequel we will often use the
notation u(ζ ; k) = u(k)(ζ ).

It is essential to consider the linear stability of the wave train u(k0). Let us therefore look
for solutions to (2.1) that have the special Floquet form

y(x, t) = u(ζ ; k0)+ eλt e−νζ/k0w(ζ ), (2.6)

in which ζ is now given by ζ = ω0t − k0x , whilew is a 2π-periodic function. Recalling that
u(k0) satisfies (2.4) and ignoring higher order correction terms, we find that w must satisfy
the following linear equation,

γ k2
0w

′′(ζ ) = [ω0 + 2γ k0ν]w′(ζ )+ [λ− νcp − γ ν2]w(ζ )

−
N∑

j=0

A j e
n j νw(ζ − n j k0)− Dg (u(ζ ; k0)) w(ζ ). (2.7)

This can be interpreted as an eigenvalue problem involving the linear operator Lst(ν) : H2 →
H0, that for any ν ∈ C is defined by

Lst(ν)w = [νcp + γ ν2 − (ω0 + 2γ k0ν)D + γ k2
0 D2]w +

N∑

j=0

A j e
νn j T−n j k0w

+Dg (u(·; k0)) w. (2.8)

Lemma 2.2 For each ν ∈ C, the linear operator Lst(ν) : H2 → H0 has discrete spectrum.
In addition, let λ ∈ C be a simple eigenvalue of Lst(ν∗) for some ν∗ ∈ C. Then there exists
an analytic map λ∗ : ν → λ∗(ν) ∈ C, defined for ν sufficiently close to ν∗, such that λ∗(ν) is
a simple eigenvalue for Lst(ν). In addition, if Lst(ν) has an eigenvalue λ̃ that is sufficiently
close to λ for some ν sufficiently close to ν∗, then we must have λ̃ = λ∗(ν).

Observe that whenever (HF) is satisfied, the operator Lst(0) admits a simple eigenvalue
λ = 0. We may therefore introduce the so-called linear dispersion function λlin(ν) = λ∗(ν),
which tracks this eigenvalue in the spirit of Lemma 2.2 as ν is varied. For our purposes in
this paper, we will need to assume that both the nonlinear and the linear dispersion functions
are non-degenerate in the following sense.
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(HD) The linear dispersion satisfies λ′′
lin(0) �= 0, while the nonlinear dispersion satisfies

ω′′
nl(k0) �= 0.

As in [17], we will need to exclude Floquet solutions for which the phase speed of the mod-
ulation is equal to the group velocity cg . Turning back to (2.6), this means that we need to
exclude solutions of the special form

y(x, t) = u(ζ ; k0)+ ei(ωt−νx)w(ζ ) (2.9)

that have ω/ν = cg . Our next condition guarantees that this is the case.

(HL) For every z ∈ iR \ {0} and every λ ∈ pointspec Lst(z), we have λ �= (cp − cg)z.

In this paper, we will be interested in solutions to our main equation (2.1) that can be said
to connect two wave train solutions with nearby wave numbers. In particular, we fix a speed
c∗ and a temporal frequency ω∗ and introduce the new variables ξ = x − c∗t and τ = ω∗t .
We seek solutions of the form y(x, t) = u∗(ξ, τ ), that have u∗(ξ, τ + 2π) = u∗(ξ, τ ) for all
ξ and τ . After fixing two asymptotic wave numbers k− and k+, we require the limits

∥∥∥∥u∗(ξ, ·)− u

(
ω(k±)− k±c∗

ω∗
· −k±ξ + ϑ±; k±

)∥∥∥∥
H2

+
∥∥∥∥∂ξu∗(ξ, ·)+ k±u′

(
ω(k±)− k±c∗

ω∗
· −k±ξ + ϑ±; k±

)∥∥∥∥
H1

→ 0 (2.10)

to hold as ξ → ±∞, for some pair of asymptotic phases ϑ± ∈ R. Roughly speaking, this
means that on bounded time intervals we have y(x, t) → u (ω(k±)t − k±x + ϑ±; k±) as
x → ±∞. We recall here that the parameters k± and (c∗, ω∗) cannot be chosen arbitrarily.
Indeed, after fixing the asymptotic wave numbers k±, the speed c∗ and frequency ω∗ are
fixed by the Rankine-Hugoniot conditions

c∗ = c∗(k−, k+) = ωnl(k+)− ωnl(k−)
k+ − k−

,

ω∗ = ω∗(k−, k+) = k+ωnl(k−)− k−ωnl(k+)
k+ − k−

, (2.11)

which follow directly from our requirement of periodicity in τ . Note that c∗ → cg and
ω∗ → k0(cp − cg) as k± → k0.

We remark that up to this point, our setup does not differ significantly from the approach
in [17]. Before we can state our main theorem however, we will need to introduce two con-
ditions that are specifically related to the discrete nature of (2.1). As a preparation, we note
here that throughout this paper we will overload the notation Hs and use it to refer to both
the Hilbert spaces Hs introduced previously as well as their complex-valued counterparts
Hs

C
that are given by

Hs
C

= {v ∈ L2
per([0, 2π ],Cn) | D�v ∈ L2

per([0, 2π],Cn) for 1 ≤ � ≤ s}. (2.12)

The details should be clear from the context.
We are now ready to introduce the linear operator T (z) : H2 × H1 → H1 × H0 for

z ∈ C, that in matrix form is given by

T (z)
(
v1

v2

)
=

(
1 0

−(z + 1
γ

cg − k0 D) 1

)(−γ z + γ k0 D γ

Lch(z) 0

)(
v1

v2

)
, (2.13)
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in which the characteristic operator Lch(z) : H2 → H0 acts as

Lch(z)v = [−Lst(z)+ z(cp − cg)]v. (2.14)

We hence see that the operator T (z) is closely related to Lst(z). It arises when studying the var-
iational equation that u∗ must satisfy with c∗ = cg . After writing u0 = (

u(k0),−k0u′(k0)
)
,

it is not hard to see that T (0)u′
0 = 0. We will need to make the following two assumptions

concerning T .

(HT 1) We have 〈u′
0, T ′(0)u′

0〉 �= 0 and 〈u′
0, T (iκ)u′

0〉 �= 0 for κ ∈ R\ {0}, where the inner
product is the one on H1 × H0.

(HT 2) Let u1 ∈ H2 × H1 be the uniquely defined function that has 〈u′
0,u1〉H1×H0 = 0

and T (0)u1 = −T ′(0)u′
0. In addition, define

�(z) = −γ z ‖u1‖2
H1×H0 〈u′

0, T (z)u′
0〉 − 〈u1, T ′(0)u′

0〉〈u′
0, T (z)u′

0〉
+〈u′

0, T ′(0)u′
0〉〈u1, T (z)u′

0〉,
(2.15)

in which the inner products are the ones on H1 × H0. Then we have�(iκ) �= 0 for
all κ ∈ R \ {0} and �′′(0) �= 0.

The choice c∗ = cg is crucial to ensure that the function u1 mentioned in (HT 2) exists, as
will become clear in Sect. 3. Roughly speaking, (HT 1) ensures that (1.24a) can be solved
uniquely for prescribed u, while (HT 2) is needed to ensure well-posedness of the flow on
the two dimensional center manifold.

The following result hints at the intricate relation between (HT 1) and the geometry of the
lattice. We emphasize here that the criteria are far from being sharp, but already exhibit a
large class of systems for which (HT 1) is satisfied.

Lemma 2.3 Consider a scalar version of (2.1) that can be written in the form

∂t y(x, t) = γ ∂xx y(x, t)+
N∑

j=0

[A+
j y(x + j, t)+ A−

j y(x − j, t)] + g (y(x, t)) , (2.16)

in which A±
j ∈ R and g : R → R. Suppose that (Hg), (HF) and (HD) are satisfied. Then

there exists a constant γ∗ that depends only on the set {A±
j }N

j=1, such that (HT 1) is satisfied

if |γ | ≥ γ∗ and A+
j = A−

j for 1 ≤ j ≤ N. If on the other hand A+
j = −A−

j for 1 ≤ j ≤ N,
then (HT 1) is satisfied for every γ > 0.

The next result concerns the validity of (HT 1) and (HT 2) for the scalar system

∂t y(x, t) = γ ∂xx y(x, t)+ α−2[y(x − 1, t)+ y(x + 1, t)− 2y(x, t)] + g (y(x, t)) ,

(2.17)

in which α should be seen as a small parameter. Such a system arises when studying the PDE

ut = γα2uxx + uxx + g(u) (2.18)

and replacing the second Laplacian by its discrete counterpart, posed on a lattice with inter-
node distance α. The relation between y and u in this context is given by y(x, t) = u(αx, t).
Under the assumption that the PDE (2.18) with α = 0 admits wave train solutions that sur-
vive under the discretization (2.17), the result shows that (HT 1) and (HT 2) are satisfied for
small α. We emphasize that in this situation the non-local terms are large relative to γ and
the nonlinearity f , showing that our results do not merely cover small discrete perturbations
to reaction-diffusion systems.
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Lemma 2.4 Consider the lattice equation (2.17) and the associated PDE (2.18), in which
the nonlinearity g is at least C5-smooth. Assume that for some k̃0 �= 0, the PDE (2.18) with
α = 0 admits for k̃ near k̃0 the real valued wave solutions u = ũ(ω̃(̃k)t − k̃x; k̃). Assume
furthermore that for sufficiently small α > 0, the lattice equation (2.17) satisfies the assump-
tions (Hg), (HF) and (HD) with k0 = αk̃0 and write u(̃k, α) and ω(̃k, α) for the branches
introduced in Lemma 2.1 with k = αk̃. Assume finally that the following properties hold.

(1) The limit u(̃k0, α)→ ũ(̃k0) ∈ H2 holds as α → 0.
(2) The wave trains for (2.18) have been normalized in such a way that 〈̃u1, ũ′(̃k0)〉H1 = 0,

in which ũ1 = −Dk̃ũ(̃k0).
(3) The limit −Dk̃u(̃k0, α)→ ũ1 ∈ H1 holds as α → 0, where ũ1 is as introduced in (2).
(4) We have the inequality 〈̃u′

1, ũ
′′(̃k0)〉H0 �= 0, in which ũ1 is as introduced in (2).

Then (HT 2) is satisfied for all sufficiently small α > 0. In addition, if |γ | ≥ 2̃k2
0 , then also

(HT 1) is satisfied for all sufficiently small α > 0.

Condition (4) in the result above is a technical condition that considerably eases the relevant
computations. If it fails however, it can be replaced by a more involved condition involving
higher order derivatives.

We are now ready to state the main result of this paper, which transfers the result in [17]
to the lattice setting.

Theorem 2.5 Consider the nonlinear system (2.1) and suppose that (Hg), (HF), (HD), (HL),
(HT 1) and (HT 2) are all satisfied. Then for every wave number k1 < k0 that is sufficiently
close to k0, there exist a complementary wave number k2 > k0 such that cg = c∗(k1, k2). In
addition, there exists a bounded function u∗ = u∗(k1, k2) ∈ C(R, H2) ∩ C1(R, H1) such
that the following two properties are satisfied.

(1) Recalling the quantities c∗ and ω∗ defined in (2.11) and writing y(x, t) =
u∗(x − c∗t, ω∗t), the function y satisfies (2.1).

(2) There exist constantsϑ± ∈ R such that u∗ satisfies the asymptotics (2.10), with k− = k1

and k+ = k2 ifω′′
nl(k0)λ

′′
lin(0) < 0, and with k− = k2 and k+ = k1 ifω′′

nl(k0)λ
′′
lin(0) > 0.

Furthermore, there exists a constant ε > 0 such that the following holds true. Let u ∈
C(R, H2) ∩ C1(R, H1) satisfy (1) and (2) with u∗ replaced by u. Suppose furthermore that
for some θ ∈ C1(R,R) with supξ∈R

∣∣θ ′(ξ)
∣∣ <∞, the function u can be written in the form

u(ξ, τ ) = u (θ(ξ)+ τ − k0ξ ; k0)+ v1(ξ, τ ),

∂ξu(ξ, τ ) = −k0u′ (θ(ξ)+ τ − k0ξ ; k0)+ v2(ξ, τ ),
(2.19)

in which the pair (v1, v2) satisfies the orthogonality condition
〈
u′ (θ(ξ)− k0ξ + · ; k0) , v1(ξ, ·)

〉
H1 − k0

〈
u′′ (θ(ξ)− k0ξ + · ; k0) , v2(ξ, ·)

〉
H0 = 0

(2.20)

for all ξ ∈ R. Finally, suppose that the pair (v1, v2) is small in the sense that

supξ∈R
‖v1(ξ, ·)‖H2 + supξ∈R

‖v2(ξ, ·)‖H1 < ε. (2.21)

Then u is a translate of u∗, i.e., for some ϑ ∈ R and ξ0 ∈ R we have

u(ξ, τ ) = u∗(ξ0 + ξ, ϑ + τ) (2.22)

for all ξ ∈ R and τ ∈ [0, 2π ], after periodically extending u∗ in the second variable.
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3 Notation and Proofs of Lemmas 2.1 through 2.4

In this section we introduce the notation we will use throughout this paper. In addition, we
investigate the operators F and T (z) introduced in (2.4) and (2.13) and establish Lemmas
2.1 through 2.4.

We start by defining, for any Hilbert space H , the family of Banach spaces

BCη(R, H) = {x ∈ C(R, H) | ‖x‖η := sup
ξ∈R

e−η|ξ | |x(ξ)|H <∞}, (3.1)

parametrized by η ∈ R. We also recall the Fourier transform f̂ (η) and the inverse Fourier
transform f̌ (ξ) of a function f ∈ L2(R, H), that are given by

f̂ (η) =
∞∫

−∞
e−iηξ f (ξ)dξ, f̌ (ξ) = 1

2π

∞∫
−∞

eiηξ f (η)dη. (3.2)

We remark here that the integrals above are well-defined only if f ∈ L1(R, H). If this is
not the case, the integrals have to be understood as integrals in the Fourier sense, i.e., the
functions

hn(k) =
n∫

−n

e−ikξ f (ξ)dξ (3.3)

satisfy hn → f̂ in L2(R, H) and in addition there is a subsequence {n′} such that hn′(k)→
f̂ (k) almost everywhere. We recall that the Fourier transform takes convolutions into prod-
ucts, i.e., ( f̂ ∗ g)(η) = f̂ (η)ĝ(η) for almost every η.

Now suppose that f : R → H satisfies f (ξ) = O(e−aξ ) as ξ → ∞. Then for any z with
Re z > −a, define the Laplace transform

f̃+(z) =
∞∫

0

e−zξ f (ξ)dξ . (3.4)

Similarly, if f (ξ) = O(ebξ ) as ξ → −∞, then for any z with Re z < b, define

f̃−(z) =
∞∫

0

ezξ f (−ξ)dξ . (3.5)

The inverse transformation is described in the next result, which can be found in the standard
Laplace transform literature [58, 7.3–5].

Lemma 3.1 Let f : R → H satisfy a growth condition f (ξ) = O(e−aξ ) as ξ → ∞ and
suppose that f is of bounded variation on bounded intervals. Then for any γ > −a and
ξ > 0 we have the inversion formula

f (ξ+)+ f (ξ−)
2

= lim
ω→∞

1

2π i

γ+iω∫

γ−iω

ezξ f̃+(z)dz, (3.6)
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whereas for ξ = 0 we have

f (0+)
2

= lim
ω→∞

1

2π i

γ+iω∫

γ−iω

ezξ f̃+(z)dz. (3.7)

After these definitions, we are ready to proceed to the study of the operator F defined in
(2.4). We prove Lemma 2.1 by repeatedly appealing to the implicit function theorem.

Proof of Lemma 2.1 Notice first that F : H2 × R × R → H0 does not depend Cr -smoothly
on k, due to the presence of this variable in the shifts of the argument of u. This precludes a
direct application of the implicit function theorem. Instead, we will consider F as an operator
from Hr+1 × R × R into Hr−1. In this setting, it is not hard to see that F is C2-smooth
with respect to the variable k and C1-smooth with respect to the first variable u. Observe
also that D1F(u, ω, k) = L(u, ω, k), in which the latter map is viewed as an element in
the space L(Hr+1, Hr−1). The differentiation map v → v′′ from Hr+1 into Hr−1 is Fred-
holm with index zero, while the single differentiation v → v′ from Hr+1 into Hr−1 and
the inclusion Hr+1 ⊂ Hr−1 are compact. In particular, this implies that also L(u0, ω0, k0)

is Fredholm with index zero. Due to (HF), we know that zero is a simple eigenvalue for
L(u0, ω0, k0), which means that u′

0 /∈ R(L(u0, ω0, k0)). This implies that the linear map
D1,2F(u0, ω0, k0) : Hr+1 ×R → Hr−1 has full range. Using the implicit function theorem,
we thus obtain a C1-smooth branch u : V → Hr+1 and ω : V → R of solutions to the
equation F(u, ω, k) = 0, which is locally unique up to translations in u.

Using the identity (2.4) one may easily establish that k → u(k) ∈ Hr+2 is C0-smooth.
In addition, the continuous derivatives Dku : V → Hr+1 and Dkω : V → R satisfy the
equation

F1(Dku, Dkω, k) : = L(u(k), ω(k), k)Dku − 2γ ku′′(k)+ u′(k)Dkω

+
N∑

j=0

A j n j T−n j ku′(k) = 0, (3.8)

in which F1 is a map from Hr+1 × R × R into Hr−1. Note that F1 is now not C1-smooth in
the third variable, due to the presence of the term involving Dg(u(·; k))Dku. However, F1

recovers its C1-smoothness when considered as a map from Hr ×R×R into Hr−2. Arguing
as above, one may establish that D1,2F1(k0) has full range in Hr−2 and hence apply the
implicit function theorem to show that k → Dku ∈ Hr and k → Dkω ∈ R are C1-smooth.
One may now complete the proof by repeating this argument a sufficient number of times. ��

It is now time to investigate the relation between T (z) and Lst . It will be convenient to
explicitly include the dependence on ω into the definitions of T ,Lch and Lst. To this end, let
us write

Lst(ω, ν)w = [νcp + γ ν2 − (ω + 2γ k0ν)D + γ k2
0 D2]w

+
N∑

j=0

A j e
νn j T−n j k0w + Dg (u(·; k0)) w,

Lch(ω, ν)w = [−Lst(ω, ν)+ ν(cp − cg)]w (3.9)

and define Tω(z) according to (2.13) with Lch = Lch(ω, ·). The following result extends
Lemma 2.2 and will be used to bound the length of Jordan chains associated to Tω(z) for ω
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near ω0 and z near zero. We remark that Jordan chains in this nonlinear setting are defined
as in [15, Section IV.4].

Lemma 3.2 For each ω ∈ R and ν ∈ C, the linear operator Lst(ω, ν) : H2 → H0 has
discrete spectrum. In addition, let λ ∈ C be a simple eigenvalue of Lst(ω∗, ν∗) for some pair
ω∗ ∈ R and ν∗ ∈ C. Then there exist a neighbourhood V ⊂ R × C with (ω∗, ν∗) ∈ V , a
C∞-smooth map λ∗ : V → C together with a C∞-smooth map wst : V → H2, such that
for all pairs (ω, ν) ∈ V the following identity holds,

Lst(ω, ν)wst(ω, ν) = λ∗(ω, ν)wst(ω, ν). (3.10)

The map ν → λ∗(ω, ν) is analytic where it is defined, while for every (ω, ν) ∈ V , the eigen-
value λ∗(ω, ν) is simple. In addition, if Lst(ω, ν) has an eigenvalue λ̃ that is sufficiently
close to λ for some pair (ω, ν) ∈ V , then we must have λ̃ = λ∗(ω, ν). Finally, for any
(ω, ν) ∈ V , the length of a maximal Jordan chain for Tω(z) around z = ν is equal to the
algebraic multiplicity of z = ν as a root of the function z → λ∗(ω, z)− z(cp − cg).

Proof As in the proof of Lemma 2.1, one may argue that the linear map Lst(ω, ν) : H2 → H0

is Fredholm with index zero. Due to the compact embedding H2 ↪→ H0, the resolvent
[λ − Lst(ω, ν)]−1 is compact when viewed as a map from H0 → H0. This in turn implies
that the spectrum of Lst(ω, ν) is discrete. Whenever λ is a simple eigenvalue for Lst(ω∗, ν∗)
for some pair (ω∗, ν∗) ∈ R × C, the existence of the smooth branches λ∗ and wst follows
from a standard application of the implicit function theorem.

To establish the final claim involving the Jordan chains of Tω, we observe that there is a
one to one correspondence between the Jordan chains of Tω and those of Lch(ω, ·). To see
this, suppose that Tω admits a Jordan chain of length � at z = z0. Referring back to (2.13),
this means that there exist vi

1 ∈ H2 and vi
2 ∈ H1 for integers 0 ≤ i ≤ �− 1, such that

∣∣∣(z − k0 D)[v0
1 + . . .+ (z − z0)

�−1v�−1
1 ] − [v0

2 + . . .+ (z − z0)
�−1v�−1

2 ]
∣∣∣

H1

= O(|z − z0|�) (3.11)

as z → z0. Plugging this into (2.13), we see that we must also have
∣∣∣Lch(ω, z)[v0

1 + . . .+ (z − z0)
�−1v�−1

1 ]
∣∣∣

H0
= O(|z − z0|�) (3.12)

as z → z0, implying that also Lch(ω, ·) has a Jordan chain of length � at z = z0. Conversely,
any such Jordan chain for Lch(ω, ·) can be expanded into a Jordan chain for Tω, since one
can always choose vi

2 in such a way that (3.11) is satisfied.
It therefore suffices to consider the Jordan chains for Lch(ω, ·). We recall that

Lch(ω, z) = −Lst(ω, z)+ z(cp − cg). (3.13)

For convenience, let us also write

µ(ω, z) = λ∗(ω, z)− z(cp − cg). (3.14)

Repeated differentiation of the identity (3.10) and substitution of (3.13) shows that for any
integer � ≥ 0 and all (ω, z) ∈ V , we have

−
�∑

i=0

(
�

i

)
Di

2Lch(ω, z)D
�−i
2 wst(ω, z) =

�∑

i=0

(
�

i

)
Di

2µ(ω, z)D
�−i
2 wst(ω, z). (3.15)
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We now fix a pair (ω, ν) ∈ V and let m denote the algebraic multiplicity of the root z = ν
of µ(ω, z) = 0. If m = 0, then we have Ker Lch(ω, ν) = {0} and hence we are done. Let us
therefore assume that m > 0 and hence λ(ω, ν) = ν(cp − cg). Observe that the right hand
side of (3.15) with z = ν vanishes for 0 ≤ � ≤ m − 1, showing that Lch(ω, z) indeed admits
a Jordan chain of length m for z near ν. However, inserting � = m leads to

−
m∑

i=0

(
m

i

)
Di

2Lch(ω, ν)D
m−i
2 wst(ω, ν) = κwst(ω, ν) (3.16)

for some nonzero κ . Since λ∗(ω, ν) is a simple eigenvalue, there is no v ∈ H2 with

Lch(ω, ν)v = [Lst(ω, ν)− λ∗(ω, ν)]v = wst(ω, ν). (3.17)

This shows that the Jordan chain of length m constructed above cannot be extended to a Jordan
chain of length m+1. Let us now consider any other Jordan chain {wst(ω, ν), w̃1, . . . , w̃m−1}
of length m. For every 1 ≤ i ≤ m − 1 we must then have

w̃i = Di
2wst(ω, ν)+

i−1∑

j=0

αi D j
2wst(ω, ν), (3.18)

for suitable coefficients αi ∈ C. It is now not hard to verify that in fact no Jordan chain with
length m + 1 can exist for Lch(ω, z) around z = ν, which completes the proof. ��

With Lemma 3.2 at hand, we are ready to explicitly construct a maximal Jordan chain for
Lch(z) = Lch(ω0, z) around z = 0. An easy computation shows that Lch(0)u′(k0) = 0. To
proceed, we compute

− L′
ch(0)u

′(k0) = −2γ k0u′′(k0)+ cgu′(k0)+
N∑

j=0

n j A j T−n j k0 u′(k0). (3.19)

On the other hand, using (3.8) and recalling cg = Dkωnl(k0), we obtain

Lch(0)Dku(k0) = 2γ k0u′′(k0)− cgu′(k0)−
N∑

j=0

n j A j T−n j k0 u′(k0). (3.20)

We thus find the Jordan chain {u′(k0),−Dku(k0)} for Lch(z) around z = 0. The correspond-
ing Jordan chain for T (z) is now given by {u′

0,u1}, with

u′
0 = (

u′(k0),−k0u′′(k0)
)
,

u1 = (−Dku(k0), u′(k0)+ k0 Dku′(k0)
)
.

(3.21)

Using Lemma 3.2, we may conclude λ′
lin(0) = cp − cg . In addition, using this lemma in

combination with (HD), we find that the Jordan chain {u′
0,u1} thus constructed cannot be

extended further. Notice however that the branch u(k) can be modified by picking α ∈ R

and writing ũ(k) = Tαku(k). This yields Dkũ(k0) = αu′(k0) + Dku(k0). By choosing α
appropriately, we can therefore ensure that the orthogonality condition 〈u′

0,u1〉H1×H0 = 0
holds.

For future reference, we shall also derive an expression for 1
2 T ′′(0)u′

0 + T ′(0)u1. We
proceed by differentiating the identity

[z(cp − cg)− Lch(z)]wst(ω0, z) = λlin(z)wst(ω0, z). (3.22)
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Using λ′
lin(0) = cp − cg , a single differentiation of (3.22) yields −Lch(0)wst(ω0, 0) =

Lch(0)D2wst(ω0, 0), which implies that for some α ∈ C we have D2wst(ω0, 0) =
−Dku(k0)+ αu′(k0). A further differentiation yields

λ′′
lin(0)u

′(k0) = −L′′
ch(0)u

′(k0)+ 2L′
ch(0)Dku(k0)− 2αL′

ch(0)u
′(k0)

−Lch(0)D
2
2wst(ω0, 0). (3.23)

After a short calculation one may now verify that

1

2
T ′′(0)u′

0 + T ′(0)u1 = −1

2
λ′′

lin(0)
(
0, u′(k0)

) − T (0)
(
αDku(k0), αk0 Dku′(k0)

)

+T (0) (0, Dku(k0))− 1

2
T (0)

(
D2

2wst(ω0, 0),−k0 D2
2w

′
st(ω0, 0)

)
.

(3.24)

We conclude this section by establishing Lemmas 2.3 and 2.4, which give conditions under
which (HT 1) and (HT 2) are satisfied.

Proof of Lemma 2.3 We may use T (0)u′
0 = 0 to calculate

〈u′
0, T (z)u′

0〉H1×H0 = 〈u′
0, [T (z)− T (0)]u′

0〉H1×H0

= −γ z〈u′
0,u

′
0〉H1×H0 + k0

N∑

j=0

A+
j (e

jz − 1)〈u′′(k0), T− jk0 u′(k0)〉H0

+k0

N∑

j=0

A−
j (e

− j z − 1)〈u′′(k0), Tjk0 u′(k0)〉H0 . (3.25)

Since u(k0) is real-valued, we may compute

〈u′′(k0), Tjk0 u′(k0)〉H0 = −〈u′(k0), Tjk0 u′′(k0)〉H0 = −〈T− jk0 u′(k0), u
′′(k0)〉H0

= −〈u′′(k0), T− jk0 u′(k0)〉H0 . (3.26)

In the situation that A j := A+
j = A−

j for 1 ≤ j ≤ N , we thus find

〈u′
0, T (iκ)u′

0〉H1×H0 = −γ iκ〈u′
0,u

′
0〉H1×H0

−ik0

N∑

j=1

2A j 〈u′′(k0), Tjk0 u′(k0)〉H0 sin jκ. (3.27)

Since

2
∣∣k0〈u′′(k0), Tjk0 u′(k0)〉H0

∣∣ ≤ 2 |k0|
∥∥u′′(k0)

∥∥
H0

∥∥u′(k0)
∥∥

H0

≤ |k0|2
∥∥u′′(k0)

∥∥2
H0 + ∥∥u′(k0)

∥∥2
H0

≤ 〈u′
0,u

′
0〉H1×H0 ,

(3.28)

it is not hard to see that (HT 1) is automatically satisfied if |γ | ≥ ∑N
j=1 j

∣∣A j
∣∣.

If on the other hand A j := A+
j = −A−

j for 1 ≤ j ≤ N , then we may compute

〈u′
0, T (iκ)u′

0〉H1×H0 = −γ iκ〈u′
0,u

′
0〉H1×H0

−k0

N∑
j=1

2A j 〈u′′(k0), Tjk0 u′(k0)〉H0(cos jκ − 1) (3.29)

and we see that (HT 1) is satisfied for any γ > 0. ��
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Proof of Lemma 2.4 Let us first recall the definitions

u′
0(α) = (

u′(̃k0, α),−αk̃0u′′(̃k0, α)
)
,

u1(α) = (
u1(α), u′(̃k0, α)− αk̃0u′

1(α)
)
,

(3.30)

in which u1(α) = −α−1 Dk̃u(̃k0, α)+ βu′(̃k0, α), where β is chosen in such a way that

〈u1(α),u′
0(α)〉H1×H0 = 0. (3.31)

Using (2) and (3), we find αu1(α)→ ũ1 as α → 0. Throughout the rest of this proof we will
write ũ0 = ũ(̃k0) and k = k̃0. We compute

T (z, α)u′
0(α) = −γ zu′

0(α)− α−2 (0, [(ez − 1)T−αku′(k, α)
+(e−z − 1)Tαku′(k, α)]) . (3.32)

Furthermore, we find

D1T (0, α)u′
0(α) = −γu′

0(α)− α−2 (0, [T−αku′(k, α)− Tαku′(k, α)]) . (3.33)

Let us write

�(α) = 〈u1(α),u1(α)〉−1
H1×H0〈u′(k, α), Tαku′(k, α)〉H0

= 〈u1(α),u1(α)〉−1
H1×H0〈u′(k, α), T−αku′(k, α)〉H0 ,

�+
0 (α) = 〈u′

0(α),u
′
0(α)〉−1

H1×H0〈u′′(k, α), Tαku′(k, α)〉H0 ,

�−
0 (α) = 〈u′

0(α),u
′
0(α)〉−1

H1×H0〈u′′(k, α), T−αku′(k, α)〉H0 ,

�+
1 (α) = 〈u1(α),u1(α)〉−1

H1×H0〈u′
1(α), Tαku′(k, α)〉H0 ,

�−
1 (α) = 〈u1(α),u1(α)〉−1

H1×H0〈u′
1(α), T−αku′(k, α)〉H0 . (3.34)

As before, the calculation (3.26) implies that �+
0 (α) = −�−

0 (α). For later use, note that in
the limit α → 0 we have

α−2�(α) → 〈̃u1, ũ1〉−1
H1 〈̃u0, ũ0〉H0 ,

α−1[�+
0 (α)− �−

0 (α)] → 2k 〈̃u′
0, ũ

′
0〉−1

H1 〈̃u′′
0, ũ

′′
0〉H0 ,

α−2[�+
1 (α)− �−

1 (α)] → 2k 〈̃u1, ũ1〉−1
H1 〈̃u′

1, ũ
′′
0〉H0 ,

α−1[�+
1 (α)+ �−

1 (α)] → 2〈̃u1, ũ1〉−1
H1 〈̃u′

1, ũ
′
0〉H0 . (3.35)

Let us now drop the dependence on α and compute

〈u′
0,u

′
0〉−1〈u′

0, T ′(0)u′
0〉 = −γ + α−1k[�−

0 − �+
0 ],

〈u1,u1〉−1〈u1, T ′(0)u′
0〉 = α−1k[�−

1 − �+
1 ],

〈u′
0,u

′
0〉−1〈u′

0, T (z)u′
0〉 = −γ z + α−1k[ez�−

0 + e−z�+
0 ],

〈u1,u1〉−1〈u1, T (z)u′
0〉 = −α−2(ez + e−z − 2)� + α−1k[(ez − 1)�−

1 + (e−z − 1)�+
1 ],

(3.36)
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in which the inner products are those on H1 × H0. We may now calculate

�(z) = γ 2z2 − γα−1kz(ez�−
0 + e−z�+

0 + �+
1 − �−

1 )

+1

2
α−2k2[�−

0 − �+
0 ][�+

1 + �−
1 ][ez + e−z − 2]

+γα−2(ez + e−z − 2)� − γα−1k[(ez − 1)�−
1 + (e−z − 1)�+

1 ]
−α−3k(�−

0 − �+
0 )(e

z + e−z − 2). (3.37)

This allows us to write

Im�(iκ) = −γα−1kκ(�+
1 − �−

1 )

+γα−1k(�+
1 − �−

1 ) sin κ, (3.38)

which in view of (3.35) and (4) shows that Im�(iκ) �= 0 for κ �= 0 and sufficiently small
α. We also compute

�′′(0) = 2γ 2 − 2γ kα−1(�−
0 − �+

0 )

+α−2(�−
0 − �+

0 )(�
+
1 + �−

1 )

−2γα−2� − γα−1k(�+
1 + �−

1 )

−2α−3k(�−
0 − �+

0 ). (3.39)

In view of the scalings (3.35), we find that in the limit α → 0 one has

α2�′′(0)→ −4k2 〈̃u′
0, ũ

′
0〉−1

H1 〈̃u′′
0, ũ

′′
0〉H0 , (3.40)

which implies that �′′(0) �= 0 whenever α is sufficiently small. This establishes (HT 2). To
see that (HT 1) holds for small α, we write

〈u′
0,u

′
0〉−1

H1×H0〈u′
0, T (iκ)u′

0〉H1×H0 = −γ iκ − α−1ik(�+
0 − �−

0 ) sin κ, (3.41)

recall that |γ | ≥ 2k2 and use (3.35). ��

4 Coordinate System Near Wave Trains

In this section we study solutions to (2.1) that can be written in the form y(x, t) =
u∗(x − c∗t, ω∗t), in which u∗ is 2π -periodic in the second variable. We derive a differential
equation for u∗ and transform this equation in such a way that a center manifold reduction can
be applied. This reduction allows us to capture on a finite dimensional manifold all solutions
u∗ that remain orbitally close to a wave train solution y(x, t) = u(ωnl(k)t −kx; k). Our main
result Theorem 2.5 can subsequently be read off from a two dimensional ODE that encodes
all the relevant dynamics.

We start by substituting the Ansatz y(x, t) = u∗(x − c∗t, ω∗t) into (2.1) and find

− c∗∂ξu(ξ, τ )+ ω∗∂τu(ξ, τ ) = γ ∂ξξu∗(ξ, τ )+
N∑

j=0

A j u∗(ξ + n j , τ )+ g (u∗(ξ, τ )) .

(4.1)

In order to recover the solution y(x, t) = u(ω0t − k0x; k0), it suffices to choose c∗ =
cg, ω∗ = ω0 − k0cg and write u∗(ξ, τ ) = u(τ − k0ξ ; k0). Since we need to consider
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functions u∗(ξ, τ ) that remain close to translates of u(k0), we introduce the new variables
θ ∈ C(R,R), v1 ∈ C(R, H2) and v2 ∈ C(R, H1) and write

u∗(ξ, τ ) = u (θ(ξ)+ τ − k0ξ ; k0)+ v1(ξ, τ ),

∂ξu∗(ξ, τ ) = −k0u′ (θ(ξ)+ τ − k0ξ ; k0)+ v2(ξ, τ ). (4.2)

We note that θ ′, v1 and v2 should be thought of as small functions, but θ itself need to
be bounded. To prevent ambiguity, we supplement (4.1) with the pointwise orthogonality
condition
〈
u′ (θ(ξ)− k0ξ + · ; k0) , v1(ξ, ·)

〉
H1 + 〈−k0u′′ (θ(ξ)− k0ξ + · ; k0) , v2(ξ, ·)

〉
H0 = 0.

(4.3)

Let us now vary ω∗ slightly by writing ω∗ = ω0 − k0cg(k0)+ ω, while keeping c∗ = cg

fixed. Since ω′
nl(k0) = cg , it is not hard to see that for any sufficiently small ω that has

signω = signω′′
nl(k0), there exist two wave numbers k1 < k0 < k2 such that

ωnl(ki )− ω0 − (ki − k0)cg = ω (4.4)

for i = 1, 2. Upon writing ui∗(ξ, τ ) = u(τ − kiξ ; ki ) and yi (x, t) = ui∗(x − c∗t, ω∗t), it is
easily verified that

yi (x, t) = ui∗
(
x − cgt, ωnl(ki )t − ki cgt

) = u (ωnl(ki )t − ki x; ki ) , (4.5)

from which we see that yi satisfies (2.1) and ui∗ satisfies (4.1). Now, as long as ki is sufficiently
close to k0, it is possible to apply a suitable shift to u(ki ) to arrange for the identity

〈
u′(k0), u(ki )− u(k0)

〉
H1 + 〈

k0u′′(k0), ki u
′(ki )− k0u′(k0)

〉
H0 = 0. (4.6)

This ensures that ui∗ can be written in the form (4.2) in such a way that (4.3) holds. In
particular, writing θ(ξ) = (k0 − ki )ξ and ui∗ = (ui∗, ∂ξui∗), we find

ui∗(ξ, τ ) = Tθ(ξ)u0(τ − k0ξ)− (ki − k0)Tθ(ξ)u1(τ − k0ξ)+ O(|ki − k0|)2. (4.7)

The modulating waves that we are interested in will connect appropriate translates of u1∗
and u2∗.

Let us now move on and derive a differential equation for the pair v = (v1, v2). To
represent this equation, we introduce for any θ ∈ C(R,R) the notation

evξ θ = (θ(ξ), θ(ξ + n0), . . . , θ(ξ + nN )) ∈ R
N+2. (4.8)

Plugging (4.2) into (4.1), we find

− γ ∂ξ v1(ξ, τ ) = −γ v2(ξ, τ )+ γ θ ′(ξ)u′ (θ(ξ)+ τ − k0ξ ; k0) ,

−γ ∂ξ v2(ξ, τ ) = −γ k0θ
′(ξ)u′′ (θ(ξ)+ τ − k0ξ ; k0)+ cgv2(ξ, τ )

−ωu′ (θ(ξ)+ τ − k0ξ ; k0)− [ω0 − k0cg + ω]∂τ v1(ξ, τ )

+
N∑

j=0

A jv1(ξ + n j , τ )+ Dg (u(θ(ξ)+ τ − k0ξ ; k0)) v1(ξ, τ )

+
N∑

j=0

A j u
′ (θ(ξ)+ τ − k0ξ − n j k0; k0

) (
θ(ξ + n j )− θ(ξ)

)

+ gnl (θ(ξ), τ − k0ξ, v1(ξ, τ ))+ hnl(evξ θ, τ − k0ξ). (4.9)
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Here we have introduced the new nonlinearity gnl : R × [0, 2π] × R
n → R

n that is given by

gnl(ϑ, σ, v) = g (u(ϑ + σ ; k0)+ v)− g (u(ϑ + σ ; k0))− Dg (u(ϑ + σ ; k0)) v. (4.10)

In addition, the second new nonlinearity hnl : R
N+2 ×[0, 2π] → R

n can, after a slight abuse
of notation, be written as

hnl(evξ θ, σ ) =
N∑

j=0

A j [u
(
θ(ξ + n j )+ σ − n j k0; k0

) − u
(
θ(ξ)+ σ − n j k0; k0

)]

−
N∑

j=0

A j u
′ (θ(ξ)+ σ − n j k0; k0

) (
θ(ξ + n j )− θ(ξ)

)
. (4.11)

In order to transform (4.9) into an autonomous differential equation, we introduce the new
variable σ = τ − k0ξ and consider the function ṽ(ξ, σ ) = v(ξ, τ ). Upon dropping the tilde,
the new function v must satisfy

− γ ∂ξ v1(ξ, σ ) = −γ k0∂σ v1(ξ, σ )− γ v2(ξ, σ )+ γ θ ′(ξ)u′ (θ(ξ)+ σ ; k0) ,

−γ ∂ξ v2(ξ, σ ) = −γ k0∂σ v2(ξ, σ )− γ k0θ
′(ξ)u′′ (θ(ξ)+ σ ; k0)

+ cgv2(ξ, σ )− ωu′ (θ(ξ)+ σ ; k0)− [ω0 − k0cg + ω]∂σ v1(ξ, σ )

+
N∑

j=0

A jv1(ξ + n j , σ − n j k0)+ Dg (u(θ(ξ)+ σ ; k0)) v1(ξ, σ )

+
N∑

j=0

A j u
′ (θ(ξ)+ σ − n j k0; k0

) (
θ(ξ + n j )− θ(ξ)

)

+ gnl (θ(ξ), σ, v1(ξ, σ ))+ hnl
(
evξ θ, σ

)
. (4.12)

The next two results shows that the functions gnl and hnl have vanishing linear parts.

Lemma 4.1 For any δ > 0, there exists a constant Cδ , which behaves as Cδ = O(1) as
δ → 0, such that the following two properties are satisfied.

(1) For any v ∈ R
n with |v| < δ, any σ ∈ [0, 2π ] and any ϑ ∈ R, we have

|gnl(ϑ, σ, v)| < Cδδ
2. (4.13)

(2) For any pair v1, v2 ∈ R
n with |vi | < δ for i = 1, 2, the following bound holds for

arbitrary σ ∈ [0, 2π ] and arbitrary pairs ϑ1, ϑ2 ∈ R,

|gnl(ϑ1, σ, v1)− gnl(ϑ2, σ, v2)| < Cδδ |v1 − v2| + Cδδ
2 |ϑ1 − ϑ2| . (4.14)

Proof Observe first that (1) follows directly from (2), since gnl(ϑ, σ, 0) = 0. To establish
(2), let us write �g = |gnl(ϑ1, σ, v)− gnl(ϑ2, σ, v)| for some v ∈ R

n with |v| < δ and use
the shorthand u0 = u(k0) to estimate
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�g =
∣∣∣∣∣∣
[u0(ϑ1 + σ)− u0(ϑ2 + σ)]

×
1∫

0

Dg(u0(ϑ2 + σ)+ v + s[u0(ϑ1 + σ)− u0(ϑ2 + σ)])ds

−[u0(ϑ1 + σ)−u0(ϑ2 + σ)]
1∫

0

Dg(u0(ϑ2 + σ)+ s[u0(ϑ1 + σ)− u0(ϑ2 + σ)])ds

−[u0(ϑ1 + σ)− u0(ϑ2 + σ)]

×
1∫

0

D2g(u0(ϑ2 + σ)+ s[u0(ϑ1 + σ)− u0(ϑ2 + σ)])vds

∣∣∣∣∣∣

≤ Cδ |v|2 |ϑ1 − ϑ2| , (4.15)

with Cδ = O(1) as δ → 0. The inequality follows from the fact that g is at least C3-smooth
and that u0 is bounded. Furthermore, it is not hard to see that for arbitrary ϑ ∈ R and
σ ∈ [0, 2π], one may write �g = |gnl(ϑ, σ, v1)− gnl(ϑ, σ, v2)| and compute

�g ≤ |g(u0(ϑ + σ)+ v1)− g(u0(ϑ + σ)+ v2)− Dg(u0(ϑ + σ)+ v2)(v1 − v2)|
+ |Dg(u0(ϑ + σ)+ v2)− Dg(u0(ϑ + σ))| |v1 − v2|

≤ Cδδ |v1 − v2| ,
(4.16)

again with Cδ = O(1) as δ → 0. This completes the proof. ��
Before we state the analogous result for hnl, we introduce, for any θ ∈ C(R,R), the notation

cevξ θ = (θ(ξ + n0)− θ(ξ), . . . , θ(ξ + nN )− θ(ξ)) ∈ R
N+1. (4.17)

Lemma 4.2 For any δ > 0, there exists a constant Cδ , which behaves as Cδ = O(1) as
δ → 0, such that the following two properties are satisfied.

(1) Suppose that for some θ ∈ C(R,R) and ξ ∈ R we have
∣∣cevξ θ

∣∣ < δ. Then the following
inequality holds for any σ ∈ [0, 2π ],

∣∣hnl(evξ θ, σ )
∣∣ < Cδδ

2. (4.18)

(2) Consider any pair θ1, θ2 ∈ C(R,R) and any ξ ∈ R such that
∣∣cevξ θ i

∣∣ < δ for i = 1, 2.
Then the following bound holds for arbitrary σ ∈ [0, 2π],

∣∣hnl(evξ θ
1, σ )− hnl(evξ θ

2, σ )
∣∣ < Cδδ

∣∣evξ θ
1 − evξ θ

2
∣∣ . (4.19)

Proof In view of the fact that hnl(evξ θ, σ ) = 0 for any constant function θ and any σ ∈
[0, 2π], it again suffices to prove (2). Let us consider the function q : R

3 → R
n given by

q(ϑ, ϑ�, σ ) = u (ϑ + ϑ� + σ ; k0)− u (ϑ + σ ; k0)− u′ (ϑ + σ ; k0) ϑ�. (4.20)

Let us suppose that
∣∣ϑ i
�

∣∣ < δ for i = 1, 2. We may then mimic the computations in (4.15)
and (4.16) to obtain the estimate

∣∣q(ϑ1, ϑ1
�, σ)− q(ϑ2, ϑ2

�, σ)
∣∣ ≤ Cδδ

2
∣∣ϑ1 − ϑ2

∣∣ + Cδδ
∣∣ϑ1
� − ϑ2

�

∣∣ , (4.21)
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again with Cδ = O(1) as δ → 0. In view of the definition (4.11), this computation suffices
to establish (2). ��

We now proceed to rewrite (4.12) in a more compact fashion. To this end, let us introduce
for v = (v1, v2) ∈ L1

loc(R, H2 × H1) the notation

vevξ (v1, v2) = (v1(ξ), v1(ξ + n0), . . . , v1(ξ + nN ), v2(ξ)) ∈ (H2)N+2 × H1. (4.22)

We also introduce, for ϑ ∈ R andω ∈ R, the operator L(ϑ, ω) : (H2)N+2 × H1 → H1 × H0

that acts as

L(ϑ, ω)vevξ v = −γ k0∂σ v(ξ)+
(−γ v2(ξ), cgv2(ξ)

) − (
0, [ω0 − k0cg + ω]∂σ v1(ξ)

)

+(
0, Dg(u(ϑ + ·; k0))v1(ξ)

) +
⎛

⎝0,
N∑

j=0

A j T−n j k0v1(ξ + n j )

⎞

⎠ , (4.23)

in which we have again abused notation slightly. In addition, we define the linear operator
M : R

N+1 → H1 × H0 via

Mcevξ θ =
⎛

⎝0,
N∑

j=0

(
θ(ξ + n j )− θ(ξ)

)
A j T−n j k0 u′(k0)

⎞

⎠ . (4.24)

Finally, we introduce the operators G : R×H2×H1 → H1×H0 and H : R
N+2 → H1×H0

via

G(ϑ, v)(σ ) = (
0, gnl(ϑ, σ, v1(σ ))

)
,

H(evξ θ)(σ ) = (
0, hnl(evξ θ, σ )

)
. (4.25)

The differential equation (4.12) can now be simplified to

− γ ∂ξ v(ξ) = L(θ(ξ), ω)vevξ v + Tθ(ξ)Mcevξ θ + γ θ ′(ξ)Tθ(ξ)u′
0 − ωTθ(ξ)

(
0, u′(k0)

)

+G (θ(ξ), v(ξ))+ H(evξ θ), (4.26)

which we view as an equation on the space H1 × H0.
In the comoving variables (ξ, σ ), the orthogonality condition (4.3) becomes

〈Tθ(ξ)u′
0, v(ξ)〉H1×H0 = 0. (4.27)

Differentiation of this identity yields

θ ′(ξ)〈Tθ(ξ)u′′
0, v(ξ)〉H1×H0 = −〈Tθ(ξ)u′

0, ∂ξD1v(ξ)〉H1×H0 . (4.28)

Substitution of (4.26) yields

γ θ ′(ξ)〈Tθ(ξ)u′′
0, v(ξ)〉 = 〈Tθ(ξ)u′

0, L(θ(ξ), ω)vevξ v〉 + γ θ ′(ξ)〈Tθ(ξ)u′
0, Tθ(ξ)u

′
0〉

+〈u′
0,Mcevξ θ〉 + 〈Tθ(ξ)u′

0,G (θ(ξ), v(ξ))〉
+〈Tθ(ξ)u′

0, H(evξ θ)〉, (4.29)

in which the inner products are those on H1 × H0. In order to simplify this expression,
we introduce the projections Pϑ : H1 × H0 → H3 × H2 and the associated operators
Qϑ : H1 × H0 → R that are given by

Qϑv = ∥∥u′
0

∥∥−2
H1×H0 〈Tϑu′

0, v〉H1×H0 ,

Pϑv = u′
0 Qϑv.

(4.30)
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Throughout this paper, we will often use the shorthands P = P0 and Q = Q0. In addition,
we introduce the functions V : R× H1 × H0 → R and S : R

N+2 ×(H2)N+1 × H1 ×R → R

that act as

V (ϑ, v) = [1 − ∥∥u′
0

∥∥−2
H1×H0 〈Tϑu′′

0, v〉H1×H0 ]−1 − 1,
S(evξ θ, vevξ v, ω) = Qθ(ξ)G (θ(ξ), v(ξ))+ Qθ(ξ)H(evξ θ)

+ V (θ(ξ), v(ξ))
[
QMcevξ θ + Qθ(ξ)L(θ(ξ), ω)vevξ v

+ Qθ(ξ)G (θ(ξ), v(ξ))+ Qθ(ξ)H(evξ θ)
]
.

(4.31)

We may now rearrange (4.29) to yield

−γ θ ′(ξ) = QMcevξ θ + Qθ(ξ)L(θ(ξ), ω)vevξ v + S(evξ θ, vevξ v, ω). (4.32)

Notice that this is a functional differential equation of mixed type. The following result shows
that the linear part of this equation can be solved uniquely up to an initial condition, if the
function space is chosen appropriately.

Lemma 4.3 Consider the inhomogeneous functional differential equation of mixed type

− γ θ ′(ξ) = QMcevξ θ + f (ξ), (4.33)

with γ > 0 and suppose that (HT 1) is satisfied. Then there exist two constants 0 < ηmin <

ηmax, together with linear mappings Kη : BCη(R,R)→ BC1
η(R,R), defined and uniformly

bounded for η ∈ [ηmin, ηmax], such that for any f ∈ BCη(R,R), the function θ = Kη f
satisfies (4.33) and has θ(0) = 0. Moreover, if f ∈ BCη0(R,R)∩ BCη1(R,R) for some pair
η0, η1 ∈ [ηmin, ηmax], then Kη0 f = Kη1 f .

Proof The characteristic equation �(z) associated to (4.33) is given by

�(z) = −γ z + k0〈u′
0,u

′
0〉−1

H1×H0

N∑

j=0

〈u′′(k0), A j T−n j k0 u′(k0)〉H0(en j z − 1). (4.34)

On the other hand, we may compute

〈u′
0, T (z)u′

0〉H1×H0 = 〈u′
0, [T (z)− T (0)]u′

0〉H1×H0

= −γ z〈u′
0,u

′
0〉H1×H0 + k0

N∑

j=0

〈u′′(k0), A j T−n j k0 u′(k0)〉H0(en j z − 1).

(4.35)

In view of (HT 1), we see that �(iκ) �= 0 for κ ∈ R \ {0}, while �(0) = 0 and �′(0) �=
0. The generalized eigenspace associated to all eigenvalues on the imaginary axis is thus
one dimensional and spanned by θ = 1. The operators Kη can now be constructed as in
[32, Sect. 5]. ��

In order to ensure that the operators Kη constructed above can be used to solve (4.32),
we need to add cut-offs to the nonlinear functions V,G and H . Let us therefore consider a
C∞-smooth function χ : [0,∞) → R that has χ(ζ ) = 1 for 0 ≤ ζ ≤ 1 and χ(ζ ) = 0
for ζ ≥ 2. For any δ > 0, we write χδ for the function χδ(ζ ) = χ(ζ/δ). We are now in a
position to define, for small quantities δv > 0 and δθ > 0,

Gc(ϑ, v) = χδv (|v1(ξ)|H2)G(ϑ, v),
Hc(evξ θ) = χδθ (|cevξ θ |)H(evξ θ),

V c(evξ θ, v) = χδθ (|cevξ θ |)χδv (|v(ξ)|H1×H0)V (θ(ξ), v). (4.36)
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The use of these cut-offs allow us to turn the local estimates obtained in Lemmas 4.1 and 4.2
into global estimates.

Lemma 4.4 For arbitrary ϑ ∈ R, v ∈ H2 × H1, θ ∈ C(R,R) and w ∈ H1 × H0, the
functions Gc, Hc and V c defined in (4.36) can be bounded as follows,

∣∣Gc(ϑ, v)
∣∣

H3×H2 ≤ Cδv δ
2
v ,∣∣Hc(evξ θ)

∣∣
H3×H2 ≤ Cδθ δ

2
θ ,∣∣V c(evξ θ, w)

∣∣ ≤ Cδv δv, (4.37)

in which Cδ = O(1) as δ → 0. In addition, for arbitrary ϑ1, ϑ2 ∈ R, v1, v2 ∈ H2 ×
H1, θ1, θ2 ∈ C(R,R) and w1, w2 ∈ H1 × H0, the following Lipschitz estimates hold,

∣∣Gc(ϑ1, v1)− Gc(ϑ2, v2)
∣∣

H3×H2 ≤ Cδv δ
2
v

∣∣ϑ1 − ϑ2
∣∣ + Cδv δv

∥∥v1
1 − v2

1

∥∥
H2 ,

∣∣Hc(evξ θ
1)− Hc(evξ θ

2)
∣∣

H3×H2 ≤ Cδθ δθ
∣∣evξ θ

1 − evξ θ
2
∣∣ ,

∣∣V c(evξ θ
1, w1)− V c(evξ θ

2, w2)
∣∣ ≤ Cδv δv(1 + δ−1

θ )
∣∣evξ θ

1 − evξ θ
2
∣∣

+ Cδv
∥∥w1 − w2

∥∥
H1×H0 , (4.38)

again with Cδ = O(1) as δ → 0.

Proof Let us first note that in view of the fact that g is C5-smooth, the computation in the
proof of Lemma 4.1 can be extended to the operator g̃nl : R × [0, 2π] × (Rn)3 → R

n , that
is defined in such a way that

d2

dσ 2 [σ → gnl(ϑ, σ, v(σ ))] = g̃nl(ϑ, σ, v(σ ), v
′(σ ), v′′(σ )). (4.39)

The bounds (4.37) now follow immediately from this observation together with Lemma 4.2.
To see the bound involving Gc in (4.38), suppose without loss of generality that

∣∣v1
1

∣∣
H1 ≤ 2δ.

We compute
∣∣Gc(ϑ1, v1)− Gc(ϑ2, v2)

∣∣
H3×H2 ≤ ∣∣χδv (

∣∣v1
1

∣∣
H2)− χδv (

∣∣v2
1

∣∣
H2)

∣∣ ∣∣G(ϑ1, v1)
∣∣

H3×H2

+χδv (
∣∣v2

1

∣∣
H2)

∣∣G(ϑ1, v1)− G(ϑ2, v2)
∣∣

H3×H2

≤ Cδ−1
v

∣∣v1
1 − v2

1

∣∣
H2 δ

2
v

+ Cδv
∣∣v1

1 − v2
1

∣∣
H2 + Cδ2

v |ϑ1 − ϑ2| , (4.40)

in which the constant C depends on δv in the correct fashion. The remaining estimates in
(4.38) can be proven in a similar fashion. ��

After applying these cut-offs to the definition of S, we obtain the new operator Sc :
R

N+2 × (H2)N+2 × H1 × R → R that is given by

Sc(evξ θ, vevξ v, ω) = Qθ(ξ)G
c (θ(ξ), v(ξ))+ Qθ(ξ)H

c(evξ θ)

+ V c (evξ θ, v(ξ)
) [

QMcevξ θ + Qθ(ξ)L(θ(ξ), ω)vevξ v

+ Qθ(ξ)G
c (θ(ξ), v(ξ))+ Qθ(ξ)H

c(evξ θ)
]
. (4.41)

Let us recall the interval [ηmin, ηmax] appearing in the statement of Lemma 4.3 and choose
a constant η ∈ [ηmin, ηmax]. The bounds obtained in Lemma 4.4 now imply that for any
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v ∈ BCη(R, H2 × H1) and θ ∈ C(R,R), the function ξ → Sc(evξ θ, vevξ v, ω) belongs to
BCη(R,R). This allows us to define the operators

�L : C(R,R)× R → L
(
BCη(R, H2 × H1), BCη(R,R)

)
,

�NL : C(R,R)× BCη(R, H2 × H1)× R → BCη(R,R), (4.42)

that act as

�L(θ, ω)v = KηQθ(ξ ′)L(θ(ξ
′), ω)vevξ ′v,

�NL(θ, v, ω) = KηSc(evξ ′θ, vevξ ′v, ω), (4.43)

where Kη acts with respect to the variable ξ ′.
Upon using θ = �L(θ, ω)v+�NL(θ, v, ω) to rewrite the terms θ ′(ξ) and cevξ θ appear-

ing in (4.26) and replacing G and H by their cut-off counterparts Gc and Hc, we arrive at
the equation

− γ ∂ξ v(ξ) = [I − Pθ(ξ)]L(θ(ξ), ω)vevξ v + [I − Pθ(ξ)]Tθ(ξ)Mcevξ�L(θ, ω)v

+Rc(θ, v, ω)(ξ). (4.44)

Here we have introduced the nonlinearity

Rc : C(R,R)× BCη(R, H2 × H1)× R → BCη(R, H3 × H2) (4.45)

that is given by

Rc(θ, v, ω)(ξ) = [I − Pθ(ξ)]Gc (θ(ξ), v(ξ))+ [I − Pθ(ξ)]Hc(evξ θ)

+[I − Pθ(ξ)]Tθ(ξ)Mcevξ�NL(θ, v, ω)− ωTθ(ξ)
(
0, u′(k0)

)

− Pθ(ξ)V
c (evξ θ, v(ξ)

) [
Tθ(ξ)Mcevξ θ + L(θ(ξ), ω)vevξ v

+ Gc (θ(ξ), v(ξ))+ Hc(evξ θ)
]
. (4.46)

To summarize, we have now arrived at the system

− γ θ ′(ξ) = QMcevξ θ + Qθ(ξ)L(θ(ξ), ω)vevξ v + Sc(evξ θ, vevξ v, ω),

−γ ∂ξ v(ξ) = [I − Pθ(ξ)]L(θ(ξ), ω)vevξ v + [I − Pθ(ξ)]Tθ(ξ)Mcevξ�L(θ, ω)v

+Rc(θ, v, ω)(ξ). (4.47)

We are now ready to state our center manifold result that captures all sufficiently small
solutions to our transformed system (4.47). The proof of this result can be found in Sect. 7.

Theorem 4.5 Consider the system (4.47) with δv = δ7/4
θ and suppose that (Hg), (HF), (HD),

(HL), (HT 1) and (HT 2) are all satisfied. For any sufficiently small δθ , there exist constants
δ > 0, ε > 0 and η > 0, together with an open set � ⊂ R with 0 ∈ � and a function
h : R

2 ×�→ H2 × H1, such that the following properties are satisfied.

(1) The function h is Cr−3 smooth, in which we have recalled the integer r appearing in
(Hg). In addition, we have h(κ, ϑ, ω) = O(|κ|2 + |ω|) as κ → 0 and ω → 0.

(2) Let (θ, v) ∈ BCη(R,R) × BCη(R, H2 × H1) be any pair of functions that satisfies
(4.47). Suppose furthermore that ‖v(ξ)‖H2×H1 < δ for all ξ ∈ R. Then upon writing

κ(ξ) = 〈u1,u1〉−1
H1×H0〈Tθ(ξ)u1, v(ξ)〉H1×H0 , (4.48)

we have

v(ξ) = κ(ξ)Tθ(ξ)u1 + h (κ(ξ), θ(ξ), ω) (4.49)
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for all ξ ∈ R. In addition, the pair (θ, κ) satisfies the ODE

θ ′(ξ) = f1(κ(ξ), ω),

κ ′(ξ) = 2λ′′
lin(0)

−1ω + f2(κ(ξ), ω),
(4.50)

in which f1 and f2 are both Cr−3-smooth, while f2 satisfies the bound

f2(κ, ω) = O
(
(|ω| + |κ|)2) (4.51)

as κ, ω → 0.
(3) Consider any pair (θ, κ) that satisfies the ODE (4.50) for some ω ∈ � and in addition

has |κ(ξ)| < ε for all ξ ∈ R. Then upon writing

v(ξ) = κ(ξ)Tθ(ξ)u1 + h (κ(ξ), θ(ξ), ω) , (4.52)

the pair (θ, v) satisfies (4.47).

With this center manifold result in hand, we are able to provide the proof of our main
theorem.

Proof of Theorem 2.5 We consider the terminology of Theorem 4.5. Let us first consider any
pair (θ, v) that solves (4.47), with |v(ξ)|H2×H1 < δv for all ξ ∈ R. For any f ∈ BCη(R,R),

notice that cevξK f = cev0KT (1)ξ f , in which [T (1)ξ f ](ξ ′) = f (ξ + ξ ′). In view of the fact

that δv = o(δθ ), the equation for θ in (4.47) now automatically implies that
∣∣cevξ θ

∣∣ < δθ
for all ξ ∈ R, provided δθ is chosen to be sufficiently small. Using (4.2), such a pair (θ, v)
hence leads to a solution of (4.1).

Let us now consider all the equilibria κ of the differential equation

κ ′(ξ) = 2λ′′
lin(0)

−1ω + f2(κ(ξ), ω) (4.53)

that have |κ| < ε. In view of (4.4) and the subsequent discussion, (4.53) admits at least
two equilibria, namely κ i = −(ki − k0) for i = 1, 2. On the other hand, any sufficiently
small equilibrium κ for (4.53) leads to a wave train solution of (2.1). The local uniqueness
of the branches u(k) and ω(k) as established in Lemma 2.1 now guarantees that there are no
additional equilibria between κ2 and κ1 if ε is chosen to be sufficiently small. Looking back
at (4.53), we see that

sign
(
κ ′(0)

) = sign(ω)sign
(
λ′′

lin(0)
) = sign

(
ω′′

nl(k0)
)

sign
(
λ′′

lin(0)
)
. (4.54)

If sign
(
κ ′(0)

)
> 0, we find a solution for κ that has κ(−∞) = κ2 and κ(+∞) = κ1. Con-

versely, if sign
(
κ ′(0)

)
< 0, we find a solution for κ that has κ(−∞) = κ1 and κ(+∞) = κ2.

Lifting these heteroclinic connections for κ back to solutions u∗ of (4.1), we find that (1)
and (2) are satisfied. The uniqueness claims follow directly from the fact that the heteroclinic
solutions to (4.53) obtained above are unique up to translations. ��

5 Linearization Near Wave Trains

In this section, we will construct a solution operator for the linear localized system

− γ ∂ξ v(ξ) = L(ϑ, ω)vevξ v + f (ξ), (5.1)

in which we take v ∈ L1
loc(R, H2 × H1) and f ∈ L1

loc(R, H1 × H0) for the moment, with
γ > 0. We emphasize that ϑ ∈ R is fixed, which means that (5.1) is an autonomous differen-
tial equation for v. Our study of (5.1) will serve as a stepping stone towards solving the linear
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part of (4.47), which will be discussed in Sect. 6. We remark that we choose to include the
dependence on ω in the linear system (5.1) for reasons that should become clear in Sect. 7.

In order to state our results, we will need to introduce the following family of function
spaces,

BYη(R, H) = {v ∈ L1
loc(R, H) | ‖v‖BYη := e−η|ξ | sup

ξ∈R

⎡

⎢⎣
ξ+1∫

ξ−1

|v(ζ )|2H dζ

⎤

⎥⎦

1/2

<∞},

(5.2)

in which H is a Hilbert space and η ∈ R. We also need to introduce the point evaluation
operator

pevξ v = v(ξ), (5.3)

for ξ ∈ R and v ∈ L1
loc(R, H), together with the projections π1 : H2 × H1 → H2 and

π2 : H2 × H1 → H1 that are given by

v = (π1v, π2v) (5.4)

for any v ∈ H2 × H1.
Our main result shows how (5.1) can be solved for inhomogeneities f ∈ BYη(R, H3 ×

H2). Due to the fact the linear operator L(ϑ, ω) contains both hyperbolic and elliptic terms,
the solution v will not in general gain any regularity with respect to f . This is the reason
that we cannot restrict ourselves to f ∈ BCη(R, H2 × H1) if we wish to find solutions
v ∈ BCη(R, H2 × H1).

Proposition 5.1 Consider the linear system (5.1) and suppose that (Hg), (HF), (HD) and
(HL) are satisfied. Then there exist constants 0 < ηmin < ηmax and an open set � ⊂ R with
0 ∈ �, together with maps

Klc
η : R ×�→ L

(
BYη(R, H3 × H2), BYη(R, H3 × H2) ∩ BCη(R, H2 × H1)

)
,

(5.5)

defined for η ∈ [ηmin, ηmax], such that the following properties are satisfied.

(1) For any η ∈ [ηmin, ηmax], f ∈ BYη(R, H3 × H2), ϑ ∈ R and ω ∈ �, the function
v = Klc

η (ϑ, ω) f solves (5.1) and in addition has

〈Tϑu′
0, v(0)〉H1×H0 = 0, 〈Tϑu1, v(0)〉H1×H0 = 0. (5.6)

(2) Suppose that for some η ∈ [ηmin, ηmax], ϑ ∈ R and ω ∈ � there exists a function
v ∈ BCη(R, H2 × H1) that solves (5.1) with f = 0. Then there exist α1, α2 ∈ R such
that

v(ξ) = α1Tϑu′
0 + α2Tϑ [u1 + ξu′

0]
−ωpevξKlc

η (ϑ, ω)
(
0, π1[α1Tϑu′′

0 + α2Tϑ [u′
1 + ξ ′u′′

0]]) . (5.7)

(3) There exists a constant C > 0 such that
∥∥∥Klc

η (ϑ, ω)

∥∥∥ < C for all η ∈ [ηmin, ηmax], ϑ ∈
R and ω ∈ �.

(4) Recall the integer r defined in (Hg). For every η ∈ [ηmin, ηmax], the map (ϑ, ω) →
Klc
η (ϑ, ω) is Cr−3-smooth.
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(5) For every η ∈ [ηmin, ηmax], ω ∈ � and any pair ϑ1, ϑ2 ∈ R, we have the identity

Klc
η (ϑ1, ω) = Tϑ1−ϑ2Klc

η (ϑ2, ω)Tϑ2−ϑ1 . (5.8)

(6) Consider a pair η0, η1 ∈ [ηmin, ηmax] and consider

f ∈ BYη0(R, H3 × H2) ∩ BYη1(R, H3 × H2). (5.9)

Then for any ω ∈ � and ϑ ∈ R, we have

Klc
η0
(ϑ, ω) f = Klc

η1
(ϑ, ω) f. (5.10)

In view of (6) in the result above, we will often write Klc(ϑ, ω) = Klc
η (ϑ, ω) whenever the

exact choice of η is irrelevant. Until stated otherwise, we will take ϑ = 0 in (5.1), employ
the shorthands L(ω) = L(0, ω) and B = Dg (u(· ; k0)) and concentrate on constructing the
operators Klc(0, ω) first. For convenience, we introduce the notation

Cη−,η+ = {z ∈ C | η− ≤ Re z ≤ η+}. (5.11)

Let us write v̂ : R → H2 × H1 for the Fourier transform (3.2) of v with respect to ξ , together
with f̂ : R → H1 × H0 for the Fourier transform of f . Taking the Fourier transform of
(5.1) posed on the space H1 × H0, we find

− iηγ v̂(η) =
( −γ k0∂σ −γ

−(ω0 − k0cg + ω)∂σ + ∑N
j=0 A j eiηn j T−n j k0 + B −γ k0∂σ + cg

)
v̂(η)

+ f̂ (η), (5.12)

which can be rewritten as

Tω(iη)̂v(η) = f̂ (η), (5.13)

with ω = ω0 + ω.
In view of the equivalence (2.13), we will proceed towards solving (5.12) by studying

the behaviour of the related operator Lch. As in the proof of Lemma 2.1, we may argue that
Lch(ω, iη) : H2 → H0 is Fredholm with index zero, which means that a bounded inverse
Lch(ω, iη)−1 : H0 → H2 exists if and only if Lch(ω, iη) is injective. This latter condition
can be related to the point spectrum of Lst(ω, iη), via the relation

Lch(ω, iη) = −Lst(ω, iη)+ iη(cp − cg). (5.14)

However, for the purposes of this section we will need to obtain bounds on the inverse
Lch(ω, z)−1 that are uniform for z in vertical strips in the complex plane. Indeed, in the
sequel this will allow us to apply the inverse Fourier transform to solve (5.1) on exponen-
tially weighted function spaces. Let us therefore fix two realsη− ≤ η+ and set out to explicitly
construct Lch(ω, z)−1 for z ∈ Cη−,η+ , wherever this is defined.

We start by introducing, for s ∈ {0, 1, 2}, the sequence spaces

�s
2 =

{
v = {vk}k∈Z | vk ∈ C

n and ‖v‖2
�s

2
:= ∑

k∈Z
(1 + |k|)2s |vk |2 <∞

}
. (5.15)

Let us recall that any v ∈ Hs can be represented as

v(σ ) =
∑

k∈Z

vkeikσ (5.16)
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for some sequence {vk}k∈Z ∈ �s
2. Throughout this section, we will use the same symbol for

a function v ∈ Hs and its sequence representation v ∈ �s
2 given by (5.16). Note that if (Hg)

and (HF) are satisfied, then we may write

B(σ ) =
∑

�∈Z

Bkei�σ , (5.17)

with coefficients that satisfy the estimate ‖B‖� ≤ C/(1 + |�|)3. On the level of sequence
spaces, the operator B becomes a convolution mapping, acting as

[Bv]k =
∑

�∈Z

B�vk−�. (5.18)

Lemma 5.2 Suppose that (Hg) and (HF) are satisfied. Then the linear map B given by
(5.18) satisfies B ∈ L(�0

2) and B ∈ L(�1
2).

Proof This follows directly from the fact that for some C > 0 and all σ ∈ [0, 2π] we have
|B(σ )| < C and

∣∣B ′(σ )
∣∣ < C . ��

Using the sequence space representation, the identity Lch(ω, z)v = w becomes

γ k2
0k2vk + (ω + 2γ k0z)ikvk − (γ z2 + cgz)vk −

N∑

j=0

A j e
zn j e−ikn j k0vk

=
∑

�∈Z

Blvk−� + wk . (5.19)

Let us introduce the notation

�(ω, z, k) = −γ z2 + (2iγ k0k − cg)z + γ k2
0k2 + (ω0 + ω)ik −

N∑

j=0

A j e
zn j e−ikn j k0

= −γ (z − ik0k)2 − cg(z − ik0k)+ (ω + (cp − cg)k0)ik −
N∑

j=0

A j e
(z−ik0k)n j ,

(5.20)

using which (5.19) becomes

�(ω, z, k)vk = [Bv]k + wk . (5.21)

Throughout this section, we will need to use the following assumption.

(ha) There exists a constant C > 0 such that for all k ∈ Z, ω ∈ R and z ∈ Cη−,η+ , the
matrix �(ω, z, k) is invertible and satisfies the uniform bound

∣∣�(ω, z, k)−1
∣∣ ≤ C. (5.22)

We emphasize here that we can always arrange for (ha) to hold true. Indeed, by choosing a
constant κ ∈ R that shares the sign of γ and has |κ| sufficiently large, we may ensure that
for all ω ∈ R, z ∈ Cη−,η+ and k ∈ Z we have

∣∣κ + Re [−γ z2 − cgz]∣∣ > 2 max

⎛

⎝1,
N∑

j=0

∣∣A j
∣∣ ∣∣ezn j

∣∣

⎞

⎠ . (5.23)
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We can now modify (5.1) by adding an extra matrix AN+1 = κ I with associated shift
rN+1 = 0 and replacing B(σ ) by B(σ ) − κ I . This modification obviously leaves (5.12)
invariant, but ensures that (ha) is satisfied.

If (ha) holds, then for any ω ∈ R and z ∈ Cη−,η+ , we may introduce the multiplication
operator �inv(ω, z) : �0

2 → �0
2 that acts as

[�inv(ω, z)v]k = �(ω, z, k)−1vk . (5.24)

The following two results show that this operator is compact and uniformly bounded for
z ∈ Cη−,η+ and small ω.

Lemma 5.3 Fix two constants η− ≤ η+ and suppose that (ha) is satisfied. Then for any
ω ∈ R and z ∈ Cη−,η+ , the operator �inv(ω, z) : �0

2 → �0
2 is compact.

Proof We proceed much as in [49]. To see that�inv(ω, z) is a compact operator, consider any
bounded sequence {wn}n∈N ⊂ �0

2. Write vn = �inv(ω, z)wn and use a diagonal argument to
pass to a subsequence for which each component vn

k converges as n → ∞. For any K > 0
we find

∥∥vn − vm
∥∥2

2 ≤
∑

|k|<K

∣∣vn
k − vm

k

∣∣2 + (1 + K )−1
∑

|k|≥K

(1 + |k|) ∣∣vn
k − vm

k

∣∣2 . (5.25)

For fixed z ∈ C, notice that �(ω, z, k) = O(k2) as |k| → ∞. This means that the second
sum on the right hand side of (5.25) can be bounded independently on K , n and m. For any
ε > 0, we can choose K > 0 sufficiently large to ensure that the norm of the second term in
(5.25) is bounded by ε

2 . By restricting to sufficiently large n and m the norm of the first term
in (5.25) can also be bounded by ε2 , showing that {vn} is a Cauchy-sequence. This completes
the proof. ��
Lemma 5.4 Fix two constants η− ≤ η+ and suppose that (ha) is satisfied. Then there exist
a small open subset � ⊂ R with 0 ∈ � and a constant C > 0, such that for any ω ∈ � and
any z ∈ Cη−,η+ , we have the bounds

∥∥�inv(ω, z)
∥∥L(�0

2,�
1
2)

≤ C, (5.26a)
∥∥z�inv(ω, z)

∥∥L(�0
2,�

0
2)

≤ C . (5.26b)

Proof Note first that (ha) implies the uniform bound
∥∥�inv(ω, z)

∥∥L(�0
2,�

0
2)

≤ C1. (5.27)

We will assume that � ⊂ R is sufficiently small to ensure that for all ω ∈ �, the quantity
p(ω) := ω + (cp − cg)k0 satisfies |p(ω)| > p for some p > 0. As a final preparation, we
consider the function q : z → γ z2 + cgz. Note that there exist two constants C2 > 0 and
C3 > 0 such that

|Re q(z)| + C2 ≥ C3 |Im q(z)|2 (5.28)

holds for all z ∈ Cη−,η+ .
To see (5.26a), observe that v = �inv(ω, z)w implies that

[
i p(ω)− q(z − ik0k)

k

]
kvk = wk +

N∑

j=0

A j e
(z−ik0k)n j vk . (5.29)
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We fix a constant K such that K ≥ C2/p and K ≥ 6/(pC3). Consider any pair (z, k) with
z ∈ Cη−,η+ and |k| > K . We claim that

∣∣∣∣i p(ω)− q(z)

k

∣∣∣∣ ≥ 1

2
p. (5.30)

Indeed, if this inequality is violated, we must have
∣∣∣∣Im

q(z)

k

∣∣∣∣ ≥ 1

2
p, (5.31)

after which (5.28) allows us to obtain the contradiction
∣∣∣∣
Re q(z)

k

∣∣∣∣ ≥ C3 |k| 1

4
p2 − C2

|k| ≥ 1

2
p. (5.32)

In view of the uniform bound (5.27), the identity (5.29) now implies that ‖{kvk}‖�0
2

≤
C4 ‖w‖�0

2
for some C4 > 0 and hence (5.26a) follows.

To see (5.26b), observe that v = �inv(ω, z)w yields

(z − ik0k)[−cg − γ (z − ik0k)]vk = −i p(ω)kvk + wk +
N∑

j=0

A j e
(z−ik0k)n j vk . (5.33)

We hence obtain

|(z − ik0k)vk | ≤
∣∣cg

∣∣ + 1

γ
|vk | + |p(ω)kvk | + |wk | +

∣∣∣∣∣∣

N∑

j=0

A j e
(z−ik0k)n j vk

∣∣∣∣∣∣
, (5.34)

in which we used (5.33) whenever |z − ik0k| > |cg|+1
γ

. Using (5.26a) we hence find
‖{zvk}‖�0

2
≤ C6 ‖w‖�0

2
, as desired. ��

Before we proceed, let us note that if [I − �inv(ω, z)B]v = 0 for some v ∈ �0
2, then

Lemma 5.4 ensures that v ∈ �1
2 and the identity (5.20) immediately implies that also v ∈ �2

2.
Now, for any v ∈ �2

2, we may write

[I −�inv(ω, z)B]v = �inv(ω, z)[Lch(ω0 + ω, z)]v
= �inv(ω, z)[−Lst(ω0 + ω, z)+ z(cp − cg)]v. (5.35)

By the Fredholm alternative, we thus find that [I −�inv(ω, z)] : �0
2 → �0

2 is invertible if and
only if

z(cp − cg) /∈ pointspec Lst(ω0 + ω, z). (5.36)

For later use, we state this as the following assumption.

(hb) For every ω ∈ �, z ∈ Cη−,η+ and all λ ∈ pointspec Lst(ω0 + ω, z), we have λ �=
(cp − cg)z.

Lemma 5.5 Assume that (Hg) and (HF) are satisfied. Fix a pair η− ≤ η+ together with an
open set � ⊂ R with 0 ∈ � and assume that (ha) and (hb) are satisfied. Then Lch(ω, z) :
H2 → H0 is invertible for all z ∈ Cη−,η+ and ω ∈ ω0 + �. In addition, there exists a
constant C such that for all ω ∈ ω0 +� and z ∈ Cη−,η+ , we have

∥∥Lch(ω, z)−1
∥∥L(Hs ,Hs+1)

≤ C (5.37)
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for s ∈ {0, 1, 2}, together with
∥∥zLch(ω, z)−1

∥∥L(Hs ,Hs )
≤ C. (5.38)

Finally, if s ∈ {1, 2} we also have
∥∥z2Lch(ω, z)−1

∥∥L(Hs ,Hs−1)
≤ C. (5.39)

Proof In view of the criterion (5.36), we see that [I −�inv(ω, z)B] : �0
2 → �0

2 is invertible
for z ∈ Cη−,η+ and ω ∈ �. Writing ω = ω0 + ω, we hence find

Lch(ω, z)
−1 = [I −�inv(ω, z)B]−1�inv(ω, z). (5.40)

Due to (5.26b), we find that for |Im z| sufficiently large we have

∥∥�inv(ω, z)
∥∥L(�0

2,�
0
2)

‖B‖L(�0
2,�

0
2)

≤ 1

2
, (5.41)

which leads to the uniform bound
∥∥Lch(ω, z)

−1
∥∥L(H0,H0)

≤ C1. (5.42)

Consider any w ∈ �2 and suppose that Lch(ω, z)v = w. We then obtain

v = �inv(ω, z)(w + Bv) (5.43)

and after applying (5.26a) together with (5.42) the uniform bound (5.37) with s = 0 follows.
Notice that for any v ∈ H2 that has Lch(ω, z)v = w with w ∈ H1, we may compute

Lch(ω, z)v
′ = w′ + B ′(·)v, (5.44)

which in view of the boundedness of B ′ implies that in fact v ∈ H3 and establishes (5.37)
with s = 1. In addition, if also w ∈ H2, we obtain

Lch(ω, z)v
′′ = w′′ + 2B ′(·)v′ + B ′′(·)v. (5.45)

The assumption (Hg) implies that also B ′′ is bounded, which establishes (5.37) with s = 2.
The uniform bounds (5.38) for s ∈ {0, 1, 2} follow in a similar fashion as above, by using

(5.43) in combination with (5.26b). Finally, to see the bound (5.39) for s ∈ {1, 2}, suppose
that Lch(ω, z)v = w for some w ∈ Hs , write

− γ z2v = γ k2
0v

′′ − (ω + 2γ k0z)v′ + cgzv +
N∑

j=0

A j e
zn j T−n j k0v + Bv + w (5.46)

and use (5.37) and (5.38) to estimate the Hs−1-norm of the right hand side. ��
These bounds on Lch(ω, z) can now easily be turned into bounds on Tω(z), using the repre-
sentation (2.13).

Corollary 5.6 Assume that (Hg) and (HF) are satisfied. Fix a pair η− ≤ η+ together
with an open set � ⊂ R with 0 ∈ � and assume that (ha) and (hb) are satisfied. Then
Tω(z) : H2 × H1 → H1 × H0 is invertible for all z ∈ Cη−,η+ and ω ∈ ω0 +�. In addition,
there exists a constant C such that for s ∈ {0, 1, 2} we have

∥∥Tω(z)−1
∥∥L(Hs+1×Hs ,Hs+1×Hs )

≤ C (5.47)

for all z ∈ Cη−,η+ and ω ∈ ω0 +�.
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Let us recall for p ∈ {2,∞}, η ∈ R and a Hilbert space H , the function spaces

L p
η (R, H) = {

v ∈ L1
loc(R, H) | e−η·v(·) ∈ L p(R, H)

}
,

W 1,p
η (R, H) = {

v ∈ L1
loc(R, H) | e−η·v(·) ∈ W 1,p(R, H)

}
,

(5.48)

with norms given by ‖v‖L p
η

= ∥∥e−η·v(·)∥∥L p and similarly ‖v‖
W 1,p
η

= ∥∥e−η·v(·)∥∥W 1,p . With

the uniform estimates on Tω(z) obtained in Corollary 5.6 in hand, we are ready to solve (5.1)
for inhomogeneities f ∈ L2

η(R, H3 × H2).

Lemma 5.7 Consider the linear system (5.1) with γ > 0 and suppose that (Hg) and (HF)
are satisfied. Fix a pair η− ≤ η+ together with an open set � ⊂ R with 0 ∈ � and assume
that (ha) and (hb) are satisfied. Then for every ω ∈ � and η ∈ [η−, η+] there exists a
bounded operator

�inv
η (ω) : L2

η(R, H3 × H2)→ L2
η(R, H3 × H2) ∩ W 1,2

η (R, H2 × H1) (5.49)

so that the function �inv
η (ω) f solves (5.1) for any f ∈ L2

η(R, H3 × H2). The norm of

�inv
η (ω) can be bounded uniformly for ω ∈ � and η ∈ [η−, η+]. Finally, we have the explicit

representation formula

[�inv
η (ω) f ](ξ) = 1

2π i

∫ η+i∞

η−i∞
ezξTω0+ω(z)−1[ f̃+(z)+ f̃−(z)]dz. (5.50)

Proof The result follows in a standard fashion by applying an exponential shift to (5.1)
and using the uniform bounds on Tω(z)−1 obtained in Corollary 5.6 to solve (5.12), which
represents (5.1) in Fourier space. Similar computations can be found in [32, Sect. 3]. ��

In order to turn the L2-estimates obtained above into L∞-estimates, we need to exploit
the property that the effect of any compactly supported inhomogeneity f on the solution of
(5.1) decays exponentially. To make this precise, we introduce for any Hilbert space H the
new function space

L2,∞
η (R, H) =

{
x ∈ L1

loc(R, H) | ‖x‖L2,∞
η

:= sup
ξ∈R

e−ηξ
[∫ ξ+1

ξ−1
|x(ζ )|2H dζ

]1/2

<∞
}
.

(5.51)

Lemma 5.8 Consider any η ∈ R. Consider the linear system (5.1) with γ > 0 and assume
that (Hg) and (HF) are satisfied. Fix a constant ε > 0, write η± = η ± ε, choose an open
set � ⊂ R with 0 ∈ � and assume that (ha) and (hb) are satisfied. Assume furthermore that
for all ω ∈ � we have

�inv
η+ε(ω)g = �inv

η−ε(ω)g (5.52)

for all g ∈ L2
η+ε(R, H3 × H2) ∩ L2

η−ε(R, H3 × H2). Choose an ω ∈ � together with a
function

f ∈ L2,∞
η (R, H3 × H2) ∩ L2

η+ε(R, H3 × H2) (5.53)

and write x = �inv
η+ε(ω) f . Then we have

x ∈ C(R, H2 × H1) ∩ L∞
η (R, H2 × H1) ∩ L2,∞

η (R, H3 × H2). (5.54)
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In addition, for some constant C > 0 that does not depend on f , we have the bound

‖x‖L∞
η (R,H

2×H1) + ‖x‖L2,∞
η (R,H3×H2)

≤ C ‖ f ‖L2,∞
η
. (5.55)

The analogous results hold for f ∈ L2,∞
η (R, H3 × H2) ∩ L2

η−ε(R, H3 × H2).

Proof Our arguments here are an adaptation of those presented by Mielke in [49] for elliptic
PDEs. Without loss of generality, we will assume that η = 0 and consider f ∈ L2,∞(R, H3×
H2) for which also f ∈ L2

ε(R, H3 × H2). For any n ∈ Z, let χn denote the indicator function
for the interval [n, n + 1]. Writing fn = χn f , we see that

fn ∈ L2
ε(R, H3 × H2) ∩ L2−ε(R, H3 × H2), (5.56)

with
∑

n∈Z
fn → f in L2

ε(R, H3 × H2). We can hence define xn = �inv
ε (ω) fn = �inv−ε(ω) fn

and observe that

xn ∈ W 1,2
ε (R, H2 × H1) ∩ W 1,2

−ε (R, H2 × H1), (5.57)

again with
∑

n∈Z
xn → x in W 1,2

ε (R, H2 × H1). We can exploit the fact that T (1)n and
�inv±ε(ω) commute to compute

‖xn‖W 1,2([m,m+1],H2×H1) =
[∫ m+1

m
|xn(ξ)|2H2×H1 + ∣∣∂ξ xn(ξ)

∣∣2
H2×H1 dξ

]1/2

=
[∫ m−n+1

m−n
|xn(ξ + n)|2H2×H1 + ∣∣∂ξ xn(ξ + n)

∣∣2
H2×H1 dξ

]1/2

≤ e−ε(m−n)
[∫ m−n+1

m−n

(
eεξ |xn(ξ + n)|H2×H1

)2

+
(

eεξ
∣∣∂ξ xn(ξ + n)

∣∣
H2×H1

)2
dξ

]1/2

≤ C1e−ε(m−n)
∥∥∥T (1)n xn

∥∥∥
W 1,2

−ε (R,H2×H1)

≤ C2e−ε(m−n)
∥∥∥T (1)n fn

∥∥∥
L2−ε (R,H3×H2)

≤ C2e−ε(m−n)eε
∥∥∥T (1)n fn

∥∥∥
L2(R,H3×H2)

≤ C2e−ε(m−n)eε ‖ f ‖L2,∞(R,H3×H2) , (5.58)

for some constants C1 > 0 and C2 > 0. In a similar fashion, we obtain for some C3 > 0,

‖xn‖W 1,2([m,m+1],H2×H1) ≤ C3eε(m−n)eε ‖ f ‖L2,∞(R,H3×H2) . (5.59)

Summing these identities over n ∈ Z, we obtain

‖x‖W 1,2([m,m+1],H2×H1) ≤ eε(C2 + C3) ‖ f ‖L2,∞(R,H3×H2)[∑
n≥m eε(m−n) + ∑

n<m eε(n−m)
]

≤ C4 ‖ f ‖L2,∞(R,H3×H2) . (5.60)

Observe that this bound no longer depends on m. By a Sobolev embedding, we thus obtain that
x ∈ BC0(R, H2 × H1). Moreover, this bound also implies that ∂σξ x ∈ L2,∞(R, H1 × H0).
Using the differential equation (5.1), we find that ∂σσ x ∈ L2,∞(R, H1 × H0) and hence
x ∈ L2,∞(R, H3 × H2). The bound (5.55) now follows from (5.60) together with (5.1). ��
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We now set out to find all w ∈ BCη(R, H2 × H1) that satisfy (5.1) with f = 0. As a first
step towards this goal, we will derive a representation formula for solutions to (5.1) with f
in appropriate exponentially weighted function spaces. In particular, we will use the family
of spaces

B Xµ,ν(R, H) =
{

x ∈ L1
loc(R, H) | ‖x‖B Xµ,ν := sup

ξ<0
e−µξ |x(ξ)|H

+ sup
ξ≥0

e−νξ |x(ξ)|H <∞
}
, (5.61)

defined for any Hilbert space H and parametrized by µ, ν ∈ R.

Lemma 5.9 Consider the linear system (5.1) with γ > 0. Fix a pair of constants η− < η+
and an open set � ⊂ R with 0 ∈ �. Assume that for all z ∈ C with Re z ∈ {η−, η+} and all
ω ∈ ω0 +�, we have

(cp − cg)z /∈ pointspec Lst(ω, z). (5.62)

Consider any pair µ, ν ∈ R for which η− < µ < ν < η+ and fix f ∈ B Xµ,ν(R, H1 × H0).
Then if v ∈ C(R, H2 × H1) ∩ B Xµ,ν(R, H2 × H1) is a solution to (5.1) for this choice of
f , the following identity must hold,

v(ξ) = 1
2π i

∫ η++i∞
η+−i∞ eξ z

(
K (ξ, z, v)+ Tω(z)−1 f̃+(z)

)
dz

+ 1
2π i

∫ η−−i∞
η−+i∞ eξ z

(
K (ξ, z, v)− Tω(z)−1 f̃−(z)

)
dz.

(5.63)

Here ω = ω0 + ω and K : R × C × C(R, H2 × H1)→ H2 × H1 is given by

K (ξ, z, v) =
0∫

ξ

e−zσ v(σ )dσ

+Tω(z)−1

⎡

⎢⎣−γ v(0)+
⎛

⎜⎝0,
N∑

j=0

A j e
zn j T−n j k0

0∫

n j

e−zσ π1v(σ )dσ

⎞

⎟⎠

⎤

⎥⎦ . (5.64)

Proof The differential equation (5.1) implies that ∂ξ v ∈ B Xµ,ν(R, H1 × H0). This ensures
that the Laplace transform ∂̃ξ v+(z) is well-defined for Re z > ν. This allows us to take the
Laplace transform of the entire system (5.1), which yields

Tω(z)̃v+(z) = f̃+(z)− γ v(0)+
⎛

⎝0,
N∑

j=0

A j e
zn j T−n j k0

∫ 0

n j

e−zσ π1v(σ )dσ

⎞

⎠ . (5.65)

Since Tω(z) is invertible for every z with Re z = η+, we find that for such z we must have

ṽ+(z) = Tω(z)−1[ f̃+(z)− γ v(0)+
⎛

⎝0,
N∑

j=0

A j e
zn j T−n j k0

∫ 0

n j

e−zσ π1v(σ )dσ

⎞

⎠].

(5.66)

Similar arguments can be used to obtain an expression for x̃−(z). We may now use the inverse
Laplace transform as described in Lemma 3.1 to obtain (5.63). A detailed derivation can be
found in [32, Proposition 5.1]. ��
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The operator K appearing in (5.63) can be linked to a spectral projection operator that is
closely connected to T . In order to make this precise, we write rmin = min{0, n0, . . . , nN },
rmax = max{0, n0, . . . , nN } and introduce the state space

X = C([rmin, rmax], H1 × H0). (5.67)

In addition, we fix a small ω, write ω = ω0 +ω and introduce the closed and densely defined
operator A : D(A) ⊂ X → X given by

D(A) = {
φ ∈ X ∩ C1([rmin, rmax], H1 × H0) | φ(0) ∈ H2 × H1

and − γ ∂ξφ(0) = L(ω)φ
}
,

Aφ = ∂ξφ. (5.68)

Lemma 5.10 The operator A has only point spectrum, with

σ(A) = σp(A) = {
z ∈ C | Tω(z)v = 0 for some v ∈ H2 × H1} . (5.69)

For z ∈ ρ(A), the resolvent of A is given by

(z I − A)−1ψ = e·z K (·, z, ψ), (5.70)

in which K : [rmin, rmax] × C × X → H1 × H0 is given by

K (τ, z, ψ) =
0∫

τ

e−zσψ(σ)dσ + Tω(z)−1

⎡

⎢⎣ − γψ(0)

+
⎛

⎜⎝0,
N∑

j=0

A j e
zn j T−n j k0

0∫

n j

e−zσ π1ψ(σ)dσ

⎞

⎟⎠

⎤

⎥⎦ . (5.71)

Proof Fix ψ ∈ X and consider the equation (z I − A)φ = ψ for φ ∈ D(A), which is
equivalent to the system

∂ξφ = zφ − ψ
−γ ∂ξφ(0) = L(ω)φ.

(5.72)

Suppose that Tω(z) : H2 × H1 → H1 × H0 is invertible. Solving the first equation yields

φ(τ) = ezτ φ(0)+ ezτ

0∫

τ

e−zσψ(σ)dσ. (5.73)

It is not hard to verify that choosing

φ(0) = Tω(z)−1

⎡

⎢⎣−γψ(0)+
⎛

⎜⎝0,
N∑

j=0

A j e
zn j T−n j k0

0∫

n j

e−zσ π1ψ(σ)dσ

⎞

⎟⎠

⎤

⎥⎦ (5.74)

ensures that also the second line of (5.72) is satisfied. On the other hand, consider any z ∈ C

and v ∈ H2 × H1 such that Tω(z)v = 0. Inspecting the function φ(τ) = ezτ v, we find that
φ ∈ D(A) with Aφ = zφ, showing that z ∈ σp(A) and completing the proof. ��
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The representation (5.70) implies that we need to study the map z → Tω(z)−1 in order
to understand the behaviour of the resolvent z → (z I − A)−1. In particular, we will need to
determine the order of the poles.

Lemma 5.11 Suppose that z = λ is an isolated singularity for the map z → Tω(z)−1. Sup-
pose furthermore that every v ∈ Ker Tω(λ) has finite Jordan rank and let k be the maximum
of such Jordan ranks. Then z → Tω(z)−1 has a pole of order k at z = λ.

Proof Recall first that Tω(λ) : H2 × H1 → H1 × H0 is Fredholm with index zero, which
allows us to define the integer n = dim Ker Tω(λ). As customary in the matrix-valued
case, we may construct a canonical Jordan basis by repeatedly choosing a kernel element
v ∈ Ker Tω(λ) that has maximal Jordan rank in the subspace of Ker Tω(λ) that has not been
spanned by previously chosen elements. In this fashion we find quantities vi

j,� ∈ H2 × H1,
in which the rank j ranges from 1 to k, the index � ranges from 1 to m j and i ranges from 0
to j − 1. Here m j denotes the number of Jordan chains with rank j that were constructed.
For each fixed j and � the quantities vi

j,� form a Jordan chain of length j , which means that

Tω(z)[v0
j,� + (z − λ)v1

j,� + . . .+ (z − λ) j−1v
j−1
j,� ] = O((z − λ) j ) (5.75)

as z → λ. By nature of the construction these Jordan chains cannot be extended, which
means that

β j,� := 1

j !T
( j)
ω (λ)v0

j,� + . . .+ T (1)ω (λ)v
j−1
j,� /∈ R(Tω(λ)). (5.76)

In addition, these n vectors β j,� are linearly independent over R(Tω(λ)), which allows us to
choose n quantities α j,� ∈ R(Tω(λ))⊥ that satisfy the orthogonality relations

〈α j,�, β j ′,�′ 〉H1×H0 = δ j j ′δ��′ . (5.77)

To show that z → Tω(z)−1 has a pole of order k, we will construct a holomorphic func-
tion z → H(z) ∈ L(H1 × H0, H2 × H1) that is analytic in a neighbourhood of z = λ and
satisfies

Tω(z)H(z) = (z − λ)k I. (5.78)

In fact, one easily sees that it suffices to find operators Hi ∈ L(H1 × H0, H2 × H1) for
0 ≤ i ≤ k such that

Tω(z)[H0 + (z − λ)H1 + . . .+ (z − λ)k Hk] = (z − λ)k I + O((z − λ)k+1). (5.79)

A short computation shows that this can be done by writing

Hi =
k∑

j=k−i

m j∑

l=1

v
j+(i−k)
j,� 〈α j,�, ·〉H1×H0 (5.80)

for 0 ≤ i < k and choosing Hk in such a way that

Tω(λ)Hk = I −
∑

j,�

β j,�〈α j,�, ·〉H1×H0 . (5.81)

This is always possible, since R(Tω(λ))⊥ = span{α j,�}, while (5.77) implies that for all
v ∈ H1 × H0
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〈
α j,�, v −

∑

j ′,�′
β j ′,�′ 〈α j ′,�′ , v〉H1×H0

〉

H1×H0

= 0. (5.82)

��
The next result shows how Jordan chains for the operator z I − A can be constructed from

Jordan chains for Tω(z). We introduce a new operator Â on the larger space X̂ = H1×H0×X ,
given by

D( Â) = {
(v, φ) ∈ X̂ | ∂ξφ ∈ X, φ(0) ∈ H2 × H1, v = −γφ(0)} ,

Â(v, φ) = (L(ω)φ, ∂ξφ). (5.83)

Let us write j : X → X̂ for the continuous embedding φ → (−γφ(0), φ). As in [32], one
may argue that the part of Â in j X is equivalent to A and that the closure of D( Â) is given
by j X . Hence the spectral analysis of A and Â is one and the same. We have the following
equivalence.

Lemma 5.12 Consider the holomorphic functions E : C → L
(
H2 × H1 × X,D( Â)

)
and

F : C → L(X̂ , X̂) given by

E(z)(v, ψ)(τ) =
⎛

⎝−γ v, ezτ v + ezτ

0∫

τ

e−zσψ(σ)dσ

⎞

⎠ ,

F(z)(v, ψ)(τ) =
⎛

⎜⎝v +
⎛

⎜⎝0,
N∑

j=0

A j e
zn j T−n j k0

0∫

n j

e−zσ π1ψ(σ)dσ

⎞

⎟⎠ , ψ(τ)

⎞

⎟⎠ , (5.84)

in which D( Â) is considered as a Banach space with the graph norm. Then E(z) and F(z)
are bijective for every z ∈ C and we have the identity

(
Tω(z) 0

0 I

)
= F(z)(z I − Â)E(z). (5.85)

Proof The bijectivity of F is immediate. To show that also E is invertible, write E2(z) for
the X -component of E(z), and observe that

ψ(τ) = zE2(z)(v, ψ)(τ)− ∂ξ E2(z)(v, ψ)(τ), (5.86)

which means E has a left inverse. Using partial integration, we may compute

E2(z)
(
ψ(0), (z I − ∂ξ )ψ

)
(τ ) = ezτψ(0)+ ezτ

0∫

τ

e−zσ (zψ(σ)− ∂ξψ(σ ))dσ = ψ(τ),

(5.87)

which shows that E has a right inverse. A simple calculation now shows

(z I − Â)E(z)(v, ψ) =
⎛

⎜⎝Tω(z)v −
⎛

⎜⎝0,
N∑

j=0

A j e
zn j T−n j k0

0∫

n j

e−zσ π1ψ(σ)dσ

⎞

⎟⎠ , ψ

⎞

⎟⎠ ,

(5.88)

from which the identity (5.85) follows immediately. ��
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Lemma 5.13 For any pair µ ≤ ν, set � = �µ,ν = {z ∈ σ(A) | µ ≤ Re z ≤ ν}. Suppose
that � is a finite set and that for each z ∈ � the Jordan rank of Tω(z) is finite. Then each
z ∈ � is a pole of (z I − A)−1 of finite order. In addition, we have the decomposition

X = M� ⊕ R�, (5.89)

in which M� is the generalized eigenspace corresponding to the eigenvalues in � and R�
is the null space of the associated spectral projection Q� : X → X.

Consider any pair of constants η± with η− < µ and η+ > ν, for which �η−,η+ = �. In
addition, consider any φ ∈ X that has φ(0) ∈ H2 × H1 and ∂ξπ1φ ∈ L1([rmin, rmax], H0).
Then we have the identity

(Q�φ)(τ) = 1

2π i

∫ η++i∞

η+−i∞
ezτ K (τ, z, φ)dz + 1

2π i

∫ η−−i∞

η−+i∞
ezτ K (τ, z, φ)dz, (5.90)

in which K is given by (5.71).

Proof Lemma 5.11 together with the representation (5.70) implies that each λ ∈ � is a pole
of finite order for z → (z I − A)−1. The spectral splitting (5.89) follows directly from [15,
Theorem IV.2.5]. Using a Dunford integral to represent the spectral projection Q� , it suffices
to show that

∫ η++iκ

η−+iκ
ezτTω(z)−1

⎡

⎢⎣−γφ(0)+
⎛

⎜⎝0,
N∑

j=0

A j e
zn j T−n j k0

0∫

n j

e−zσ π1φ(σ)dσ

⎞

⎟⎠

⎤

⎥⎦ dz → 0

(5.91)

as κ → ±∞ in order to establish (5.90). Since z → Tω(z)−1 does not decay as Im z → ±∞
this is not immediately clear. An integration by part yields

0∫

n j

e−zσ π1φ(σ)dσ = z−1

⎡

⎢⎣e−zn jπ1φ(r j )− π1φ(0)+
0∫

n j

e−zσ ∂ξπ1φ(σ)dσ

⎤

⎥⎦ . (5.92)

In view of the assumption on π1φ, it thus only remains to show that

η++iκ∫

η−+iκ

ezτTω(z)−1φ(0)dz → 0 (5.93)

as κ → ±∞. To see this, we write

−γφ(0) = z−1[−γ zφ(0)− Tω(z)φ(0)] + z−1[Tω(z)φ(0)] (5.94)

and use the fact that Tω(z)+ γ z I remains bounded as Im z → ∞. ��
The relation thus obtained between the representation (5.63) and the spectral projec-

tion (5.90) allows us to lift the inverses �inv obtained in Lemma 5.7 to inverses defined
on L2,∞(R, H3 × H2). As a preparation, we introduce for any function Hilbert space H
and any function f ∈ L1

loc(R, H) the notation �+ f ∈ L1
loc(R, H) to denote the function

has [�+ f ](ξ) = f (ξ) for ξ ≥ 0 and [�+ f ](ξ) = 0 for ξ < 0. In addition, we write
�− f = f −�+ f .
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Lemma 5.14 Consider any η ∈ R. Consider the linear system (5.1) with γ > 0 and assume
that (Hg) and (HF) are satisfied. Fix a constant ε > 0, write η± = η ± 2ε, choose an open
set � ⊂ R with 0 ∈ � and assume that (ha) and (hb) are satisfied. Fix any ω ∈ �. Consider
any

f ∈ L2,∞
η (R, H3 × H2) (5.95)

and write

v = �inv
η+ε(ω)�+ f +�inv

η−ε(ω)�− f. (5.96)

Then v solves the linear system (5.1). In addition, we have

v ∈ L2,∞
η (R, H3 × H2) ∩ L∞

η (R, H2 × H1) ∩ W 1,∞
η (R, H1 × H0) (5.97)

and there exists a constant C > 0 that does not depend on f and ω, such that

‖v‖L2,∞
η (R,H3×H2)

+ ‖v‖L∞
η (R,H

2×H1) + ‖v‖W 1,∞
η (R,H1×H0)

≤ C ‖ f ‖L2,∞
η (R,H3×H2)

.

(5.98)

Proof Notice first that the assumptions of Lemma 5.8 are satisfied. Indeed, for any function
g ∈ L2

η+ε(R, H3 × H2) ∩ L2
η−ε(R, H3 × H2), write

w = �inv
η+ε(ω)g −�inv

η−ε(ω)g (5.99)

and notice thatw ∈ C(R, H2 × H1)∩ B Xη−ε,η+ε(R, H2 × H1). In addition,w satisfies (5.1)
with f = 0. Write ψ = w|[rmin,rmax]. Choosing µ = η − ε, ν = η + ε and comparing (5.63)
with (5.90), we find that Q�µ,νψ = ψ . However, our condition on ε implies that Q�µ,ν = 0.
After repeating this argument for shifted versions of g we may conclude w = 0. The claims
now follow directly from Lemma 5.8. ��

Let us now introduce for η ∈ R and ω ∈ R the set

N lc
η (ω) = {v ∈ BCη(R, H2 × H1) | v satisfies (5.1) with f = 0}. (5.100)

Arguing similarly as in the proof of Lemma 5.14, (5.63) in combination with (5.90) allows
us to obtain a characterization of N lc

η (ω).

Lemma 5.15 Consider the linear system (5.1) with γ > 0 and assume that (Hg), (HF),
(HD) and (HL) are satisfied. Then there exist a small open set � ⊂ R with 0 ∈ �, together
with two constants 0 < η∗

min < η
∗
max, such that Tω(z) : H2 × H1 → H1 × H0 is invertible

for all ω ∈ ω0 + � and all z ∈ C that have η∗
min ≤ |Re z| ≤ η∗

max. In addition, for each
ω ∈ � and η ∈ (η∗

min, η
∗
max), the set N lc

η (ω) is two dimensional.

Proof The uniform bound (5.26b) implies that there exist a small η∗
max > 0, large κ > 0 and

small neighbourhood� ⊂ R with 0 ∈ � such that Tω(z) is invertible for all ω ∈ ω0 +� and
z ∈ C−η∗

max,η
∗
max

that have |z| > κ . Let us recall the functionµ∗(ω, z) = λlin(ω, z)−z(cp−cg)

introduced in Lemma 3.2. Since z → µ∗(ω, z) is analytic, its set of roots is discrete. This
implies that there exists a small δ > 0 such that Tω0(z) is invertible for all z ∈ C with
0 < |z| < δ. After possibly further decreasing η∗

max, we hence see that Tω0(z) is invertible
for all z ∈ C with 0 < |Re z| ≤ ηmax. As ω is varied, the double root of µ∗(ω0, ·) at z = 0
can be split into two components z1(ω) and z2(ω) that depend continuously on ω. For any
choice of η∗

min that satisfies 0 < η∗
min < η

∗
max, we may therefore choose � sufficiently small

to ensure that Tω(z) is invertible for all ω ∈ ω0 +� and z ∈ C with η∗
min ≤ |Re z| ≤ η∗

max. In
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addition, Lemma 3.2 ensures that dim Ker Tω(zi (ω)) = 1 for i = 1, 2 andω ∈ ω0 +�, while
the total number of elements in the combined Jordan chains associated to Tω(zi (ω)) remains
equal to two. Let us now considerw ∈ N lc

η (ω). Combining the representation formula (5.63)
with the spectral projection (5.90) and writing ψ = w|[rmin,rmax] shows that ψ = Q�−η,ηψ . ��

From now on, we fix two constants ηmin and ηmax in such a way that η∗
min < ηmin <

ηmax < η
∗
max. We also fix an open set � ⊂ R with 0 ∈ � that is sufficiently small to ensure

that the results developed previously in this section are all applicable. We are now ready to
introduce for η ∈ [ηmin, ηmax] and ω ∈ � the pseudo-inverses

K̃η(ω) : BYη(R, H3 × H2)→ BCη(R, H2 × H1) ∩ BYη(R, H3 × H2), (5.101)

that are given by

K̃η(ω) f = �inv
η+ε(ω)�+ f +�inv−η−ε(ω)�− f, (5.102)

for sufficiently small ε > 0. By construction we have that x = K̃η(ω) f solves (5.1), but the
normalization conditions (5.6) may still be violated.

To repair this, observe that for all η ∈ [ηmin, ηmax], we have

N lc
η (0) = span{u′

0, ξu′
0 + u1}. (5.103)

Let us introduce the projection : H2 × H1 → R
2 that is given by

 v =
(∥∥u′

0

∥∥−2
H1×H0 〈u′

0, v〉H1×H0 , ‖u1‖−2
H1×H0 〈u1, v〉H1×H0

)
. (5.104)

Our goal here is to construct, for ω ∈ �, extension operators E lc(ω) : R
2 →

BCηmin (R, H3 × H2), such that for any a ∈ R
2 we have E lc(ω)a ∈ N lc

ηmin
(ω) and

 pev0 E lc(ω)a = a. It is not hard to see that

[E lc(0)a](ξ) = (a1 + a2ξ)u′
0 + a2u1 (5.105)

satisfies these conditions. Observe in addition that for any a ∈ R
2 we have

[−γ ∂ξ − L(ω)]E lc(0)a = (
0, ω∂σπ1 E lc(0)a

)
. (5.106)

After possibly decreasing the size of �, we may introduce the operators E lc(ω) by way of

E lc(ω)a = [E lc(0)− K̃(ω)
(
0, ω∂σπ1 E lc(0)

)][I − pev0K̃(ω)
(
0, ω∂σπ1 E lc(0)

)]−1a.

(5.107)

By construction, for any a ∈ R
2 the function E lc(ω)a satisfies (5.1) with f = 0, while also

 pev0 E lc(ω)a = a. The fact that E lc(ω) maps into BCηmin (R, H3 × H2) follows from the
smoothness of functions in Ker Tω(z).

With these operators E lc(ω) in hand, we may introduce the new pseudo inverses

Kη(ω) : BYη(R, H3 × H2)→ BCη(R, H2 × H1) ∩ BYη(R, H3 × H2) (5.108)

that are given by

Kη(ω) f = K̃η(ω) f − E lc(ω) pev0K̃η(ω) f, (5.109)

which now do satisfy the normalization conditions (5.6). Finally, we can include the depen-
dence on ϑ by writing

Klc
η (ϑ, ω) = TϑKη(ω)T−ϑ . (5.110)
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With this definition we have gathered all the ingredients necessary to establish Proposition
5.1.

Proof of Proposition 5.1 Items (1), (2) and (6) follow easily from the discussion above. Item
(3) follows from the definition of Klc

η together with Lemma 5.7 and the bound (5.55). Item (5)
follows directly from (5.110). It remains to establish (4), which concerns the smoothness of
the map (ϑ, ω) → Klc

η (ϑ, ω). Let us pick any ϑ ∈ R and ω ∈ � and write v1 = Klc(ϑ, ω) f

and v2 = Klc(0, 0) f . Upon defining w = v1 − v2, it is not hard to see that w satisfies the
differential equation

− γ ∂ξw(ξ) = L(0, 0)vevξw + (
0, [Dg (u(ϑ + · ; k0))− Dg (u(· ; k0))− ω∂σ ]π1v

1(ξ)
)

(5.111)

and hence

w = E lc(0)[ − T−ϑ ]pev0Klc
η (ϑ, ω) f

+ Klc
η (0, 0) (0, [Dg (u(ϑ + · ; k0))− Dg (u(· ; k0))− ω∂σ ]π1)Klc

η (ϑ, ω) f. (5.112)

To help interpret the first term, we note that for v ∈ H2 × H1 we have

−[ − T−ϑ ]v
=

(∥∥u′
0

∥∥−2
H1×H0 〈Tϑu′

0 − u′
0, v〉H1×H0 , ‖u1‖−2

H1×H0 〈Tϑu1 − u1, v〉H1×H0

)
. (5.113)

The smoothness of (ϑ, ω) → Klc(ϑ, ω) can now be established using the smoothness of g
and the fact that u(k0) ∈ Hr+2, much along the lines of [53, Lemma 2.5]. We lose three
orders of smoothness since we need to get estimates on terms of the form

∣∣[Dg (u(ϑ + · ; k0))− Dg (u(· ; k0))]π1v
1(ξ)

∣∣
H2 , (5.114)

which leads to expressions involving D3g. ��

6 Slowly Varying Coefficients

We are now ready to consider the linear system

− γ ∂ξ v(ξ) = [I − Pθ(ξ)]L(θ(ξ), ω)vevξ v + [I − Pθ(ξ)]Tθ(ξ)Mcevξ�L(θ, ω)v + f (ξ),

(6.1)

which is nonlocal on account of the term involving �L. Recall the interval [ηmin, ηmax]
appearing in Lemma 4.3 and consider any θ ∈ C(R,R). For any η ∈ [ηmin, ηmax] and ω ∈ R

we may then associate to (6.1) the linear operator

�(θ, ω) : BCη(R, H2 × H1) ∩ BC1
η(R, H1 × H0)→ BCη(R, H1 × H0) (6.2)

that is given by

[�(θ, ω)v](ξ) = −γ ∂ξ v(ξ)− [I − Pθ(ξ)]L(θ(ξ), ω)vevξ v

−[I − Pθ(ξ)]Tθ(ξ)Mcevξ�L(θ, ω)v. (6.3)

The main result that we set out to prove in this section, shows that (6.1) can be solved if∥∥θ ′∥∥∞ is sufficiently small. However, the solution operator will be constructed in such a way
that it can be defined for all continuous functions θ .
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Proposition 6.1 Consider the linear system (6.1) and suppose that (Hg), (HF), (HD) and
(HL) are satisfied. Then there exist constants 0 < ηmin < ηmax and an open set � ∈ R with
0 ∈ �, together with maps

Kgb
η : C(R,R)×�→ L

(
BYη(R, H3 × H2), BCη(R, H2 × H1) ∩ BYη(R, H3 × H2)

)
,

(6.4)

defined for η ∈ [ηmin, ηmax], such that the following properties are satisfied.

(1) There exists ε > 0, such that if θ ∈ C1(R,R) and
∣∣θ ′(ξ)

∣∣ < ε for all ξ ∈ R, then

v = Kgb
η (θ, ω) f satisfies �(θ, ω)v = f for any η ∈ [ηmin, ηmax], ω ∈ � and f ∈

BYη(R, H3 × H2).

(2) We have  T−θ(0)pev0K
gb
η (θ, ω) f = 0 for all η ∈ [ηmin, ηmax], θ ∈ C(R,R), ω ∈ �

and f ∈ BYη(R, H3 × H2).

(3) The norm
∥∥∥Kgb

η (θ, ω)

∥∥∥ can be bounded independently of η ∈ [ηmin, ηmax], θ ∈ C(R,R)

and ω ∈ �.
(4) There exists a constant C > 0 such that for any three η1, η2, η3 ∈ [ηmin, ηmax] that

have η1 + η2 ≤ η3, any two functions θ1, θ2 ∈ BCη1(R,R), any two ω1, ω2 ∈ � and
any f ∈ BYη2(R, H3 × H2), we have the estimate

∥∥∥Kgb
η2 (θ1, ω1) f − Kgb

η2 (θ2, ω2) f
∥∥∥

BCη3 ∩BYη3

≤ C
[‖θ1 − θ2‖η1 + |ω1 − ω2|

] ‖ f ‖BYη2
, (6.5)

in which we have introduced the shorthands BYη = BYη(R, H3 × H2) and BCη =
BCη(R, H2 × H1).

(5) Consider a pair η0, η1 ∈ [ηmin, ηmax] together with a function

f ∈ BYη0(R, H3 × H2) ∩ BYη1(R, H3 × H2). (6.6)

Then for any θ ∈ C(R,R) and ω ∈ � we have

Kgb
η0 (θ, ω) f = Kgb

η1 (θ, ω) f. (6.7)

(6) Recall the integer r that appears in (Hg). Consider any � ≤ r −3 and pick η1, η2, η3 ∈
[ηmin, ηmax] in such a way that η3 > �η1+η2. Then the map (θ, ω) → Kgb(θ, ω) is C�-
smooth when considered as a map from BCη1(R,R)×� into L(BYη2 , BYη3 ∩ BCη3).
In addition, for any pair of integers p1, p2 ≥ 0 with p1 + p2 ≤ �, the derivative
D p1

1 D p2
2 Kgb can be interpreted as a map

D p
1 D p2

2 Kgb : BCη1(R,R)×�→
L(p1+p2)

(
BCη1(R,R)

p1 × R
p2 ,L(BYη2 , BYη ∩ BCη)

)
(6.8)

for all η ≥ p1η1 + η2. This map is continuous in the first variable if η > p1η1 + η2.

Proposition 6.2 Consider the linear system (6.1) and suppose that (Hg), (HF), (HD) and
(HL) are satisfied. Then there exist a pair 0 < ηmin < ηmax, a constant ε > 0 and an open
set � ∈ R with 0 ∈ �, together with a map

Egb : C(R,R)×�→ L
(
R

2, BCηmin (R, H2 × H1) ∩ BYηmin (R, H3 × H2)
)
, (6.9)

such that the following properties are satisfied.
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(1) If θ ∈ C1(R,R) has
∣∣θ ′(ξ)

∣∣ < ε for all ξ ∈ R, then v = Egb(θ, ω)a satisfies
�(θ, ω)v = 0 for any ω ∈ � and a ∈ R

2.
(2) We have T−θ(0)pev0 Egb(θ, ω)a = a for all θ ∈ C(R,R), ω ∈ � and a ∈ R

2.
(3) If θ ∈ C1(R,R) has

∣∣θ ′(ξ)
∣∣ < ε for all ξ ∈ R and v ∈ BCη(R, H2 × H1) satisfies

�(θ, ω)v = 0 for some ω ∈ � and η ∈ [ηmin, ηmax], then

v = Egb(θ, ω) T−θ(0)pev0v. (6.10)

We recall the four constants η∗
min < ηmin < ηmax < η

∗
max that were introduced in Sect. 5

and fix these for use throughout the current section. Without loss of generality, we will assume
that the results in Lemma 4.3 hold for this choice of [ηmin, ηmax]. To prevent confusion, for
any ϑ ∈ R we will use the notation [ϑ] to represent the constant function θ = ϑ1. We start
by solving (6.1) for such constant functions θ = [ϑ]. The following result shows how this is
closely related to solving the local equation (5.1).

Lemma 6.3 Consider the linear system (6.1) and suppose that (Hg), (HF), (HD) and (HL)
are satisfied. Fix any sufficiently small open set � ⊂ R with 0 ∈ �. Then for every ϑ ∈
R, η ∈ [ηmin, ηmax] and ω ∈ � there is a linear operator

K⊥
η (ϑ, ω) : BYη(R, H3 × H2)→ BYη(R, H3 × H2) ∩ BCη(R, H2 × H1), (6.11)

that satisfies the following properties.

(1) For any f ∈ BYη(R, H3 × H2), the function x = K⊥
η (ϑ, ω) f solves �([ϑ], ω) = f .

(2) The operators K⊥
η (ϑ, ω) can be bounded independently of ω ∈ �,ϑ ∈ R and η ∈

[ηmin, ηmax].
(3) Recall the integer r defined in (Hg). For every η ∈ [ηmin, ηmax], the map (ϑ, ω) →

K⊥
η (ϑ, ω) is Cr−3-smooth.

(4) For each ω ∈ � and η ∈ [ηmin, ηmax], the set N⊥
η (ϑ, ω) that contains all v ∈

BCη(R, H2 × H1) that have �([ϑ], ω)v = 0 is two dimensional. For each a ∈ R
2,

there is a unique v ∈ N⊥
η (ϑ, ω) that has  T−ϑpev0v = a.

Proof Fix any η ∈ [ηmin, ηmax]. Without loss of generality, assume that ϑ = 0. As a prepa-
ration, let us note that for any α ∈ BCη(R,R) we have

L(ω)vevξ αu′
0 = −ω (

0, u′′(k0)
)
α(ξ)+ QMcevξ α. (6.12)

Consider any f ∈ BYη(R, H3 × H2) and introduce the function β ∈ BCη(R,R) that is
given by

β(ξ) = − 1

γ

∫ ξ

0
Q f (ζ )dζ. (6.13)

Since ηmin > 0, the map f → β defined this way can be bounded uniformly for η ∈
[ηmin, ηmax]. Let us also introduce the function g ∈ BYη(R, H3 × H2) that is given by

g(ξ) = [I − P] f (ξ)+ [I − P]McevξKηQL(ω)βu′
0 + [I − P]L(ω)vevξ βu′

0. (6.14)

Note that after decreasing the size of �, it is possible to find w ∈ BCη(R, H2 × H1) ∩
BYη(R, H3 × H2) that has

w = Klc
η (0, ω)

[
g(ξ ′)+ ω[I − P]Mcevξ ′Kη[Q(0, u′′(k0))]Qw

+ω[I − P](0, u′′(k0))Qw(ξ
′)
]
. (6.15)
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Related to w, we also consider the functions v ∈ BCη(R, H2 × H1) ∩ BYη(R, H3 × H2)

and α ∈ BCη(R,R) that are given by

α(ξ) = Qw(ξ),
v(ξ) = [I − P]w(ξ)+ β(ξ)u′

0.
(6.16)

Notice that w = v + (α − β)u′
0. A short computation now yields

− γα′(ξ) = −γ Q∂ξw(ξ) = QL(ω)vevξ [v + (α − β)u′
0] + Qg

= QL(ω)vevξ v + QMcevξ α − QL(ω)vevξ βu′
0 − ωQ(0, u′′(k0))α(ξ),

(6.17)

from which we find, using α(0) = 0,

α(ξ) = �L([0], ω)v − KQL(ω)βu′
0 − ωKQ(0, u′′(k0))α. (6.18)

We can now calculate

− γ ∂ξ v(ξ) = −γ [I − P]∂ξw(ξ)+ P f (ξ)

= [I − P]L(ω)vevξ [v + (α − β)u′
0] + P f (ξ)

+[I − P]g(ξ)+ ω[I − P]McevξKQ(0, u′′(k0))α

+ω[I − P](0, u′′(k0))α(ξ)

= [I − P]L(ω)vevξ v + [I − P]Mcevξ α − [I − P]L(ω)vevξ βu′
0 + P f (ξ)

+[I − P]g(ξ)+ ω[I − P]McevξKQ(0, u′′(k0))α

= [I − P]L(ω)vevξ v + [I − P]Mcevξ�L([0], ω)v + f (ξ), (6.19)

which implies that we may write K⊥
η (0, ω) f = v. Since the auxiliary functions g and β can

both be bounded uniformly with respect to the norm of f , item (2) follows directly from
Proposition 5.1. In addition, the auxiliary function g depends smoothly on the pair (ϑ, ω),
hence (3) also follows from Proposition 5.1.

To see (4), suppose that �([0], ω)v = 0 for some v ∈ BCη(R, H2 × H1) and write

α = �L([0], ω)v = KQL(ω)v,

w = v + αu′
0. (6.20)

Since α(0) = 0 and Pv(ξ) = Pv(0) for all ξ ∈ R, we find w(0) = v(0) and

v(ξ) = Pv(0)+ [I − P]v(ξ) = Pv(0)+ [I − P]w(ξ). (6.21)

Due to our choice of α, we may use (6.12) to compute

− γ ∂ξw(ξ) = [I − P]L(ω)vevξ [w − αu′
0] + [I − P]Mcevξ�L([0], ω)v − γα′(ξ)u′

0

= [I − P]L(ω)vevξw + ω[I − P](0, u′′(k0))α(ξ)− γα′(ξ)u′
0. (6.22)

In addition, notice that

QL(ω)vevξw = QL(ω)vevξ v + QL(ω)vevξ αu′
0

= QL(ω)vevξ v + QMcevξ α − ωQ(0, u′′(k0))α(ξ)

= −γα′(ξ)− ωQ(0, u′′(k0))α(ξ), (6.23)

which shows that

− γw′(ξ) = L(ω)vevξw + ω(0, u′′(k0))α(ξ)

= L(ω)vevξw + ω(0, u′′(k0))Qw(ξ)− ω(0, u′′(k0))Qv(0). (6.24)
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This implies that we must have

w = [I − ωKlc
η (0, ω)(0, u

′′(k0))Q]−1
[

E lc(ω) v(0)− ωKlc
η (0, ω)(0, u

′′(k0))Qv(0)
]
.

(6.25)

Every v ∈ N⊥
η (0, ω) is thus uniquely determined by  v(0) ∈ R

2. Conversely, let us fix
a ∈ R

2 and define w according to (6.25) with  v(0) replaced by a and Qv(0) replaced by
a2. Upon writing v = Pw(0)+ [I − P]w, the computations above can be repeated to show
that v ∈ N⊥

η (0, ω) with  v(0) = a. ��
Let us now consider a constant η ∈ [ηmin, ηmax] together with a function θ ∈ C(R,R).

As a second step towards solving �(θ, ω) = f , we define an approximate inverse

Kapx
η (θ, ω) : BYη(R, H3 × H2)→ BYη(R, H3 × H2) ∩ BCη(R, H2 × H1) (6.26)

by means of

[Kapx
η (θ, ω) f ](ξ) =

ξ+ 1
2∫

ξ− 1
2

ζ+ 1
2∫

ζ− 1
2

pevξK⊥
η (θ(ζ

′), ω) f dζ ′dζ. (6.27)

The integrals are necessary to ensure that Kapx(θ, ω) is well-defined as a map into
BYη(R, H3 × H2). Indeed, writing v = Kapx

η (θ, ω) f , we can use Cauchy-Schwartz to
compute

∫ ξ+1

ξ−1
|v(ζ )|2H3×H2 dζ =

ξ+1∫

ξ−1

∣∣∣∣∣∣∣∣

ζ+ 1
2∫

ζ− 1
2

ζ ′+ 1
2∫

ζ ′− 1
2

pevζK⊥
η (θ(ζ

′′), ω) f dζ ′′dζ ′

∣∣∣∣∣∣∣∣

2

H3×H2

dζ

≤
ξ+1∫

ξ−1

ζ+ 1
2∫

ζ− 1
2

ζ ′+ 1
2∫

ζ ′− 1
2

∣∣∣pevζK⊥
η (θ(ζ

′′), ω) f
∣∣∣
2

H3×H2
dζ ′′dζ ′dζ.

(6.28)

Upon slightly extending the integration region and using Fubini to change the order of inte-
gration, we obtain

ξ+1∫

ξ−1

|v(ζ )|2H3×H2 dζ ≤
ξ+ 3

2∫

ξ− 3
2

ζ ′+ 1
2∫

ζ ′− 1
2

ζ ′+ 1
2∫

ζ ′− 1
2

∣∣∣pevζK⊥
η (θ(ζ

′′), ω) f
∣∣∣
2

H3×H2
dζdζ ′′dζ ′

≤ Ce2η|ξ | ‖ f ‖2
BYη(R,H3×H2)

. (6.29)

Note that a similar computation would have been possible in the presence of only a single
integral in (6.27). The double integral will however be needed in the sequel.

To turn this approximate inverse into a full inverse, let us analyze the remainder

Srm(θ, ω) f = �(θ, ω)Kapx
η (θ, ω) f − f (6.30)

that is given by
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[Srm(θ, ω) f ](ξ) = −γ
ξ∫

ξ−1
pevξ [K⊥

η (θ(ζ
′ + 1), ω)− K⊥

η (θ(ζ
′), ω)] f dζ ′

+
ξ+ 1

2∫

ξ− 1
2

ζ+ 1
2∫

ζ− 1
2

s1(θ, ω, ξ, ζ
′)dζ ′dζ

+
ξ+ 1

2∫

ξ− 1
2

ζ+ 1
2∫

ζ− 1
2

[I − Pθ(ξ)]Tθ(ξ)McevξKηs2(θ, ω, ξ, ζ
′, ·)dζ ′dζ.

(6.31)

Here we have introduced

s1(θ, ω, ξ, ζ
′) = [Pθ(ξ) − Pθ(ζ ′)]L(θ(ζ ′), ω)pevξK⊥

η (θ(ζ
′), ω) f

+[I − Pθ(ξ)]
(

0, (B(θ(ζ ′))− B(θ(ξ)))π1pevξK⊥
η (θ(ζ

′), ω) f
)

+[I − Pθ(ξ)]
(

0,
∑N

j=0 A j T−n j k0π1pevξ+n j

[K⊥
η (θ(ζ

′), ω) f − K⊥
η (θ(ζ

′ + n j ), ω) f ]
)

+[Pθ(ξ)Tθ(ξ) − Pθ(ζ ′)Tθ(ζ ′)]McevξKηQθ(ζ ′)L(θ(ζ ′), ω)K⊥
η (θ(ζ

′), ω) f

(6.32)

and

s2(θ, ω, ξ, ζ
′, ξ ′) = [Qθ(ζ ′) − Qθ(ξ ′)]L(θ(ζ ′), ω)vevξ ′K⊥

η (θ(ζ
′), ω) f

+ Qθ(ξ ′)
(

0, (B(θ(ζ ′))− B(θ(ξ ′)))π1pevξK⊥
η (θ(ζ

′), ω) f
)

+ Qθ(ξ ′)L(θ(ξ
′), ω)vevξ ′ [K⊥

η (θ(ζ
′), ω)− K⊥

η (θ(ζ
′ + ξ ′ − ξ), ω)] f

+ Qθ(ξ ′)

⎛

⎝0,
N∑

j=0

A j T−n j k0π1pevξ ′+n j

[K⊥
η (θ(ζ

′ + ξ ′ − ξ), ω)− K⊥
η (θ(ζ

′ + ξ ′ − ξ + n j ), ω)] f

⎞

⎠ .(6.33)

Using a computation similar to (6.29) one may verify that Srm ∈ L(BYη(R, H3 × H2)), but
the size of this remainder will in general be too large for our purposes. To control the size of
Srm, we add cut-offs to this operator and write

[Sc
rm(θ, ω) f ](ξ) = −γ

ξ∫

ξ−1

χδ(|θ(ζ ′ + 1)− θ(ζ ′)|)pevξ

[K⊥
η (θ(ζ

′ + 1), ω)− K⊥
η (θ(ζ

′), ω)] f dζ ′

+
ξ+ 1

2∫

ξ− 1
2

∫ ζ+ 1
2

ζ− 1
2

sc
1(θ, ω, ξ, ζ

′)dζ ′dζ

+
ξ+ 1

2∫

ξ− 1
2

∫ ζ+ 1
2

ζ− 1
2

[I − Pθ(ξ)]Tθ(ξ)McevξKη[slc
2 (θ, ω, ξ, ζ

′, ·)

+snlc
2 (θ, ω, ξ, ζ

′, ·)]dζ ′dζ, (6.34)
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in which

sc
1(θ, ω, ξ, ζ

′) = χδ(
∣∣θ(ξ)− θ(ζ ′)

∣∣)[Pθ(ξ) − Pθ(ζ ′)]L(θ(ζ ′), ω)pevξK⊥
η (θ(ζ

′), ω) f

+χδ(
∣∣θ(ξ)− θ(ζ ′)

∣∣)[I − Pθ(ξ)](
0,

[
B(θ(ζ ′))− B(θ(ξ))

]
π1pevξK⊥

η (θ(ζ
′), ω) f

)

+χδ(
∣∣θ(ζ ′ + n j )− θ(ζ ′)

∣∣)[I − Pθ(ξ)]
⎛

⎝0,
N∑

j=0

A j T−n j k0π1pevξ+n j

[K⊥
η (θ(ζ

′)) f − K⊥
η (θ(ζ

′ + n j ), ω) f ]
⎞

⎠

+χδ(
∣∣θ(ξ)− θ(ζ ′)

∣∣)[Pθ(ξ)Tθ(ξ) − Pθ(ζ ′)Tθ(ζ ′)]
McevξKηQθ(ζ ′)L(θ(ζ

′), ω)K⊥
η (θ(ζ

′), ω) f. (6.35)

The non-local cut-off snlc
2 is defined by

snlc
2 (θ, ω, ξ, ζ

′, ξ ′) = s2(θ, ω, ξ, ζ
′, ξ ′) (6.36)

whenever
∣∣ξ ′ − ξ ∣∣ ≥ ξco and snlc

2 = 0 otherwise. By contrast, the local cut-off slc
2 is defined

by

slc
2 (θ, ω, ξ, ζ

′, ξ ′) = χδ(
∣∣θ(ξ ′)− θ(ζ ′)

∣∣)[Qθ(ζ ′) − Qθ(ξ ′)]L(θ(ζ ′), ω)vevξ ′K⊥
η (θ(ζ

′), ω) f

+χδ(
∣∣θ(ξ ′)− θ(ζ ′)

∣∣)Qθ(ξ ′)(
0,

[
B(θ(ζ ′))− B(θ(ξ ′))

]
π1pevξK⊥

η (θ(ζ
′), ω) f

)

+χδ(
∣∣θ(ζ ′)− θ(ζ ′ + ξ ′ − ξ)∣∣)Qθ(ξ ′)L(θ(ξ ′), ω)vevξ ′

[K⊥
η (θ(ζ

′), ω)− K⊥
η (θ(ζ

′ + ξ ′ − ξ), ω)] f

+χδ(|θ(ζ ′ + ξ ′ − ξ + n j )− θ(ζ ′ + ξ ′ − ξ)|)

Qθ(ξ ′)

(
0,

N∑

j=0

A j T−n j k0π1pevξ ′+n j

[K⊥
η (θ(ζ

′ + ξ ′ − ξ), ω)− K⊥
η (θ(ζ

′ + ξ ′ − ξ + n j ), ω)] f

)
, (6.37)

whenever
∣∣ξ ′ − ξ ∣∣ < ξco and slc

2 = 0 otherwise.
Let us recall the following identity, which holds for every η ∈ [ηmin, ηmax],

cevξKηsnlc
2 (θ, ω, ξ, ζ

′, ·) = cev0KηT (1)ξ snlc
2 (θ, ω, ξ, ζ

′, ·). (6.38)

Using the fact that Kη∗
max

and Kη agree on BCη(R,R), we may compute

∣∣cevξKηsnlc
2 (θ, ω, ξ, ζ

′, ·)∣∣ ≤ C
∥∥∥T (1)ξ snlc

2 (θ, ω, ξ, ζ
′, ·)

∥∥∥
η∗

max

≤ Ce−(η∗
max−η)ξco

∥∥∥T (1)ξ snlc
2 (θ, ω, ξ, ζ

′, ·)
∥∥∥
η

≤ Ce−(η∗
max−η)ξco eη|ξ | ‖ f ‖BYη . (6.39)
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We hence find
∥∥Sc

rm

∥∥L(BYη(R,H3×H2))
= O(δ + e−(η∗

max−η)ξco) (6.40)

as δ → 0 and ξco → ∞, which allows us to define the full inverse

K̃η(θ, ω) = Kapx
η (θ, ω)[I + Sc

rm(θ, ω)]−1, (6.41)

after fixing a sufficiently small δ > 0 and sufficiently large ξco.
We now proceed to find v ∈ BCη(R, H2 × H1) that have �(θ, ω)v = 0 for some

θ ∈ C(R,R) and ω ∈ �. As a preparation, let us write

E⊥(ϑ, ω) : R
2 → BCηmin (R, H2 × H1) ∩ BYηmin (R, H3 × H2) (6.42)

for the linear operator induced by item (4) of Lemma 6.3. This means that for any a ∈ R
2

the function v = E⊥(ϑ, ω)a solves �([ϑ], ω)v = 0 and has  T−ϑpev0v = a. We also
introduce for θ1, θ2 ∈ C(R,R) and ω ∈ �, the operator

E(θ1, θ2, ω) : BCη(R, H2 × H1)→ BYη(R, H3 × H2) (6.43)

that acts as

E(θ1, θ2, ω)v = [�(θ1, ω)−�(θ2, ω)]v. (6.44)

To see that this operator is well-defined, one may use the representation

[E(θ1, θ2)v](ξ) = s3(θ1, θ2, ω, ξ)v + [I − Pθ1(ξ)]Tθ1(ξ)McevξKs4(θ1, θ2, ω, ·)v, (6.45)

in which

s3(θ1, θ2, ω, ξ)v = [Pθ1(ξ) − Pθ2(ξ)]L(θ2(ξ), ω)vevξ v
+[I − Pθ1(ξ)]

(
0, [B(θ2(ξ))− B(θ1(ξ))]π1pevξ v

)

+[Pθ1(ξ)Tθ1(ξ) − Pθ2(ξ)Tθ2(ξ)]Mcevξ�L(θ2, ω)v

(6.46)

and

s4(θ1, θ2, ω, ξ)v = [Qθ2(ξ) − Qθ1(ξ)]L(θ2(ξ), ω)vevξ v
+ Qθ1(ξ)

(
0, [B(θ2(ξ))− B(θ1(ξ))]π1pevξ v

)
.

(6.47)

As before, we will need to put cut-offs on these functions. Let us write

slc
3 (θ1, θ2, ω, ξ)v = χδθ (|θ1(ξ)− θ2(ξ)|)s3(θ1, θ2, ω, ξ)v,

slc
4 (θ1, θ2, ω, ξ)v = χδθ (|θ1(ξ)− θ2(ξ)|)s4(θ1, θ2, ω, ξ)v, (6.48)

whenever |ξ | < ξco and slc
3 = slc

4 = 0 otherwise. Conversely, we write snlc
3 (θ1, θ2, ω, ξ)v =

s3(θ1, θ2, ω, ξ)v and snlc
4 (θ1, θ2, ω, ξ)v = s4(θ1, θ2, ω, ξ)v whenever |ξ | ≥ ξco and snlc

3 =
snlc

4 = 0 otherwise.
After applying these cut-offs to E , we obtain the operator

Ec(θ1, θ2, ω) : BCη(R, H2 × H1)→ BYη(R, H3 × H2) (6.49)

that is given by

[Ec(θ1, θ2, ω)v](ξ) = [slc
3 (θ1, θ2, ω, ξ)+ snlc

3 (θ1, θ2, ω, ξ)]v
+[I − Pθ1(ξ)]Tθ1(ξ)McevξKη[slc

4 (θ1, θ2, ω, ·)+ snlc
4 (θ1, θ2, ω, ·)]v.

(6.50)
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A computation similar to (6.39) now yields
∥∥Ec(θ, [θ(0)], ω)∥∥L(BCη(R,H2×H1),BYη∗max

(R,H3×H2))
= O(δθ + e−(η∗

max−η)ξco). (6.51)

After choosing δθ > 0 to be sufficiently small and ξco to be sufficiently large, we may define

Ẽgb(θ, ω) : R
2 → BCηmin (R, H2 × H1) ∩ BYηmin (R, H3 × H2) (6.52)

by means of

Ẽgb(θ, ω)a = [E⊥(θ(0), ω)− K̃(θ, ω)Ec(θ, [θ(0)], ω)E⊥(θ(0), ω)]
[I − T−θ(0)pev0K̃(θ, ω)Ec(θ, [θ(0)], ω)E⊥(θ(0), ω)]−1a.

(6.53)

By construction we have  T−θ(0) Ẽgb(θ, ω)a = a and �(θ, ω)Ẽgb(θ, ω)a = 0, whenever∥∥θ ′∥∥∞ is sufficiently small to ensure that the cut-offs have no effect. We can now use these
operators Ẽgb to define the final inverses

Kgb
η (θ, ω) f = K̃(θ, ω) f − Ẽgb(θ, ω) T−θ(0)pev0K̃η(θ, ω) f. (6.54)

Note that this choice ensures that the normalization condition (2) in Proposition 6.1 will hold.
The definition (6.53) is somewhat awkward to use in computations. However, we can use

(6.54) to construct a more convenient alternative for the operators Ẽgb(θ, ω). Indeed, let us
consider any θ ∈ C(R,R) and ω ∈ �. For any a ∈ R

2, we introduce the function

[Ec(θ, ω)a](ξ) = [slc
3 (θ, [θ(0)], ω, ξ)+ snlc

3 (θ, [θ(0)], ω, ξ)]E⊥(θ(0), 0)a
+[I − Pθ(ξ)]Tθ(ξ)McevξK[slc

4 (θ, [θ(0)], ω, ·)
+ snlc

4 (θ, [θ(0)], ω, ·)]E⊥(θ(0), 0)a
+ω[I − Pθ(ξ)](0, ∂σ π1pevξ )E

⊥(θ(0), 0)a
+ω[I − Pθ(ξ)]Tθ(ξ)McevξKQθ(ξ ′)ω(0, ∂σ π1pevξ ′)E

⊥(θ(0), 0)a.
(6.55)

Using the fact that

E⊥(ϑ, 0)(a1, a2) = a1Tϑu′
0 + a2Tϑu1, (6.56)

it is not hard to see that for any a ∈ R
2 and any η ∈ [ηmin, ηmax] we have

Ec(θ, ω)a ∈ BCη(R, H3 × H2). (6.57)

In addition, if
∣∣θ ′(ξ)

∣∣ is sufficiently small for all ξ ∈ R, then by construction

�(θ, ω)E⊥(θ(0), 0)a = Ec(θ, ω)a. (6.58)

We may now write

Egb(θ, ω)a = E⊥(θ(0), 0)a − Kgb(θ, ω)Ec(θ, ω)a. (6.59)

This construction ensures that the normalization condition (2) in Proposition 6.2 holds. The
next result shows that the operators Egb(θ, ω) capture all solutions of (6.1) with f = 0,
provided that

∥∥θ ′∥∥∞ is sufficiently small.

Lemma 6.4 Consider the linear system (6.1) and suppose that (Hg), (HF), (HD) and (HL)
are satisfied. Fix a sufficiently small ε > 0 and choose a sufficiently small open set � ∈ R

with 0 ∈ �. Then for any θ ∈ C1(R,R) that has
∣∣θ ′(ξ)

∣∣ < ε for all ξ ∈ R, the set
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N gb
η (θ, ω) = {v ∈ BCη(R, H2 × H1) | �(θ, ω)v = 0} (6.60)

is two dimensional for all η ∈ [ηmin, ηmax].
Proof Fix any η ∈ [ηmin, ηmax] and ω ∈ �. Consider any θ ∈ C1(R,R) that has θ(0) = 0
and

∣∣θ ′(ξ)
∣∣ < ε for all ξ ∈ R. For any integer j ∈ Z≥0, we write

θ( j)(ξ) =
⎧
⎨

⎩

θ(ξ) for ξ ∈ [− j, j],
θ( j) for ξ ≥ j,
θ(− j) for ξ ≤ − j.

(6.61)

For any integer � ∈ Z≥0 and operator E ∈ L(R2, BCη(R, H2 × H1), we introduce the
following properties.

(I1) For every a ∈ R
2, the identity  pev0 Ea = a holds.

(I2) For all a ∈ R
2 we have �(θ(�), ω)Ea = 0.

(I3) Any v ∈ BCη(R, H2 × H1) that has �(θ(�), ω)v = 0 must satisfy v = E pev0v.

We will inductively construct operators E� : R
2 → BCη(R, H2 × H1) for all integers � ≥ 0

that satisfy (I1) through (I3). Lemma 6.3 guarantees that the choice E0 = E⊥(0, ω) satisfies
these properties. Let us now consider for j ≥ 1 the linear problem

E = E j−1 − K(θ( j−1), ω)E(θ( j), θ ( j−1), ω)E, (6.62)

in which we take E ∈ L(R2, BCη(R, H2 × H1)). One may easily verify that if E j−1 satisfies
(I1) through (I3) with � = j − 1, then any solution E of (6.62) will satisfy these properties
for � = j . Notice that

E(θ( j), θ ( j−1), ω)L(BCη(R,H2×H1),BYη(R,H3×H2)) = O(ε). (6.63)

After choosing ε > 0 to be sufficiently small, we can hence write

E� = [I + K(θ(�−1), ω)E(θ(�), θ (�−1), ω)]−1 E�−1, (6.64)

which completes the construction of the operators {E�}�≥0 that satisfy (I1) through (I3).
Now, suppose that for some nonzero v ∈ BCη(R, H2 × H1) we have �(θ, ω)v = 0 but

 pev0v = 0. On account of (I1) and (I3), we must have

v = Kη(θ(�), ω)E(θ(�), θ, ω)v (6.65)

for any integer � ≥ 0. Notice that s3(θ
(�), θ, ξ) = 0 for all |ξ | ≤ �, while an analogous

identity holds for s4. We hence find the bound

E(θ(�), θ, ω)L(BCη(R,H2×H1),BYη∗max
(R,H3×H2)) = O(e−(η∗

max−η)�), (6.66)

as �→ ∞. This implies that for some constant C > 0 and all large � we have

‖v‖BCη∗max
(R,H2×H1) ≤ Ce−(η∗

max−η)� ‖v‖BCη(R,H2×H1) , (6.67)

which implies v = 0 and completes the proof. ��
For future use, we define the shorthands

Ec
1(θ, ω) = Ec(θ, ω)(1, 0),

Ec
2(θ, ω) = Ec(θ, ω)(0, 1). (6.68)
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Inspection of (6.55) and (6.56) shows that for i ∈ {1, 2} and any η ∈ [ηmin, ηmax] we have
∥∥Ec

i (θ, ω)
∥∥

BCη(R,H3×H2)
= O

(
δθ + e−ηξco + |ω|) (6.69)

as δθ , ω → 0 and ξco → ∞. We are now ready to provide the proof of the main results of
this section.

Proof of Proposition 6.1 The operators Kgb
η have been defined in (6.54). Statements (1), (2)

and (5) follow directly from this construction, while (3) is a consequence of Lemma 6.3. To
see (4), let us write w = K̃(θ1, ω1) f − K̃(θ2, ω2) f and estimate

‖w‖BYη3
≤ ∥∥[Kapx(θ1, ω1)− Kapx(θ2, ω2)][I + Sc

rm(θ1, ω1)]−1 f
∥∥

BYη3+ ∥∥Kapx(θ2, ω)[[I + Sc
rm(θ1, ω1)]−1 − [I + Sc

rm(θ2, ω2)]−1] f
∥∥

BYη3
. (6.70)

Let us consider h ∈ BYη2(R, H3 × H2) and write z = [Kapx(θ1, ω1) − Kapx(θ2, ω2)]h. In
view of item (3) in Lemma 6.3, we obtain the estimate

|z(ξ)|H2×H1 =

∣∣∣∣∣∣∣∣

ξ+ 1
2∫

ξ− 1
2

ζ+ 1
2∫

ζ− 1
2

pevξ [K⊥(θ1(ζ ′), ω1)h − K⊥(θ2(ζ ′), ω2)h]dζ ′dζ

∣∣∣∣∣∣∣∣

≤
ξ+ 1

2∫

ξ− 1
2

ζ+ 1
2∫

ζ− 1
2

C1
[∣∣θ1(ζ ′)− θ2(ζ ′)

∣∣ + |ω1 − ω2|
]

eη2|ξ | ‖h‖BYη2
dζ ′dζ

≤ C2eη1|ξ | [‖θ1 − θ2‖η1 + |ω1 − ω2|
]

eη2|ξ | ‖h‖BYη2
. (6.71)

This shows that

‖z‖BCη3 (R,H
2×H1) ≤ C2

[‖θ1 − θ2‖η1 + |ω1 − ω2|
] ‖h‖BYη2 (R,H

3×H2) . (6.72)

An analogous computation involving an application of Fubini as in (6.29) shows that
‖z‖BYη3 (R,H

3×H2) shares this estimate. In order to bound the second line of (6.70), we write

� = [I + Sc
rm(θ1, ω1)]−1 − [I + Sc

rm(θ2, ω2)]−1 (6.73)

and observe

� = [I + Sc
rm(θ2, ω2)]−1[Sc

rm(θ2, ω2)− Sc
rm(θ1, ω1)][I + Sc

rm(θ1, ω1)]−1. (6.74)

Inspection of (6.34) shows that we may use a similar computation as above to compute
∥∥Sc

rm(θ2, ω2)w − Sc
rm(θ1, ω1)w

∥∥
BYη3

≤ C
[‖θ1 − θ2‖η1 + |ω1 − ω2|

] ‖w‖BYη2 (R,H
3×H2).

(6.75)

We thus see that the estimate (4) holds for the operators K̃. The constructions in (6.53) and
(6.54) ensure that (4) carries over to the final inverses Kgb.

Finally, the smoothness property (6) can be established using the representation (6.70)
together with the smoothness of (θ, ω) → K⊥(θ, ω). Very similar arguments can be found
in [53, Lemma 2.5] and in [56]. ��
Proof of Proposition 6.2 The results follow from Lemma 6.4 and the construction of Egb in
(6.59). ��
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7 The Center Manifold

In this section, we set out to construct a center manifold for the system (4.47) and prove
Theorem 4.5. This construction will proceed in three steps, which we roughly outline here
in simplified form. In the first step, we will fix a function h : R

3 → H2 × H1 and assume
that solutions to (4.47) can be written in the form

v(ξ) = α(ξ)Tθ(ξ)u′
0 + β(ξ)Tθ(ξ)u1 + h(α(ξ), β(ξ), θ(ξ)), (7.1)

for R-valued functions α, β and θ . Plugging this Ansatz into (4.47) will allow us to derive
a differential equation for the triple (α, β, θ). This equation will turn out to be a functional
differential equation of mixed type. Using techniques developed in [32], we will see that
for each suitable h, the functions α, β and θ are uniquely determined after fixing values for
α(0), β(0) and θ(0).

In the second step of the construction, we will consider the identity

pev0v = pev0 Egb(θ, ω) T−θ(0)pev0v + pev0Kgb(θ, ω)Rc(θ, v, ω). (7.2)

In view of the previous step, the right hand side of this equation will depend solely on
α(0), β(0), θ(0) and h. Plugging the Ansatz (7.1) into the left hand side of this identity,
we uncover a fixed point equation for the function h that will admit a unique fixed point h∗.
Establishing that the Ansatz (7.1) with h = h∗ indeed captures all sufficiently small solutions
to (4.47) will be the final step in the construction of the center manifold.

Throughout this entire section, it will be a standing assumption that the conditions (Hg),
(HF), (HD), (HL), (HT 1) and (HT 2) are all satisfied. In addition, we fix two constants
0 < ηmin < ηmax and an open set� ⊂ R with 0 ∈ � in such a way that the results in Lemma
4.3 and Propositions 5.1, 6.1 and 6.2 all hold. Unless explicitly stated otherwise, the inner
products that appear in this section are those defined on H1 × H0.

We start our analysis by introducing the domain Dδv ⊂ R
3 given by

Dδv = [−2δv, 2δv] × [−2δv, 2δv] × [0, 2π], (7.3)

together with the function space

Hδv = {h : Dδv → (H2)N+2 × H1 | ∣∣h(ψ1)− h(ψ2)
∣∣ ≤ ∣∣ψ1 − ψ2

∣∣ and |h(ψ)| ≤ δv},
(7.4)

equipped with the norm

‖h‖∞ = sup
ψ∈Dδv

|h(ψ)|(H2)N+2×H1 . (7.5)

Throughout the sequel, we will use the notation ψ = (ψα,ψβ,ψθ ) for vectors ψ ∈ R
3 and

! = (!α,!β,!θ ) for functions ! ∈ C(R,R3). We modify the Ansatz (7.1) slightly and
look for functions v ∈ C(R, H2 × H1) that satisfy

vevξ v = !α(ξ)T!θ (ξ)u′
01 +!β(ξ)T!θ (ξ)u11 + h(!(ξ)), (7.6)

for some ! ∈ C(R,R3) and h ∈ Hδv . To accommodate this way of writing v, we introduce
the new cut-off nonlinearities

Gc(ψ, h) = χδv
(∣∣(ψα,ψβ)

∣∣) G
(
ψθ , Tψθ [ψαu′

0 + ψβu1] + pev0h(ψ)
)
,

Hc(evξ!θ ) = χδθ (
∣∣cevξ!θ

∣∣)H(evξ!θ ),
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V c(evξ!θ , ψ, h) = χδθ (
∣∣cevξ!θ

∣∣)χδv (
∣∣(ψα,ψβ)

∣∣)
V
(
ψθ , Tψθ [ψαu′

0 + ψβu1] + pev0h(ψ)
)
. (7.7)

In view of (7.6) it should be clear how the expression pev0h in the definitions above should
be interpreted. Note also that the cut-offs ensure that these expressions are well-defined even
for ψ,!(ξ) /∈ Dδv . Throughout this section it will be a standing assumption that δv ≤ δθ .
For quantities a and b that depend on these cut-offs δθ and δv , we will use the notation

a ≤∗ b (7.8)

to express the fact that there exists a C > 0 that does not depend on δθ and δv , such that
a ≤ Cb holds for all δθ ≤ 1 and δv ≤ 1. Note that for ψ1, ψ2 ∈ Dδv and h1, h2 ∈ Hδv we
have the bound

|�|(H2)N+2×H1 ≤∗
∣∣ψ1 − ψ2

∣∣ + ∥∥h1 − h2
∥∥ (7.9)

for the quantity

� = Tψ1
θ
[ψ1
αu′

0 + ψ1
βu1]1 + h1(ψ1)− Tψ2

θ
[ψ2
αu′

0 + ψ2
βu1]1 − h2(ψ2). (7.10)

Using the estimates in Lemmas 4.1 and 4.2 and computations similar to those in the proof
of Lemma 4.4, we obtain the estimates

∣∣Gc(ψ, h)
∣∣

H3×H2 ≤∗ δ2
v ,∣∣Gc(ψ1, h1)− Gc(ψ2, h2)

∣∣
H3×H2 ≤∗ δv

∣∣ψ1 − ψ2
∣∣ + δv

∥∥h1 − h2
∥∥ ,

∣∣Hc(evξ!θ )
∣∣

H3×H2 ≤∗ δ2
θ ,∣∣Hc(evξ!

1
θ )− Hc(evξ!

2
θ )
∣∣

H3×H2 ≤∗ δθ
∣∣evξ!

1
θ − evξ!

2
θ

∣∣
RN+2 , (7.11)

which hold for all h, h1, h2 ∈ Hδv , ψ,ψ1, ψ2 ∈ R
3 and !,!1, !2 ∈ C(R,R3). It is also

not hard to see that
∣∣V c(evξ!,ψ, h)

∣∣ ≤∗ δv,∣∣V c(evξ!
1
θ , ψ

1, h1)− V c(evξ!
2
θ , ψ

2, h2)
∣∣ ≤∗

∣∣evξ!
1
θ − evξ!

2
θ

∣∣
RN+2

+ ∣∣ψ1 − ψ2
∣∣ + ∥∥h1 − h2

∥∥ . (7.12)

Let us also define, for ! ∈ C(R,R3) and h ∈ Hδv , the function

Sc(!, h, ω)(ξ) = Q!θ (ξ)G
c(!(ξ), h)+ Q!θ (ξ)H

c(evξ!θ )

+ V c(evξ!θ ,!(ξ), h)
[
QMcevξ!θ

+QL(ω)[!α(ξ ′)u′
01 + !β(ξ

′)u11]
+ Q!θ (ξ)L(!θ (ξ), ω)h(!(ξ))+ Q!θ (ξ)G

c(!(ξ), h)

+ Q!θ (ξ)H
c(evξ!θ )

]
, (7.13)

together with

�c
NL(!, h, ω) = KSc(!, h, ω). (7.14)

We obtain the estimates

|Sc(!, h, ω)(ξ)| ≤∗ (δv + δθ )2,∣∣Sc(!1, h1, ω)(ξ)− Sc(!2, h2, ω)(ξ)
∣∣ ≤∗ (δv + δθ )

[∣∣evξ!1
θ − evξ!2

θ

∣∣
+ ∣∣!1(ξ)−!2(ξ)

∣∣ + ∥∥h1 − h2
∥∥] . (7.15)
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We are now ready to introduce our final nonlinearity

Rc(!, h, ω)(ξ) = [I − P!θ (ξ)]Gc(!(ξ), h)+ [I − P!θ (ξ)]Hc(evξ!θ )

−ωT!θ (ξ)(0, u
′(k0))+ [I − P!θ (ξ)]T!θ (ξ)Mcevξ�

c
NL(!, h, ω)

− P!θ (ξ)V
c(evξ!θ ,!(ξ), h)

[
T!θ (ξ)Mcevξ!θ + Gc(!(ξ), h)

+ Hc(evξ!θ )+ L(!θ (ξ), ω)T!θ (ξ)[!α(ξ)u′
01 +!β(ξ)u11]

+ L(!θ (ξ), ω)h(!(ξ))
]
.

(7.16)

Using (7.11) and (7.12) we obtain
∣∣Rc(!, h, ω)(ξ)

∣∣
H3×H2 ≤∗ |ω| + (δv + δθ )2,

∥∥Rc(!1, h1, ω)− Rc(!2, h2, ω)
∥∥

BCη(R,H3×H2)
≤∗ (|ω| + δv + δθ )

∥∥!1 −!2
∥∥

BCη(R,R3)

+(δv + δθ )
∥∥h1 − h2

∥∥ . (7.17)

Consider an η ∈ [ηmin, ηmax], fix a function ! ∈ BCη(R,R3) together with a map
h ∈ Hδv and write ψ = !(0). Let us introduce the function w ∈ BCη(R, H2 × H1) ∩
BYη(R, H3 × H2) that is given by

w = Egb(!θ , ω)(ψα,ψβ)+ Kgb(!θ , ω)Rc(!, h, ω). (7.18)

In addition, we introduce two functions α, β ∈ BCη(R,R) by way of

(α(ξ), β(ξ)) =  T−!θ (ξ)pevξw. (7.19)

Now, let us suppose that
∥∥! ′

θ

∥∥∞ < ε, with ε as introduced in item (1) of Proposition 6.1.
We then have �(!θ , ω)w = Rc(!, h, ω), which allows us to compute

−γ 〈u′
0,u

′
0〉α′(ξ) = −γ! ′

θ (ξ)〈T!θ (ξ)u′′
0, w(ξ)〉 + 〈T!θ (ξ)u′

0,−γ ∂ξw(ξ)〉= −γ! ′
θ (ξ)〈T!θ (ξ)u′′

0, w(ξ)〉+〈T!θ (ξ)u′
0, pevξRc(!, h, ω)〉,

−γ 〈u1,u1〉β ′(ξ) = −γ! ′
θ (ξ)〈T!θ (ξ)u′

1, w(ξ)〉 + 〈T!θ (ξ)u1,−γ ∂ξw(ξ)〉
= −γ! ′

θ (ξ)〈T!θ (ξ)u′
1, w(ξ)〉+〈T!θ (ξ)u1, [I − P!θ (ξ)]L(!θ (ξ), ω)vevξw〉

+〈T!θ (ξ)u1, [I−P!θ (ξ)]T!θ (ξ)McevξKQ!θ (ξ ′)L(!θ (ξ
′), ω)vevξ ′w〉

+〈T!θ (ξ)u1, pevξRc(!, h, ω)〉. (7.20)

On the other hand, still under the assumption that
∥∥! ′

θ

∥∥∞ < ε, item (3) of Proposition 6.2
implies that for any pair ξ0, ξ ∈ R we have the identity

pevξ0+ξw = pevξ Egb(T (1)ξ0 !θ, ω)(α(ξ0), β(ξ0))+ pevξKgb(T (1)ξ0 !θ, ω)R
c(T (1)ξ0 !, h, ω).

(7.21)

We recall from (6.68) that for any θ ∈ C(R,R) and a = (a1, a2) ∈ R
2 we have

Egb(θ, ω)a = Tθ(0)a1u′
01 + Tθ(0)a2u11 − a1Kgb(θ, ω)Ec

1(θ, ω)− a2Kgb(θ, ω)Ec
2(θ, ω),

(7.22)

together with the bounds
∥∥Ec

i (θ, ω)
∥∥

BCη(R,H3×H2)
≤∗ δθ + e−ηξco + |ω| , (7.23)
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for i = 1, 2. Plugging (7.21) back into (7.20), we find the differential equations

− γ 〈u′
0,u

′
0〉α′(ξ) = −γ! ′

θ (ξ)〈u′′
0, α(ξ)u

′
0 + β(ξ)u1〉

−γ! ′
θ (ξ)〈T!θ (ξ)u′′

0,W1(!, h, ω)(ξ)+ W2(!, ω)[α, β](ξ)〉
+〈T!θ (ξ)u′

0, pevξRc(!, h, ω)〉,
−γ 〈u1,u1〉β ′(ξ) = −γ! ′

θ (ξ)〈u′
1, α(ξ)u

′
0 + β(ξ)u1〉

−γ! ′
θ (ξ)〈T!θ (ξ)u′

1,W1(!, h, ω)(ξ)+ W2(!, ω)[α, β](ξ)〉
+〈u1, α(ξ)L(ω)u′

01 + β(ξ)L(ω)u11

+McevξKQ[α(ξ ′)L(ω)u′
01 + β(ξ ′)L(ω)u11]〉

+〈T!θ (ξ)u1, [pevξ + T!θ (ξ)McevξKQ!θ (·)]
[W3(!, h, ω)+ W4(!, ω)[α, β]]〉

+〈T!θ (ξ)u1, pevξRc(!, h, ω)〉. (7.24)

Here we have introduced the notation

W1(!, h, ω)(ξ) = pev0Kgb(T (1)ξ !θ , ω)T
(1)
ξ Rc(!, h, ω),

W2(!, ω)[α, β](ξ) = −pev0Kgb(T (1)ξ !θ , ω)[α(ξ)Ec
1(T

(1)
ξ !θ , ω)

+β(ξ)Ec
2(T

(1)
ξ !θ , ω)],

W3(!, h, ω)(ξ) = L(!θ (ξ), ω)vev0Kgb(T (1)ξ !θ , ω)T
(1)
ξ Rc(!, h, ω),

W4(!, ω)[α, β](ξ) = −L(!θ (ξ), ω)vev0Kgb(T (1)ξ !θ , ω)[α(ξ)Ec
1(T

(1)
ξ !θ , ω)

+β(ξ)Ec
2(T

(1)
ξ !θ , ω)]. (7.25)

Let us emphasize here that there are no cut-offs on α and β in (7.24).

Lemma 7.1 Fix η ∈ [ηmin, ηmax]. Choose δθ sufficiently small and ξco sufficiently large.
Consider any ! ∈ BCη(R,R3) that has

∣∣! ′(ξ)
∣∣ < ε for some sufficiently small ε, that

depends only on δθ and ξco. Then for each pair (α0, β0) ∈ R
2 and every sufficiently small

ω ∈ R, there exists a unique function (α, β) ∈ BCη(R,R2) that solves (7.24) and has
α(0) = α0 and β(0) = β0.

Proof Let us first write � = (α, β). Observe that (7.24) has the form

− γ�′(ξ) = [L0�](ξ)+ [L1�](ξ)+ f (ξ), (7.26)

in which we have f = ( fα, fβ), together with

[L0�](ξ) = (
0, 〈u1,u1〉−1〈u1, β(ξ)L(0, 0)u11 + McevξKQβ(ξ ′)L(0, 0)u11〉) (7.27)

and

‖L1‖L(BCη(R,R2)) ≤∗ δθ + e−ηξco + |ω| + ε. (7.28)

Let us remark here that L(0, 0)u′
0 = 0 and

L(0, 0)u11 = −T (0)u1 = T ′(0)u′
0. (7.29)

This means that solving −γ�′(ξ) = [L0�](ξ)+ f (ξ) is equivalent to solving

− γ 〈u1,u1〉β ′(ξ) = β(ξ)〈u1, T ′(0)u′
0〉 + McevξKβ(ξ ′)QT ′(0)u′

0 + fβ(ξ). (7.30)
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Introducing an auxiliary variable θ , we find the equivalent system

−γ θ ′(ξ) = QMcevξ θ + β(ξ)QT ′(0)u′
0,−γ 〈u1,u1〉β ′(ξ) = β(ξ)〈u1, T ′(0)u′

0〉 + 〈u1,Mcevξ θ〉 + fβ(ξ).
(7.31)

To find a characteristic equation, we substitute the Ansatz (θ, β)(ξ) = ezξ (θ0, β0) and find,
using the calculation in (4.34) and (4.35) together with 〈u1,u′

0〉 = 0,
(

QT (z)u′
0 −QT ′(0)u′

0〈u1, T (z)u′
0〉 −γ z〈u1,u1〉 − 〈u1, T ′(0)u′

0〉
)(

θ0
β0

)
= 0. (7.32)

We thus conclude that the characteristic function �(z) is given by

�(z) = −γ z〈u1,u1〉QT (z)u′
0 − 〈u1, T ′(0)u′

0〉QT (z)u′
0 + 〈u1, T (z)u′

0〉QT ′(0)u′
0.

(7.33)

Using (HT 2) we now see that for η ∈ [ηmin, ηmax], there exists K(1)η : BCη(R,R) →
BCη(R,R2) such that for every fβ ∈ BCη(R,R) and (θ0, β0) ∈ R

2, the function

(θ, β)(ξ) = (θ0 + β0ξ, β0)+ [K(1)η f2](ξ) (7.34)

solves (7.31) and has θ(0) = θ0 and β(0) = β0. This operator can in turn be used to con-
struct a map K(2)η : BCη(R,R2)→ BCη(R,R2) in such a way that the equation −γ�′(ξ) =
[L0�](ξ)+ f (ξ) supplemented with the initial condition�(0) = �0 ∈ R

2, has a unique solu-
tion in the class BCη(R,R2) that is given by� = �0+K(2) f . Finally, for sufficiently small δθ
and ω and sufficiently large ξco, we may define the map K(3)η : BCη(R,R2)→ BCη(R,R2)

by means of

K(3)η = [I − K(2)η L1]−1K(2)η . (7.35)

It is not hard to verify that (7.26) is solved by

� = �0 + K(3)η L1�01 + K(3)η f, (7.36)

which completes the proof. ��
We now augment the system (7.24) by appending the following equation for θ ,

− γ θ ′(ξ) = QMcevξ θ + QL(ω)[α(ξ)u′
01 + β(ξ)u11]

+Q!θ (ξ)[W3(!, h, ω)(ξ)+ W4(!, ω)[α, β](ξ)] + Sc(!, h, ω)(ξ). (7.37)

Our goal here is to find solutions to (7.24) and (7.37) that have (α, β, θ) = !. Before we
can do this, we need to add cut-offs to the W operators. We write Wc

1 = W1,Wc
3 = W3 and

introduce

Wc
2(!, ω)(ξ) = −χδv (

∣∣(!α(ξ),!β(ξ))
∣∣)pev0Kgb(T (1)ξ !θ , ω)

[!α(ξ)Ec
1(T

(1)
ξ !θ , ω)+!β(ξ)Ec

2(T
(1)
ξ !θ , ω)],

Wc
4(!, ω)(ξ) = −χδv (

∣∣(!α(ξ),!β(ξ))
∣∣)L(!θ (ξ), ω)vev0Kgb(T (1)ξ !θ , ω)

[!α(ξ)Ec
1(T

(1)
ξ !θ , ω)+!β(ξ)Ec

2(T
(1)
ξ !θ , ω)]. (7.38)

We proceed to study the system

−γ! ′
α = Rc∗,α(!, h, ω),

−γ! ′
β = Lβ(ω)! + Rc∗,β(!, h, ω),

−γ! ′
θ = Lθ (ω)! + Rc∗,θ (!, h, ω). (7.39)
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The linear parts of this equation are given by

[Lβ(ω)!](ξ) = 〈u1,u1〉−1〈u1, L(ω)[!α(ξ)u′
01 +!β(ξ)u11]〉

+〈u1,u1〉−1〈u1,McevξKQL(ω)(!α(ξ
′)u′

01 +!β(ξ ′)u11)〉,
[Lθ (ω)!](ξ) = QMcevξ!θ + QL(ω)(!α(ξ)u′

01 +!β(ξ)u11), (7.40)

while the nonlinear parts are defined by

〈u′
0,u

′
0〉Rc∗,α(!, h, ω)(ξ) = [Lc

θ (ω)!

+Rc∗,θ (!, h, ω)]χδv
(∣∣(!α(ξ),!β(ξ))

∣∣) 〈u′′
0, !β(ξ)u1〉

+[Lc
θ (ω)! + Rc∗,θ (!, h, ω)]〈T!θ (ξ)u′′

0,Wc
1(!, h, ω)(ξ)

+Wc
2(!, ω)(ξ)〉

+〈T!θ (ξ)u′
0, pevξRc(!, h, ω)〉,

〈u1,u1〉Rc∗,β(!, h, ω)(ξ) = [Lc
θ (ω)!

+Rc∗,θ (!, h, ω)]χδv
(∣∣(!α(ξ),!β(ξ))

∣∣) 〈u′
1, !α(ξ)u

′
0〉

+[Lc
θ (ω)! + Rc∗,θ (!, h, ω)]〈T!θ (ξ)u′

1,Wc
1(!, h, ω)(ξ)

+Wc
2(!, ω)(ξ)〉

+〈T!θ (ξ)u1, [pevξ + T!θ (ξ)McevξKQ!θ (·)][Wc
3(!, h, ω)

+Wc
4(!, ω)]〉

+〈T!θ (ξ)u1, pevξRc(!, h, ω)〉,
Rc∗,θ (!, h, ω)(ξ) = Qθ(ξ)Wc

3(!, h, ω)(ξ)+ Qθ(ξ)Wc
4(!, ω)(ξ)

+Sc(!, h, ω)(ξ), (7.41)

in which

[Lc
θ (ω)!](ξ) = χδθ (

∣∣cevξ!θ
∣∣)QMcevξ!θ

+χδv (
∣∣(!α(ξ),!β(ξ))

∣∣)QL(ω)(!α(ξ)u′
01 +!β(ξ)u11). (7.42)

Using Proposition 6.1 and (7.17) we find the estimates
∣∣Wc

1(!, h, ω)(ξ)
∣∣

H1×H0 ≤∗ |ω| + (δv + δθ )2,
∥∥Wc

1(!
1, h1, ω)− Wc

1(!
2, h2, ω)

∥∥
BCη(R,H1×H0)

≤∗ (|ω| + δθ + δv)
∥∥!1 −!2

∥∥
η

+(δv + δθ )
∥∥h1 − h2

∥∥ . (7.43)

The same estimates hold for Wc
3 . In addition, we obtain

∣∣Wc
2(!, ω)(ξ)

∣∣
H1×H0 ≤∗ δv(δθ + |ω| + e−ηξco),

∥∥Wc
2(!

1, ω)− Wc
2(!

2, ω)
∥∥

BCη(R,H1×H0)
≤∗ (δv + δθ + |ω| + e−ηξco)

∥∥!1 −!2
∥∥
η

(7.44)

and note that these estimates are shared by Wc
4 . Applying these estimates to (7.41), we find

∣∣Rc∗,θ (!, h, ω)(ξ)
∣∣ ≤∗ |ω| + (δv + δθ )2 + δve−ηξco ,

∥∥Rc∗,θ (!1, h1, ω)− Rc∗,θ (!2, h2, ω)
∥∥
η

≤∗ (|ω| + δθ + δv + e−ηξco)
∥∥!1 −!2

∥∥
η

+(δv + δθ )
∥∥h1 − h2

∥∥ . (7.45)
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In addition, we have
∣∣Rc∗,α(!, h, ω)(ξ)

∣∣ ≤∗ |ω| + (δv + δθ )2,∥∥Rc∗,α(!1, h1, ω)− Rc∗,α(!2, h2, ω)
∥∥
η

≤∗ (|ω| + δθ + δv)
∥∥!1 −!2

∥∥
η

+(δv + δθ )
∥∥h1 − h2

∥∥ . (7.46)

Finally, using the identity cevξK = cev0KT (1)ξ , we find

∣∣∣Rc∗,β(!, h)(ξ)
∣∣∣ ≤∗ |ω| + (δv + δθ )2 + δve−ηξco ,∥∥∥Rc∗,β(!1, h1)− Rc∗,θ (!2, h2)

∥∥∥
η

≤∗ (|ω| + δθ + δv + e−ηξco)
∥∥!1 −!2

∥∥
η

+(δv + δθ )
∥∥h1 − h2

∥∥ . (7.47)

Using (7.29), the linearization of (7.39) around ! = 0 can be written in the form

− γ! ′ = L0! + L1! + f, (7.48)

in which f = ( fα, fβ, fθ ) and

[L0!]α(ξ) = 0,

[L0!]β(ξ) = 〈u1,u1〉−1[β(ξ)〈u1, T ′(0)u′
0〉 + 〈u1,McevξKβ(ξ ′)QT ′(0)u′

0〉],
[L0!]θ (ξ) = QMcevξ θ + β(ξ)QT ′(0)u′

0. (7.49)

The operator L1 satisfies the bound

‖L1‖L(BCη(R,R3)) ≤∗ δθ + e−ηξco + |ω| . (7.50)

Observe that solving −γ! ′(ξ) = [L0!](ξ)+ f (ξ) is equivalent to solving

− γ! ′
α(ξ)= fα(ξ),

−γ! ′
β(ξ)=〈u1,u1〉−1[β(ξ)〈u1, T ′(0)u′

0〉 + 〈u1,Mcevξ θ〉 − 〈u1,McevξK fθ 〉] + fβ(ξ),

−γ! ′
θ (ξ)= QMcevξ θ + β(ξ)QT ′(0)u′

0 + fθ (ξ). (7.51)

It is important to note that the map fθ → McevξK fθ is a bounded linear map from BCη(R,R)
into BCη(R,R) for η ∈ [0, ηmax]. Indeed, for any such η we have

e−η|ξ | ∣∣cevξK f
∣∣ = e−η|ξ |

∣∣∣cev0Kηmax T (1)ξ f
∣∣∣

≤ e−η|ξ | ‖K‖ηmax

∥∥∥T (1)ξ f
∥∥∥
ηmax

≤ e−η|ξ | ‖K‖ηmax

∥∥∥T (1)ξ f
∥∥∥
η

≤ ‖K‖ηmax
‖ f ‖η . (7.52)

Now, as in the proof of Lemma 7.1, (HT 2) implies that we can construct for η ∈ [ηmin, ηmax]
and ω ∈ �, a linear operator

Kct
η (ω) : BCη(R,R

3)→ BCη(R,R
3) (7.53)

that has pev0Kct
η (ω) = 0, such that for any f ∈ BCη(R,R3) and any ψ ∈ R

3, the function

!(ξ) = Ect(ω)ψ + Kct
η (ω) f (7.54)
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is the unique solution in the class BCη(R,R3) of (7.48) with initial condition !(0) = ψ .
Here we have

[Ect(ω)ψ](ξ) = (ψα,ψβ,ψθ + ξψβ)+ pevξKct
η (ω)L1(ψα,ψβ,ψθ + ξ ′ψβ). (7.55)

Let us now consider for ψ0 ∈ R
3, h ∈ Hδv and ω ∈ �, the fixed point system

! = Ect(ω)ψ + Kct
η (ω)Rc∗(!, h, ω). (7.56)

After adjusting the parameters δθ , δv and ξco, the right hand side of (7.56) becomes a con-
traction on !. We hence obtain the following result.

Lemma 7.2 For all sufficiently large ξco and sufficiently small δθ , δv and |ω|, the fixed point
equation (7.56) posed on BCη(R,R3) has a unique solution ! = !∗(ψ0, h, ω) for every
η ∈ [ηmin, ηmax], ψ ∈ R

3 and h ∈ Hδv . These solutions satisfy the property

T (1)ξ !
∗(ψ, h, ω) = !∗ (!∗(ψ, h, ω)(ξ), h, ω

)
(7.57)

for any ξ ∈ R and ψ ∈ R
3. In addition, we have Lipschitz estimate

∥∥!∗(ψ1, h1, ω)−!∗(ψ2, h2, ω)
∥∥
η

≤∗
∣∣ψ1 − ψ2

∣∣ + (δv + δθ )
∥∥h1 − h2

∥∥ . (7.58)

Finally, if h ∈ Hδv ∩ C�(Dδv , H2 × H1) for some integer 1 ≤ � ≤ r − 3, then for any
η ∈ (�ηmin, ηmax] the map

(ψ, ω) → !∗(ψ, h, ω) ∈ BCη(R,R
3) (7.59)

is C�-smooth. Here we have recalled the integer r appearing in (Hg).

Proof The existence of !∗ follows from the estimates obtained on Rc∗. The identity (7.57)
follows from the uniqueness of solutions to (7.56). The Lipschitz estimates follow directly
using the fixed point problem (7.56) that !∗ satisfies. The smoothness of !∗ can be estab-
lished using the fiber contraction mapping principle developed in [56]. For more details we
refer to the center manifold theory that was developed in [32] for functional differential
equations of mixed type. ��

Note that we have now completed step one of the process outlined in the introduction of
this section. Moving on to step two, we proceed to set up the fixed point system for the map
h. For ψ ∈ R

3, we write E⊥ψ to denote the function

E⊥ψ = ψαTψθu
′
01 + ψβTψθu1. (7.60)

Let us fix ω ∈ � and η ∈ [ηmin, ηmax]. For any ψ ∈ Dδv , we wish to have

vev0 E⊥ψ + h(ψ) = vev0 Egb(!∗
θ (ψ, h, ω), ω)ψ

+vev0Kgb(!∗
θ (ψ, h, ω), ω)Rc(!∗(ψ, h, ω), h, ω). (7.61)

This can be reformulated as the fixed point problem

h = F(h) (7.62)

in which

F(h)(ψ) = −ψαvev0Kgb(!∗
θ (ψ, h, ω), ω)Ec

1(!
∗
θ (ψ, h, ω), ω)

−ψβvev0Kgb(!∗
θ (ψ, h, ω), ω)Ec

2(!
∗
θ (ψ, h, ω), ω)

+ vev0Kgb(!∗
θ (ψ, h, ω), ω)Rc(!∗(ψ, h, ω), h, ω). (7.63)
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Notice first that for any ψ ∈ Dδv we have

|F(h)(ψ)| ≤∗ δv(δθ + |ω| + e−ηξco)+ |ω| + (δv + δθ )2. (7.64)

In addition, for ψ1, ψ2 ∈ Dδv we may estimate
∣∣F(h1)(ψ1)− F(h2)(ψ2)

∣∣ ≤∗ [δθ + δv + |ω| + e−ηξco ] ∣∣ψ1 − ψ2
∣∣

+(δv + δθ )
∥∥h1 − h2

∥∥ . (7.65)

Let us now introduce the requirements

|ω| ≤ δ8/7
v ,

e−ηξco = δ
1
2
θ ,

δv = δ7/4
θ .

(7.66)

This leads to the simplification

‖F(h)(ψ)‖ ≤∗ δ8/7
v ,∥∥F(h1)(ψ1)− F(h2)(ψ2)

∥∥ ≤∗
√
δθ

∣∣ψ1 − ψ2
∣∣ + δθ

∥∥h1 − h2
∥∥ . (7.67)

By choosing δθ small enough, we can hence ensure that F maps into Hδv . In addition, we
can ensure that we have the bound

∥∥F(h1)− F(h2)
∥∥ ≤ 1

2

∥∥h1 − h2
∥∥ , (7.68)

which shows that the fixed point problem h = F(h) posed on the space Hδv has a unique
solution h∗ = h∗(ω) for all sufficiently small ω.

The scalings (7.66) have a further important consequence. In particular, fixing ψ ∈ R
3

and writing ! = !∗(ψ, h, ω), note that

!θ = ψθ + KηQL(ω)[!α(ξ)u′
01 +!β(ξ)u11] + KηRc∗,θ (!, h, ω). (7.69)

Let us now suppose that
∣∣(!α(ξ),!β(ξ))

∣∣ < δv for all ξ ∈ R. (7.70)

Then we find that

|!θ(ξ)− ψθ | ≤∗ eη|ξ |δv, (7.71)

which implies that for all ξ ∈ [−ξco, ξco], we have

|!θ(ξ)− ψθ | ≤∗ eηξcoδv = δ7/4
θ /

√
δθ = δ5/4

θ . (7.72)

This shows that by choosing δθ to be sufficiently small, we can ensure that all the cut-offs
involving !θ are automatically satisfied whenever (7.70) holds.

We are now ready to move on to the final step of our program. The next result shows that
small solutions of (7.39) with h = h∗(ω) can indeed be lifted to solutions of (4.47).

Lemma 7.3 Fix an ω ∈ � and suppose that for some ψ ∈ R
3, the function

! = !∗(ψ, h∗(ω), ω) satisfies
∣∣(!α(ξ),!β(ξ))

∣∣ < δv (7.73)

for all ξ ∈ R. Then the function

w(ξ) = !α(ξ)T!θ (ξ)u′
0 +!β(ξ)T!θ (ξ)u1 + pev0h∗(!(ξ)) (7.74)

satisfies (4.47).
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Proof Introduce the function v ∈ BCη(R, H2 × H1) via

v = Egb(!θ , ω)(ψα,ψβ)+ Kgb(!θ , ω)Rc(!, h∗(ω), ω) (7.75)

and define !̃ ∈ BCη(R,R3) by

!̃(ξ) = ( T−!θ (ξ)pevξ v,!θ (ξ)). (7.76)

In view of the remarks above, we note that
∥∥! ′

θ

∥∥∞ is sufficiently small to ensure that the pair
(!̃α, !̃β) satisfies the equation (7.20). However, by construction the pair (!α,!β) also sat-
isfies this equation. Using Lemma 7.1 we conclude that !̃ = !. We may therefore compute,
for any ξ ∈ R,

vevξ v = vev0 Egb(T (1)ξ !θ , ω)!̃(ξ)+ vev0Kgb(T (1)ξ !θ , ω)R
c(T (1)ξ !, h

∗, ω)

= vev0 Egb(!∗
θ (!(ξ), h

∗, ω), ω)!(ξ)
+vev0Kgb(!∗

θ (!(ξ), h
∗, ω), ω)Rc(!∗(!(ξ), h∗, ω), h∗, ω)

= vev0 E⊥!(ξ)+ h∗(!(ξ)), (7.77)

in which we have used the shorthand h∗ = h∗(ω). We hence conclude that v = w, which
shows that w indeed satisfies (4.47). ��

To complete our program, we need to show that any sufficiently small solution to (4.47)
can be written in the form (7.6). This is established in the next result.

Lemma 7.4 Suppose that for some ω ∈ � the system (4.47) admits a solution (θ∗, v∗) that
has

|v∗(ξ)|H2×H1 ≤ ‖ ‖−1 δv (7.78)

for all ξ ∈ R. Then upon writing

!(v)(ξ) = ( T−θ∗(ξ)pevξ v∗, θ∗(ξ)), (7.79)

we have

v∗(ξ) = pev0 E⊥!(v)(ξ)+ pev0h∗(ω)(!(v)(ξ)) (7.80)

for all ξ ∈ R.

Proof Let us first note that for any fixed θ ∈ C(R,R) and ω ∈ �, the fixed point system

w = Egb(θ, ω)φ + Kgb(θ, ω)Rc(θ, w, ω) (7.81)

has for every φ ∈ R
2 a unique solution w = w∗(θ, φ) ∈ BCη(R, H2 × H1), due to the

estimates in Lemma 4.37. We will write these solutions as

w∗(φ, θ) = E⊥(φ, θ(0))+ w∗
t (φ, θ) (7.82)

and introduce the operator h̃ : [−2δv, 2δv]2 × BCη(R,R)→ (H2)N+2 × H1 via

h̃(φ, θ) = vev0w
∗
t (φ, θ). (7.83)

A computation involving item (4) of Proposition 6.1 and Lemma 4.37 shows that h̃ depends
Lipschitz continuously on its two arguments θ and φ, with a Lipschitz constant Lh̃ that
behaves as

Lh̃ ≤∗ |ω| + δθ + δv + e−ηξco . (7.84)
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Let us now consider for ! ∈ BCη(R,R3) the map R̃c(!, h̃, ω) which is defined precisely
as Rc is defined in (7.16) with (7.7), but with each occurrence of h(!(ξ)) replaced by
h̃(!α(ξ),!β(ξ), T

(1)
ξ !θ ). Similarly, we introduce R̃c∗ which is defined exactly as Rc∗, but

with each occurrence of Rc replaced by R̃c. Let us now consider the equation

− γ! ′(ξ) = L!!(ξ)+ R̃c∗(!, ω). (7.85)

The estimates derived in this section for Rc∗ all carry over to R̃c∗ up to constants that do not
depend on δv, δθ , ξco and ω. We may therefore conclude that (7.85) has for each ψ ∈ R

3 a
unique solution !̃∗(ψ) ∈ BCη(R,R3) that has pev0!̃

∗(ψ) = ψ . Let us now introduce the
map h1 ∈ Hδv via

h1(ψ) = h̃
(
ψα,ψβ, !̃

∗
θ (ψ)

)
, (7.86)

which is well-defined after sufficiently decreasing δv . Let us choose ψ ∈ Dδv and write
! = !̃∗(ψ). Due to the identity

T (1)ξ !̃
∗(ψ) = !̃∗(pevξ !̃

∗(ψ)) (7.87)

we see that

h̃
(
!α(ξ),!β(ξ), T

(1)
ξ !θ

)
= h̃

(
!α(ξ),!β(ξ), !̃

∗
θ (!(ξ))

) = h1 (!(ξ)) . (7.88)

This shows, by uniqueness of solutions, that !∗(ψ, h1, ω) = !̃∗(ψ) for all ψ ∈ Dδv .
We now turn to the solution (θ∗, v∗) of (4.47). For every ξ ∈ R we must have

vevξ v∗ = vev0 E⊥!(v)(ξ)+ h̃
(
!(v)α (ξ),!

(v)
β (ξ), T

(1)
ξ !

(v)
θ

)
. (7.89)

By construction, this implies that !(v) satisfies (7.85). We hence must have

T (1)ξ !
(v) = !̃∗(!(v)(ξ)) = !∗(!(v)(ξ), h1, ω) (7.90)

for all ξ ∈ R. Now, let us consider any ψ ∈ Dδv that has ψ = !(v)(ξ0) for some ξ0 ∈ R. We
may compute

vev0 E⊥ψ + h1(ψ) = vev0 E⊥ψ + h̃
(
ψα,ψβ, !̃

∗
θ (ψ)

)

= vev0 E⊥ψ + vev0w
∗
t

(
ψα,ψβ, !̃

∗
θ (ψ)

)

= vev0 E⊥ψ + vev0w
∗
t

(
ψα,ψβ, T

(1)
ξ0
!
(v)
θ

)

= vev0 Egb(T (1)ξ0 !
(v)
θ , ω)(ψα,ψβ)

+ Kgb(T (1)ξ0 !
(v)
θ , ω)R

c(T (1)ξ0 !
(v)
θ , T

(1)
ξ0
v∗, ω)

= vev0 Egb(!∗
θ (ψ, h1, ω), ω)(ψα,ψβ)

+ Kgb(!∗
θ (ψ, h1, ω), ω)Rc(!∗(ψ, h1, ω), h1, ω) (7.91)

and hence for any such ψ we have

h1(ψ) = F(h1)(ψ). (7.92)

This immediately implies that also !∗(ψ, h1, ω) = !∗(ψ,F(h1), ω) for all such ψ . This
allows us to conclude that for any integer n ≥ 0 we have

F (n)(h1)(ψ) = h1(ψ), (7.93)
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where F (n) denotes the n-th iterate of F . Since F is a contraction mapping, these iterates
converge to h∗(ω), which allows us to conclude that h1(ψ) = h∗(ω)(ψ) for all ψ ∈ Dδv
that have ψ = !(v)(ξ0) for some ξ0 ∈ R. This completes the proof. ��

Before we start to calculate the flow on the center manifold, we need to study in what
fashion the smoothness of the original nonlinearity gnl carries over to the map h∗.

Lemma 7.5 Recall the integer r appearing in (Hg). The function h∗∗ : Dδv ×�→ H2 × H1

given by

h∗∗(ψ, ω) = h∗(ω)(ψ), (7.94)

depends Cr−3-smoothly on its arguments.

Proof Let us first note that Lemma 7.2 in conjunction with Propositions 6.1 and 6.2 shows
that for any h ∈ Hδv ∩ Cr−3(Dδv , (H2)N+2 × H1), we also have

F(h, ω) ∈ Cr−3(Dδv , (H2)N+2 × H1). (7.95)

Let us introduce for integers � ≥ 1 the function spaces

H�δv = {h ∈ C�(Dδv ×�, (H2)N+2 × H1) | ‖h‖C� < δv}. (7.96)

We recall that the fixed point argument on the space Hδv relied crucially on the fact that the
linear part E⊥ψ on the left hand side of (7.98) was not included in the mapping h. The same
trick can be used to obtain the desired higher order smoothness. For any � ≤ r − 3, let us
therefore write E⊥

(�)(ψ, ω) for the formal Taylor expansion of

Egb(!∗
θ (ψ, h, ω), ω)ψ + Kgb(!∗

θ (ψ, h, ω), ω)Rc(!∗(ψ, h, ω), h, ω) (7.97)

in terms of ψ and ω, up to order �. We can then study the equation

vev0 E⊥
(�)(ψ, ω)+ h�(ψ, ω) = vev0 Egb(!∗

θ (ψ, h, ω), ω)ψ

+vev0Kgb(!∗
θ (ψ, h, ω), ω)Rc(!∗(ψ, h, ω), h, ω),

(7.98)

in which we use h = h� + E⊥
(�) − E⊥. We may subsequently set up a fixed point argument

in the space H�δv to find h�, but we omit the details here. By uniqueness of fixed points, we

must have h∗(ω)(ψ) = E⊥
(�)(ψ, ω)− E⊥ψ + h�(ψ), which completes the proof. ��

Let us now take a closer look at the system

− γ! ′(ξ) = [L!!](ξ)+ Rc∗(!, h∗(ω), ω)(ξ). (7.99)

The advanced and delayed terms in this equation can be eliminated by using the substitution

!(ξ0 + ξ ′) = !∗(!(ξ0), h∗(ω), ω)(ξ ′), (7.100)

which on account of Lemma 7.2 does not affect the set of solutions in BCη(R,R3). This
allows us to reduce (7.99) to the ODE

−γ! ′(ξ) = f (!(ξ), ω), (7.101)

for some f = ( fα, fβ, fθ ) : R
3 × R → R

3.
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We set out to study fα in greater detail. Let us write h∗ = h∗(ω). Inspection of (7.63)
shows that for any ψ ∈ Hδv that satisfies

∣∣(ψα,ψβ)
∣∣ < δv , we have

vev0h∗(ψ) = vev0Wc
1(!

∗(ψ, h∗, ω), h∗, ω)+ vev0Wc
2(!

∗(ψ, h∗, ω), ω),
L(ψθ , ω)vev0h∗(ψ) = pev0Wc

3(!
∗(ψ, h∗, ω), h∗, ω)+ pev0Wc

4(!
∗(ψ, h∗, ω), ω).

(7.102)

Using these identities, a short computation shows that for any ψ that has
∣∣(ψα,ψβ)

∣∣ < δv ,
we have the identity

Rc∗,α
(
!∗(ψ, h∗(ω), ω), h∗, ω

) = 0, (7.103)

which shows that also fα(ψ) = 0.
As long as we restrict our attention to solutions to (7.101) that have

∣∣(!α(ξ),!β(ξ))
∣∣ < δv

for all ξ ∈ R, we may thus safely drop the!α component. Let us write the resulting ODE in
the form

−γβ ′(ξ) = cωω + cββ(ξ)2 + O(|ω|2 + |ωβ(ξ)| + |β(ξ)|3),
−γ θ ′(ξ) = −γβ(ξ)+ O(|ω| + |β(ξ)|2). (7.104)

As a final preparation towards establishing Theorem 4.5, we explicitly compute the coef-
ficient cω here. The only contribution comes from the loose ω in Rc. Inspection of (7.41)
shows that cω can be defined implicitly by the linear equation

cω = −〈u1,u1〉−1〈u1, (0, u′(k0))〉
−〈u1,u1〉−1〈u1, [I + Mcev0KQ1]L(0, 0)vev0Kgb([0], 0)(0, u′(k0))〉
− cω
γ

〈u1,u1〉−1〈u1,Mcev0KQξ ′L(0, 0)u11〉.
(7.105)

We set out to determine v = Kgb([0], 0)(0, u′(k0)). Using the fact that Q(0, u′(k0)) = 0, we
find v = [I − P]w for w = Klc(0, 0)(0, u′(k0)). Let us substitute an Ansatz of the form

w(ξ) = µξu1 + 1

2
µξ2u′

0 + ψ1, (7.106)

for some ψ1 ∈ H3 × H2. Using (3.24) we find that w solves (5.1) with the inhomogeneity

f = [T ′(0)u1 + 1
2 T ′′(0)u′

0]µ+ T (0)ψ
= T (0)ψ2 − 1

2µλ
′′
lin(0)(0, u

′(k0)),
(7.107)

for some ψ2 ∈ H3 × H2. After choosing

µ = −2λ′′
lin(0)

−1, (7.108)

we find, for some ψ3 ∈ H3 × H2, the identity

v(ξ) = −2λ′′
lin(0)

−1ξu1 + ψ3. (7.109)

Let us observe that we have vevξ ′v = vev0v−2λ′′
lin(0)

−1ξ ′u11, using which we may compute

− γ ∂ξ v(0) = 2γ λ′′
lin(0)

−1u1 = [I − P]L(0, 0)vev0v + [I − P]Mcev0K1QL(0, 0)vev0v

−2λ′′
lin(0)

−1[I − P]Mcev0Kξ ′QL(0, 0)u11 + (0, u′(k0)).

(7.110)

Plugging this back into (7.105), we find

[cω + 2γ λ′′
lin(0)

−1][γ + 〈u1,u1〉−1〈u1,Mcev0Kξ ′QL(0, 0)u11〉] = 0. (7.111)
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Using (HT 2), the second factor above can be shown to be nonzero, which implies that

cω = −2γ λ′′
lin(0)

−1. (7.112)

Proof of Theorem 4.5 We define the function h via

h(κ, θ, ω) = h∗(ω)(0, κ, θ). (7.113)

Item (1) now follows from Lemma 7.5, while (2) and (3) follow from Lemmas 7.3 and 7.4,
together with the identity (7.112). ��
Acknowledgments The first author acknowledges support from the Netherlands Organisation for Scientific
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