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The Effect of Freezing and Discretization
to the Asymptotic Stability of Relative Equilibria
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In this paper we prove nonlinear stability results for the numerical approxi-
mation of relative equilibria of equivariant parabolic partial differential equa-
tions in one space dimension. Relative equilibria are solutions which are
equilibria in an appropriately comoving frame and occur frequently in sys-
tems with underlying symmetry. By transforming the PDE into a correspond-
ing PDAE via a freezing ansatz [2] the relative equilibrium can be analyzed
as a stationary solution of the PDAE. The main result is the fact that non-
linear stability properties are inherited by the numerical approximation with
finite differences on a finite equidistant grid with appropriate boundary con-
ditions. This is a generalization of the results in [14] and is illustrated by
numerical computations for the quintic complex Ginzburg Landau equation.
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1. INTRODUCTION

The purpose of this paper is to analyze numerical methods for the approx-
imation of relative equilibria of parabolic systems in one space dimension

ut =Auxx +f (u,ux)

which are equivariant w.r.t. the action of a finite dimensional Lie group.
Relative equilibria are solutions of partial differential equations which are
equilibria in an appropriately comoving frame. A basic class is formed by
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traveling waves which are solutions of the form u(x, t)= v̄(x − λ̄t), where
v̄ is the wave form and λ̄ the velocity. Then v̄ is a stationary solution in
a frame which is translated with the velocity of the wave, i.e.

0=Av̄′′ +f (v̄, v̄′)+ λ̄v̄′.

Since in general λ̄ is unknown as well, we use the ansatz u(x, t) = v(x −
γ(t), t), λ(t)=γ′(t), which leads to the partial differential algebraic equa-
tion (PDAE)

vt = Avxx +f (v, vx)+λvx,

0 = 〈v̂′, v − v̂〉L2
,

(1)

where v̂ is a given function with v̄ − v̂ ∈H2 and 〈·, ·〉L2
denotes the L2-

inner product. Now (v̄, λ̄) is a stationary solution of (1). The last equa-
tion is a phase condition which compensates for the additional degree of
freedom which has been introduced by adding λ as an time-dependent var-
iable. In the general case a similar ansatz leads to a PDAE where the alge-
braic conditions are related to extra solution components that determine
the transformation into the comoving frame. In this paper we analyze
the nonlinear stability of the stationary solution (ṽ, λ̃) of the DAE which
one obtains after truncation of the PDAE to a finite interval and dis-
cretization with finite differences. The existence and approximation prop-
erties of (ṽ, λ̃) has been dealt with in [15]. Delicate analysis for h→0 and
J → R reveals that stability is preserved for h small, J large enough and
appropriately chosen boundary conditions. To this end we prove a uniform
stability estimate of the form

‖v(t)− ṽ‖H1
h
+‖µ(t)− µ̃‖ � const e−νt , ν >0,

where ‖·‖H1
h

denotes the discrete analogue of the Sobolevnorm ‖·‖H2 .
Here resolvent estimates comprise the main technical challenge. This is an
overall justification of the freezing method in [2] and is in accordance with
the numerical results in [14].

The paper is organized as follows: In Section 1.1 we give a short
introduction to the method of freezing relative equilibria [2, 14] and state
conditions which ensure the asymptotic stability with asymptotic phase of
these solutions. In Section 2 we introduce the finite difference approxima-
tion and state the main stability result Theorem 2.8 for the solution of the
discretized equations. It is proven in Section 3 by using resolvent estimates
which are proven in Section 4. Finally we illustrate the theory by numer-
ical results for the cubic-quintic Ginzburg-Landau equation in Section 5
and we show by a counterexample that some of our assumptions on the
boundary operators are sharp.
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1.1. Equivariant Evolution Equations

In the following we extend the transformation into the comoving
frame given in the introduction for traveling waves to the abstract frame-
work developed in [15] that covers the approaches in [2, 3, 12, 14].
Although the main theorem in Section 2 is formulated for the special case
of a PDE in a way which independent of this general approach we think
it is instructive to see the derivation of the equations there.

Consider an evolutionary equation on a manifold M which is mod-
elled over a Banach space X

ut =F(u), u(0)=u0, (2)

where F : N → T M is a vector field which maps a submanifold N mod-
eled over a dense subspace Y ⊂X onto the tangent bundle T M of M. For
our main stability result (see Section 2) we will either have Banach spaces
X=M, Y =N or affine spaces M = ṽ +X, N = ṽ +Y for some ṽ :R→Rm.
In these cases the tangent spaces always satisfy TuM =X, TvN =Y for all
u∈M,v ∈N .

We assume that (2) is equivariant w.r.t. a finite dimensional (possibly
noncompact) Lie group G which acts on M via

a :G×M →M, (γ, u) �→a(γ)u,

where

a(γ1 ◦γ2)=a(γ1)a(γ2), a(1)= I, 1=unit element in G,

which has a tangent action T a in T M, i.e T a(γ) :TvM →Ta(γ )vM.
Equivariance means that the following relation holds

a(γ)(N)⊂N ∀γ∈G,

F(a(γ)u)=a(γ)F (u) ∀u∈N, γ∈G.

We assume that for any v ∈X the map

a(·)v :G→X, γ �→a(γ)v

is continuous and it is continuously differentiable for any v∈N with deriv-
ative

da(γ)v :Tγ G→Ta(γ )vM, λ �→ [da(γ)v]λ.

Here we use Tγ G to denote the tangent space of G at γ. Note that in gen-
eral we can neither expect the action a to be differentiable nor the map
γ �→a(γ)u to be differentiable for any fixed u∈M.
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Using the ansatz u= a(γ(t))v and γt (t)= dLγ (t)(1)µ, where µ lies in
the Lie algebra T1G, and dLγ denotes the derivative of the left translation
Lγ :g �→γ◦g, equation (2) is transformed into (cf. [2, 11, 14])

vt =F(v)−[da(1)v]µ. (3)

The following is a constructive definition of relative equilibria which is
appropriate from a numerical point of view [2].

Definition 1.1. A solution ū of (2) is called a relative equilibrium if
it has the form ū(t)=a(γ̄(t))v̄ where γ̄ : [0,∞)→G is a smooth curve sat-
isfying γ̄(0)=1 and v̄ does not depend on time.

Note that usually the whole group orbit O(v̄)={a(γ)v̄, γ∈G} is called a
relative equilibrium if it is invariant under the semi-flow [3, 8]. For our
purpose it is more convenient to select a special time orbit within this
group orbit.

1.2. Parabolic Equations

In the following we consider a special case of (2), namely an equivari-
ant parabolic PDE,

ut =Auxx +f (u,ux), x ∈R, t >0, u(x, t)∈Rm, (4)

where A∈Rm,m is a positive definite matrix. We make the following tech-
nical assumption to f which includes nonlinearities of the form uux .

Hypothesis 1.2. Let f̄ (u, u′)(x) = f (u(x), u′(x)) and f ∈ C1(Rm ×
Rm,Rm) be of the form

f (u, v)=f1(u)v +f2(u), f1 ∈C1(Rm,Rm,m), f2 ∈C1(Rm,Rm)

where f1, f2, f
′
1, f

′
2 are globally Lipschitz.

We choose a function ṽ :R→ Rm such that Aṽ′′ +f (ṽ, ṽ′)∈L2 and define
M = ṽ +L2, N = ṽ +H2. Then F : ṽ +H2 →L2 in (2) reads

F(u)=Au′′ + f̄ (u, u′).

We choose a basis {e1, . . . , ep} in the Lie algebra T1G, where p is the
dimension of G, write µ=∑p

i=1 µie
i and define Si(v)=−da(1)vei . Then

(3) reads

vt =Avxx +S(v)µ+f (v, vx) (5)
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where we use the short notation S(v)µ=∑p

i=1 Si(v)µi . In the rest of the
paper we assume that the operators Si are linear differential operators of
order �1 which can be written as

Si(v)(x)=Si
0v(x)+Si

1v
′(x), Si

0,1 ∈Rm,m.

In order to compensate for the additional p degrees of freedom which are
obtained by introducing the parameter µ ∈ Rp, a phase condition of the
form

0=〈Si(v̂), v − v̂〉, i =1, . . . , p.

is added, where v̂ �= 0 is a given reference function with v̂ − v̄ ∈H1. This
leads together with (5) to the PDAE

vt =Avxx +
p∑

i=1

µi(S
i
0v +Si

1vx)+f (v, vx)

0=〈Si(v̂), v − v̂〉.
(6)

Let (v̄, µ̄)∈ ṽ +H2 ×Rp be the stationary solution of (6) with

lim
x→±∞ v̄(x)= v̄±. (7)

From the condition v̄∈ ṽ+H2 we obtain the condition Si(v̄)∈L2 for i =
1, . . . , p. The concrete choice of ṽ will be given in the following examples:

Example 1.3. Let ṽ be a function with ‖v̂(x)−v±‖ � const e±�x

where f (v±,0) = 0. Consider the shift action of G = R, i.e. [a(γ)u](x) =
u(x − γ) on M = ṽ +L2 ⊃N = ṽ +H2. Then we have [da(1)v]e1 =−vx i.e.
S1

1 = I , S1
0 =0 and (6) reads

vt =Avxx +λvx +f (v, vx),

0=〈v̂′, v − v̂〉L2
.

The relative equilibria are traveling waves ū(x, t)= v̄(x − λ̄t) with station-
ary points limx→±∞ v̄(x)=v±.

Example 1.4. Consider (4) for ṽ=0, i.e. for M =L2 and N =H2. Let
the Lie group be G= S1 × R with (ρ, τ )= γ ∈G and (ρ, τ ) ◦ (ρ̃, τ̃ )= (ρ +
ρ̃, τ + τ̃ ). Let the action a :G×L2 →L2 be given for u :R→R2 by

[a(γ)u](x)=R−ρu(x − τ), Rρ =
(

cosρ − sin ρ
sin ρ cosρ

)
.
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Then we have [da(1)v]e1 = −vx ,[da(1)v]e2 = −Rπ
2
v, i.e. S1

1 = I , S2
0 = Rπ

2
,

S1
0 =S2

1 =0 and (6) reads with µτ = τt , µρ =ρt

vt =Avxx +µτvx +µρRπ
2
v +f (v, vx),

0=〈v̂′, v − v̂〉L2
, 0=〈Rπ

2
v, v − v̂〉L2

.

The relative equilibria are rotating and traveling waves ū(x, t)=R−µ̄ρ t v̄(x −
µ̄τ t). Note that, if v̄ is a front, i.e. v̄− �= v̄+, then v̄ and Rπ

2
v̄ are not in L2.

In this case, considering a rotating front, the condition S2(v̄)=Rπ
2
v̄∈L2 is

not satisfied and the stability result of this paper cannot be applied.

We are interested in the asymptotic stability of (v̄, µ̄) which is defined as
follows.

Definition 1.5 (Asymptotic stability). The stationary solution (v̄, µ̄) of
(6) is asymptotically stable, if ∀ε > 0, ∃δ > 0 such that for all solutions
(v,µ) of (6) with ‖µ(0)− µ̄‖ +‖v(· ,0)− v̄‖ � δ:

‖µ(t)− µ̄‖ +‖v(· , t)− v̄‖
{

� ε ∀t �0
→0 for t →∞.

Remark 1.6. Note that by the freezing ansatz the well known notion
of asymptotic stability with asymptotic phase for ū is converted into
asymptotic stability for (v̄, µ̄).

The stability of the PDAE solution (v̄, µ̄) is determined by the spectrum
of the linearization Λ :H2 →L2 of the r.h.s. of (5) w.r.t. v at (v̄, µ̄) which
is given by

Λv =Av′′ +Bv′ +Cv, where (8)

B(x)=D2f (v̄(x), v̄′(x))+
p∑

i=1

µ̄iS
i
1, C(x)=D1f (v̄(x), v̄′(x))+

p∑

i=1

µ̄iS
i
0.

Assumption (7) implies with the properties of A that limx→±∞ v̄′(x) = 0.
Thus Λ converges for x →±∞ to constant coefficient operators

Λ±v =Av′′ +B±v′ +C±v, B± = lim
x±∞B(x),C± = lim

x±∞C(x).

Our standing assumption in this paper is the following: The operator Λ

defined in (8) satisfies the usual conditions which guarantee asymptotic
stability with asymptotic phase for ū [7, 17]:
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Hypothesis 1.7 (Eigenvalue condition). The functions Si(v̄) ∈ L2, i =
1, . . . , p are linearly independent and span the null space of Λ :H2 →L2, i.e.

N (Λ)= span{S1(v̄), . . . , Sp(v̄)}.
The eigenvalue zero is semi-simple and there exists β >0 such that there are
no other isolated eigenvalues s of finite multiplicity with Re s �−β.

Hypothesis 1.8 (Spectral condition). There exist σ >0, β >0, such that
for s with Re s �−β the solutions λ of the quadratic eigenvalue problems

det(λ2A+λB± +C± − sI )=0

satisfy: |Reλ|�σ .

Example 1.9. For Example 1.4 the operator Λ reads

Λv =Av′′ + (µτ I +D2f (v̄, v̄′))v′ + (µρRπ
2

+D1f (v̄, v̄′))v

and its null space is spanned by v̄′ and Rπ
2
v̄.

Note, that for the excluded case of a rotating front, the continuous
spectrum of Λ touches the imaginary axis. Therefore even in the contin-
uous case the usual stability theory which relies on a spectral gap cannot
be applied.

2. NUMERICAL APPROXIMATION

2.1. DAE Formulation

In order to compute numerical approximations of (v̄, µ̄) we define a
discrete interval

J =[n−, n+]={n∈Z : n− �n�n+, where n± ∈Z∪{±∞}}
and a corresponding equidistant grid with grid size h>0

Jh ={xn : xn =nh, n∈J }.
We denote the Banach space of sequences in Rm which are indexed by
J provided with the supremum norm ‖z‖∞ = supn∈J ‖zn‖ by �J∞(Rm) and
write Jh →R if h→0 and simultaneously h ·min{−n−, n+}→∞, i.e. ±n±
grows faster than h decreases, so that [hn−, hn+]→R.

If necessary, we embed each u∈ �J∞(Rm) in �∞(Rm) by setting un =0
for n∈Z\J without further notice. If no confusion is possible we drop the
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argument Rm and write just �J∞ and �∞. Let the standard finite difference
operators on the extended grid

Ĵh ={xn : xn =nh, n∈ Ĵ =[n− −1, n+ +1]}
be given by δ0 : �Ĵ∞ → �J∞, δ+ : �

[n−,n++1]∞ → �J∞, δ− : �
[n−−1,n+]∞ → �J∞,

where

(δ0v)n = 1
2h

(vn+1 −vn−1), (δ+v)n = 1
h

(vn+1 −vn), (δ−v)n = 1
h

(vn −vn−1).

Then for sequences u, v∈�J∞(Rm), J =[n−, n+] we define the inner product
and discrete Sobolev norms by

〈u, v〉Jh
=

n+∑

n=n−
huT

n vn, ‖u‖L2,h
=
√

〈u,u〉Jh
,

‖u‖H1
h
=‖u‖L2,h

+‖δ+u‖L2,h
, ‖u‖H2

h
=‖u‖H1

h
+‖δ+δ−u‖L2,h

.

Discretizing (6) and adding linear boundary conditions

Bv =P−vn− +Q−(δ0v)n− +P+vn+ +Q+(δ0v)n+ , P±,Q± ∈R2m,m

leads to the differential algebraic equation (DAE)

v′
n =A(δ+δ−v)n + Ŝn(v)µ+f (vn, δ0vn), n∈J, t >0 (9a)

0=Bv −η, (9b)

0=〈Ŝi (v̂|Jh
), v − v̂|Jh

〉
Jh

, i =1, . . . , p, (9c)

where Ŝi
n(v) = Si

0vn + Si
1(δ0v)n ∈ Rm and Ŝn(v)µ =∑p

i=1 µiŜ
i
n(v). This sys-

tem is a DAE of differentiation index 2 [6].
We assume that the boundary conditions are partitioned into a

Dirichlet and Neumann part, i.e. the matrices (P±,Q±)∈R2m,2m have the
following structure

(P±,Q±)=
(

P N± QN±
P D± 0

)

, P N± ,QN± ∈Rk,m, P D± ∈R2m−k,m

and the matrix (Q−Q+) is of rank r ∈ [0,2m]. This induces the following
splitting of the boundary conditions (9b) into one part that does depend
on the external variables vn−−1, vn++1 and one part that depends on the
values at the inner grid points vn− , . . . , vn+ only:

BNv =P N− vn− +QN−δ0vn− +P N+ vn+ +QN+δ0vn+=ηN, (10a)

BDv|Jh
=P D− vn− +P D+ vn+ =ηD. (10b)
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Note that initial values v0,µ0 are called consistent if they solve the alge-
braic constraints (9b),(9c) as well as the equations

0=BD(Aδ+δ−v + Ŝ(v)µ+f (v, δ0v)),

0=〈Ŝ(v̂),Aδ+δ−v + Ŝ(v)µ+f (v, δ0v)〉Jh
,

(11)

which are obtained by differentiating (10b),(9c) w.r.t. time t and inserting
(9a).

Define π :�Ĵ∞(Rm)→�J∞(Rm) as the restriction operator onto J by

π : (un−−1, . . . , un++1) �→ (un−, . . . , un+).

Then (9) can be written in the form

(πv)′ =fdiff (v, λ), v(0)=v0, λ(0)=λ0

0=falg(v, λ),
(12)

where fdiff :�Ĵ∞(Rm)×Rp →�J∞(Rm), falg :�Ĵ∞(Rm)×Rp →R2m+1.
The proper notion of a solution of (12) is the following

Definition 2.1. A function (v, λ) : [0, τ ) → �Ĵ∞(Rm) × Rp is called a
solution of (12) in (0, τ ), τ ∈R∪{∞} if

(1) fdiff (v(·), λ(·)) : [0, τ )→�J∞ is continuous
(2) (v, λ) : [0, τ )→�Ĵ∞(Rm)×Rp is continuous
(3) (πv)′(t) exists, (πv)′(t)=fdiff (v(t), λ(t))∈�J∞(Rm) for t ∈ (0, τ ),

and (v(0), λ(0))= (v0, λ0)

(4) falg(v(t), λ(t))=0 ∀t ∈[0, τ ).

2.2. Main Result

The main result of this paper is the following discrete stability theo-
rem for the stationary solution (ṽ, µ̃) of (9a). The existence of such a solu-
tion for large enough J and small h has been proven in Theorem 2.6 in
[15] together with the convergence estimate

‖v̄|Jh
− ṽ‖H2

h

+‖µ̄− µ̃‖ � const (h2 + e−αhmin{−n−,n+}). (13)

Before we can state the stability result Theorem 2.8 we have to collect the
necessary hypotheses on the boundary conditions and the phase condition.

We assume that v̂ :R→Rm is a given template function and define the
following class E�(I,Rm,p) of functions:
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Definition 2.2. We define a function g : I → Rm,p, I ⊂ R to be in
E�(I,Rm,p) if there exists K >0 such that for all x ∈ I :

‖g(x)‖ �Ke−�|x| and ‖g′(x)‖ �Ke−�|x|.

Hypothesis 2.3 (phase condition). Assume that S(v̂)∈E�(R,Rm,p) and
the p ×p matrix

〈S(v̂), S(v̄)〉L2
=
∫

R

[S(v̂)](x)T [S(v̄)](x) dx.

is nonsingular.

The following determinant condition is needed for resolvent estimates
in a compact region for the continuous operator restricted to finite inter-
vals [1]. It allows to control the growing terms for x →±∞ of the solution
to the resolvent equation. Since for bounded |s| we rely on the solution
of the corresponding problem for the continous system we have to employ
the same condition here.

Definition 2.4. Define

D(s)=det
(
(
P− Q−

)
(

Y s−(s)

Y s−(s)Σs−(s)

)
(
P+ Q+

)
(

Yu+(s)

Y u+(s)Σu+(s)

))

where Y s−(s), Y u+(s) ∈ Rm,m and Σs−(s),Σu+(s) ∈ Rm,m solve the quadratic
eigenvalue problems

AYΣ2 +B±YΣ+ (C± − sI )Y =0

with Reσ(Σs±(s))<0 and Reσ(Σu±(s))>0.

Hypothesis 2.5 (boundary conditions). The boundary condition (9b) is
satisfied at the stationary points v̄±, i.e. η = P−v̄− + P+v̄+ and there exist
β,C >0 such that D(s) �=0 if |s|�C and Re s >−β.

In order to obtain resolvent estimates for large |s| we have to employ
a truly discrete condition, which ensures that a certain z dependent matrix
is uniformly invertible for z in a special region of C .

If δ > 0 is chosen such that |arg µ| < π
2 − δ ∀µ ∈ σ(A−1) then there

exists C >0 such that the following matrix function is well defined

�(z)=

⎧
⎪⎨

⎪⎩

1

(1+|z|2) 1
2
(I + z2A−1)

1
2 A− 1

2 , |arg(z)|� π
4 + δ

3

z

(1+|z|2) 1
2
( 1
z2 I +A−1)

1
2 A− 1

2 , |z|�C.
(14)

Then we can formulate the following hypothesis.
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Hypothesis 2.6. Assume that there exists C >0 such that the matrices

Γz =
(

QN−�(z) −QN+�(z)

P D− P D+

)

(15)

have uniformly bounded inverses for

z∈C : arg(z)� π

4
+ δ

3
or |z|�C.

This hypothesis is used in Section 4 to prove resolvent estimates which are
needed in Section 3. The uniformity conditions in Hypotheses 2.5 and 2.6
seem rather technical and in fact hard to check, but the following remark
shows that Hypotheses 2.5 and 2.6 are strongly related to another condi-
tion which stems from the continous problem that can be checked easily.

Remark 2.7. The following statements are equivalent

(1) Γz has a uniformly bounded inverse for all |arg z| � π
4 + δ

3 and
for |z|�C.

(2) The matrices

Γ0 =
(

QN−A− 1
2 −QN+A− 1

2

P D− P D+

)

and Γ∞ =
(

QN−A−1 −QN+A−1

P D− P D+

)

are nonsingular and Γz is nonsingular for |arg z|� π
4 + δ

3 , z �=0.

The nonsingularity of Γ0 corresponds to the corresponding condition (see
Theorem 2.1 in [1]) which is necessary for resolvent estimates for large |s|
for the continuous operator which is restricted to a finite interval. The
nonsingularity of Γ∞ will also be used in Section 3 to reduce the DAE
to a corresponding ODE the stability of which can then be discussed.
Moreover, one can show that det(Γ0) �= 0 implies D(s) �= 0 for all large s

(see the corresponding remark in Section 5 of [1]).
For the boundary conditions which are used in the numerical com-

putations such as Neumann, Dirichlet and periodic boundary conditions,
Hypothesis 2.6 is always satisfied.

Note that Hypothesis 2.5 is crucial as the following example shows:
For a traveling wave solution v̄ of scalar equation

ut =uxx +f (u)

which moves with velocity λ̄ we consider boundary conditions, which are
a homotopy between Neumann and Dirichlet conditions, i.e.

P− =
(

α

0

)

, P+ =
(

0
α

)

, Q− =
(

1−α

0

)

, Q+ =
(

0
1−α

)

, α ∈[0,1].
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Then condition 2.5 reads

det
(

α + (1−α)νs−(s) 0
0 α + (1−α)νu+(s)

)

�=0,

where ν
s,u
± denotes the stable and unstable spatial eigenvalue respectively,

i.e. the roots of the characteristic equation

ν2 + λ̄ν +f ′(v̄±)− s =0.

Thus Hypothesis 2.5 is violated for α ∈ (0,1) with

s(α)=
(

α

α −1

)2

+ λ̄α

α −1
+f ′(v̄±).

In this case the value s(α) is a spurious eigenvalue which is created by the
boundary conditions. If it is positive then it affects stability. We will illus-
trate this effect in Section 5.

Now we can state the main result of this paper.

Theorem 2.8. Assume that Hypotheses 2.3,2.5,2.6 hold.
Then there exist h0 > 0, T > 0 such that for h<h0, ∓hn± >T the sta-

tionary solution (ṽ, µ̃)∈�J∞(Rm)×Rp of (9a) is asymptotically stable.
More precisely, there exist ν, ρ, h0, T >0 such that for h<h0, ∓hn± >

T the following statements hold if e−αT < c
√

h for some c > 0,where α

denotes the constant in Hypothesis 2.3:
For each consistent initial value (v0,µ0)∈�Ĵ∞(Rm)×Rp (i.e. (9b), (9c),

(11) are satisfied) with ‖v0 − ṽ‖H1
h
�ρ, there exists a unique solution (v,µ)

of (9) with initial condition (v(0),µ(0))= (v0,µ0) which obeys for some ν >

0 the estimate

‖v(t)− ṽ‖H1
h
+‖µ(t)− µ̃‖ � const e−νt . (16)

Remark 2.9. Combining estimate (16) with (13) we obtain for h >

h0,±n± >T and a sufficiently large τ0 >0:

‖v(t)− v̄‖H2
h
+‖µ(t)− µ̄‖ � const (e−νt +h2 + e−αhmin{−n−,n+}) ∀t >τ0.

Note that similar estimates hold for ‖·‖∞ (see [14, 15]).

Remark 2.10. We will show later in Lemma 3.3 that if one prescribes
the initial value v0 on the grid J and if the so called essential conditions
(9c),(10b) are satisfied, then the external points v0

n−−1, v
0
n++1 of v0 and the

initial parameter µ0 can be chosen in such a way, that (v0,µ0) solves (9b),
(9c), (11).
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Theorem 2.8 will be proven at the end of the next section, in the begin-
ning of which we give a short outline of the main steps of the proof.

It mainly relies on resolvent estimates for the linearized operator,
which (after reduction to an ODE) can be used to prove stability esti-
mates. Moreover, we make use of the fact that the linearized operator
in the continuous case is sectorial and there is a gap between the essen-
tial spectrum and the zero eigenvalues. This gap is used here to derive
resolvent estimates for the discretized system in a similar way as has
been carried out for the continuous system in [1, 14]. The main tool
are exponential dichotomies combined with linearization at the asymptotic
states. We expect that part of this analysis can still be used for special pat-
terns in higher dimensions.

3. STABILITY OF THE NONLINEAR SYSTEM

System (9) has the special structure of an initial boundary value prob-
lem with an additional constraint. Therefore we will reduce the algebraic
constraints directly and try to follow the spirit of the semigroup approach
which has been used to prove asymptotic stability with asymptotic phase
for relative equilibria of the continuous system [7].

To this end in Section 3.1 we transform (9) into a semilinear equation
with stationary solution zero and prove a stability result for this system
in Section 3.4. This is achieved by reducing the DAE to a correspond-
ing ODE in Section 3.2 and proving exponential estimates for the solu-
tion operator of the corresponding linear equation in Section 3.3. These
estimates can be concluded from an integral representation using resolvent
estimates which will be shown in Section 4.

3.1. The Semilinear Equation

Let (ṽ, λ̃) be the stationary solution of (9) and insert w = v − ṽ, µ=
λ− λ̃ into (9) to obtain

w′
n = (Λ̃w)n + Ŝn(ṽ)µ+ϕn(w,µ), n∈J (17a)

0=Bw (17b)

0=〈Ŝ(v̂),w〉Jh
, (17c)

where Λ̃ :�Ĵ∞ →�J∞, (Λ̃v)n =A(δ+δ−v)n + B̃n(δ0v)n + C̃nvn,

B̃n =D2f (ṽn, (δ0ṽ)n)+
p∑

i=1

λ̃iS
i
1, C̃n =D1f (ṽn, (δ0ṽ)n)+

p∑

i=1

λ̃iS
i
0
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and ϕ :�Ĵ∞ ×Rp →�J∞, ϕn(v,µ)= ω̂n(v)+ Ŝn(v)µ, with

ω̂n(v) = f (ṽn +vn, δ0ṽn + δ0vn)−f (ṽn, δ0ṽn)−D1f (ṽn, δ0ṽn)vn

−D2f (ṽn, δ0ṽn)δ0vn.

Using the notations Ψ = Ŝ(v̂), Φ = Ŝ(ṽ) stability of (ṽ, λ̃) is now equiva-
lent to the stability of zero as a solution of (17) which we rewrite using
the operator π and (10) as follows:

πv′ = Λ̃v +Φµ+ϕ(v,µ), (18a)

0=BNv, (18b)

0=BDπv, (18c)

0=〈Ψ, πv〉Jh
. (18d)

For the semilinear equation (18) the consistency conditions (11) read

0=BD(Λ̃v +Φµ+ϕ(v,µ)),

0=〈Ψ, Λ̃v +Φµ+ϕ(v,µ)〉Jh
.

(19)

For (v,µ)∈�J∞ ×R we use the notation

B
H1

h

δ ((v,µ))={(u, λ)∈�Ĵ∞ ×R : ‖v −u‖H1
h
+‖µ−λ‖ � δ}

and define the space of consistent initial conditions by

�J
co ={(v,µ)∈�Ĵ∞ ×Rp : (v,µ) satisfies (18b)–(18d), (19).

The main assumptions on ϕ are summarized in the following hypothesis.

Hypothesis 3.1. Assume that ϕ : �Ĵ∞ × Rp → �J∞ satisfies ϕ(0,0) = 0
and that there exist ρ0, h0, T > 0 such that for h < h0, ±n±h > T for all

(v,µ), (u, λ)∈B
H1

h
ρ (0), with ρ <ρ0, the uniform estimates

‖ϕ(v,µ)−ϕ(u,λ)‖L2,h
� const (‖v −u‖H1

h
+max(‖v‖H1

h
,‖u‖H1

h
)‖µ−λ‖)

(20)

‖ϕ(v,µ)‖L2,h
� const ρ(‖v‖H1

h
+‖µ‖) (21)

hold, with constants which are independent of J and h.

The main result of this section is the following stability theorem for
the zero solution of the DAE (18).
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Theorem 3.2. Let Λ satisfy Hypotheses 1.7,1.8 and let ϕ satisfy
Hypothesis 3.1. Assume further that Ψ= Ŝ(v̂), where v̂ satisfies Hypothesis
2.3 and that the boundary conditions satisfy Hypotheses 2.5,2.6.

Then there exist h0 >0, T >0, such that for h<h0, ∓hn± >T the sta-
tionary solution 0∈�Ĵ∞ ×R of (17) is asymptotically stable.

More precisely, there exist ρ,h0, T >0 such that for h<h0, ∓hn± >T

with e−αT <c
√

h for some c>0,where α denotes the constant in Hypothesis
2.3, the following statements hold.

For each initial value (v0,µ0)∈�J
co with ‖v0‖H1

h
+‖µ0‖ <ρ there exists

a unique solution (v,µ) of (17). This solution obeys for some ν >0 the esti-
mate

‖v(t)‖H1
h
+‖µ(t)‖ � const e−νt ∀t �0. (22)

We first show that Theorem 3.2 implies the stability result Theorem 2.8.

Proof of Theorem 2.8. For ϕ(v,µ) = ω̂(v) + Ŝ(v)µ, we prove that
Hypothesis 3.1 is satisfied.

Hypothesis 1.2 implies that f ′
1, f

′
2 are globally bounded and

D1f (u,w)=f ′
1(u)(w, ·)+f ′

2(u), D2f (u,w)=f1(u),

for u,w, δu, δw ∈Rm

‖D1f (u+ δu,w + δw)−D1f (u,w)‖ � const (‖δu‖ +‖δw‖),

‖D2f (u+ δu,w + δw)−D2f (u,w)‖ � const ‖δu‖.
(23)

Thus we obtain for v,u∈B1,∞
ρ (0)

‖ω̂n(v)− ω̂n(u)‖=‖f (ṽn +vn, δ0ṽn + δ0vn)−f (ṽn +un, δ0ṽn + δ0un)

−D1f (ṽn, δ0ṽn)(vn −un)−D2f (ṽn, δ0ṽn)(δ0vn − δ0un)‖
� const (‖vn −un‖ +‖vn −un‖‖δ0vn‖ +‖un‖‖δ0(v −u)n‖)

This implies for all (v,µ), (u, λ) ∈ B
H1

h
ρ (0) using Hypothesis 3.1 and the

Sobolev imbedding ‖v‖∞ � const ‖v‖H1
h
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‖ω̂(v)− ω̂(u)‖2
L2,h

=
n+∑

n=n−
h‖ω̂n(v)− ω̂n(u)‖2

� const

⎛

⎝
n+∑

n=n−
h‖vn −un‖2 +‖δ0v‖2∞

n+∑

n=n−
h‖vn −un‖2

+ ‖u‖2∞
n+∑

n=n−
h‖δ0(v −u)n‖2

⎞

⎠

� const (‖v −u‖2
L2,h

+‖v −u‖2
H1

h

‖v‖2
H1

h

+‖u‖2
H1

h

‖v −u‖2
H1

h

)

� const ‖v −u‖2
H1

h

.

Furthermore, (23) leads for ‖v‖1,∞ �ρ to

‖ŵn(v)‖ �‖f (ṽn +vn, δ0ṽn + δ0vn)−f (ṽn, δ0ṽn)

−D1f (ṽn, δ0ṽn)vn −D2f (ṽn, δ0ṽn)δ0vn‖
�
∫ 1

0
‖[D1f (ṽn + tvn, δ0ṽn + tδ0vn)−D1f (ṽn, δ0ṽn)]vn‖dt

+
∫ 1

0
‖[D2f (ṽn + tvn, δ0ṽn + tδ0vn)−D2f (ṽn, δ0ṽn)]δ0vn‖dt

� const
∫ 1

0
t (‖vn‖ +‖δ0vn‖)‖vn‖ dt +

∫ 1

0
t‖vn‖‖δ0vn‖ dt

� const (‖vn‖ +‖δ0vn‖)‖vn‖.

This implies for ‖v‖H1
h
�ρ

‖ŵ(v)‖2
L2,h

� const
n+∑

n=n−
h(‖vn‖ +‖δ0vn‖)2‖vn‖2

� const ‖v‖2∞h

n+∑

n=n−
(‖vn‖ +‖δ0vn‖)2

� const ‖v‖2
H1

h

‖v‖2
H1

h

� const ρ2‖v‖2
H1

h

.

These estimates show together with

‖µŜ(v)−λŜ(u)‖L2,h
� const (‖v‖H1

h
‖µ−λ‖ +‖v −u‖H1

h
‖λ‖)

� const ρ(‖v −u‖H1
h
+‖µ−λ‖)

and ϕ(0,0)= 0 that Hypothesis 3.1 holds. Finally, (v0,µ0) satisfies (17b),
(17c) and (19) if and only if (u0, λ0) satisfies (9b),(9c) and (11). �
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3.2. Reduction to an ODE

In the following we will use equations (18b), (19) to reduce system
(18) to an ODE in the subspace

�J
ess ={u∈�J∞(Rm) : BDu=0, 〈Ψ, u〉Jh

=0}.
where the essential algebraic conditions (18c),(18d) are satisfied.

We will show in Lemma 3.4, that there exists δ >0 such that for each
u0 ∈�J

ess with ‖u0‖ � δ, there exists a unique extension (v0,µ0)∈�J
co which

satisfies πv0 =u0.
The following lemma states conditions under which a consistent

(v,µ) ∈ �Ĵ∞ × Rp can be uniquely determined from a given u ∈ �J
ess with

πv =u. Here only the limiting case |z|→∞ of Hypothesis 2.6 is needed.
The proofs of the following two lemmas and the corollary are given

in the appendix.

Lemma 3.3. For each u ∈ �J
ess and each r ∈ �J∞ there exists a unique

extension (v,µ)∈�Ĵ∞ ×Rp such that πv =u, (18b) and

0=BD(Λ̃v +Φµ+ r),

0=〈Ψ, Λ̃v +Φµ+ r〉Jh

(24)

hold. The map (u, r) �→ (v,µ) is linear in u and r. Moreover with the nota-
tion

v =Mvu+Rvr, µ=Mµu+Rµr,

where Mv,Rv :�J∞ →�Ĵ∞, Mµ,Rµ :�J∞ →Rp, we obtain the estimate

‖Rvr‖H2
h
+‖Rµr‖ � const ‖r‖L2,h

. (25)

The following Lemma guarantees the solvability of the equations (18b),
(19) which define a transformation �J

ess �u→ (v,µ)∈�Ĵ∞ ×Rp.

Lemma 3.4. Let the assumptions of Theorem (3.2) hold.
Then there exist c, h0, T > 0 such that for all h < h0,±hn± > T with

e−αT >c
√

h the following statements hold.
For each u ∈ �J

ess there exists a unique extension �Ĵ∞ × Rp � (v,µ) =
(Tv(u), Tµ(u)) such that πv =u, Tv(0)=0,Tµ(0)=0 and (18b), (19) hold.

Moreover, we have the following estimates.

‖Tv(u1)−Tv(u2)‖L2,h
+‖Tµ(u1)−Tµ(u2)‖ � const ‖u1 −u2‖H1

h
(26a)

‖Tv(u)‖L2,h
+‖Tµ(u)‖ � const ‖u‖H1

h
. (26b)
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We will use the above transformations Tv, Tµ to reduce the DAE (18) to
an equivalent ODE in �J

ess

u′ = Λ̃pu+ ϕ̃(u), u(0)=u0 (27)

where

Λ̃p :�J
ess →�J

ess, u �→ (Λ̃Mv +ΦMµ)u

and

ϕ̃(u)= Λ̃(Tv(u)−Mvu)+Φ(Tµ(u)−Mµu)+ϕ(Tv(u), Tµ(u)). (28)

The properties of ϕ̃ are an immediate consequence of Lemma 3.5:

Corollary 3.5. The nonlinearity ϕ̃ satisfies

‖ϕ̃(u)− ϕ̃(v)‖L2,h
� const ‖u−v‖H1

h
,

and for each σ >0 there exists ρ >0 such that

‖ϕ̃(u)‖L2,h
�σ‖u‖H1

h
, if ‖u‖H1

h
�ρ.

Remark 3.6. Note that if ϕ : �J∞ × Rp → �J∞ does not depend on
(v,µ), i.e. ϕ(v,µ) = r ∈ �J∞ then the transformation ϕ → ϕ̃ is just a pro-
jection ϕ̃ =Πr ∈�J

ess, where

Πr = (Λ̃Rv +ΦRµ + I )r. (29)

The following Lemma shows the equivalence of (27) and (18).

Lemma 3.7. Assume the same as in Theorem 3.2. Then there exist
h0, T >0 such that for h<h0, ±n±h>T we have the following equivalence.

For each ρ > 0 there exists a δ > 0 such that if u ∈ C([0, τ ), �J
ess ∩

B
H1

h

δ (0)) is a solution of (27) on (0, τ ) with u(0) = u0 then (v(t),µ(t)) =
(Tv(u(t)), Tµ(u(t))) ∈ C([0, t), �Ĵ∞ × Rp) is a solution of (18) on (0, τ ) with
v(0)=Tv(u

0),µ(0)=Tµ(u0) and ‖v(t)‖H1
h
+‖µ(t)‖ �ρ.

Conversely, there exists ρ > 0 such that if (v(t),µ(t)) ∈ C([0, t), �Ĵ∞ ×
Rp) is a solution of (18) on (0, τ ) with (v(0),µ(0)) = (v0,µ0) ∈ �J

co and
‖v(t)‖H1

h
+‖µ(t)‖ �ρ, then u=πv is a solution of (27) with ‖u(t)‖H1

h
<ρ.
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Proof. Let (v(t),µ(t)) a solution of (18) for consistent initial val-
ues (v0,µ0)∈�J

co on (0, τ ). Then differentiating (18c), (18d) w.r.t. time we
obtain by (18a) that (v(t),µ(t)) solves (19) for t ∈ (0, τ ). For u = πv we
can insert v =Tv(u), µ=Tµ(u) into (18a) to obtain

u′ =πv′ = Λ̃v +Φµ+ϕ(v,µ)

= Λ̃Tv(u)+ΦTµ(u)+ϕ(Tv(u), Tµ(u))= Λ̃pu+ ϕ̃(u).

Conversely, if u solves the reduced ODE (27) then Lemma 3.4 implies that

v(t) = Tv(u(t)),µ(t) = Tµ(u(t)) is a solution of (18) in B
H1

h
ρ (0) ⊂ �Ĵ∞ × Rp

for some ρ >0 in the sense of in the sense of Definition 2.1. �

Note that it is sufficient to consider (27) in �J
ess. Thus we have reduced

the bordered system (18) to an ODE (27) in �J
ess which is then solved as

usual via the “variation of constants” formula

u(t)=Σp(t)u0 +
∫ t

0
Σp(t − s) ϕ̃(u(s)) ds. (30)

Here the operator Σp(t) is defined via the Dunford integral

Σp(t)= 1
2πi

∮

Γ

est (sI − Λ̃p)−1 ds

and Γ is a closed curve which encloses the spectrum of Λ̃p.

3.3. Estimates of the Solution Operator

In order to obtain stability estimates for (27) estimates on Σp(t) are
required which are proven using resolvent estimates in different regions
of C . These are given in the following lemma which will be proved in
Section 4.

Lemma 3.8. There exist α>0, φ ∈ (π
2 , π), C >0 such that s ∈ρ(Λ) if

|s|>Ch−2 or |arg(s +α)|�φ, s �=−α. Furthermore, for all r ∈�J∞ the resol-
vent u= (sI − Λ̃p)−1Πr ∈ �J

ess with Π the projection defined in (29), can be
estimated by

‖u‖L2,h
� const

|s +α| ‖r‖L2,h
, ‖u‖H1

h
� const√|s +α| ‖r‖L2,h

. (31)

Lemma 3.9. Let Λ satisfy Hypotheses 1.7, 1.8 and assume that
Hypothesis 2.3 holds.
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Figure 1. Path of integration.

Then there exist h0, T ,K >0 such that for all h<h0 and ±n±h>T the
solution operator Σ(t) can be estimated by

‖Σp(t)r‖L2,h
�Ke−αt‖r‖L2,h

, ‖Σp(t)r‖H1
h
�Ke−αt 1√

t
‖r‖L2,h

.

Proof. We introduce the following notation for a function g : Γ →
[0,∞), where Γ={γ(ξ) : ξ ∈[0, l]} is a closed curve

∮

Γ

g(z)|dz| :=
∫ l

0
g(γ(ξ))|γ′(ξ)|dξ.

Note that we can take a path Γ around the eigenvalues of Λ̃p where Res <

0 ∀s ∈Γ (see Fig. 1). We denote the resolvent by G(s)= (sI − Λ̃p)−1 and
obtain for r ∈�J

ess with (31) for t >0 the following:

‖Σp(t) r‖L2,h
=
∥
∥
∥
∥

1
2πi

∮

Γ

estG(s)r ds

∥
∥
∥
∥L2,h

=
∥
∥
∥
∥

1
2πi

∮

Γ −α

estG(s)r ds

∥
∥
∥
∥L2,h

=
∥
∥
∥
∥

1
2πi

∮

Γ

e(s−α)tG(s −α)r ds

∥
∥
∥
∥L2,h

� 1
2π

e−αt

∮

Γ

|est |‖G(s −α)r‖L2,h
|ds|

� 1
2π

e−αt

∮

Γ

∣
∣
∣
∣
eλ

t

∣
∣
∣
∣‖G(

λ

t
−α)r‖

L2,h

|dλ|

� const e−αt‖r‖L2,h

∮

Γ

|eλ|
|λ| |dλ|

�Ke−αt‖r‖L2,h
.
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Here we have used the fact that we can move the curve Γ to the left up
to Γ−α for α <β small enough without changing the integral. Along the
rays this is the standard estimate for sectorial operators (see [9, 7]). Along
the arc γ(ξ)=Reiξ , ξ ∈[π

2 + δ, 3π
2 − δ] we obtain

∫ 3π
2 −δ

π
2 +δ

R|etReiξ |‖G(Reiξ )r‖L2,h
dξ �‖r‖L2,h

∫ 3π
2 −δ

π
2 +δ

RetR cos(ξ) 1
R

dξ <
π

2
‖r‖L2,h

.

In a similar way we obtain

‖Σp(t) r‖H1
h
�Ke−αt 1√

t
‖r‖L2,h

. ��

3.4. Local Existence, Uniqueness and Stability

In this section we prove the solvability of the integral equation (30)
together with some estimates. Note that the existence of a solution of (27)
follows from standard ODE theory.

Lemma 3.10. Assume the same as in Lemma 3.7. There exists h0, T > 0
such that for h<h0, ±hn± >T the following statements hold:

For each ρ > 0 there exist δ > 0 such that for each u0 ∈ �J
ess with

‖u0‖L2,h
< δ there exists τ(h, T ) > 0 such that a unique solution of (27)

exists on (0, τ (h, T )) and ‖u(t)‖H1
h
�ρ for t ∈[0, τ (h, T )).

Proof. For each fixed h,J =[n−, n+] we use the fact that there exist
C1(h, J ),C2(h, J ) with

C1(h, J )‖u‖ �‖u‖L2,h
�C2(h, J )‖u‖.

By Lemma 3.4 there exists ρ > 0 such that for ‖u‖H1
h

< ρ the map ϕ̃

is Lipschitz. Thus we can apply the standard Picard-Lindelöf theorem in
Rn+−n−+1 to obtain the existence of a solution of (27) for [0, τ (h, J )).
We can further achieve that ‖u‖ � C2(h, J )−1ρ in [0, τ (h, T )) such that
‖u‖L2,h

�ρ for all t ∈[0, τ (h, T )). �

The stability of zero as a solution of the reduced system (27) is the
usual Lyapunov type estimate. We repeat it here, since we are interested
not only in the stability of the solution of a single DAE but we aim at a
uniform stability estimate for a whole family of solutions of DAEs corre-
sponding to discretizations with different h and T .
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Lemma 3.11. Assume the same as in Theorem 3.2.
Then there exist ρ,h0, T > 0 such that for any h < h0, ±n±h > T and

any consistent initial condition u0 ∈�J
ess with ‖u0‖H1

h
�ρ the following holds:

There exists a unique solution u of (27) which can be estimated by

‖u(t)‖H1
h
� const e−νt , ν >0, ∀t �0. (32)

where all constants are independent of h,T .

Proof. We choose ν ∈ (0, α) and σ >0 so small that

Kσ

∫ ∞

0

e−(α−ν)s

√
s

ds � 1
2
.

Using Corollary 3.5 we choose δ >0 such that ϕ̃ :�J
ess(R

m)→�J
ess(R

m) sat-
isfies

‖ϕ̃(u)‖L2,h
�σ‖u‖H1

h
for ‖u‖H1

h
� δ.

Then for each h,J we find by Lemma 3.10 some ρ > 0 such that for
u0 ∈ �J

ess with ‖u0‖H1
h
� ρ a solution u of (27) exists on (0, τ (h, J )) with

‖u(t)‖H1
h
� δ for t ∈[0, τ (h, J ). With (30) and the estimates in Lemma 3.9

we obtain

‖u(t)‖H1
h
�‖Σp(t)u0‖H1

h
+
∫ t

0
‖Σp(t − s)ϕ̃(u(s))‖H1

h
ds

�Ke−αt‖u0‖H1
h
+K

∫ t

0

1√
t − s

e−α(t−s)‖ϕ̃(u(s))‖L2,h
ds

� δ

4
+Kσ

∫ ∞

0

1√
s

e−αs ds ‖u‖τ

H1
h

� 3
4
δ.

Since the ODE (27) is autonomous, this leads to τ(h, J ) = ∞ using
the usual arguments. From this the existence of u in (0,∞) follows
with ‖u(t)‖H1

h
< δ for all t ∈ [0,∞) and small enough h and large

enough T . It remains to prove the exponential estimate. Define n(t) =
sups∈[0,t]{eνs‖u(s)‖H1

h
} then

‖u(t)‖H1
h
eνt �Ke(ν−α)t‖u0‖H1

h
+Kσ

∫ t

0

1√
t − s

e−α(t−s)eνt‖u(s)‖H1
h

ds

�K‖u0‖H1
h
+Kσ

∫ t

0

1√
t − s

e(ν−α)(t−s)eνs‖u(s)‖H1
h

ds

<K‖u0‖H1
h
+ 1

4
n(t).
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Taking the supremum on both sides gives n(t) < 4K‖u0‖H1
h
< δ for t � 0

and we obtain (32). �

Now the stability Theorem 3.2 follows easily.

Proof of Theorem 3.2. For each δ > 0 there exists ρ > 0 such that
for any (v0,µ0)∈ �J

co with ‖v0‖H1
h
+‖µ0‖ <ρ we have u0 =πv0 ∈ �J

ess and

‖u0‖H1
h
� δ. By Lemma 3.11 we obtain a solution u of (27) on (0,∞)

which satisfies (32). Then Lemma 3.7 implies that

v(t)=Tv(u(t)), µ(t)=Tµ(u(t))

solves (18) with v(0) = Tv(u
0) = v0, µ(0) = Tµ(u0) = µ0. Moreover, it fol-

lows from (26b),(32) that (v,µ) can be estimated by (22). �

4. RESOLVENT ESTIMATES

We prove resolvent estimates in the regions ΩC,Ωh
C,Ωh∞ (cf. Fig. 2)

for the discretized system. To this end we transform the resolvent equa-
tion for the projected operator Λ̃p back into a bordered equation. This is
accomplished by reintroducing the algebraic variables. A direct application
of Lemma 3.3 leads to the following equivalence.

Figure 2. Regions for resolvent estimates
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Lemma 4.1. Let r ∈�J∞, then u∈�J
ess solves

(sI − Λ̃P )u=Πr (33)

and

v =Mvu+Rvr, µ=Mµu+Rµr

if and only if the pair (v,µ)∈�J
co is a solution of the bordered system

(sI − Λ̃)v −Φµ= r (34a)

Bv =0 (34b)

〈Ψ, πv〉h =0. (34c)

The main result of this section are the following estimates

Theorem 4.2. There exist h0, T >0 such that for each h<h0, ±n± >T

there exists for each s ∈ΩC ∪Ωh
C ∪Ωh∞ and each r ∈�J∞ a solution u of (33)

which can be estimated by

‖u‖L2,h
� const ‖r‖L2,h

, s ∈ΩC

|s|2‖u‖2
L2,h

+|s|‖u‖2
H1

h

� const ‖r‖2
L2,h

, s ∈Ωh
C ∪Ωh∞

with a constant which does not depend on h and T .

This implies immediately Lemma 3.8 which has been used in the previous
section.

For s in a compact set, a similar method as in the proof of the
approximation Theorem 2.6 in [15] can be used. For s ∈ΩC a solution of
(34) can be constructed directly by using the continuous system. For large
|s| a different approach is necessary, since the discrete resolvent equation
(35) cannot be related to corresponding continuous systems uniformly in
s. In that case the solutions for the resolvent equation are constructed
directly by a similar method as in [1].

4.1. Compact Subsets

Lemma 4.3. Let the same assumptions as in the previous lemma hold.
Then for each C >0 there exist h0, T >0 such that for each h<h0, ±n± >T

the following holds. For s ∈ΩC and r ∈�J∞ the resolvent equation (34) has a
unique solution (v,µ) ∈ �Ĵ∞ × Rp which satisfies the following uniform esti-
mate in s

‖v‖H2
h
+‖µ‖ � const ‖r‖L2,h

.
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The proof is along the same lines as the proof for the existence of the
eigenvalue zero for the discretized equations in [15] and can be found in
[14], so we omit it here.

4.2. |s| Large

The main result of this subsection is a resolvent estimate for the solu-
tion w of

(Λ̃− sI )w = r, (35a)

Bw =η. (35b)

Using a solution of (35) the existence of which will be proven in Lemma
4.5 we can construct a solution of (34).

Lemma 4.4. For s ∈Ωh
C ∪Ωh∞ there exists a solution (v,µ)∈ �Ĵ∞ ×Rp

of (34) which satisfies

‖v‖H1
h
+‖µ‖ � const ‖r‖L2,h

.

The main work of this section is the proof of the following lemma:

Lemma 4.5. Consider the resolvent equation (35) with diagonalizable
A>0 and assume that Hypothesis 2.6 holds.

Then C can be chosen such that there exist T > 0, h0 > 0 such that
for h < h0 and ±hn± > T and s ∈ Ωh

C ∪ Ωh∞ the following holds. The resol-
vent equation (35a) with boundary conditions (35b) possesses for each r ∈
�J∞(C m) and each η = (ηN, ηD)T ∈ C k × C 2m−k a unique solution w ∈
�Ĵ∞(C m). Furthermore, w can be estimated by

|s|2‖w‖2
L2,h

+|s|‖w‖2
H1

h

� const (‖r‖2
L2,h

+|s|‖ηN‖2 +|s|2‖ηD‖2
), s ∈Ωh

C

|s|2‖πw‖2
L2,h

+|s|‖πw‖2
H1

h

� const (‖r‖2
L2,h

+|s|‖ηN‖2 +|s|2‖ηD‖2
), s ∈Ωh∞

Before we continue with the proofs of Lemmas 4.4 and 4.5 we show that
Theorem 4.2 follows directly from the preceding estimates.

Proof of Theorem 4.2. Using πv =u we obtain from Lemma 4.3 and
Lemma 4.4 with Lemma 4.1 the asserted estimates. �

Proof of Lemma 4.4. For s ∈ Ωh
C ∪ Ωh∞ we can solve equation

(34a),(34b) using Lemma 4.5 by taking Φµ to the right hand side. We
denote its solution operator with G and obtain by inserting v =G(r +Φµ)

into (34c)

µ=−〈Ψ,GΦ〉−1〈Ψ,Gr〉



450 Thümmler

which leads to v =QGr where the projector Q is defined by

Qw =w −GΦ 〈Ψ,GΦ〉−1〈Ψ,w〉.
In order to estimate µ and Q we need a bound of ‖〈Ψ,GΦ〉−1‖. Use
Φ = GΛΦ − sGΦ = Gε − sGΦ and multiply with Ψ from the left. Then
〈Ψ,Gε〉 − 〈Ψ,Φ〉 = s〈Ψ,GΦ〉 and ‖ε‖ → 0 as Jh → R imply the invertibili-
ty of 〈Ψ,GΦ〉 for ±n>T,h<h0 as well as

‖〈Ψ,GΦ〉−1‖ � const |s|‖〈Ψ,Φ〉‖−1 � const |s|.
This implies with the estimates in Lemma 4.5 for G

‖Qw‖L2,h
� const ‖w‖L2,h

and ‖Qw‖H1
h
� const ‖w‖H1

h
.

Thus we obtain again with Lemma 4.5

‖v‖L2,h
� const

1
|s| ‖r‖L2,h

and ‖v‖H1
h
� const

1√|s| ‖r‖L2,h
. �

Before we start with a series of Lemmas which are needed for the
proof of Lemma 4.5, we give a short outline: We use exponential dichot-
omies for the discrete and the continuous system, for references see [10,
4] in a similar way as in [18, 1]. Equation (35) is transformed to first
order via the scaled transformation zn = (wn,

1
ρ
δ−wn). The transformed

system is approximated by constant coefficient operators L̂(s, ρ)zn =zn+1 −
M̂(s, ρ)zn, for small h and large ρ. The matrices M̂(s, ρ) are hyperbolic for
s ∈Ωh

C ∪Ωh∞ which implies that L̂(s, ρ) has exponential dichotomies on Z.
In order to obtain estimates for the solution of the corresponding bound-
ary value problem for large ρh we need to take into account the structure
of the right hand side of the transformed system.

In order to simplify the presentation we restrict ourselves to diago-
nalizable A. Using a pretransform with a matrix U that diagonalizes A

and using the fact that Hypothesis 2.6 is invariant under this transforma-
tion we assume w.l.o.g. that A∈C m,m is diagonal. Transformation to first
order via zn = (wn,

1
ρ
δ−wn), n=n−, . . . , n+ +1, for some ρ >0 leads to the

equation

Nn(ρ)zn+1 −Kn(s, ρ)zn = r̂n, n∈J =[n−, n+] (36a)

R(ρ)z= η̂ (36b)
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where

Nn(ρ)=
(

I −hρI

0 E+
n

)

, Kn(s, ρ)=
(

I 0
h
ρ
(sI −Cn) E−

n

)

, E±
n =A± h

2
Bn,

R(ρ)z=B−(ρ)zn− + B̂−zn−+1 +B+(ρ)zn+ + B̂+zn++1

and

r̂n =
(

0
h
ρ
rn

)

, B±(ρ)=
(

1
ρ
P N± 1

2QN±
P D± 0

)

, B̂±=
(

0 1
2QN±

0 0

)

, η̂=
(

1
ρ
ηN

ηD

)

.

For h small enough we can invert Nn(ρ) to obtain the explicit formulation
of (36a)

(L̃(s, ρ)z)n = h

ρ

(
hρI

I

)

E+
n

−1
rn, n∈J (37)

where

(L̃(s, ρ)z)n = zn+1 −Mn(s, ρ)zn,

Mn(s, ρ)=Nn(ρ)−1Kn(s, ρ)=
(

I+h2E+
n

−1
(sI−Cn) hρE+

n
−1

E−
n

h
ρ
E+

n
−1

(sI−Cn) E+
n

−1
E−

n

)

. (38)

In order to obtain solutions of (37), (36b) we will use the following con-
stant coefficient difference equation, given by

(L̂(s, ρ)z)n = h

ρ

(
hρI

I

)

rn, n∈J (39)

where

(L̂(s, ρ)z)n = zn+1 − M̂(s, ρ)zn, (40)

M̂(s, ρ)= N̂(ρ)−1K̂(s, ρ)= I +hρ

(
h
s
ρA−1 I
s

ρ2 A−1 0

)

(41)

and

N̂(ρ)=
(

I −hρI

0 A

)

, K̂(s, ρ)=
(

I 0
h
ρ
sI A

)

.
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As we will show later, L̂(s,
√|s|) is a small perturbation of L̃(s,

√|s|) for
|s| large. In the following we define ρ =√|s| and set s =ρ2e2iθ . Then we
obtain

M̂(s, ρ)= I +hρ

(
hρe2iθA−1 I

e2iθA−1 0

)

. (42)

We will prove that the matrices M̂(s, ρ) are hyperbolic for s ∈Ωh
C and s ∈

Ωh∞. Then L̂(s, ρ) possesses an exponential dichotomy on Z, which will be
used to construct a solution of (39), (36b).

Lemma 4.6. Consider

M = I +κN(κ), where N(κ)=
(

κS I

S 0

)

with κ > 0, and S ∈ C m,m a nonsingular diagonal matrix. Then there exist
δ,C >0 such that the following holds: If either (κ �C and arg(σ (S))�π −
δ) or κ >C then M is a hyperbolic matrix with m stable eigenvalues νs,i and
m unstable eigenvalues νu,i , i =1, . . . ,m. Moreover, there exist α, a >0, ε ∈
(0,C] such that for i =1, . . . ,m, the following estimates hold:
aκ2 � |νu,i |�ακ2,

a

κ2
� |νs,i |� α

κ2
for κ >C

|νu,i |�1+α, |νs,i |� 1
1+α

for κ ∈[ε,C], arg(σ (S))�π − δ

|νu,i |�1+ακ, |νs,i |� 1
1+ακ

for κ ∈ (0, ε), arg(σ (S))�π − δ.

Proof. Let µ∈C be an eigenvalue of S with eigenvector u. Then λ is
an eigenvalue of N(κ) with eigenvector v if and only if λ is a solution of

λ2 −λκµ−µ=0 (43)

and v =
(

λS−1v

u

)

. The solutions of (43) are given by

λ± =
⎧
⎨

⎩

1
2

(
κµ±√κ2µ2 +4µ

)
, if κ >0, |arg µ|�π − δ,

κµ
2

(
1±

√
1+ 4

µκ2

)
, if κ >C.

(44)

Note that both definitions coincide on the common domain of definition,
and that

λ+ −λ− =
{√

κ2µ2 +4µ if κ >0, |arg µ|�π − δ,

κµ
2

√
1+ 4

µκ2 if κ >C
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implies an lower estimate

|λ+ −λ−|� const max(κ,1). (45)

The eigenvalues ν± of M are given by ν± = 1 + κλ±. From λ−λ+ = −µ,
λ− +λ+ = κµ and (43) we obtain 1 + κλ− = (1 + κλ+)−1. We consider ν±
for κ in three different regions:

1. Large κ:
Use the expansion

√
1+ z=1+ z

2 +O(z2) to obtain

|1+κλ+|= |1+ µκ2

2

(

1+
√

1+ 4
µκ2

)

|�ακ2 if κ >C.

This implies |νu,i | � ακ2, as well as |νs,i | < 1
ακ2 for κ > C, i =

1, . . . ,m.
2. Small κ, |arg µ|�π − δ

For small κ and |arg µ|�π − δ we have the expansion

1+κλ+ =1+ κ2µ

2
+κ

√
µ

√

1+ κ2µ

4
=1+κ

√
µ+O(κ2).

From |arg µ|�π − δ we obtain Re
√

µ> 0 and hence |νu,i |� 1 +
ακ, |νs,i |� 1

1+ακ
for some α >0 and κ ∈ (0, ε).

3. κ in the compact set κ ∈[ε,C], |arg µ|�π − δ

Let κ > 0, |arg µ| � π − δ. In particular Re µ > 0. Then
Re

√
κ2µ2 +4µ � 0 by definition. Hence Re λ+ = Re κµ

2 +
Re

√
κ2µ2 +4µ � Re κµ

2 � cκ for some c > 0. Therefore
Re (1 + κλ+) � 1 + cκ2 and |1+κλ+| > 1. Since κ varies in a
compact interval the Lemma is proved.

�

By application of the previous Lemma with S = e2iθA−1 and κ =
ρh we obtain that the constant coefficient operators L̂(s, ρ) possess an
exponential dichotomy on Z if s ∈ Ωh

C ∪ Ωh∞ as the following corollary
shows.

Corollary 4.7. Assume that A∈C m,m is diagonal and positive definite.
Then there exist C, ε, δ > 0 such that the operators L̂(s, ρ) possess expo-
nential dichotomies on Z if s = ρ2e2iθ ∈ Ωh

C ∪ Ωh∞. The dichotomy data are
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(K,β,P ), where K is independent of ρ and h, and for some α >0

β = ln(α(ρh)2) for ρ >
C

h
,

β = ln(1+α) for ρ ∈
[

ε

h
,
C

h

]

, |θ |� π

4
+ δ

3
,

β = ln(1+αρh) for ρ ∈[C,
ε

h
], |θ |� π

4
+ δ

3

and the projector P is given by

P =
(

(Λs −Λu)
−1Λs −(Λs −Λu)

−1

−Λu(Λs −Λu)
−1Λs Λs(Λs −Λu)

−1

)

. (46)

Here Λs and Λu are defined by

Λs =diag(λ−,i )i=1,...,m, Λu =diag(λ+,i )i=1,...,m

where λ±,i are defined for each i =1, . . . ,m by (44) with µ=µi ∈σ(A−1).

Proof. Denote the eigenvalues of A−1 by re−2iφ , then the eigenvalues
of e2iθA−1 are given by re2i(θ−φ) and for |θ | < π

4 + δ
3 and |2φ| � π

2 − δ

we obtain 2|θ −φ| < π − δ
3 . Application of Lemma 4.6 with S = e2iθA−1

implies that the matrix M̂(s, ρ) given by 42 is hyperbolic for |θ |< π
4 + δ

3 .
Furthermore, the m stable eigenvalues νs,i =1+hρλs,i and the m unstable
eigenvalues νu,i =ν−1

s,i , i =1, . . . ,m can be estimated using Lemma 4.6 by

|νu,i |�α(ρh)2, |νs,i |� α

(ρh)2
, for ρ >

C

h

|νu,i |�1+α, |νs,i |� 1
1+α

, for ρ ∈[ ε
h

,
C

h
] (47)

|νu,i |�1+αρh, |νs,i |� 1
1+αρh

, for ρ ∈[C,
ε

h
].

The matrices M̂(s, ρ) can be transformed to diagonal form via T D =
M̂(s, ρ)T with

D =
(

Ds 0
0 D−1

s

)

, Ds = I +κΛs , Du = I +κΛu

and

T =
(−I −I

Λu Λs

)

, T −1 =
(

(Λs −Λu)
−1 0

0 (Λs −Λu)
−1

)(−Λs −I

Λu I

)

. (48)
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Note the relations

ΛuΛs = ΛsΛu =−S, Λs +Λu =κS, Du =D−1
s ,

ΛuDs = −Λs , Λs = 1
κ

(Ds − I ). (49)

From this the existence of an exponential dichotomy on Z for the con-
stant coefficient operators L̂(s, ρ) follows by Remark 2.5 in [10] with data
(K,β,P ) where β = − ln νs , νs ∈ (maxi=1,...,m |νs,i |,1) and P is defined in
(46). �

Using the exponential dichotomy we can construct directly a solution
of (39) in the usual way [10].

Lemma 4.8. For s ∈ Ωh
C ∪ Ωh∞ exist h0, T > 0 such that for h <

h0,±n±h > T and for each r ∈ �J∞(C m) there exists a unique solution z̃ ∈
�Ĵ∞(C 2m) of the boundary value problem

(L̂(s, ρ)z)n =
(

h2I
h
ρ
I

)

rn, n∈J

Pzn− =ρ− ∈R(P )

(I −P)zn+ =ρ+ ∈R(I −P)

where P is the dichotomy projector defined in (46). The solution has the
form

z̃n = zhom
n + ẑn(r), n∈J, z̃n++1 = M̂z̃n+ +

(
h2I
h
ρ
I

)

rn+ , where (50)

zhom
n = Ŝ(n, n−)ρ− + Ŝ(n, n+)ρ+, Ŝ(n,m)= M̂(s, ρ)n−m and (51)

ẑn(r)= h

ρ

⎛

⎝
n−1∑

m=n−
Ŝ(n,m+1)P

(
hρI

I

)

rm

−
n+−1∑

m=n

Ŝ(n,m+1)(I −P)

(
hρI

I

)

rm

⎞

⎠ . (52)

In order to obtain the necessary estimates of ẑ, especially for the case hρ >

C, we have to take into account the special structure of the right hand
side. Therefore we diagonalize equation (50) using the transformation T

given in (48). For wn =T −1zn equation (39) reads

wn+1 −
(

Ds 0
0 D−1

s

)

wn = h

ρ
T −1

(
hρI

I

)

rn, n∈J =[n−, n+].
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In order to be able to distinguish estimates in the different components
we introduce the following vector norm notation. For z= (u, v)∈Rm ×Rm,

‖z‖vec =
(

nu

nv

)

means ‖u‖ =nu,‖v‖ =nv and ‖z‖vec �
(

cu

cv

)

means the com-

ponentwise estimates ‖u‖ � cu and ‖v‖ � cv. With this notation we obtain
the following estimates for Ŝ.

Lemma 4.9. Let |σ(Ds)|<νs <1. Then the following holds.

∥
∥
∥
∥Ŝ(n,m+1)P

(
hρI

I

)∥
∥
∥
∥

vec
� c

max(ρh,1)

(
νs

1
ρh

(1−νs)

)

νn−m−1
s , n�m

∥
∥
∥
∥Ŝ(n,m+1)(I −P)

(
hρI

I

)∥
∥
∥
∥

vec
� c

max(ρh,1)

(
1

1
ρh

(1−νs)

)

νm−n
s , n<m

(53)

and

‖Ŝ(n, n−)T−‖vec �
(

νs
1
ρh

(1−νs)

)

ν
n−n−−1
s ,

‖Ŝ(n, n+)T+‖vec �
(

1
1
ρh

(1−νs)

)

ν
n+−n
s ,

(54)

where T = (T−, T+) with T defined by (48).

Proof. With

Ŝ(n,m)=T Dn−mT −1, P =T EsT −1, Es =
(

I 0
0 0

)

(55)

we obtain using Ds = I +hρΛs

Ŝ(n,m+1)P

(
hρI

I

)

= T

(
Dn−m−1

s 0
0 0

)

T −1
(

hρI

I

)

=
(

I

−Λu

)

Dn−m
s (Λs −Λu)

−1

=
(

Ds
1
ρh

(Ds − I )

)

Dn−m−1
s (Λs −Λu)

−1

and similarly

Ŝ(n,m+1)(I −P)

(
hρI

I

)

=
( −I

1
ρh

(Ds − I )

)

Dm−n
s (Λs −Λu)

−1.
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This implies the estimates (53). Similarly with (45)

Ŝ(n, n−)T− =
( −Ds

1
ρh

(Ds − I )

)

D
n−n−−1
s and

Ŝ(n, n+)T+ =
( −I

1
ρh

(Ds − I )

)

D
n+−n
s

lead to (54). �

The special solution ẑ(r) from (52) is estimated in the following
Lemma.

Lemma 4.10. For s ∈ Ωh
C ∩ Ωh∞ exist h0, T > 0 such that for h <

h0,±n±h>T for each r ∈�J∞(C m) the solution ẑ(r)∈�J∞(C 2m) given by (52)
can be estimated by

‖ẑ(r)‖L2,h
� const

1
ρ2

‖r‖L2,h
. (56)

Moreover, we obtain

‖M̂ẑn+(r)‖vec � const

(
h2 + h

ρ
+ 1

ρ2

h
ρ

+ 1
ρ2

)

‖r‖∞. (57)

Proof. Using the estimates (53) we obtain for ẑ(r)= (û, v̂) with νs <1

‖ûn‖� ch

max(ρh,1)ρ

n+−1∑

m=n−
ν−|n−m|
s ‖rm‖ � cu

1+νs

1−νs

‖r‖∞, n∈J, (58)

for some cu >0. The estimate

cu

1+νs

1−νs

� c

ρ2
(59)

which follows from (47) with some generic constant c>0 implies

‖ûn‖ � c

ρ2
‖r‖∞, ∀n∈J.

Using the second coordinate of (53) we obtain

‖v̂n‖ � c(1−νs)

ρ2 max(ρh,1)

⎛

⎝
n−1∑

m=n−
νn−m−1
s ‖rm‖+

n+−1∑

m=n

νm−n
s ‖rm‖

⎞

⎠� c

ρ2
‖r‖∞. (60)



458 Thümmler

The L2,h estimate is similar to the estimate in Lemma 3.6 in [15]. From
(58) we find

‖ûn‖2 � c2
u

⎛

⎝
n+−1∑

m=n−
ν−|n−m|
s ‖rm‖

⎞

⎠

2

� c2
u

∞∑

m=−∞
ν−|n−m|
s

n+−1∑

m=n−
ν−|n−m|
s ‖rm‖2

� c2
u

1+νs

1−νs

n+−1∑

m=n−
ν−|n−m|
s ‖rm‖2 � ccu

ρ2

n+−1∑

m=n−
ν−|n−m|
s ‖rm‖2,

which implies by summation over all n∈J with (59)

‖û‖2
L2,h

=
n+∑

n=n−
h‖ûn‖2 � ch

ρ2
cu

n+∑

n=n−

n+−1∑

m=n−
ν−|n−m|
s ‖rm‖2

� ch

ρ2
cu

n+−1∑

m=n−
‖rm‖2

n+∑

n=n−
ν−|n−m|
s

� ch

ρ2
cu

1+νs

1−νs

n+−1∑

m=n−
‖rm‖2 �

(
c

ρ2

)2

h

n+−1∑

m=n−
‖rm‖2 =

(
c

ρ2

)2

‖rm‖2
L2,h

.

Similarly, (60) implies with cv = (ρ2 max(ρh,1))−1

‖v̂n‖2 � cc2
v(1−νs)

2

⎡

⎢
⎣

⎛

⎝
n−1∑

m=n−
νn−m−1
s ‖rm‖

⎞

⎠

2

+
⎛

⎝
n+−1∑

m=n

νm−n
s ‖rm‖

⎞

⎠

2
⎤

⎥
⎦

� cc2
v(1−νs)

2

⎡

⎣
n−1∑

m=−∞
νn−m−1
s

n−1∑

m=n−
νn−m−1
s ‖rm‖2

+
∞∑

m=n

νm−n
s

n+−1∑

m=n

νm−n
s ‖rm‖2

⎤

⎦

� cc2
v(1−νs)

2

⎡

⎣ 1
1−νs

n−1∑

m=n−
νn−m−1
s ‖rm‖2 + 1

1−νs

n+−1∑

m=n

νm−n
s ‖rm‖2

⎤

⎦

� cc2
v(1−νs)

⎡

⎣
n−1∑

m=n−
νn−m−1
s ‖rm‖2 +

n+−1∑

m=n

νm−n
s ‖rm‖2

⎤

⎦
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which leads to

‖v̂‖2
L2,h

=
n+∑

n=n−
h‖v̂n‖2 � cc2

v(1−νs)h

n+∑

n=n−

⎡

⎣
n−1∑

m=n−
νn−m−1
s ‖rm‖2

+
n+−1∑

m=n

νm−n
s ‖rm‖2

⎤

⎦

� cc2
v(1−νs)h

n+−1∑

m=n−
‖rm‖2

⎡

⎣
n+∑

n=m+1

νn−m−1
s +

m∑

m=n−
νm−n
s

⎤

⎦

� cc2
vh

n+−1∑

m=n−
‖rm‖2 = c

ρ4
‖r‖2

L2,h
.

Finally the estimate (57) follows from the definition of M̂ in (42)

‖M̂ẑn+(r)‖vec � const
(

(1+ (ρh)2)‖ûn+‖ +ρh‖v̂n+‖
ρh‖ûn+‖ +‖v̂n+‖

)

� const

(
h2 + h

ρ
+ 1

ρ2

h
ρ

+ 1
ρ2

)

‖r‖∞.

�
Inserting the ansatz (50) for z̃ into the boundary conditions (36b) we

obtain the following lemma.

Lemma 4.11. Assume Hypothesis 2.6. Then for s ∈ Ωh
C ∪ Ωh∞ exist

h0, T >0 such that the following holds. If h<h0 and ±hn± >T then for each
r ∈�J∞(C m) there exists a unique solution z̃∈�

[n−,n++1]∞ (C 2m) of (39) which
satisfies the boundary conditions (36b), i.e.

R(ρ)z= η̂=
(

1
ρ
ηN

ηD

)

. (61)

Morevoer, z̃ can be estimated as follows

‖z̃‖L2,h
� const

(
1
ρ

‖ηN‖ +‖ηD‖ + 1
ρ2

‖r‖L2,h

)

, for s ∈Ωh
C,

(62)

‖z̃|[n−+1,...,n+]‖L2,h
� const

(
1
ρ

‖ηN‖ +‖ηD‖ + 1
ρ2

‖r‖L2,h

)

, for s ∈Ωh∞.

(63)
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Proof. Inserting the ansatz (50) into the boundary condition (61) one
obtains

B−(ρ)(ρ− + Ŝ(n−, n+)ρ+)+ B̂−(Ŝ(n− +1, n−)ρ− + Ŝ(n− +1, n+)ρ+)

+B+(ρ)(Ŝ(n+, n−)ρ− +ρ+)+ B̂+M̂(Ŝ(n+, n−)ρ− +ρ+)

= η̂−
(

B−(ρ)ẑn−(r)+ B̂−ẑn−+1(r)+B+(ρ)ẑn+(r)+ B̂+
[

M̂ẑn+(r)

+
(

h2I
h
ρ
I

)

rn+

])

.

This equation has to be solved for ρ− and ρ+. We can write ρ± =
T±ξ±, ξ± ∈ C m where T = (T− T+). After rearranging terms we obtain
from the previous equation

Rρ(ξ−, ξ+)+�Rρ(ξ−, ξ+)= η̂−Fρ(r), (64)

where

Rρ(ξ−, ξ+)=B−(ρ)T−ξ− + B̂−Ŝ(n− +1, n−)T−ξ− +B+(ρ)T+ξ+ + B̂+M̂T+ξ+
�Rρ(ξ−, ξ+)=

(
B−(ρ)Ŝ(n−, n+)+ B̂−Ŝ(n− +1, n+)

)
T+ξ+

+(B+(ρ)+ B̂+M̂)Ŝ(n+, n−)T−ξ−
Fρ(r)=B−(ρ)ẑn−(r)+ B̂−ẑn−+1(r)+B+(ρ)ẑn+(r)

+B̂+

[

M̂ẑn+(r)+
(

h2I
h
ρ
I

)

rn+

]

.

With (55) and the relations M̂ = T DT −1, T −1T− = (
I
0

)
, T −1T+ = (

0
I

)
,

T D =
( −Ds −D−1

s

ΛuDs ΛsD
−1
s

)
and Λu(I + Ds) = Λu − Λs wich is implied by (49)

these terms can be calculated as follows:

Rρ(ξ−, ξ+) =
(

1
ρ
P N− 1

2QN−
P D− 0

)

T−ξ− +
(

0 1
2QN−

0 0

)

T D

(
I

0

)

ξ−

+
(

1
ρ
P N+ 1

2QN+
P D+ 0

)

T+ξ+ +
(

0 1
2QN+

0 0

)

T D

(
0
I

)

ξ+ =B
(

ξ−
ξ+

)

,

where

B=−
(

1
ρ
P N− − 1

2QN−(Λu −Λs)
1
ρ
P N+ + 1

2QN+(Λu −Λs)

P D− P D+

)

.
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From (44) we get with z= 1
2ρheiθ , δ(θ, z)= 2eiθ (1 +|z|2) 1

2 and the defini-
tion of �(z) in (14)

Λu −Λs =
{

((ρhe2iθ )A−1 +4I )
1
2 eiθA− 1

2 , if ρh>0, |θ |� π
4 + δ

3 ,

ρhe2iθA−1(1+ 4
(ρh)2 e−2iθA)

1
2 , if ρh>C

= δ(θ, z)�(z).

With these notations the matrix B reads B=SBs where

S =
(−δ(θ, z)Ir 0

0 −I2m−r

)

, (65)

and

Bs =
(

2
ρδ(θ,z)

P N− +QN−�(z) 2
ρδ(θ,z)

P N+ −QN+�(z)

P D− P D+

)

.

From Hypothesis 2.6 and the definition of Ωh
C and Ωh∞ we obtain that

B̂s =
(

QN−�(z) −QN+�(z)

P D− P D+

)

has a uniformly bounded inverse. From c1 max(1, |z|)� |δ(θ, z)|� c2
max(1, |z|) we find

1
|δ(θ, z)| � c min

(

1,
1
ρh

)

� c. (66)

Therefore the difference ‖Bs − B̂s‖ can be estimated by

‖Bs − B̂s‖ � 2
ρ|δ(θ, z)|

(
‖P N− ‖ +‖P N+ ‖

)
� c

ρ

which tends to zero as ρ →∞. Choosing C in the definition of Ωh
C large

enough, we obtain ‖B−1‖ � c.
For the error term �Rρ we get

�Rρ(ξ−, ξ+)= (B−(ρ)Ŝ(n−, n+)+ B̂−Ŝ(n− +1, n+))T+ξ+

+ (B+(ρ)+ B̂+M̂)Ŝ(n+, n−)T−ξ− =�B
(

ξ−
ξ+

)

,

where

�B=B
(

0 D
(n+−n−)
s

D
(n+−n−)
s 0

)

=SBs

(
0 D

(n+−n−)
s

D
(n+−n−)
s 0

)

.
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Here S denotes the scaling matrix defined in (65). Furthermore ν
(n+−n−)
s

vanishes as n+ −n− →∞ and

‖Bs‖ � c

(
1

ρ|δ(θ, z)| +‖�(z)‖
)

� c

implies that �Bs =S−1�B vanishes as n+ −n− →∞. The right hand side
of (64) can be rewritten as follows:

Fρ(r)=
(

1
ρ
P N− 1

2QN−
P D− 0

)

ẑn−(r)+
(

0 1
2QN−

0 0

)

ẑn−+1(r)+
(

1
ρ
P N+ 1

2QN+
P D+ 0

)

ẑn+(r)

+
(

0 1
2QN+

0 0

)(

M̂ẑn+(r)+
(

h2I
h
ρ
I

)

rn+

)

=
(

1
ρ
P N− ûn− + 1

2QN−(v̂n− + v̂n−+1)+ 1
2QN+(γv + h

ρ
rn+)+ 1

ρ
P N+ ûn+

P D− ûn− +P D+ ûn+

)

where we used the notation M̂ẑn+(r)= (γu,γv)
T . Using (58), (60), (57) we

obtain

∥
∥Fρ(r)

∥
∥

vec � c

(
1
ρ2 + h

ρ
1
ρ2

)

‖r‖∞.

Then the scaled version of Fρ(r) can be estimated by

∥
∥
∥
∥

( 1
δ(θ,z)

Ir 0
0 I2m−r

)

Fρ(r)

∥
∥
∥
∥ � c

(

min
(

1,
1
ρh

)(
1
ρ2

+ h

ρ

)

+ 1
ρ2

)

‖r‖∞

� c

ρ2
‖r‖∞.

Equation (64) is equivalent to

(Bs +�Bs)

(
ξ−
ξ+

)

=
(

− 1
ρδ(θ,z)

ηN

ηD

)

+
( 1

δ(θ,z)
Ir 0

0 I2m−r

)

Fρ(r),

thus we can estimate the solution (ξ−, ξ+) of (64) using (66) by

‖(ξ−, ξ+)‖ � c

(
1
ρ

‖ηN‖ +‖ηD‖ + 1
ρ2

‖r‖∞
)

. (67)
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The solution zhom = (uhom, vhom) defined in (51) can be estimated using
(54) as follows. The estimates

∥
∥
∥Ŝ(n, n−)ρ−

∥
∥
∥

vec
=‖Ŝ(n, n−)T−ξ−‖vec �

(
νs

1
ρh

(1−νs)

)

ν
n−n−−1
s ‖ξ−‖,

∥
∥
∥Ŝ(n, n+)ρ+

∥
∥
∥

vec
=‖Ŝ(n, n+)T+ξ+‖vec �

(
1

1
ρh

(1−νs)

)

ν
n+−n
s ‖ξ+‖

imply for all n∈J

‖uhom
n ‖ � c(ν

n−n−
s ‖ξ−‖ +ν

n+−n
s ‖ξ−‖)� c(‖ξ+‖ +‖ξ+‖) (68)

and for n∈ Ĵ =[n− +1, n+]

‖vhom
n ‖ � c

1−νs

ρh

(
ν

n−n−−1
s ‖ξ−‖ +ν

n+−n
s ‖ξ+‖

)
� c(‖ξ−‖ +‖ξ+‖). (69)

From (47) and Lemma 4.6 we obtain

‖vhom
n− ‖ � c

1−νs

ρh

(
ν−1
s ‖ξ−‖ +ν

n+−n−
s ‖ξ+‖

)
� c(max(1, ρh)‖ξ−‖ +‖ξ+‖).

(70)

The estimates (68) and (56) lead for z̃n = (ũn, ṽn) defined in (50) for all n∈
J to

‖ũn‖ �‖uhom
n ‖ +‖ẑ‖∞ � c

(

‖ξ−‖ +‖ξ+‖ + 1
ρ2

‖r‖∞
)

� c

(
1
ρ

‖ηN‖ +‖ηD‖ + 1
ρ2

‖r‖∞
)

and for n∈Jh =[n− +1, n+] to

‖ṽn‖ �‖vhom
n ‖ +‖ẑ‖∞ � c(‖ξ−‖ +‖ξ+‖ + 1

ρ2
‖r‖∞)

� c

(
1
ρ

‖ηN‖ +‖ηD‖ + 1
ρ2

‖r‖∞
)

.

Finally 1
ρh

(ν−1
s −1)� c max(1, ρh) implies with (70)

‖ṽn−‖ �‖vhom
n− ‖ +‖ẑ‖∞ � c max(1, ρh)

(
1
ρ

‖ηN‖ +‖ηD‖ + 1
ρ2

‖r‖∞
)

and using

∥
∥
∥M̂zhom

n+
∥
∥
∥

vec
� c

((
(ρh)2ν

n+−n−
s

(1−νs)ν
n+−n−−1
s

)

‖ξ−‖ +
(

(ρh)2ν
n+−n−
s

(1−νs)ν
n+−n−
s

)

‖ξ+‖
)



464 Thümmler

with n+ −n− >1 we end up with

‖M̂zhom
n+ ‖ � c(‖ξ−‖ +‖ξ+‖). (71)

By (47) we obtain for ρ ∈ (C, C
h
] the estimate h

1−ν2
s

< c as well as
h

1−ν2
s
<h for ρh>C. This leads to

‖uhom‖2
L2,h

� c

⎛

⎝
n+∑

n=n−
hν

2(n−n−)
s ‖ξ−‖2 +

n+∑

n=n−
hν

2(n+−n)
s ‖ξ+‖2

⎞

⎠

� c
h

1−ν2
s

(‖ξ−‖2 +‖ξ+‖2)� c(‖ξ−‖2 +‖ξ+‖2). (72)

In the restricted interval Jh =[n− +1, n+] we obtain in the same way

‖vhom|Jh
‖2

L2,h

� c

⎛

⎝
n+∑

n=n−+1

h
(1−νs)

2

(ρh)2
ν2(n−n−−1)‖ξ−‖2 +

n+∑

n=n−+1

hν2(n+−n)‖ξ+‖2

⎞

⎠ ,

� c
(
‖ξ−‖2 +‖ξ+‖2

)
(73)

and with Lemma 4.6 we arrive at

‖vhom‖2
L2,h

� ch

(
1−νs

(ρh)2ν2
s (1+νs)

‖ξ−‖2 + 1
1−ν2

s

‖ξ+‖2
)

� c
(

max(1, (ρh)2)‖ξ−‖2 +‖ξ+‖2
)

. (74)

Using (56), (57), (72), (74) and (67) we obtain (62) with ρh<C

‖z̃‖L2,h
�‖ẑ‖L2,h

+‖zhom‖L2,h
+√

h(‖M̂zhom
n+ ‖ +‖M̂ẑn+‖)

� c(
1
ρ2

‖r‖ +max(1, ρh)‖ξ−‖ +‖ξ+‖ + (h2 + h

ρ
+ 1

ρ2
)‖r‖L2,h

)

� c

(
1
ρ

‖ηN‖ +‖ηD‖ + 1
ρ2

‖r‖L2,h

)

.

In the same way (56), (72), (73) and (67) lead to (63). �

Remark 4.12. The restriction to Jh in (63) is necessary, since from
(57), (70) and (71) we obtain for s ∈Ωh∞ only

‖z̃‖L2,h
� c max(1, (ρh)2)

(
1
ρ

‖ηN‖ +‖ηD‖ + 1
ρ2

‖r‖L2,h

)

.
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From the above estimates the invertibility of (37), (36b) follows from a
regular perturbation argument.

Lemma 4.13. Let A∈Rm,m be diagonalizable and positive definite and
assume Hypothesis 2.6. Then there exist C,h0, T >0, such that for s ∈Ωh

C ∪
Ωh∞ and h<h0, ±n±h>T the following holds. For each r ∈ �J∞(C m), there
exists a unique solution z∈�

[n−,n++1]∞ (C m) of (37), (36b) which can be esti-
mated by

‖z‖L2,h
� const

(
1
ρ

‖ηN‖ +‖ηD‖ + 1
ρ2

‖r‖L2,h

)

, for s ∈Ωh
C (75)

‖z|[n−+1,n+]‖L2,h
� const

(
1
ρ

‖ηN‖ +‖ηD‖ + 1
ρ2

‖r‖L2,h

)

, for s ∈Ωh∞.

(76)

Proof. Write (37) as

zn+1 − M̂(s, ρ)zn =
(

h2I
h
ρ
I

)

E+
n

−1
rn + (Mn(s, ρ)− M̂(s, ρ))zn, n∈J

and define the space

S =
{
(r̂, η̂)∈�

[n−,n++1]∞ (C 2m)×R2m :

r̂n =
(

h2I
h
ρ
I

)

rn, n∈[n−, n+ +1], r ∈�
[n−,n++1]∞ (C m)

}

equipped with the norm

∥
∥(r̂, η̂)

∥
∥∗
L2,h

= 1
ρ

‖ηN‖+‖ηD‖+ 1
ρ2

‖r‖L2,h
, η̂=

(
1
ρ
ηN

ηD

)

, ηN ∈Rk, ηD ∈R2m−k.

Then Lemma 4.11 implies that the operators Λ̂ρ :�[n−,n++1]∞ →S which are

given by Λ̂ρ =
(

L̂(s, ρ)

R(ρ)

)

where L̂(s, ρ), R(ρ) are defined in (40), (36b), are

nonsingular for s ∈Ωh
C ∪Ωh∞ with a uniform bound for the inverse for s ∈

Ωh
C . Using (38), (41) we obtain for zn = (un, vn)

(Mn(s, ρ)−M̂(s, ρ))zn =
(

h2I
h
ρ
I

)

×
[
(s(E+

n
−1−A−1)−Cn)un+

(ρ

h
(E+

n
−1

E−
n −I )

)
vn

]
.
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Combinining this with the error estimate

1
ρ2

‖(s(E+
n

−1 −A−1)−Cn)un + (
ρ

h
(E+

n
−1

E−
n − I ))vn‖ � c(h+ 1

ρ2
+ 1

ρ
)‖zn‖

implies for ρ >C

∥
∥
∥
∥

(
L̃(s, ρ)− L̂(s, ρ)

0

)(
r̂

η̂

)∥
∥
∥
∥

∗

L2,h

� c(h+ 1
ρ

)‖r‖L2,h
.

Taking h small and ρ large and using ‖E+
n

−1‖ � c we find that the sys-
tem (37), (36b) has a unique solution for s ∈Ωh

C which can be estimated
by (75). In a similar way we obtain the existence of a unique solution of
(37),(36b) for s ∈Ωh∞ which satisfies the estimate (76). �

Proof of Lemma 4.5. Lemma 4.5 follows directly from Lemma 4.13
using ‖δ−w‖L2,h

=‖δ+w‖L2,h
which implies

‖w‖2
L2,h

+ 1
ρ2

‖δ+w‖2
L2,h

� const (‖u‖2
L2,h

+‖v‖2
L2,h

).

�

5. NUMERICAL EXAMPLES

5.1. Cubic Quintic Ginzburg Landau Equation

We choose the cubic quintic Ginzburg Landau equation [13, 16, 5]

ut =auxx + δu+g(u), g(u)=β|u|2u+γ|u|4u, δ ∈R, a, β,γ∈C . (77)

as a numerical example.
This equation shows a variety of coherent structures, like stable pulse

solutions, fronts, sources, sinks. Moreover, there are parameter regimes
where the behavior is intrinsically chaotic. For certain parameter values,
this equation possesses stable rotating pulses and unstable pulses, as well
as rotating and traveling fronts. Depending on the choice of initial condi-
tions a different type of solution is selected. The real version of (77) which
we use for numerical computations has the equivariance properties given
in Example 1.4.

For the parameter set a =1, δ =−0.1, β =3+ i, γ=−2.75+ i, which
has been used in [13], we found numerically a stable pulse with rotational
velocity µρ ≈−1.30 as well as a rotating front. Here we used a grid size
h = 0.1 and Dirichlet boundary conditions for the pulse and Neumann



Stability of Discretized Relative Equilibria 467

−40 −30 −20 −10 0 10 20 30 40
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re
Im

Re
Im

−40 −30 −20 −10 0 10 20 30 40

−0.8

−0.6
−0.4

−0.2

0

0.2

0.4
0.6

0.8

1
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Figure 4. QCGL, rotating vs. frozen pulse.

boundary conditions for the front on the interval [−40,40]. These solu-
tions are depicted on Fig. 3.

The time evolution of the real part of the stable pulse is compared for
the frozen and the rotating system in Fig. 4 on the interval J =[−40,40]
with grid size h=0.1 and Neumann boundary conditions.

After a transient phase until t ≈ 15, the rotating pulse rotates with a
fixed rotational velocity µ̄ρ . In contrast, the frozen pulse is stabilized. The
comparison of the rotating and traveling with the frozen front in Fig. 5
shows a similar situation. The frozen wave stabilizes quickly, whereas the
non-frozen front continues to rotate and travels out of the computational
domain at t ≈60. As is shown in Fig. 6 the parameter µρ converges to a
fixed velocity µ̄ρ whereas the translational speed µτ stays at zero for the
pulse and in case of the front the parameters µτ and µρ converge to the
same translational and rotational velocity that are observed in the non-fro-
zen system. The rate of this convergence is displayed in Fig. 7, where the
time evolution of the difference to the stationary solution of (9) is shown.
The error |µ̃∗ −µ∗(t)| for ∗∈ {τ, ρ} in the parameters µτ ,µρ is displayed
as well as the error in the profile of the wave ‖ũ−u(t)‖∞.
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Note that Theorem 2.8 is not applicable to the rotating front. In this
case Rπ

2
v̄ is not in L2 (cf. Example 1.4). Nevertheless, the numerical com-

putations displayed in Fig. 7 suggest it to be true even in that case.
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û
∞

Figure 7. QCGL, time evolution of errors for pulse (left) and front (right).
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5.2. A Counterexample for the Nagumo Equation

We illustrate the necessity of the boundary condition 2.5 at the scalar
Nagumo equation

ut =uxx +u(1−u)(u− 1
4 ), u(x, t)∈R, x ∈R, t >0. (78)

An explicit traveling wave solution which connects the stationary points
u− =0, u+ =1 is given by

v̄(x)=
(

1+ e
−x√

2

)−1
, λ̄=−

√
2

4 . (79)

For a = 0.25 we have s(α) > 0 for approximately α > 0.26. In Fig. 8 the
time-evolution of the solution (v,µ) of the frozen PDAE is compared for
values below and above this critical value of t . One can see clearly the
effect of the instability created by the spurious unstable eigenvalue. This is
not an effect of the freezing and the occurs in the same way for the non-
frozen PDE.
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6. APPENDIX

Lemma 6.1 (Summation by parts). With the notation

〈u, v〉r,s =h

s∑

n=r

uH
n vn, ‖u‖2

r,s =〈u,u〉r,s

we have

〈u, δ+v〉r,s =−〈δ−u, v〉r+1,s+1 +uH
s+1vs+1 −uH

r vr . (80)

Proof of Lemma 3.3. Let u∈�J
ess be given and set v = (vn−−1, un− , . . . ,

un+ , vn++1). It remains to compute the external points vn−−1, vn++1 and µ

from the equations (18b), (24) which read

0=P N− vn− +QN−δ0vn− +P N+ vn+ +QN+δ0vn+
0=P D− (Λ̃vn− +Φn−µ+ rn−)+P D+ (Λ̃vn+ +Φn+µ+ rn+)

0=〈Ψ, Λ̃v〉Jh
+〈Ψ,Φ〉Jh

µ+〈Ψ, r〉Jh
.

We use the relation

δ+δ−vn = 2
h

(δ0vn + δ−vn)= 2
h

(−δ0vn + δ+vn) (81)

as well as the definition of Λ̃ in (17a) to obtain the equivalent system for
w = (w−,w+)= (δ0vn− , δ0vn+)∈R2m and µ∈Rp

M
(

w

µ

)

=Ruu+Rr r (82)

where

M=
⎛

⎝
QN− QN+ 0

−P D− (A− h
2 Bn−) P D+ (A+ h

2 Bn+) h
2 (P D− Φn− +P D+ Φn+)

−ΨT
n−(A− h

2 Bn−) ΨT
n+(A+ h

2 Bn+) 1
2 〈Ψ,Φ〉Jh

⎞

⎠ ,

Ruu=

⎛

⎜
⎜
⎜
⎝

−P N− un− −P N+ un+
−P D− Aδ+un− −P D+ Aδ−un+ − h

2 (P D− Cn−un− +P D+ Cn+un+ )

−ΨT
n− (Aδ+un− + h

2 Cn−un− )−ΨT
n+ (Aδ−un+ + h

2 Cn+un+ )− h
2

n+−1∑

n=n−+1
Ψ̃

T

n Λ̃un

⎞

⎟
⎟
⎟
⎠

,

Rr r =−1
2

⎛

⎝
0

h(P D− rn− +P D+ rn+)

〈Ψ, r〉Jh

⎞

⎠ .
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For Jh →R the matrix M converges to

M̂=
⎛

⎝
QN− QN+ 0

−P D− A P D+ A 0
−(S(v̂)(xn−))T A (S(v̂(xn+)))T A 1

2 〈S(v̂), S(v̄)〉L2

⎞

⎠

which is invertible due to condition (15) and the invertibility of the p×p

matrix 〈S(v̂), S(v̄)〉 which is ensured by Hypothesis 2.3. Therefore the solu-
tion (ŵ, µ̂) of M̂(w,µ)T =Rr r (i.e. u≡0) can be estimated by

‖ŵ‖ � const h(‖rn−‖ +‖rn+‖)� const h‖r‖∞ (83)

and we obtain the same estimate for w = (w−,w+) with a different con-
stant. Together with the relations

vn−−1 =−2hw− +un−+1 =−2hw−, vn++1 =2hw+ +un+−1 =2hw+

this implies

‖vn−−1‖ +‖vn++1‖ � const h‖w‖ � const h2‖r‖∞. (84)

Furthermore, the relation

δ+vn+ =2δ0vn+ − δ+un+−1 =2w+, δ+vn−−1 = δ−vn− =2w− (85)

leads for u≡0 with (83) to

‖δ+v‖∞ � const h‖r‖∞. (86)

Similarly by (81) we find

δ+δ−vn− = 2
h

(−w− + δ+un−)=− 2
h

w−,

δ+δ−vn+ = 2
h

(w+ − δ+un+−1)= 2
h

w+,

which implies with (83)

‖δ+δ−v‖∞ � const ‖r‖∞.

Together with (84),(86) this leads to (25). �
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For the proof of Lemma 3.4 we use the uniform contraction principle
in the following form.

Theorem 6.2 Let X,Y be Banach spaces and F : (X × Y ) ⊃ B�(0) ×
Bδ(0)→Y be a continuous mapping, which satisfies the following estimates
for q ∈[0,1):

‖F(x, y1)−F(x, y2)‖ �q‖y1 −y2‖ ∀x ∈Bρ(0), y1, y2 ∈Bδ(0) (87)

‖F(x,0)‖ � δ(1−q) ∀x ∈Bρ(0) (88)

Then for each x ∈Bρ(0) there exists a unique fixed point ȳ =g(x) of F(x, ·),
i.e. F(x, g(x))=g(x) and the following estimate holds

‖y1 −y2‖ � 1
1−q

‖y1 −F(x, y1)− (y2 −F(x, y2))‖
∀x ∈Bρ(0), y1, y2 ∈Bδ(0). (89)

Note that (89) implies the continuity of g in Bρ(0), since

‖g(x1)−g(x2)‖ � 1
1−q

‖g(x1)−F(x1, g(x1))− (g(x2)−F(x1, g(x2)))‖

= 1
1−q

‖F(x2, g(x2))−F(x1, g(x2))‖. (90)

Proof of Lemma 3.4. Let u∈�J∞ be given and set v = (vn−−1, un− , . . . ,

un+ , vn++1). It remains to compute the external points vn−−1, vn++1 and µ

from the equations (18b), (19) which read

0=P N− vn− +QN−δ0vn− +P N+ vn+ +QN+δ0vn+
0=P D− (Λ̃vn−+Φn−µ+ϕn−(v,µ))+P D+ (Λ̃vn++Φn+µ+ϕn+(v,µ))

0=〈Ψ, Λ̃v +Φµ+ϕ(v,µ)〉Jh

(91)

Define the map χ :�J∞ ×R2m →�Ĵ∞, (u,w) �→v, w = (w−,w+) by

vn =un, n=n−, . . . , n+, vn−−1 =−2hw− +un−+1, vn++1 =2hw+ +un+−1.

Then δ0vn± =w± and we obtain

‖χ(u,w)−χ(u, z)‖L2,h
� ch

√
h‖w − z‖.

The relation (85) leads to

‖χ(u,w)−χ(u, z)‖H1
h
� c

√
h‖w − z‖, (92)
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as well as

‖χ(u,w)‖H1
h
� c(‖u‖H1

h
+h‖w‖). (93)

In the same way as in the proof of Lemma 3.3 we obtain with (81) the
following system which is equivalent to (91).

M
(

w

µ

)

=Ruu+g(u,w,µ), (94)

where M, Ru are given by (82) and (cf. Rr in (82))

g(u,w,µ)=−1
2

⎛

⎝
0

h(P D− ϕn−(χ(u,w),µ)+P D+ ϕn+(χ(u,w),µ))

〈Ψ, ϕ(χ(u,w),µ)〉Jh

⎞

⎠ .

For h<h0 ±hn± >T the matrix M is nonsingular and we can define G :
�J∞ ×R2m ×Rp →R2m ×Rp by

G(u,w,µ)=M−1(Ruu+g(u,w,µ)),

the fixed point of which is a solution of (94). To apply the parame-
trized contraction mapping Theorem 6.2 we have to verify (87),(88). From
(21),(93) we obtain

‖ϕ(χ(u,0),0)‖L2,h
� cρ‖χ(u,0)‖H1

h
� cρ‖u‖H1

h
(95)

which implies
√

h‖ϕ(χ(u,0),0)‖∞ �‖ϕ(χ(u,0),0)‖L2,h
� cρ‖u‖H1

h
(96)

as well as with Cauchy Schwartz, Hypothesis 2.3 and (93)

‖〈Ψ, ϕ(χ(u,0),0)〉Jh
‖ � c‖χ(u,0)‖L2,h

� cρ‖u‖H1
h
. (97)

Using (20) we obtain with (92) and (93)

‖ϕ(χ(u,w),µ)−ϕ(χ(u, z), λ)‖L2,h

� c(‖χ(u,w)−χ(u, z)‖H1
h
+max(‖χ(u,w)‖H1

h
,‖χ(u, z)‖H1

h
)‖µ−λ‖)

� c(
√

h‖w − z‖ + (‖u‖H1
h
+hmax(‖w‖,‖z‖))‖µ−λ‖) (98)

Equation (98) leads for ‖u‖H1
h
<ρ to

‖ϕ(χ(u,w),µ)−ϕ(χ(u, z), λ)‖L2,h
� c(

√
h+ρ +hδ)(‖w − z‖ +‖µ−λ‖)
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as well as for ‖u‖H1
h
�

√
h‖u‖1,∞ <

√
hρ to

‖ϕ(χ(u,w),µ)−ϕ(χ(u, z), λ)‖L2,h
� c(

√
h(1+ρ + δ)(‖w − z‖ +‖µ−λ‖).

Thus (95), (96), (97) imply for ‖u‖H1
h
�ρ

‖g(u,0,0)‖ � h(‖ϕn−(χ(u,0),0)‖ +‖ϕn+(χ(u,0),0)‖
+‖〈Ψ, ϕ(χ(u,0),0)〉Jh

‖)� cρ‖u‖H1
h

(99)

as well as for ‖u‖1,∞ �ρ

‖g(u,0,0)‖ � cρ‖u‖1,∞. (100)

Similarly, with (98) we find

‖g(u,w,µ)−g(u, z, λ)‖ � c(h‖ϕ(χ(u,w),µ)−ϕ(χ(u, z), λ)‖∞
+ ‖〈Ψ, ϕ(χ(u,w),µ)−ϕ(χ(u, z), λ)〉Jh

‖)

� c‖ϕ(χ(u,w),µ)−ϕ(χ(u, z), λ)‖L2,h
. (101)

It remains to estimate ‖Ruu‖: The summation by parts formula (80)

〈Ψ,Aδ−δ+u〉n−+1,n+−1 = −〈δ+Ψ,Aδ+u〉n−,n+−2 +ΨT
n−A(δ+u)n−

− ΨT
n+−1A(δ+u)n+−1

leads for Jh =[n− +1, n+ −1] with

〈Ψ, Λ̃u〉Jh
=〈Ψ,Aδ−δ+u〉Jh

+〈Ψ,Bδ0u〉Jh
+〈Ψ,Cu〉Jh

to

‖〈Ψ|Jh
, Λ̃u〉

Jh
‖ � c‖u‖1,∞. (102)

Using Hypothesis 2.3 for ±hn± >T we find

‖〈Ψ|Jh
, Λ̃u〉

Jh
‖ � c(‖u‖H1

h
+h− 1

2 e−αT ‖δ+u‖L2,h
)� c(1+h− 1

2 e−αT )‖u‖H1
h
.

This implies with the definition of Ru in (82) and (102)

‖Ruu‖ � c(‖u‖1,∞ +‖〈Ψ|Jh
, Λ̃u〉

Jh
‖)� c‖u‖1,∞

as well as

‖Ruu‖ � c(h− 1
2 e−αT ‖δ+u‖L2,h

+√
h‖u‖L2,h

+‖〈Ψ|Jh
, Λ̃u〉

Jh
‖)

� c(1+h− 1
2 e−αT )‖u‖H1

h
.
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For ‖u‖1,∞ �ρ we obtain with (100)

‖G(u,0,0)‖ � c(‖u‖1,∞ +‖g(u,0,0)‖)� c(1+ρ)‖u‖1,∞ � c0ρ

and similarly, if h− 1
2 e−αT <c2 for ‖u‖H1

h
�ρ with (99)

‖G(u,0,0)‖ � c(‖u‖H1
h
+‖g(u,0,0)‖)� c(1+ρ)‖u‖H1

h
� c0ρ

For (w,µ), (z, λ) ∈ Bδ(0) ⊂ R2m+1 equation (101) leads for ‖u‖1,∞ � ρ or
‖u‖H1

h
�ρ to

‖G(u,w,µ)−G(u, z, λ)‖ � c1(
√

h+ρ +hδ)(‖µ−λ‖ +‖w − z‖).

Choosing h, δ<1 so small that
√

h+ ( 1
2c0

+h)δ< 1
c1

and ρ <min(1, δ
2c0

) we
can apply Theorem 6.2 with q = 1

2 . This yields a unique solution (w̄, µ̄)∈
Bδ(0) of (94). Equation (90) implies with the continuity of G estimate
(26a) which implies with Tv(0)=0, Tµ(0)=0 (26b). �

Proof of Corollary 3.5. Using the definition of Tv(·), Tµ(·) and Mv,Mµ

and subtracting (24) from (19) we obtain that v� = Tv(u) − Mvu, µ� =
Tµ(u)−Mµu solves πv� =0 and

0=BNv�

0=BD(Λv� +Φµ� +ϕ(Tv(u), Tµ(u))),

0=〈Ψ,Λv� +Φµ� +ϕ(Tv(u), Tµ(u))〉Jh
.

Application of estimate (25) in Lemma 3.3 to (v�,µ�) leads to

‖Tv(u)−Mvu‖H2
h
+‖Tµ(u)−Mµu‖ � c‖ϕ(Tv(u), Tµ(u))‖L2,h

.

Thus we have for ϕ̃ defined in (28) by (26b) and (21)

‖ϕ̃(u)‖L2,h
�‖Λ̃(Tv(u)−Mvu)‖L2,h

+‖Φ(Tµ(u)−Mµu)‖L2,h

+‖ϕ(Tv(u), Tµ(u))‖L2,h

� c‖ϕ(Tv(u), Tµ(u))‖L2,h
� cρ(‖Tv(u)‖L2,h

+‖Tµ(u)‖)

which leads to

‖ϕ̃(u)‖∞ � cρ‖u‖1,∞

as well as for h− 1
2 e−αT <c2 to

‖ϕ̃(u)‖L2,h
� cρ‖u‖H1

h
.
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In the same way we obtain for u1, u2 ∈ �J
ess that v� = Tv(u1) − Mvu1 −

(Tv(u2) − Mvu2), µ� = Tµ(u1) − Mµu1 − (Tµ(u2) − Mµu2) solves πv� = 0
and

0=BNv�

0=BD(Λ̃v� +Φµ� +ϕ(Tv(u1), Tµ(u1))−ϕ(Tv(u2), Tµ(u2))),

0=〈Ψ, Λ̃v� +Φµ� +ϕ(Tv(u1), Tµ(u1))−ϕ(Tv(u2), Tµ(u2))〉Jh
.

Again, application of estimate (25) in Lemma 3.3 to (v�,µ�) implies

‖Tv(u1)−Mvu1−(Tv(u2)−Mvu2)‖H2
h
+‖Tµ(u1)−Mµu1 − (Tµ(u2)−Mµu2)‖

� c‖ϕ(Tv(u1), Tµ(u1))−ϕ(Tv(u2), Tµ(u2))‖L2,h
.

Thus we obtain with (26a) and (20)

‖ϕ̃(u1)− ϕ̃(u2)‖L2,h
�‖Λ̃(Tv(u1)−Mvu1 − (Tv(u2)−Mvu2))‖L2,h

+‖Φ(Tµ(u1)−Mµu1 − (Tµ(u2)−Mµu2))‖L2,h

+‖ϕ(Tv(u1), Tµ(u1))−ϕ(Tv(u2), Tµ(u2))‖L2,h

� c‖ϕ(Tv(u1), Tµ(u1))−ϕ(Tv(u2), Tµ(u2))‖L2,h

� c‖u1 −u2‖H1
h
.

�
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