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Abstract In this paper, by using a decomposition technique to estimate the energy (the
value of the functional associated with the problem) of a solution in terms of the minimal
period of the solution, we give new sufficient conditions for the existence of subharmonic
solutions with prescribed minimal period of Hamiltonian systems. Our results improve some
known results in the literature.
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1 Introduction

In this paper we study the existence of periodic solutions with prescribed minimal period for
the following nonautonomous Hamiltonian systems

ẍ + F ′
x (t, x) = 0, (1.1)

where x = (x1, x2, . . . , xn)T ∈ Rn , F ∈ C1(R × Rn, Rn), F ′
x (t, x) = ( ∂ F

∂x1
, ∂ F

∂x2
, . . . , ∂ F

∂xn
)T

∈ C(R × Rn, R) and there exists a constant T > 0, such that for each x ∈ Rn , the function
F(t, x) satisfies F(t + T, x) = F(t, x). We will obtain some new sufficient conditions for
the existence of periodic solutions of (1.1) with minimal period pT for any integer p > 1.

The first result in this area should go back to [1] in which the existence of a sequence
of subharmonics with arbitrarily large minimal period was obtained by using perturbation
type techniques, under suitable assumptions on F near the origin. A different proof of the
result in [1] was given in [21]. Later, subsequently good results were obtained in [4,5,22] by
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a global approach using calculus of variations. Under rather general assumptions on F , they
proved that for any integer p > 1, if F has a subquadratic or superquadratic growth at the
origin and at infinity then one may conclude that the minimal period of periodic solutions
with x(0) = x(pT ) of (1.1) tends towards infinity as p → ∞. This kind of approach has
been extensively extended in various directions, see for example [2,3,6–15,18,20,23,25–
27,29–31]. The existence of periodic solutions of (1.1) was studied by many authors, see for
example [16,17,19,24,28].

By the use of Morse-Conley theory, Hamiltonian systems with periodic nonlinearity were
studied in [6,7]. They proved the existence of subharmonic solutions with minimal period
pT for sufficiently large prime number p under some assumptions on the nondegeneracy of
the solutions. In [11,13], the pendulum type equation was considered:

ẍ + g(x) = f (t) (1.2)

where g is a periodic function in x and f is a T -periodic function in t with mean value zero.
It was proved in [13] that if (a) the periodic solutions of (1.2) are isolated and (b) every
periodic solution of (1.2) having Morse index equal to zero is nondegenerate, then there
exists a constant P ≥ 2 such that, for every prime integer p ≥ P , there is a periodic solution
of (1.2) with minimal period pT . This is a good improvement of the results due to Conley
and Zehnder in [7] where nondegenerate condition was assumed for all T -periodic solutions
together with their iterates. But, we find that it is not convenient for us to check conditions (a)
and (b). In [11], the minimal periodic problem of (1.2) was also studied by simply making
some careful estimates on the critical levels of the functional associated to the problem. The
following classical pendulum equation is a special form of (1.2)

ẍ + A sin x = f (t), (1.3)

where A = g/ l is a constant with g being the gravity constant and l being the length of the
pendulum, and f is a T -periodic function which is regarded as an external force.

In [29], by using the estimate of the energy (the value of the functional associated with the
problem) of a solution in terms of the minimal period of the solution, the authors obtained
explicit sufficient conditions for the existence of subharmonic solutions of (1.3) with minimal
period pT for all p > 1 provided that A and the L2-norm of f satisfy certain quantitative
conditions, which are very easy to check. This approach, initially used in [9], has been suc-
cessfully applied to the minimal period problem of Hamiltonian systems [9,15,20,23,26,30].

In this paper we will obtain, by using a more effective decomposition technique to esti-
mate the energy of the periodic solutions in terms of its minimal period, some new sufficient
conditions for the existence of periodic solutions with minimal period pT . When our results
are applied to (1.3), the results in [29] are improved.

2 Main Results

Let ‖ · ‖ and | · | denote the norms in the spaces L2([0, pT ], Rn) and Rn respectively.
We make the following assumptions:
(F0) F(t, x) ∈ C1(R × Rn, R) is T -periodic in t , and for any x ∈ C([0, pT ], Rn),

F(−t,−x) = F(t, x).

(F1) There exist constants A > 0, β > 0 such that

max

{
0,

1

2
A|x |2 − β

2
|x |4

}
≤ F(t, x) − F ′

x (t, 0)x ≤ A

2
|x |2.
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(F2) There exists some constant h ∈ [0, 1
2 (ω

p )2) such that

lim sup
|x |→∞

F(t, x)

|x |2 = h, uniformly in t.

(F3) If x = x(t) is a periodic function with minimal period qT , q rational, and F ′
x (t, x(t)

is a periodic function with minimal period qT , then q is necessarily an integer.
We are now able to formulate our main result.

Theorem 2.1 Let F satisfy (F0)-(F3). Suppose that, for an integer p > 1,

ω2

A
< p2 ≤ ω2s2

p

A
(2.1)

and

‖F ′
x (t, 0)‖2

L2(0,T )
≤ T (ω2 − A)(A − (ω

p )2)2

6β
. (2.2)

Then (1.1) has at least one periodic solution with minimal period pT .

Corollary 2.1 Let F satisfy (F0)-(F3). Suppose that

0 < A < ω2 (2.3)

and

‖F ′
x (t, 0)‖2

L2(0,T )
≤ T (ω2 − A)A2

6β
. (2.4)

Then there exists a P > 0 such that, for any prime integer p > P, (1.1) has at least one
periodic solution with minimal period pT .

To prove Theorem 2.1, we consider functional

J (x) = 1

2

pT∫
0

|ẋ(t)|2dt −
pT∫

0

F(t, x(t))dt, (2.5)

in the space

X = {x ∈ H1([0, pT ], Rn)|x(0) = x(pT )}.
Without loss of generality, we may assume F(t, 0) ≡ 0. It can be easily found that

J ∈ C1(X, R) and that the critical points of J correspond to periodic solutions of (1.1)
with period pT , but not necessarily with minimal period pT . By (F0) we may consider the
restriction of J on a subspace X∗ of X :

X∗ = {x ∈ X |x is odd in t}.
Let {e1, e2, . . . , en} denote the canonical orthogonal basis in Rn . By Fourier expansion,

for any x ∈ X , we have

x(t) =
n∑

j=1

[+∞∑
l=0

(al j cos
ωl

p
t + bl j sin

ωl

p
t)

]
e j
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with

‖x‖2
L2(0,pT )

= pT

2

n∑
j=1

+∞∑
l=0

(a2
l j + b2

l j ) < ∞

and

‖ẋ‖2
L2(0,pT )

= pT

2
(
ω

p
)2

n∑
j=1

+∞∑
l=0

(a2
l j + b2

l j )l
2 < ∞.

Clearly, x ∈ X∗ if and only if

x(t) =
n∑

j=1

(+∞∑
l=1

al j sin
ωl

p
t

)
e j .

Lemma 2.1 ([29]) If x is a critical point of J on X∗, then x is also a critical point of J on
X. And the minimal period of x is an integer multiple of T .

Lemma 2.2 J is bounded from below and satisfies (PS) condition on X∗ the definition of
(PS) condition can be found in ([19,23]).

Proof For any x ∈ X∗, we have

x(t) =
n∑

j=1

(+∞∑
l=1

al j sin
ωl

p
t

)
e j

and

pT∫
0

|ẋ(t)|2dt = pT

2
(
ω

p
)2

n∑
j=1

+∞∑
l=1

a2
l j l

2.

So by (F1),

J (x) = 1

2

pT

2
(
ω

p
)2

n∑
j=1

+∞∑
l=1

a2
l j l

2 −
pT∫

0

F(t, x(t))dt

≥ 1

2
(
ω

p
)2‖x‖2

L2(0,pT )
−

pT∫
0

F(t, x(t))dt

By (F2), for ε ∈ (0, (ω
p )2), there exists M > 0 such that

F(t, x)

|x |2 ≤ ε + h, for |x | > M.

Let m = sup
|x |≤M

t∈[0,pT ]
F(t, x). Then we have by (F2),

J (x) ≥ 1

2
(
ω

p
)2‖x‖2

L2(0,pT )
−

∫
t∈[0,pT ]
|x |≤M

F(t, x(t))dt −
∫

t∈[0,pT ]
|x |>M

F(t, x(t))dt
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≥ 1

2
(
ω

p
)2‖x‖2

L2(0,pT )
−

∫
t∈[0,pT ]
|x |≤M

mdt − (ε + h)

∫
t∈[0,pT ]
|x |>M

|x |2dt

≥ 1

2
((

ω

p
)2 − 2ε − 2h)‖x‖2

L2(0,pT )
− mpT → +∞ as ‖x‖2

L2(0,pT )
→ ∞.

It follows that J is bounded from below. From this we know that (PS) sequence must be
bounded in H1(0, pT ). Then by a standard argument, any (PS) sequence has a convergent
subsequence [19,23]. The proof of Lemma 2.2 is finished.

Now by usual argument J achieves its minimum on X∗. Let x0 ∈ X∗ be such that

J (x0) = min
x∈X∗ J (x). (2.6)

Proof of Theorem 2.1 Let x0 ∈ X∗ be defined as in (2.6). The proof of Theorem 2.1 will be
finished if we can prove that the minimal period of x0 is pT . For the sake of contradiction,
let the minimal period of x0 be pT/q , for some integer q > 1. In view of Lemma 2.1, we
know that q is a factor of p, and so q ≥ sp . By Fourier expansion,

x0(t) =
n∑

j=1

(+∞∑
l=1

al j sin
qωl

p
t

)
e j .

Define x1(t) and x2(t) as follows:

x1(t) =
n∑

j=1

(+∞∑
s=1

a ps
q j sin ωst

)
e j ,

and

x2(t) = x0(t) − x1(t).

Then x1 is T -periodic and x1⊥x2. It is also easy to see that x2⊥F ′
x (t, 0) and ẋ1⊥ẋ2. Thus

we have by (F1)

J (x0) = J (x1 + x2) = 1

2

pT∫
0

|ẋ1(t) + ẋ2(t)|2dt −
pT∫

0

F(t, x1(t) + x2(t))dt

= 1

2

pT∫
0

(|ẋ1(t)|2 + |ẋ2(t)|2)dt −
pT∫

0

< F ′
x (t, 0), x1(t) + x2(t) > dt

−
pT∫

0

[
F(t, x1(t) + x2(t))− < F ′

x (t, 0), x1(t) + x2(t) >
]

dt

≥ 1

2

pT∫
0

(|ẋ1(t)|2 + |ẋ2(t)|2)dt −
pT∫

0

< F ′
x (t, 0), x1(t) > dt
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− A

2

pT∫
0

|x1(t) + x2(t)|2dt

≥ 1

2
ω2

pT∫
0

|x1(t)|2dt + 1

2
(
qω

p
)2

pT∫
0

|x2(t)|2dt

−‖F ′
x (t, 0)‖L2(0,pT ) · ‖x1‖L2(0,pT )

−1

2
A

(
‖x1‖2

L2(0,pT )
+ ‖x2‖2

L2(0,pT )

)

= 1

2
((

qω

p
)2 − A)‖x2‖2

L2(0,pT )
+ p

2
(ω2 − A)‖x1‖2

L2(0,T )

−p‖F ′
x (t, 0)‖L2(0,T ) · ‖x1‖L2(0,T )

≥ p

2
(ω2 − A)‖x1‖2

L2(0,T )
− p‖F ′

x (t, 0)‖L2(0,T ) · ‖x1‖L2(0,T ). (2.7)

On the other hand, let

x̄(t) = √
δ sin

ω

p
t · e1.

Then x̄ is pT -periodic with minimal period pT . Since F ′
x (t, 0) is T -periodic, we get

pT∫
0

F ′
x (t, 0) · x̄(t)dt = 0.

By (F1), we have for any x ∈ Rn ,

F(t, x) − F ′
x (t, 0) · x ≥ A

2
|x |2 − β

2
|x |4.

Hence,

J (x̄) ≤ 1

2

pT∫
0

| ˙̄x(t)|2dt−
pT∫

0

F ′
x (t, 0) · x̄(t)dt− A

2

pT∫
0

|x̄(t)|2dt+β

2

pT∫
0

|x̄(t)|4dt

= 1

2
δ(

ω

p
)2 · pT

2
− A

2
· δ · pT

2
+β

2
δ2 · 3pT

8

= − pT

4
[A−(

ω

p
)2]δ+3pT

16
· β · δ2

Now we are going to choose some positive number δ such that

− pT

4
[A − (

ω

p
)2]δ + 3pT

16
· β · δ2 ≤ p

2
(ω2 − A)‖x1‖2

L2(0,T )

−p‖F ′
x (t, 0)‖L2(0,T ) · ‖x1‖L2(0,T ), (2.8)

which will prove J (x̄) ≤ J (x0).
If J (x̄) = J (x0), then x̄ is a critical point of J on X∗ with minimal period pT , this

finished the proof. If J (x̄) < J (x0), it is clearly a contradiction to the assumption of x0. In
order to prove (2.8), let δ = q‖x1‖L2(0,T ). Then (2.8) becomes
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− T

4
[A − (

ω

p
)2]q + 3T

16
· β · q2‖x1‖L2(0,T ) ≤ 1

2
(ω2 − A)‖x1‖L2(0,T )

−‖F ′
x (t, 0)‖L2(0,T ), (2.9)

Taking

q = 2(A − (ω
p )2)

3β‖x1‖L2(0,T )

,

(2.9) becomes

− T (A − (ω
p )2)2

12β‖x1‖L2(0,T )

≤ 1

2
(ω2 − A)‖x1‖L2(0,T ) − ‖F ′

x (t, 0)‖L2(0,T ). (2.10)

That is

‖F ′
x (t, 0)‖L2(0,T ) ≤ 1

2
(ω2 − A)‖x1‖L2(0,T ) + T (A − (ω

p )2)2

12β‖x1‖L2(0,T )

,

which is true under the assumption (2.2). And therefore, the proof is now complete.
In [29], the following assumptions were made:
(V0) F(t, x) ∈ C2(R × Rn, R) is T -periodic in t , and for any (t, x) ∈ R × Rn ,

F(−t,−x) = F(t, x);
(V1) There exist constant B > 0, A > Ã > 0 such that

(Fxx (t, x)η, η) ≤ A

2
|η|2, ∀(t, x) ∈ R × Rn, η ∈ Rn

and

(Fxx (t, x)η, η) ≥ Ã

2
|η|2, ∀|x | ≤ B, t ∈ R, η ∈ Rn;

(V2)

lim|u|→∞
F(t, u)

|u|2 = 0, uniformly in t.

The following result was proved in [29].

Theorem A Let F satisfy (V0)-(V2) and (F3). Suppose that

ω2

Ã
< p2 <

ω2s2
p

A
(2.11)

and

‖F ′
x (t, 0)‖2

L2(0,T )
<

π B2

ω

(
s2

pω
2

p2 − A

)(
Ã − ω2

p2

)
. (2.12)

Then (1.1) has at least one periodic solution with minimal period pT .
By a similar argument to that of Theorem 2.1, we have

Theorem 2.2 Under the assumptions (V0), (V1), (F2) and (F3). Suppose that

ω2

Ã
< p2 ≤ ω2s2

p

A
(2.11)′
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and

‖F ′
x (t, 0)‖2

L2(0,T )
≤ π B2

ω
(ω2 − A)( Ã − ω2

p2 ). (2.12)′

Then (1.1) has at least one periodic solution with minimal period pT .
Clearly, (2.11)′ and (2.12)′ improve (2.11) and (2.12) respectively.

3 Applications to the Pendulum Equations

Next, we apply Theorem 2.1 to the classical pendulum Eq. 1.3.
In [29], authors obtained the following result.

Theorem B Assume that f is T -periodic with minimal period T and odd in t, and that for
an integer p > 1,

ω2

A
< p2 <

ω2s2
p

A
(3.1)

and

‖ f ‖2
L2(0,T )

<
π

ω

(
s2

pω
2

p2 − A

) (
2A(1 − cos δ̄) − δ̄2ω2

p2

)
(3.2)

where ω = 2π
T , sp is the least prime factor of p, δ̄ is the root of sin δ = (ω2/Ap2)δ in the

interval (0, π). Then (1.3) has at least one periodic solution with minimal period pT .
Notice the fact that δ̄ → π as p → ∞, the next corollary was immediately obtained .

Corollary 3.1 ([29]) If (3.1) and (3.2) are replaced by

0 < A < ω2 (3.3)

and

‖ f ‖2
L2(0,T )

<
4π A

ω
(ω2 − A) (3.4)

respectively, then there exists a P > 0 such that, for any prime integer p > P, (1.3) has at
least one periodic solution with minimal period pT .

In this case, F(t, x) = A(1 − cos x) − f (t) · x , We have

F ′
x (t, 0) = f (t).

and

max {0,
A

2
x2 − A

24
x4} ≤ F(t, x) − F ′

x (t, 0) · x = A(1 − cos x) ≤ A

2
x2.

We have immediately the following result.

Theorem 3.1 Assume that f (t) is T -periodic with minimal period T . IF (2.1) holds and

‖ f ‖2
L2(0,T )

≤ 8π(ω2 − A)(A − (ω
p )2)2

ωA
. (3.5)

Then (1.3) has at least one periodic solution with minimal period pT .
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Let p → ∞, (3.5) reduces to

‖ f ‖2
L2(0,T )

≤ 8π A(ω2 − A)

ω
, (3.6)

which also improves (3.4).
It is easy to prove by combining the technique used in [29] with the method in this paper

that (3.2) may be improved by

‖ f ‖2
L2(0,T )

≤ π

ω
(ω2 − A)

(
2A(1 − cos δ̄) − δ̄2ω2

p2

)
(3.7)
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