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Abstract The basic reproduction ratio and its computation formulae are established for a
large class of compartmental epidemic models in periodic environments. It is proved that a
disease cannot invade the disease-free state if the ratio is less than unity and can invade if it is
greater than unity. It is also shown that the basic reproduction number of the time-averaged
autonomous system is applicable in the case where both the matrix of new infection rate and
the matrix of transition and dissipation within infectious compartments are diagonal, but it
may underestimate and overestimate infection risks in other cases. The global dynamics of
a periodic epidemic model with patch structure is analyzed in order to study the impact of
periodic contacts or periodic migrations on the disease transmission.
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1 Introduction

The basic reproduction number of an infectious disease is a fundamental concept in the
study of disease transmissions. It is the expected number of secondary cases produced, in a
completely susceptible population, by a typical infective individual. Usually, the basic repro-
duction number defines the threshold behavior for classical epidemic models. It is a common
case that a disease dies out if the basic reproduction number is less than unity and the disease
is established in the population if it is greater than unity. For autonomous epidemic models,
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Diekmann et al. [7], van den Driessche and Watmough [31] presented general approaches for
the calculations of basic reproduction numbers. Computations of basic reproduction num-
bers for specific infectious diseases are carried out in [20] for sexual diseases, in [13] for
tuberculosis in possums, in [12] for dengue fever, in [15,24,33,40] for SARS. Furthermore,
basic reproduction numbers were studied in [1,2] for the epidemic models with population
traveling among cities where the residences of individuals are maintained, and in [32,34–36]
for the patchy models without the record of residence of individuals.

It is well-known that periodic fluctuations are common in the evolution of disease trans-
missions. Contact rates vary seasonally for childhood diseases because of opening and closing
of schools [5,9,26–28]. Periodic changes in birth rates of populations are evidenced in many
biological works, see, e.g., [6,23,39]. Vaccination program is also a source of periodicity [10].
We refer to [3,4,8,14,17,22,25,30,37,38] and references therein for other types of periodic
epidemic models. A natural and important problem associated with periodic epidemic mod-
els is to define and compute their basic reproduction numbers. Intuitively, one may expect
to use the basic reproduction number of the time-averaged autonomous system of a periodic
epidemic model over a time period. Unfortunately, this average basic reproduction number
is applicable only in certain circumstances, but overestimates or underestimates infection
risks in many other cases (see examples in Sect. 3). The effective reproduction number is
also used in the literature, which is defined as the average number of secondary cases arising
from a single typical infective introduced at time t into the population [11]. Its magnitude
is a useful indicator of both the risk of an epidemic and the effort required to control an
infection. However, this number is not a threshold parameter to determine whether the dis-
ease can invade the susceptible population successfully. Recently, Bacaër and Guernaoui [4]
presented a general definition of the basic reproduction number in a periodic environment.
The purpose of our current paper is to establish the basic reproduction ratio for a large class
of periodic compartmental epidemic models and show that it is a threshold parameter for the
local stability of the disease-free periodic solution, and even for the global dynamics under
certain circumstances.

The remaining parts of this paper are organized as follows. In the next section, we present
the theory of the basic reproduction ratio for periodic compartmental models. Section 3 pro-
vides three examples to illustrate the applicability of the basic reproduction number of the
time-averaged systems. In Sect. 4, we obtain a threshold condition for the global persistence
and extinction of diseases. Based on this result, we analyze an epidemic model with periodic
population dispersal and periodic contact rates.

2 The Basic Reproduction Ratio

We consider a heterogeneous population whose individuals can be grouped into n homoge-
neous compartments. Let x = (x1, . . . , xn)

T , with each xi ≥ 0, be the state of individuals
in each compartment. We assume that the compartments can be divided into two types:
infected compartments, labeled by i = 1, . . . ,m, and uninfected compartments, labeled by
i = m + 1, . . . , n. Define Xs to be the set of all disease-free states:

Xs := {x ≥ 0 : xi = 0, ∀i = 1, . . . ,m}.
Let Fi (t, x)be the input rate of newly infected individuals in the i th compartment, V+

i (t, x)
be the input rate of individuals by other means (for example, births, immigrations), and
V−

i (t, x) be the rate of transfer of individuals out of compartment i (for example, deaths,
recovery and emigrations). Thus, the disease transmission model is governed by a nonauton-
omous ordinary differential system:
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dxi

dt
= Fi (t, x)− Vi (t, x) � fi (t, x), i = 1, . . . , n, (2.1)

where Vi = V−
i −V+

i . Following the setting of [31] for autonomous compartmental epidemic
models, we make the following assumptions:

(A1) For each 1 ≤ i ≤ n, the functions Fi (t, x),V+
i (t, x) and V−

i (t, x) are nonnegative and
continuous on R × R

n+ and continuously differential with respect to x .
(A2) There is a real number ω > 0 such that for each 1 ≤ i ≤ n, the functions Fi (t, x),V+

i
(t, x) and V−

i (t, x) are ω-periodic in t .
(A3) If xi = 0, then V−

i = 0. In particular, if x ∈ Xs , then V−
i = 0 for i = 1, . . . ,m.

(A4) Fi = 0 for i > m.
(A5) If x ∈ Xs , then Fi (x) = V+

i (x) = 0 for i = 1, . . . ,m.

Note that (A1) arises from the simple fact that each function denotes a directed non-neg-
ative transfer of individuals. Biologically, (A2) describes a periodic environment (e.g., due
to seasonality); (A3) represents that if a compartment is empty, then there is no transfer of
individuals out of the compartment; (A4) means that the incidence of infection for uninfected
compartments is zero; and (A5) implies that the population will remain free of disease if it
is free of disease at the beginning.

We assume that the model (2.1) has a disease-free periodic solution
x0(t) = (0, . . . , 0, x0

m+1(t), . . . , x0
n (t))

T with x0
i (t) > 0,m + 1 ≤ i ≤ n for all t . Let

f = ( f1, . . . , fn)
T , and define an (n − m)× (n − m) matrix

M(t) :=
(
∂ fi (t, x0(t))

∂x j

)
m+1≤i, j≤n

.

Let�M (t) be the monodromy matrix of the linearω-periodic system dz
dt = M(t)z. We further

assume that x0(t) is linearly asymptotically stable in the disease-free subspace Xs , that is,

(A6) ρ(�M (ω)) < 1, where ρ(�M (ω)) is the spectral radius of �M (ω).

By the arguments similar to those in [31, Lemma 1], it then follows that

DxF(t, x0(t)) =
(

F(t) 0
0 0

)
, DxV(t, x0(t)) =

(
V (t) 0
J (t) −M(t)

)
,

where F(t) and V (t) are two m × m matrices defined by

F(t) =
(
∂Fi (t, x0(t))

∂x j

)
1≤i, j≤m

, V (t) =
(
∂Vi (t, x0(t))

∂x j

)
1≤i, j≤m

, (2.2)

respectively, and J (t) is an (n − m) × n matrix. Furthermore, F(t) is non-negative, and
−V (t) is cooperative in the sense that the off-diagonal elements of −V (t) are non-negative.

Let Y (t, s), t ≥ s, be the evolution operator of the linear ω-periodic system

dy

dt
= −V (t)y. (2.3)

That is, for each s ∈ R, the m × m matrix Y (t, s) satisfies

d

dt
Y (t, s) = −V (t)Y (t, s), ∀t ≥ s, Y (s, s) = I,

where I is the m × m identity matrix. Thus, the monodromy matrix �−V (t) of (2.3) equals
Y (t, 0), t ≥ 0. Note that the internal evolution of individuals in the infectious compartments
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due to deaths and movements among the compartments is dissipative, and exponentially
decays in many cases because of the loss of infective members from natural mortalities and
disease-induced mortalities. Thus, we assume that

(A7) ρ(�−V (ω)) < 1.

Based on the assumptions above, we are now able to analyze the reproduction ratios for
the epidemic model (2.1). For this purpose, we always assume that the population is near the
disease-free periodic state x0(t).

By the standard theory of linear periodic systems (see, e.g., [16, Sect. III.7]), there exist
K > 0 and α > 0 such that

‖Y (t, s)‖ ≤ K e−α(t−s), ∀t ≥ s, s ∈ R. (2.4)

It follows that

‖Y (t, t − a)F(t − a)‖ ≤ K‖F(t − a)‖e−αa, ∀t ∈ R, a ∈ [0,∞). (2.5)

In view of the periodic environment, we suppose that φ(s), ω-periodic in s, is the initial
distribution of infectious individuals. Then F(s)φ(s) is the distribution of new infections
produced by the infected individuals who were introduced at time s. Given t ≥ s, then
Y (t, s)F(s)φ(s) gives the distribution of those infected individuals who were newly infected
at time s and remain in the infected compartments at time t . It follows that

ψ(t) :=
t∫

−∞
Y (t, s)F(s)φ(s)ds =

∞∫
0

Y (t, t − a)F(t − a)φ(t − a)da

is the distribution of accumulative new infections at time t produced by all those infected
individuals φ(s) introduced at previous time to t .

Let Cω be the ordered Banach space of all ω-periodic functions from R to R
m , which is

equipped with the maximum norm ‖ · ‖ and the positive cone C+
ω := {φ ∈ Cω : φ(t) ≥

0, ∀t ∈ R}. Then we can define a linear operator L : Cω → Cω by

(Lφ)(t) =
∞∫

0

Y (t, t − a)F(t − a)φ(t − a)da, ∀t ∈ R, φ ∈ Cω. (2.6)

Motivated by the concept of next generation matrices introduced in [7,31], we call L the next
infection operator, and define the spectral radius of L as the basic reproduction ratio

R0 := ρ(L) (2.7)

for the periodic epidemic model (2.1).
By using the approach in [4, Sect.5], we can obtain another linear operator on Cω:

(L̄φ)(t) =
∞∫

0

F(t)Y (t, t − a)φ(t − a)da = F(t)

∞∫
0

Y (t, t − a)φ(t − a)da.

The spectral radius of L̄ , ρ(L̄), was defined in [4] as the basic reproduction number. Let A
and B be two bounded linear operators on Cω defined by

A(φ)(t) =
∞∫

0

Y (t, t − a)φ(t − a)da, B(φ)(t) = F(t)φ(t).
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Since L = AB and L̄ = B A, it then follows that ρ(L) = ρ(L̄). Thus, the basic reproduction
ratio defined in (2.7) coincides with the basic reproduction number defined in [4]. However,
two kernels

A(t, a) := Y (t, t − a)F(t − a) and Ā(t, a) := F(t)Y (t, t − a)

have different biological interpretations. Indeed, letφ ∈ R
m be the distribution of the infected

individuals introduced at time t − a. Then A(t, a)φ gives the distribution of the individuals
who were newly infected at time t − a and remain in the infected compartments at time
t , while Ā(t, a)φ represents the distribution of the individuals newly infected at time t by
those infected individuals who were introduced at time t − a and remain in the infected
compartments at time t .

As in the autonomous case, we wonder whether the basic reproduction ratio (or number)
R0 characterizes the threshold of disease invasion, in the sense that the disease-free periodic
solution is stable if R0 < 1 and unstable if R0 > 1. In order to provide an affirmative answer,
we choose to use the linear operator L and elementary arguments.

To consider the case where V (t) is reducible, we define

Vε(t) := V (t)− εE, ∀ε ∈ [0,∞),

where E is the m × m matrix with each element being 1. Then −Vε(t) is cooperative and
irreducible for each t ∈ R. Let Yε(t, s) be the evolution operator of the linear system (2.3)
with V (t) replaced by Vε(t). By the theory of perturbed linear systems (see, e.g., [16, Sect.
III.2]), it follows that there exists an ε0 > 0 such that for any ε ∈ [0, ε0], Yε(t, s) admits
a similar property as in (2.4). Accordingly, we define the linear operator Lε by replacing
Y (t, s) in (2.6) with Yε(t, s), and set Rε0 := ρ(Lε) for ε ∈ [0, ε0].
Lemma 2.1 Let (A1)–(A7) hold. Then the following statements are valid:

(i) The operator L is positive, continuous and compact on Cω.
(ii) limε→0+ ρ(�F−Vε (ω)) = ρ(�F−V (ω)), and limε→0+ Rε0 = R0.

Proof Clearly, the linear operator L is positive in the sense that L(C+
ω ) ⊂ C+

ω . It is easy to
see from (2.5) that L is bounded, and hence, continuous on Cω. Since

(Lφ)(t) =
t∫

−∞
Y (t, s)F(s)φ(s)ds, ∀t ∈ R, φ ∈ Cω,

we have

d

dt
(Lφ)(t) = F(t)φ(t)− V (t)(Lφ)(t), ∀t ∈ R, φ ∈ Cω.

It then follows that for any b > 0, there exists H = H(b) > 0 such that | d
dt (Lφ)(t)| ≤ H

for all t ∈ [0, ω] and φ ∈ Cω with ‖φ‖ ≤ b. Thus, the Ascoli–Arzela theorem implies that
L is compact on Cω.

By the continuity of solutions with respect to parameter ε, we see that

lim
ε→0+�F−Vε (ω) = �F−V (ω).

Thus, the continuity of the spectrum for matrices ([21, Section II.5.8]) implies

lim
ε→0+ ρ(�F−Vε (ω)) = ρ(�F−V (ω)).
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Since both L and Lε are compact on Cω, it follows that their spectrums consist of zero and
countably many eigenvalues, and zero is the only possible point of accumulation of these
eigenvalues. In the case where R0 > 0, the Krein–Rutman theorem for positive and compact
linear operators (see, e.g., [18, Theorem 7.1]) implies that R0 is an eigenvalue of L with an
eigenvector w > 0 in Cω. By the upper semicontinuity of the spectrum ([21, Sect. IV.3.1])
and the continuity of a finite system of eigenvalues ([21, Sect. IV.3.5]), it then follows that
limε→0+ Rε0 = R0. 	


In order to characterize R0, we consider the following linear ω-periodic equation

dw

dt
=

[
−V (t)+ F(t)

λ

]
w, t ∈ R (2.8)

with parameter λ ∈ (0,∞). Let W (t, s, λ), t ≥ s, s ∈ R, be the evolution operator of the
system (2.8) on R

m . Clearly,�F−V (t) = W (t, 0, 1), ∀t ≥ 0. Note that for each λ ∈ (0,∞),
the matrix −V (t)+ F(t)

λ
is cooperative. It then follows that the linear operator W (t, s, λ) is

positive in R
m for each t ≥ s, s ∈ R. Thus, the Perron–Frobenius theorem (see, e.g., [29,

Theorem A.3]) implies that ρ(W (ω, 0, λ)) is an eigenvalue of W (ω, 0, λ) with a nonnega-
tive eigenvector. It is easy to verify that the matrix W (s + ω, s, λ) is similar to the matrix
W (ω, 0, λ), and hence, σ(W (s + ω, s, λ)) = σ(W (ω, 0, λ)) for any s ∈ R, where σ(D)
denotes the spectrum of the matrix D.

Theorem 2.1 Let (A1)–(A7) hold. Then the following statements are valid:

(i) If ρ(W (ω, 0, λ)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of L, and hence
R0 > 0.

(ii) If R0 > 0, then λ = R0 is the unique solution of ρ(W (ω, 0, λ)) = 1.
(iii) R0 = 0 if and only if ρ(W (ω, 0, λ)) < 1 for all λ > 0.

Proof (i) Assume that ρ(W (ω, 0, λ0)) = 1 for some λ0 > 0. Then 1 is an eigenvalue of
W (ω, 0, λ0) with a nonnegative eigenvector φ0. Since W (ω, 0, λ0)φ0 = φ0, it follows that
φ(t) := W (t, 0, λ0)φ0 is an ω-periodic solution of the ω-periodic system (2.8) with λ = λ0.
By the constant-variation formula, we obtain

φ(t) = Y (t, τ )φ(τ)+
t∫
τ

Y (t, s)
F(s)

λ0
φ(s)ds, ∀t ≥ τ, τ ∈ R. (2.9)

In view of (2.4) and the boundedness of φ(t) on R, letting τ → −∞ in (2.9), we further have

φ(t) =
t∫

−∞
Y (t, s)

F(s)

λ0
φ(s)ds, ∀t ∈ R,

that is, Lφ = λ0φ. Then λ0 ∈ σ(L) \ {0}, which implies that R0 := ρ(L) > 0.
(ii) Assume that R0 := ρ(L) > 0. By Lemma 2.1 (ii), there exists ε1 ∈ (0, ε0] such

that Rε0 := ρ(Lε) > 0 for all ε ∈ [0, ε1]. Since Lε is positive, bounded and compact, the
Krein–Rutman theorem (see, e.g., [18, Theorem 7.1]) implies that Rε0 is an eigenvalue of Lε
with an eigenvectorw > 0 in Cω, i.e.,w ∈ C+

ω \ 0. Thus, there is s0 ≥ 0 such thatw(s0) > 0
in R

m . Let Wε(t, s, λ), t ≥ s, s ∈ R, be the evolution operator of the linear periodic system

dw

dt
=

[
−Vε(t)+ F(t)

λ

]
w, t ∈ R (2.10)
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with parameter λ ∈ (0,∞). Since Lεw = Rε0w, it follows that w(t) satisfies the linear
Eq. 2.10 with λ = Rε0, and hence

w(t) = Wε(t, s0, Rε0)w(s0), ∀t ≥ s0.

In particular, w(s0) = w(s0 + ω) = Wε(s0 + ω, s0, Rε0)w(s0), which implies that 1 is an
eigenvalue of Wε(s0 +ω, s0, Rε0) with eigenvectorw(s0) > 0. Note that Wε(s0 +ω, s0, Rε0)
is compact and strongly positive on R

m . Then the Krein–Rutman theorem (see, e.g., [18,
Theorem 7.2]) implies that ρ(Wε(s0 + ω, s0, Rε0)) = 1. Since σ(Wε(s0 + ω, s0, Rε0)) =
σ(Wε(ω, 0, Rε0)), it follows thatρ(Wε(ω, 0, Rε0)) = 1. Letting ε → 0+, we obtainρ(W (ω, 0,
R0)) = 1. It remains to prove that ρ(W (ω, 0, λ)) = 1 has at most one positive solutions for
λ. Since F(t) is nonnegative and −V (t) is cooperative, the standard comparison theorem
implies that ρ(W (ω, 0, λ)) is nonincreasing in λ ∈ (0,∞). Suppose, by contradiction, that
ρ(W (ω, 0, λ)) = 1 has two positive solutions λ1 < λ2. Then ρ(W (ω, 0, λ)) = 1 for all
λ ∈ [λ1, λ2]. By conclusion (i), it follows that any λ ∈ [λ1, λ2] is an eigenvalue of L , which
is impossible since the compact linear operator L has countably many eigenvalues.

(iii) From (i) and (ii) above, we see that R0 > 0 if and only if ρ(W (ω, 0, λ)) = 1 has
a positive solution for some λ. Thus, R0 = 0 if and only if ρ(W (ω, 0, λ)) �= 1 for all
λ ∈ (0,∞). By the continuity of the spectrum for matrices, it follows that ρ(W (ω, 0, λ)) is
continuous in λ ∈ (0,∞) and

lim
λ→∞ ρ(W (ω, 0, λ)) = ρ(�−V (ω)) < 1.

This implies that R0 = 0 if and only if ρ(W (ω, 0, λ)) < 1 for all λ ∈ (0,∞). 	

For a continuous periodic function g(t) with the period ω, we define its average as

[g] := 1

ω

ω∫
0

g(t)dt.

The following result gives explicit formulae for R0 in two special cases of the periodic model
(2.1).

Lemma 2.2 Let (A1)–(A7) hold. Then the following statements are valid:

(i) If V (t) = diag (V1(t), . . . , Vm(t)) and F(t) = diag (F1(t), . . . , Fm(t)), then R0 =
max1≤i≤m

{ [Fi ][Vi ]
}

.

(ii) If V (t) = V and F(t) = F are constant matrices, then R0 = ρ(V −1 F) = ρ(FV −1).

Proof In the case (i), we have

W (ω, 0, λ) = diag

⎛
⎝e

ω∫
0

(
−V1(t)+ 1

λ
F1(t)

)
dt
, . . . , e

ω∫
0

(
−Vm (t)+ 1

λ
Fm (t)

)
dt

⎞
⎠ , ∀λ > 0,

and hence

ρ(W (ω, 0, λ)) = max
1≤i≤m

⎧⎨
⎩e

ω∫
0

(
−Vi (t)+ 1

λ
Fi (t)

)
dt

⎫⎬
⎭ , ∀λ > 0.

Clearly, (A7) implies that [Vi ] > 0 for all 1 ≤ i ≤ m. By Theorem 2.1, it then follows that

R0 = max1≤i≤m

{ [Fi ][Vi ]
}

.
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In the case (ii), we have

W (ω, 0, λ) = e

(
−V + 1

λ
F

)
ω
, ∀λ > 0.

Without loss of generality, we assume that V is irreducible. Otherwise, we replace V with
Vε and then use the limiting argument (see the proof of Theorem 2.1 (ii)). Thus, the matrix
−V + 1

λ
F is cooperative and irreducible for each λ > 0. By [29, Theorem A.5], it follows

that the stability modulus of −V + 1
λ

F ,

s(λ) := max

{
Reµ : µ ∈ σ

(
−V + 1

λ
F

)}
,

is a simple eigenvalue of −V + 1
λ

F with an eigenvector v∗ ∈ I nt (Rm+), and any nonnegative
eigenvalue of −V + 1

λ
F is a positive multiple of v∗. Thus, we have

ρ(W (ω, 0, λ)) = es(λ)ω, ∀λ > 0.

It is easy to verify that V −1 = ∫ ∞
0 e−V ada. By the Perron–Frobenius theorem (see, e.g., [29,

Theorem A.3]), ρ(V −1 F) is an eigenvalue of V −1 F with a nonnegative eigenvector w∗.
Note that if s(λ0) = 0 for some λ0 > 0, then λ0 ∈ σ(V −1 F) and hence ρ(V −1 F) >
0. If ρ(V −1 F) = 0, then Theorem 2.1 implies that R0 = 0. If ρ(V −1 F) > 0, then(
−V + 1

ρ(V −1 F)
F

)
w∗ = 0. It follows that s(ρ(V −1 F)) = 0, and hence ρ(W (ω, 0, ρ(V −1

F))) = 1. Thus, Theorem 2.1 implies that R0 = ρ(V −1 F)). Since V (V −1 F)V −1 = FV −1,
we have σ(V −1 F) = σ(FV −1). Consequently, we have R0 = ρ(V −1 F) = ρ(FV −1). 	


In view of Lemma 2.2 (ii), our definition of R0 is consistent with that given in [31] where
R0 is defined as ρ(FV −1) for autonomous compartmental epidemic models. The following
result shows that R0, as in the autonomous case, is a threshold parameter for the local stability
of the disease-free periodic solution x0(t) for the model (2.1).

Theorem 2.2 Assume that (A1)-(A7) hold. Then the following statements are valid:

(i) R0 = 1 if and only if ρ(�F−V (ω)) = 1.
(ii) R0 > 1 if and only if ρ(�F−V (ω)) > 1.

(iii) R0 < 1 if and only if ρ(�F−V (ω)) < 1.

Thus, x0(t) is asymptotically stable if R0 < 1, and unstable if R0 > 1.

Proof (i) Note that ρ(W (ω, 0, 1)) = ρ(�F−V (ω)). If R0 = 1, then Theorem 2.1 (ii) implies
thatρ(W (ω, 0, 1)) = 1. Ifρ(�F−V (ω)) = 1, then Theorem 2.1 (i) and (ii) imply that R0 = 1.

(ii) (a) Assume that R0 > 1. Since R0 > 0, the Krein–Rutman theorem (see, e.g., [18,
Theorem 7.1]) implies that there exist w > 0 in Cω such that Lw = R0w. It then follows
that w(t0) > 0 in R

m for some t0 ∈ [0, ω] and w(t) satisfies

dw(t)

dt
= (F(t)− V (t))w(t)+

(
1

R0
− 1

)
F(t)w(t), ∀t ∈ R. (2.11)

We first claim that F(t)w(t) �≡ 0. Assume, by contradiction, that F(t)w(t) = 0, ∀t ∈ R.
Then (2.11) reduces to

dw(t)

dt
= −V (t)w(t), ∀t ∈ R. (2.12)
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Let �−V (t, s), t ≥ s, s ∈ R be the evolution operator of the linear system (2.12). It then
follows that �−V (t) = �−V (t, 0), ∀t ≥ 0, and

w(t0) = w(t0 + ω) = �−V (t0 + ω, t0)w(t0).

This implies that 1 ∈ σ(�−V (t0 +ω, t0)) = σ(�−V (ω)), which contradicts the assumption
(A7). By the constant-variation formula, as applied to Eq. 2.11, we obtain

w(t0) = w(t0 + ω) = W (t0 + ω, t0, 1)w(t0)+ h

with

h :=
(

1

R0
− 1

) t0+ω∫
t0

W (t0 + ω, s, 1)F(s)w(s)ds,

and hence

w(t0)− W (t0 + ω, t0, 1)w(t0) = h. (2.13)

In the case where V (t) is irreducible for each t ∈ [0, ω], W (t, s, 1) is strongly positive for
each t > s, s ∈ R. Since F(t)w(t) �≡ 0, we have

t0+ω∫
t0

W (t0 + ω, s, 1)F(s)w(s)ds � 0 in R
m .

It then follows that

(−w(t0))− W (t0 + ω, t0, 1)(−w(t0)) = −h � 0 in R
m .

Since −w(t0) < 0 in R
m , [18, Theorem 7.3] implies that 1 < ρ(W (t0 + ω, t0, 1)) =

ρ(�F−V (ω)). In the general case of V (t), replacing V (t) with Vε(t) and using the limit-
ing argument (see the proof of Theorem 2.1 (ii)), we obtain ρ(�F−V (ω)) ≥ 1. Since the
conclusion (i) implies that ρ(�F−V (ω)) �= 1, we have ρ(�F−V (ω)) > 1.

(b) Assume that ρ(�F−V (ω)) > 1. By the conclusion (i), we have R0 �= 1. Since
ρ(W (ω, 0, 1)) = ρ(�F−V (ω)) > 1, Theorem 2.1 (iii) implies that R0 > 0. It then follows
that (2.13) is still valid. We need to prove that R0 > 1. Suppose, by contradiction, that
R0 ∈ (0, 1). In the case where V (t) is irreducible for each t ∈ [0, ω], we see that Eq. 2.13
holds with h � 0 in R

m . By [18, Theorem 7.3]), it follows that 1 > ρ(W (t0 + ω, t0, 1)) =
ρ(�F−V (ω)). In the general case of V (t), replacing V (t) with Vε(t) and using the limiting
argument (see the proof of Theorem 2.1 (ii)), we obtain 1 ≥ ρ(�F−V (ω)), a contradiction.
Thus, we have R0 > 1.

(iii) is a straightforward consequence of the conclusions (i) and (ii) above.
Finally, we observe that

Dx f (t, x0(t)) =
(

F(t)− V (t) 0
−J (t) M(t)

)

and ρ(�M (ω)) < 1. It then follows that x0(t) is asymptotically stable if ρ(�F−V (ω)) < 1
(equivalently, R0 < 1), and unstable if ρ(�F−V (ω)) > 1 (equivalently, R0 > 1). 	
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3 Three Examples

In this section, we present three examples to show that the basic reproduction number of
the time-averaged autonomous system may coincide with the basic reproduction ratio of the
periodic epidemic model, underestimate infection risk, or overestimate infection risk.

Example 1 By Lemma 2.2 (i), we see that if a periodic compartmental model has the property
that both the matrix of new infection rate and the matrix of transition and dissipation within
infectious compartments are diagonal, then the basic reproduction ratio is the same as the
basic reproduction number of its time-averaged autonomous system. To be more specific, let
us consider the following two strain model

İ1 = β1(t)SI1 − (b + γ1)I1 + ν I1 I2,

İ2 = β2(t)SI2 − (b + γ2)I1 − ν I1 I2,

Ṡ = b − bS + γ1 I1 + γ2 I2 − (β1 I1 + β2 I2)S,

(3.1)

where S is the number of susceptible members, I1 is the number of strain 1 of infectious
agents, and I2 is the number of strain 2 of infectious agents. Here, strain one may ‘super-
infect’ an individual infected with strain two. This model was proposed in [12] for Dengue
fever where the contact coefficients β1 and β2 are constants. Here, we assume that β1 and
β2 are continuous nonnegative periodic functions with a common period ω, and all the other
parameters are positive constants.

It is easy to see that the disease-free steady state is x0 = (0, 0, 1)T . According to [31],
we have

F(t) =
(
β1(t) 0

0 β2(t)

)
, V (t) =

(
b + γ1 0

0 b + γ2

)
.

It follows from Lemma 2.2 (i) that the basic production ratio is

R0 = max

{ [βi ]
b + γi

: i = 1, 2

}
.

Thus, Theorem 2.2 implies that the disease-free steady state x0 is stable if R0 < 1, and is
unstable if R0 > 1.

Example 2 We consider a vector-host model for Dengue fever, which was proposed in [12]:

İ = βs SV − (b + γ )I,

V̇ = βm M I − cV,
(3.2)

Ṡ = b − bS + γ I − βs SV,

Ṁ = c − cM − βm M I,

where I is the number of infected hosts, V is the number of infected vectors, S is the number
of susceptible hosts, M is the number of susceptible vectors, βs and βm are disease trans-
mission coefficients. The birth rates have been scaled to b > 0 for the host and c > 0 for
the vector. In the autonomous case, the basic reproduction number of the disease has been
shown to be

R0 =
√

βsβm

c(b + γ )
.
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Fig. 1 The graph of the basic reproduction ratio and the average basic reproduction number when k varies

Here, we take

βs = k(1 + δ cos(2π t)),

βm = β0(1 + δ cos(2π t)).
(3.3)

The disease-free steady state of (3.2) is (0, 0, 1, 1)T . For (3.2), we have

F(t) =
(

0 βs(t)

βm(t) 0

)
, V (t) =

(
b + γ 0

0 c

)
. (3.4)

Let [R0] be the basic reproduction number of the time-averaged autonomous system of
(3.2). Now we need to use Theorem 2.1 (ii) to compute R0. If we fix β0 = 0.3, b = 2, γ =
0.1, c = 0.1 and δ = 1, by numerical calculations, we see that [R0] = 1 when k = 0.70
and R0 = 1 when k = 0.614. Further, by numerical calculations we obtain the curve of the
average basic reproduction number of the disease with respect to k and the curve of R0 with
respect to k in Fig. 1. This shows that the average basic reproduction number underestimates
the disease transmission risk. Now, if we fix k = 0.65 and vary δ in [0, 1] in (3.3), with
other parameters unchanged as above, numerical calculations indicate again that the average
basic reproduction number underestimates the disease transmission risk (see Fig. 2), where
the average basic reproduction number [R0] is always 0.9636, and the basic reproduction
ratio R0 is greater than 1 when 0.75 < δ < 1.

Example 3 We consider the staged progression model, which was proposed in [20]:

İ1 =
m−1∑
k=1

βk(t)S
Ik

N
− (ν1 + d1)I1,

İi = νi−1 Ii−1 − (νi + di )Ii ,
(3.5)

İm = νm−1 Im−1 − dm Im,

Ṡ = b − bS −
m−1∑
k=1

βk S
Ik

N
.
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Fig. 2 The graph of the basic reproduction ratio and the average basic reproduction number when δ varies

The basic reproduction number of (3.5) in the autonomous case was obtained in [31]. Here,
we consider the case that m = 3 and assume that the valid contact rates between susceptible
and infective individuals are given by

β1(t) = β, β2(t) = α, for 0 ≤ t ≤ ζ,

β1(t) = β2(t) = 0, for ζ ≤ t ≤ 1.
(3.6)

Further, we assume that other parameters remain positive constants.
The unique disease-free steady state has Ii = 0, i = 1, 2, 3 and S = 1. If we define

ν3 = 0, then the matrices F(t) and V (t) are defined by

Fi j (t) =
{
β j (t), i = 1, j ≤ 2,

0 otherwise,
(3.7)

Vi j (t) =

⎧⎪⎨
⎪⎩
νi + di , j = i,

−ν j i = 1 + j,

0 otherwise.

(3.8)

Since the elements of the last row and the last column of F and V are zeroes, from the point
of view of threshold of disease spread, we can confine ourselves to the matrices consisting
of the first two rows and two columns of F and V , which are again denoted by F and V ,
respectively. Let [R0] be the basic reproduction number of the time-averaged autonomous
system of (3.5). It then follows that

[R0] = ζ

(
β

ν1 + d1
+ α ν1

(ν1 + d1) (ν2 + d2)

)
. (3.9)

Thus, [R0] = 1 if

β = −ζ α ν1 − ν1 ν2 − ν1 d2 − d1 ν2 − d1 d2

ζ (ν2 + d2)
. (3.10)
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Fig. 3 The graph of R1 := ρ(�F−V (1)) versus α

If we fix ν2 = 0.1, d2 = 0.5, d1 = 0.05, ν1 = 0.05, ζ = 0.3, and let β satisfy (3.10),
then [R0] = 1 when α varies in [0, 4]. On the other hand, numerical calculations show
that ρ(�F−V (1)) decreases from 1 as α increases from 0 (see Fig. 3). This, together with
Theorem 2.2 (iii), suggests that the heterogeneity of staged progression of infectives induce
overestimates of infection risks if the average basic reproduction number is used.

We should mention that some other cases of underestimate and overestimate for the aver-
age basic reproduction number can also be found in [3], where an approximate formula of the
basic reproduction number was obtained for a class of periodic vector-borne disease models
with a small perturbation parameter.

4 Threshold Dynamics in a Patchy Model

In this section, we investigate the global dynamics of a patchy model and the impact of
periodic migrations and periodic contacts on propagation of epidemic diseases.

We consider two population centers. One is central and dominant, and the other one is
smaller. Two centers are connected by population dispersal. This is the case studied in [26]
for childhood diseases, where the central city is like New York and the smaller city is like
Baltimore. We assume a standard incidence for the large population center and a bilinear
incidence for the smaller center. This is because the standard incidence is more suitable for
higher population density and the mass action incidence is more suitable when the population
density is low [8,19]. If the periodic population dispersal is introduced into the model for the
disease transmission of SIR type, we can obtain

İ1 = β1(t)
I1

N1
S1 − (µ1 + γ1 + b1(t))I1 + b2(t)I2,

İ2 = β2(t)S2 I2 − (µ2 + γ2 + b2(t))I2 + b1(t)I1,

Ṡ1 = µ1 − (µ1 + a1(t))S1 − β1(t)
I1

N1
S1 + a2(t)S2,

(4.1)
Ṡ2 = µ2 − (µ2 + a2(t))S2 − β2(t)S2 I2 + a1(t)S1,

Ṙ1 = γ1 I1 − (µ1 + c1(t))R1 + c2(t)R2(t),

Ṙ2 = γ2 I2 − (µ2 + c2(t))R2 + c1(t)R1(t),
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where N1 = S1 + I1 + R1, Si is the density of susceptible individuals in patch i , Ii is the
density of infectious individuals in patch i , Ri is the density of recovered individuals in patch
i , µi > 0 is the birth rate and death rate of the population in the i th patch, βi is the disease
transmission coefficient of the disease in the i th patch, γi is the recovery rate of infective
individuals in the i th patch, ai represents the emigration rate of susceptible individuals in the
i th patch, bi represents the emigration rate of infective individuals in the i th patch, and ci (t)
is the emigration rate of recovered individuals in the i th patch. We assume that the dispersal
coefficients and the disease transmission coefficients are ω-periodic in time t and the other
parameters are constants.

It is easy to see that R
2+ is positively invariant for the periodic cooperative system:

Ṡ1 = µ1 − (µ1 + a1(t))S1 + a2(t)S2 := F1(t, S1, S2),

Ṡ2 = µ2 − (µ2 + a2(t))S2 + a1(t)S1 := F2(t, S1, S2),
(4.2)

and that F(t, S) := (F1(t, S1, S2), F2(t, S1, S2)) is strongly subhomogeneous in S ∈ R
2+ in

the sense that F(t, αS) � αF(t, S) for any t ≥ 0, S ∈ R
2+ and α ∈ (0, 1). Note that every

nonnegative solution S(t) = (S1(t), S2(t)) of (4.2) satisfies

d

dt
(S1(t)+ S2(t)) ≤ (µ1 + µ2)− min(µ1, µ2)(S1(t)+ S2(t)), ∀t ≥ 0.

Thus, solutions of (4.2) are ultimately bounded in R
2+. By [39, Theorem 2.3.2] as applied

to the Poincaré map associated with system (4.2), it follows that system (4.2) has a unique
positive periodic solution (S10(t), S20(t)), which is globally attractive in R

2+.
Now we consider the disease-free periodic state E0(t) = (0, 0, S10(t), S20(t), 0, 0) of

(4.1). For model (4.1), we have

F(t) =
(
β1(t) 0

0 β2(t)S20(t)

)
, V (t) =

(
µ1 + γ1 + b1(t) −b2(t)

−b1(t) µ1 + γ2 + b2(t)

)
.

Let the basic reproduction ratio R0 be as defined in Sect. 2. Then we have the following
threshold type result on the global dynamics of (4.1).

Theorem 4.1 The following two statements are valid:

(i) If R0 < 1, then the disease-free periodic state E0(t) of (4.1) is globally stable.
(ii) If R0 > 1, then (4.1) admits at least one positive periodic solution and there is δ > 0

such that any positive solution of (4.1) satisfies lim inf t→∞ Ii (t) ≥ δ for each i = 1, 2.

Proof In the case where R0 < 1, Theorem 2.2 implies that the disease-free periodic state
E0(t) is locally stable. We now show that it attracts all nonnegative solutions of (4.1). If
(I1(t), I2(t), S1(t), S2(t), R1(t), R2(t)) is a nonnegative solution of (4.1), then we have

Ṡ1 ≤ µ1 − (µ1 + a1(t))S1 + a2(t)S2,

Ṡ2 ≤ µ2 − (µ2 + a2(t))S2 + a1(t)S1.
(4.3)

Note that any nonnegative solution (S̄1(t), S̄2(t)) of (4.2) approaches (S10(t), S20(t)) as t
approaches infinity. It then follows from the standard comparison theorem (see, e.g., [29,
Theorem A.4]) that for any ε > 0, there is a T > 0 such that

Si (t) < Si0(t)+ ε, i = 1, 2, for t > T . (4.4)
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Thus, the first equation and the second equation of (4.1) imply that

İ1 ≤ β1(t)I1 − (µ1 + γ1 + b1(t))I1 + b2(t)I2,

İ2 ≤ β2(t)(S20(t)+ ε)I2 − (µ2 + γ2 + b2(t))I2 + b1(t)I1.
(4.5)

Define

Fε(t) =
(
β1(t) 0

0 β2(t)(S20(t)+ ε)

)
.

By Theorem 2.2, we have ρ(�F−V (ω)) < 1. Now we restrict ε sufficiently small such
that ρ(�Fε−V (ω)) < 1. As a consequence, the trivial solution (0, 0) of the following linear
periodic system

İ1 = β1(t)I1 − (µ1 + γ1 + b1(t))I1 + b2(t)I2,

İ2 = β2(t)(S20(t)+ ε)I2 − (µ2 + γ2 + b2(t))I2 + b1(t)I1
(4.6)

is globally stable. Again by the comparison theorem, we see that Ii (t) → 0 as t → ∞. By
the last two equations of (4.1), it then follows that Ri (t) → 0 as t → ∞. Finally, the third
equation and the fourth equation of (4.1) imply that Si (t) → Si0(t) as t → ∞. This proves
the conclusion (i).

In the case where R0 > 1, Theorem 2.2 implies that ρ(�F−V (ω)) > 1. By the theory of
uniform persistence and coexistence states for periodic semiflows developed in [39], we can
prove the conclusion (ii). Since the arguments are essentially the same as in [38, Theorem
2.3], we omit the details here. 	


In order to study the impact of periodic migrations and periodic contacts on the basic
reproduction ratio, we use the implicit formula for R0 in Theorem 2.1 (ii) and the computer
simulations by fixing parameters in (4.1) similar to those in [26] for childhood diseases. We
take µ1 = 0.04/365, µ2 = 0.02/365, γ1 = γ2 = 100/365. This means that the first patch
has higher birth rate than the second patch, and the two patches have the same recovery rate.
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Fig. 4 The graph of the basic reproduction ratio versus k
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Fig. 5 The graph of the basic reproduction ratio versus φ2
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Fig. 6 The graph of the basic reproduction ratio versus k

Following common lines for periodic contacts [26,28], we suppose that βi (t), ai (t) and bi (t)
take the form:

βi (t) = βi0(1 + δi cos(2π(t + φi )), i = 1, 2,

ai (t) = ai0(1 + δia cos(2π(t + φia)), i = 1, 2,

bi (t) = bi0(1 + δib cos(2π(t + φib)), i = 1, 2.

(4.7)

Let us fix β10 = 1202/365, β20 = 600/365, a10 = 60/365, a20 = 30/365, b10 =
45, b20 = 30. If φi = φia = φib = 0, δia = δib = 1, δi = k for i = 1, 2, as k varies in
[0, 1], we obtain the graph for the relation of the basic reproduction ratio to k (Fig. 4). This
graph shows that the basic reproduction ratio is lowered as the amplitude δ is larger. Next,
we choose φ1 = φia = φib = 0, δi = δia = δib = 1 for i = 1, 2. As φ2 varies in [0, 1],
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Fig. 7 The graph of the basic reproduction ratio versus τ

numerical simulations provide the relation of the basic reproduction ratio to φ2 (Fig. 5). This
figure shows that the phase difference can reduce or increase the risk of epidemic disease
outbreak in two patches.

We now turn to the impact of periodic migrations. Again, we concentrate on the amplitudes
and the phase differences. Fixing β10 = 1202/365, β20 = 600/365, a10 = 60/365, a20 =
30/365, b10 = 45, b20 = 30 and taking φi = φia = φib = 0, δi = 1, δia = δib = k for
i = 1, 2, we compute, as k varies in [0, 1], the relation between the basic reproduction ratio
R0 and k to obtain Fig. 6. This figure shows that the increase of the amplitude of periodic
migrations reduces the risk of epidemic prevalence. One interpretation for this is that the
second patch is a better patch and the diffusion of population relieves the disease spread.
On the other line, if we delay the phase of periodic migration from the second patch to the
first patch by τ and let δi = δia = δib = 1, with other parameters unchanged, numerical
calculations give the relation between the basic reproduction ratio and τ in Fig. 7. Compared
with Fig. 5, the reproduction ratio is decreased until τ = 0.5.
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