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Periodic Solutions of the Elliptic Isosceles Restricted
Three-body Problem with Collision∗
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The elliptic isosceles restricted three-body problem with collision, is a
restricted three-body problem where the primaries move having consecutive
elliptic collisions and the infinitesimal mass is moving in the plane perpen-
dicular to the primaries motion that passes through the center of mass of
the primary system. Our purpose in this paper is to prove the existence of
many families of periodic solutions using Continuation’s method, where the
perturbing parameter is related with the energy of the primaries. This work
is merely analytic and uses symmetry conditions and appropriate coordinates.
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1. INTRODUCTION

We consider a special case of the restricted three-body problem in the
space, the elliptic isosceles restricted three body with collision. In this prob-
lem the motion of the primaries with equal mass, m1 =m2 = 1/2, is an
elliptic one-dimensional solution of the Kepler’s problem. This restricted
problem consists of describing the motion of an infinitesimal particle, hav-
ing initial conditions and velocities symmetric on the plane which is per-
pendicular to the primaries motion and passes through the center of mass
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of the primary system. The dynamics of the primaries is periodic and
contains an infinite number of collisions. It represents a periodic forcing in
the system causing it to be non-conservative. This problem is called elliptic
isosceles problem with collision because the three bodies form an isosceles
triangle at any time, and the primaries are in elliptic motion with collision
in a line symmetric with respect to the plane that contains the massless.

Clearly, this problem is invariant under rotations about the axis that
contains the primaries, and thus the angular momentum, c, is a first
integral. In this paper, we will restrict our attention to the case c �= 0,
because the case c = 0 (one-dimensional) was studied in [1, 7] and in
[2]. In [7] the phase space is compactified and the flow is analyzed on
their boundary. Thus, the phase space is separated into different regions
depending on the kind of orbits. On the other hand, in [1] the non-
regularization of the triple collision is proved and in [2] it is showed the
existence of a Bernoulli shift as a subsystem of the Poincaré map defined
near a loop formed by two heteroclinic solutions associated to two peri-
odic orbits at infinity and symbolic dynamics techniques are used. To the
case c �=0 we find in the literature the work of Puel [11]. In this article, the
study is made in a numerical point of view and some periodic solutions
are obtained by numerical continuation method. Llibre and Pasca in [6]
considered a “model” of isosceles restricted three-body problem with col-
lision, but it does not represent a real restricted three-body problem. Here
periodic solutions are obtained by Continuation’s method.

In this paper, using analytic methods we prove the existence of sev-
eral families of periodic solutions. We use essentially two kind of argu-
ments, one of them is the Continuation method and the other is the use
of a convenient variable, the so called “comets variables” introduced in [8],
which are useful in order to study the infinity. To apply the Continuation
method we need to introduce a parameter associated with the motion of
the primaries, namely, the energy. After that, we took advantage of the
symmetries of the system of differential equations that defines the ellip-
tic isosceles restricted three body with collision. And finally, since the sys-
tem of differential equations is not analytic as function of the parameter
introduced, we need to use Arenstorf’s Theorem (see details in [3]). We
obtain periodic solutions of the first and second kinds, according to the
definition in [14]. Similar arguments have been considered in [4] and [5] in
the study of a new class of periodic orbits in the three-dimensional elliptic
restricted three-body problem in the case of equal masses of the primaries.
In these works, the orbit of each primary is elliptic without collision, and
the parameter is obviously the eccentricity of the primaries orbit. Another
important difference of this problem and our model, is that our prob-
lem is invariant under rotations around the vertical axis, which is not true



Periodic Solutions of the Elliptic Isosceles 379

in the other case. As a consequence of this fact, we can obtain first and
second species orbits, while in [5], they only obtain orbits of first-species.

This paper is organized as follows. In Section 2, we review the one
dimensional two body problem with null angular momentum. Here we set
the notations and important preliminary results that will be used through-
out the paper. Also, we introduce one parameter ε, such that its square
is inversely proportional to the negative energy of the primaries. In Sec-
tion 3, we introduce the problem in cartesian coordinates and rotating
coordinates and some preliminary results are shown. Section 4 is dedicated
to put the problem in a convenient way, that is, using Legendre’s polyno-
mial it is possible to write our research problem as a perturbation of one
Kepler problem, considering the perturbed parameter associated with the
energy of the primaries. It is observed that the dependence of this parame-
ter is not differentiable, so the Poincaré Continuation Method is not appli-
cable here. In Sections 5 and 6 we prove, respectively, the existence of
a symmetric periodic solution as continuation of convenient circular and
elliptic orbits of the Kepler problem for a discrete sequence of values of
the parameter (i.e., the energy of the primaries). The main tool is Aren-
storf’s Theorem. A relevant property of the potential associated to this
problem (Proposition 2) permits us to prove the existence of periodic solu-
tions with symmetries of first and second kind for any value of the param-
eter or simply the negative energy of the primaries. The main difference
between the first species and second species orbits, is that in this last sit-
uation we need to introduce the time as new variable in order to avoid
degeneracy of the periodicity system. In Section 7, it is proved the exis-
tence of periodic solutions which are far from the primaries not necessar-
ily with symmetries. Finally, in Section 8, we include in an appendix the
Continuation’s method (Arenstorf’s Theorem) when the dependence on the
small parameter of the perturbed system is not analytic, and also impor-
tant results about the behavior of the perturbed solutions close to solu-
tions of the unperturbed system are proved, because of our direct use of
them. All the results obtained in this work are analytic and in order to
make this manuscript self-contained and to facilitate the lecture to the
reader we decide to include several details.

We conclude this introduction remarking that the study of periodic
orbits of a non-integrable dynamical system is a very useful tool to obtain
information on the topology of the phase space. In the vicinity of a peri-
odic orbit, the study of the phase space can be reduced to the study
of fixed points and the invariant curves of a Poincaré map on a sur-
face of section, together with their stability character, determine critically
the topology of the problem. For this reason the computation of periodic
orbits plays an important role in the study of dynamical systems.
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2. THE ELLIPTIC-COLLISION MOTION IN THE TWO-BODY
PROBLEM

We decide to write this introductory section, because in the literature
we did not find a good reference related to the study of the elliptic-
collision orbits of the one-dimensional Kepler problem. Let zi be the dis-
tance between the center of mass and the primary mi , where i= 1,2 (we
will parametrize the masses such that m1 =µ, m2 =1−µ with µ∈ (0,1/2]
and let ρ= z1 − z2 be the distance between the primaries. Since the center
of mass is at the origin it follows that z1 = (1−µ)ρ and z2 =−µρ. In these
coordinates the distance between the primaries satisfies the equation

ρ̈=− 1
ρ2
, (1)

and the energy integral for the “primaries” is

h= 1
2
ρ̇2 − 1

ρ
. (2)

During all this work we will assume that the primaries describe an ellip-
tic collision motion, i.e., we will assume that the energy of the primaries is
h<0. This equation is singular at the collisions z= 0 and this singularity
can be removed through the introduction of a new time s defined by

dt=ρ ds. (3)

Denoting ′ = d
ds the Eq. (1) in the new time becomes ρ ρ′ ′ −ρ′ 2 +ρ=0 and

using the energy integral given in (2) we obtain

ρ′ ′ −2hρ−1=0. (4)

The solution of this equation is

ρ(s)= 1
2h

[b cos(
√−2h s− s0)−1],

where b and s0 are constants. Without loss of generality we will assume
that s0 =0. Assuming that ρ(0)=0 we have that b=1. Therefore,

ρ(s)=− 1
2h

[
1− cos(

√−2h s)
]
.

The angle E=√−2h s is said to be eccentric anomaly. We define a param-
eter ε≥0 through the relation

ε2 =− 1
2h
. (5)
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Using ε and the eccentric anomaly we obtain

ρ(E)= ε2 [1− cosE] . (6)

Integrating the Eq. (3) we have Kepler’s equation

l =n(t− τ)=E− sinE, (7)

where n= ε−3 is called mean motion and l is called mean anomaly. We
consider the time of pericenter passage τ =0. The Eq. (7) and the expres-
sion (6) give us the position of the primaries at a prescribed time t1. The
main problem here is the solution of Kepler’s equation. Observe that if
we simultaneously add or subtract any multiple of 2π both l and E in
Eq. (7) unchanged. This means that given l, we can bring it into the range
−π � l�π . So, it is sufficient to analyze the solution of Kepler’s equation
in this interval. Moreover, the equation is unchanged if l and E are simul-
taneously replaced by −l and −E, respectively. This means that E is an
odd function of l and it is enough to solve the equation when 0� l�π .
When l=0,E=0 and when l=π,E=π . So, the problem is reduced to the
range 0<l <π . Doing the graphic of l versus E, where 0� l�π , we see
that the values of E also lie in the range 0�E�π . Thus, by the Inverse
Function Theorem, there is a unique E(l) such that l=E− sinE, 0<l<π
holds. In this way, the function E depends on the variables t and ε. Then,
we can write

E=E(l)≡E(t, ε) :=Eε(t) (8)

and it follows that the Eq. (6) can be seen of the following manner

ρ(t)= ε2 [1− cosEε(t)] . (9)

Accordingly we will write E(l) or E(t/ε3) instead of Eε(t). The following
lemma will show important properties of the eccentric anomaly

Lemma 1. The eccentric anomaly function E is such that

1. E(n t+ k̂π)=E(n t)+ k̂π , where k̂∈2Z.

2.
∂Eε

∂t
= 1
ε3[1− cosEε(t)] .

3.
∂Eε

∂ε
=−3[Eε(t)− sinEε(t)]

ε[1− cosEε(t)] .

4. E(−l)=−E(l).
Proof. To prove item 1, we add k̂π , to both E and l in the Eq.

(7), where k̂ ∈ 2Z. Thus, l+ k̂π =E(l)+ k̂π − sin(E(l)+ k̂π). On the other
hand, we have that l+ k̂π =E(l+ k̂π)− sinE(l+ k̂π). But, by the Inverse
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Function Theorem, there is a unique E(l) such that l=E− sinE. So, we
conclude that E(l+ k̂π)=E(l)+ k̂π . Therefore, since l=n t it follows that

E(n t+ k̂π)=E(n t)+ k̂π.

Differentiating both sides in Kepler’s equation (7) with respect to the var-
iable t and ε, it is obtained item 2 and 3. To prove item 4, again by
Kepler’s equation (7) follows that −l = E(−l) − sinE(−l), and, on the
other hand, we can write −l= −E(l)+ sinE(l)= −E(l)− sin(−E(l)). So,
analogously to item 1, we conclude that E(−l)=−E(l). �

Remark 1. Here, we point out the following important facts that will
be used in the future.

(1) From Lemma 1 item 1 we have that the function ρ(t), given by (9)
is 2πε3 periodic in t . In fact, by Lemma 1 it follows that

ρ(t) = ε2[1− cosEε(n t)]= ε2[1− cosEε(n t+2π)]
= ε2

[
1− cosEε

(
n

(
t+ 2π

n

))]
=ρ

(
t+ 2π

n

)
.

(2) Again by Lemma 1, we have that E(k̂π)= k̂π , where k̂ ∈ 2Z. In
fact, if t = 0, by Lemma 1 item 1, and since E(0)= 0, it follows
that E(k̂π)= k̂π with k̂ ∈ 2Z. Now, we observe that if t = kπε3,
where k∈2Z it obtained that Eε(t)=E(t/ε3)=E(kπ)=kπ . In par-
ticular, if we take T =2kπε3, it is verified that E(T/2)=kπ (where
k is an even integer).

(3) Moreover, by (7) we see that the function Eε(t) is not defined at
ε=0 and so, neither is the function ρ(t) given in (9). However, we
can extend in a continuous way ρ(t) at ε=0 defining precisely ρ(t)
at ε = 0 by limε→0 ρ(t)= 0. Note that this procedure is possible,
because [1− cosEε(t)] is a bounded function.

3. FORMULATION OF THE PROBLEM

We assume that the primaries with masses m1 and m2 are moving
along the z-axis and that their center of mass is fixed at the origin. Let
ρ = z1 − z2 be the distance between the primaries. In this case, it is nec-
essary to assume that m1 =m2 = 1/2. Let (x, y) be the coordinates of the
test particle in the plane perpendicular to the primaries motion (which are
contained in the z-axis) (see Fig. 1).
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Figure 1. The elliptic isosceles restricted three body problem with collision.

With these coordinates, the equations of motion of the infinitesimal
particle are

d2
x

dt2 = Vx =− x(
x2+y2+ ρ2(t)

4

)3/2 ,

d2
y

dt2 = Vy =− y(
x2+y2+ ρ2(t)

4

)3/2 ,

(10)

because z1(t)= −z2(t), where V is the potential function, which is given
by

V =V (x, y; t)= 1√
x2 +y2 + ρ2(t)

4

, (11)

and Vx,Vy denote the partial derivatives of V with respect to x and y,
respectively. The Hamiltonian function associated is

H = ẋ2 + ẏ2

2
−V, (12)
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and thus, the system (10) can be written of the following way

ẋ=px, ṗx =− x(
x2+y2+ ρ2(t)

4

)3/2 ,

ẏ=py, ṗy =− y(
x2+y2+ ρ2(t)

4

)3/2 ,
(13)

where ρ(t)≡ρ(E(l(t))) :=ρ(Eε(t))= ε2[1− cosEε(t)] as we see in the pre-
vious section. This system represents one Hamiltonian system with two
and half degrees of freedom, because the periodicity in t (in fact, it is 2πε3

periodic). The Hamiltonian function is defined on the phase space

M={(x, y,px,py, t)∈R
5/(x, y, t) �= (0,0,0 mod 2πε3))},

the excised points from R
5 correspond to singularity due to triple colli-

sion: x=y=0 and t=0 (mod 2πε3).

Proposition 1. The angular momentum c is constant along the solu-
tions of the system (10).

Proof. We know that c is given by c= yẋ − xẏ. So, we have dc
dt =

yẍ−xÿ. Substituting the expressions of ẍ and ÿ given by (10), we obtain
that dc

dt =0. �
Since ρ(t) depends on the parameter ε where Eε(t) satisfies (7), we also
can see the potential defined in (11) depending on (x, y, t, ε), i.e.,

V (q, t, ε)=− 1√‖q‖2 + ε4/4 [1− cos(Eε(t))]2
, (14)

where q = (x, y). It follows immediately from definition of E and V that:

Proposition 2. Assume that ε �= 0. Then, the following properties are
true:

1. V (ε2q, ε3 t, ε)= ε−2 V (q, t,1),
2. ∇V (ε2q, ε3 t, ε)= ε−4 ∇V (q, t,1),
3. s(t)= ε−2 q(ε3t) is a solution of s̈ =−∇V (s, t,1) whether q(t) is the

solution of q̈ = −∇V (q, t, ε) and vice-versa, given s(t) a solution of
s̈=−∇V (s, t,1), then q(t)=ε2s(t/ε3) is solution of q̈=−∇V (q, t, ε)
with ε arbitrary.

4. If the angular momentum of q(t) is c, then the angular momentum
of s(t) is c̃= ε−1 c.
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Proof. In order to prove the first item it is enough to observe that
from (7), Eε(ε3t) = E1(t), accordingly to the notation described in (8),
since from (14)

V (ε2q, ε3t, ε)=− 1
ε2

1√‖q‖2 +1/4 [1− cos(Eε(ε3t))]2
.

The second item is trivial. The third item is a direct consequence of the
second item. The fourth item follows directly from definition of the angu-
lar momentum. �

For future purposes, it is important to write the isosceles symmet-
ric problem with collision in rotating coordinates. Considering a rotating
coordinate system (ξ, η,pξ ,pη) with unitary angular velocity, which is a
time symplectic transformation, the relation between the inertial systems
and the synodical is given through the following manner:

⎛
⎜⎜⎝
ξ

η

pξ
pη

⎞
⎟⎟⎠

=
⎛
⎜⎜⎝

cos t sin t 0 0
− sin t cos t 0 0

0 0 cos t sin t
0 0 − sin t cos t

⎞
⎟⎟⎠

⎛
⎜⎜⎝
x

y

px
py

⎞
⎟⎟⎠ . (15)

The Hamiltonian function (12) in these new variables assumes the form

Ĥ (q̂, p̂, t, ε)= ‖p̂‖2

2
− ξpη+ηpξ − 1√

‖q̂‖2 + ρ2(t)
4

, (16)

where q̂ = (ξ, η) and p̂= (pξ ,pη). Then, the Hamilton equations are

ξ̇ =η+pξ , ṗξ =pη− ξ

R3 ,

η̇=−ξ +pη, ṗη=−pξ − η

R3 .

(17)

3.1. Symmetries and Periodicity Conditions

The symmetries of the problem (13) are very useful to find symmet-
ric periodic orbits, especially by means of the continuation method, as
we will show in the next sections. The variable that determine the sys-
tem (13) will be denoted by (x, y,px,py, t). Note that t determines E
and vice-versa. Since, from Section 2, E(−l)= −E(l), where l= t/ε3 and
cosE(−l)= cosE(l), it is easily verified that the equation of motion (10)
possesses the following symmetry:
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I : (x, y,px,py, t) → (x, y,px,py, t)

S1 : (x, y,px,py, t) → (x,−y,−px,py,−t)
S2 : (x, y,px,py, t) → (−x, y,px,−py,−t)
S3 : (x, y,px,py, t) → (x, y,−px,−py,−t)
S4 : (x, y,px,py, t) → (−x,−y,px,py,−t)
S5 : (x, y,px,py, t) → (x,−y,px,−py, t)
S6 : (x, y,px,py, t) → (−x, y,−px,py, t)
S7 : (x, y,px,py, t) → (−x,−y,−px,−py, t).

The above symmetries can be interpreted in the following way: let γ (t) be
a solution of the Hamiltonian system (13), then Si(γ (t)) is another solu-
tion for i∈{1,2,3,4,5,6,7}. For i∈{1,2,3,4,5,6,7} the orbit γ (t) will be
symmetric if and only if Si(γ (t))= γ (t). Observe that the symmetries S1
(time reverse) and S5 correspond on the configuration space to a reflec-
tion with respect to the x-axis and the symmetries S2 (time reverse) and
S6 correspond on the configuration space to a reflection with respect to
the y-axis. We will use the anti-symplectic reflections symmetries S1 and
S2 to obtain periodic orbits to our problem in the next sections. It is clear
that the following Lagrangian subplanes on the space R

2 ×R
2 are invari-

ant, more precisely, are a fixed set by the S1 and S2 symmetries, respec-
tively:

L1 = (x,0,0, py), x,py ∈R and L2 = (0, y,px,0), y,px ∈R.

Due to the symmetries, we can simplify the problem to find periodic
orbits. In fact, some important properties of the symmetric orbits, whose
proof is an immediate consequence of the Existence and Uniqueness The-
orem for Ordinary Differential Equations, are expressed in the following
proposition:

Proposition 3. Let ψ(t)= (x(t), y(t), px(t), py(t)) be a solution of the
system (13) and E(t) the function defined by (7). Then:

1. If (y(0),px(0))= (0,0), i.e., ψ(0)∈L1 and E(0)=0 and if (y(T /2),
px(T /2))= (0,0), i.e., ψ(T/2) ∈L1, where (y(t), px(t)) �= (0,0),0<
t < T/2 and E(T/2)= k̂π , where k̂ is an even integer number, then
ψ(t) is a periodic solution of period T . These orbits are called
S1-symmetric periodic orbits of the elliptic isosceles restricted 3-body
problem with collision.

2. If (x(0),py(0))= (0,0), i.e., ψ(0)∈L2 and E(0)=0 and if (x(T /2),
py(T /2))= (0,0), i.e., ψ(T/2) ∈ L2 where (x(t), py(t)) �= (0,0),0<
t <T/2 and E(T/2)= k̂π , then ψ(t) is a periodic solution of period
T . These orbits are called S2-symmetric periodic orbits of the elliptic
isosceles restricted 3-body problem with collision.
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3. If (x(0),py(0))= (0,0), i.e., ψ(0)∈L2 and E(0)=0 and if (y(T /4),
px(T /4))=(0,0), i.e., ψ(T/4)∈L1 where (y(t), px(t)) �=(0,0),0<t <
T/4 and E(T/4)= k̂π , then ψ(t) is a periodic solution of period T .
These orbits are called doubly symmetric periodic orbits of the ellip-
tic isosceles restricted 3-body problem with collision.

Remark 2. Item 1 (resp. item 2) says that we need only to construct
the half of one orbit that crosses the x-axis (resp. y-axis) orthogonally at
two distinct points to get one symmetric periodic solution with respect to
the x-axis (resp. y-axis). While, item 3 says that we need only to construct
a quarter of one orbit that crosses the x-axis and the y-axis orthogo-
nally to get one symmetric periodic solution with respect to the x-axis and
y-axis.

Remark 3. The considerations about the function E(t) are to control
the position of the primaries when the infinitesimal particle pass through
invariant subsets and, mainly, to satisfy the condition of commensurability
of the periodic orbits. By Remark 1 item 2, it seen that to have E(T/4)=
k̂π , where k̂ is an even integer, we must take T = 4k̂πε3. Analogously, to
have E(T/2)= k̂π , we must take T =2k̂πε3. Observe that this choice (i.e.,
T ) satisfies immediately the commensurability condition, in the sense that
T

2πε3 is a rational number.

In rotating coordinates, we will call Ŝ1 and Ŝ2 the symmetries corre-
sponding to symmetries S1 and S2 in the inertial coordinates and in this
way we will denote by L̂1 and L̂2 the invariant subsets corresponding to
the invariant subsets in the inertial coordinates L1 and L2. So, for the sys-
tem in rotating coordinates (17), it is obtained the following proposition,
which is similar to Proposition 3:

Proposition 4. Let ψ̂(t)= (ξ(t), η(t), pξ (t), pη(t)) be a solution of sys-
tem (17) and E(t) the function defined by (7). Then:

1. If (η(0),pξ (0))= (0,0), i.e., ψ̂(0)∈ L̂1 and E(0)=0 and if (η(T /2),
pξ (T /2))= (0,0), i.e., ψ̂(T /2)∈ L̂1, where (η(t), pξ (t)) �= (0,0),0<
t < T/2 and E(T/2)= k̂π , where k̂ is an even integer number, then
ψ̂(t) is a periodic solution of period T . These orbits are called
Ŝ1-symmetric periodic orbits of the elliptic isosceles restricted 3-body
problem with collision.

2. If (ξ(0),pη(0))= (0,0), i.e., ψ̂(0)∈ L̂2 and E(0)=0 and if (ξ(T /2),
pη(T /2))= (0,0), i.e., ψ̂(T /2)∈ L̂2, where (ξ(t), pη(t)) �= (0,0),0<
t <T/2 and E(T/2)= k̂π , then ψ̂(t) is a periodic solution of period
T . These orbits are called Ŝ2-symmetric periodic orbits of the elliptic
isosceles restricted 3-body problem with collision.
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3. If (ξ(0),pη(0))= (0,0), i.e., ψ̂(0)∈ L̂2 and E(0)=0 and if (η(T /4),
pξ (T /4))= (0,0), i.e., ψ̂(T /4)∈ L̂1, where (η(t), pξ (t)) �= (0,0),0<
t <T/4 and E(T/4)= k̂π , then ψ̂(t) is a periodic solution of period
T . These orbits are called doubly symmetric periodic orbits of the
elliptic isosceles restricted 3-body problem with collision.

4. THE PROBLEM IN A CONVENIENT WAY

The system (13) can be written as a perturbation of the Kepler prob-
lem, where the parameter of perturbation ε was introduced in Section 2
Eq. (5). But, since Eε(t) (see Remark 1 item 3) is not defined for ε =
0, it follows that neither is the Hamiltonian (12). In this way, the anal-
ysis is somewhat more delicate because the standard techniques, such as
expansion in Taylor series, do not hold. To obtain an expansion of the
system (13) in ε, we will use Legendre’s polynomials (see more details
in [13] pp. 102). We consider the following expression for the distance
R=√

x2 +y2 +ρ2(t)/4

R=‖q‖
√

1+w2,

where w= z1

‖q‖ = ρ

2 ‖q‖ . We assume that

ρ

2‖q‖ <1, (18)

so we can expand using Legendre’s polynomials 1/R as power series in the
variable w (for more details see [13]). In this way we obtain:

1
R

= 1
‖q‖

⎡
⎣1+

∞∑
j=1

Pj (0) (w)j

⎤
⎦,

where Pj (u) is jth-Legendre’s polynomial. In particular, it is known that

P0(u)=1, P3(u)=−3
2
u+ 5

2
u3,

P1(u)=u, P4(u)= 3
8

− 15
4
u2 + 35

8
u4,

P2(u)=−1
2

+ 3
2
u2,P5(u)= 63

2
u5 − 70

8
u3 + 15

8
u,

and the above series is convergent for |w|<1 (see [13]). Using this expan-
sion the Hamiltonian (12) becomes

H(q,p, t, ε)=H0(q,p)+ ε4H1(q,p, t, ε)+ ε8Hr(q,p, t, ε), (19)
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where q = (x, y),p= (px,py) and

H0(q,p)= 1
2
‖p‖2 − 1

‖q‖ , (20)

H1(q,p, t, ε)= 1
8‖q‖3

[1− cosEε(t)]2, (21)

Hr(q,p, t, ε)=−3[1− cosEε(t)]4

128‖q‖5 +O(ε4). (22)

Clearly H0 represents the Hamiltonian of the Kepler problem in inertial
coordinates. Similarly, the Hamiltonian function in rotating coordinates
(16) becomes

Ĥ (q̂, p̂, t, ε)= Ĥ0(q̂, p̂)+ ε4Ĥ1(q̂, p̂, t, ε)+ ε8Ĥr (q̂, p̂, t, ε), (23)

where

Ĥ0(q̂, p̂)= ‖p̂‖2

2
− ξpη+ηpξ − 1

‖q̂‖ , (24)

Ĥ1(q̂, p̂, t, ε)= 1
8‖q̂‖3

[1− cosEε(t)]2, (25)

Ĥr (q̂, p̂, t, ε)=−3[1− cosEε(t)]4

128‖q̂‖5 +O(ε4). (26)

Here Ĥ0 defines the Hamiltonian of the Kepler problem in rotating coor-
dinates. Now, we can prove the following result:

Lemma 2. The functions εH
µ

1 (q,p, t, ε) and εH
µ
r (q,p, t, ε) can be

defined in a continuous way at ε=0.

Proof. The functions Hµ

1 (q,p, t, ε) and Hµ
r (q,p, t, ε) are not defined

at ε = 0, because the function Eε(t) is not, but they are bounded when
ε tends to zero because of the term cosEε(t). In this way, we can define
εH

µ

1 (q,p, t, ε) and εH
µ
r (q,p, t, ε) or extend them for all ε�0 in the fol-

lowing form

εH
µ

1 (q,p, t, ε)=
{
εH

µ

1 (q,p, t, ε) if ε �=0,
limε→0 εH

µ

1 (q,p, t, ε)=0 if ε=0,
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and

εHµ
r (q,p, t, ε)=

{
εH

µ
r (q,p, t, ε) if ε �=0,

limε→0 εH
µ
r (q,p, t, ε)=0 if ε=0.

�
Similarly the same result holds for the functions εĤ

µ

1 (q̂, p̂, t, ε) and
εĤ

µ
r (q̂, p̂, t, ε).

Remark 4. By Lemma 2, the functions ε4H
µ

1 (q,p, t, ε) and ε4H
µ
r

(q,p, t, ε) are continuous with respect to ε�0 and it is easy to see
that these functions are continuous with respect to (q,p, t) for all q �= 0,
p and t .

4.1. The Problem in Delaunay–Poincaré Variables and Delaunay Variables

In order to continue Kepler’s periodic orbits (the case ε = 0) to
the case ε > 0, we need to study, the equations of motion given by the
Hamiltonian function (19) in convenient variables. Here we will use the
Delaunay–Poincaré and Delaunay variables (see details in [14]) which are
symplectic transformations. Firstly, we introduce the Delaunay–Poincaré
variables with the following choice

Q1 = l+g, P1 = L,

Q2 = −√
2(L−G) sin(g), P2 = √

2(L−G) cos(g),
(27)

where L = √
a, a is the semimajor axis of the infinitesimal mass, G its

angular momentum, l is the mean anomaly measured from pericenter, g
is the argument of the pericenter. These variables are valid on circular
orbits which occur at L=G. The circular orbits with L=G correspond
to Q2 =P2 =0. The Hamiltonian function (19) (inertial coordinates) in the
variables (27) becomes

H(Q,P, t, ε)=H0(Q,P)+ ε4H1(Q,P, t, ε)+ ε8Hr(Q,P, t, ε), (28)

where Q= (Q1,Q2),P= (P1,P2) and

H0(Q,P)=− 1

2P 2
1

, (29)

H1(Q,P, t, ε)= 1
8‖q‖3

[1− cosEε(t)]2, (30)
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Hr(Q,P, t, ε)=−3[1− cosEε(t)]4

128‖q‖5 +O(ε4), (31)

where q must be though as q in the new variable Q and P. Also, it
is verified that the Hamiltonian function (23) (synodical coordinates) in
Delaunay–Poincaré variables described by (27) is

Ĥ (Q,P, t, ε)= Ĥ0(Q,P)+ ε4Ĥ1(Q,P, t, ε)+ ε8Ĥr (Q,P, t, ε) (32)

where

Ĥ0(Q,P)=− 1

2P 2
1

−P1 + Q2
2 +P 2

2

2
, (33)

Ĥ1(Q,P, t, ε)= 1
8‖q̂‖3

[1− cosEε(t)]2, (34)

and

Ĥr (Q,P, t, ε)=−3[1− cosEε(t)]4

128‖q̂‖5 +O(ε4), (35)

where as before q̂ denotes q̂ in the new variables.
Now we introduce another second set of variables which are not

defined on circular orbits, but are very convenient to characterize elliptic
orbits. These variables are given by the Delaunay elements (l, g,L,G)

Q1 = l, P 1 = L,

Q2 = g, P 2 = G,
(36)

where l, g,L,G were previously defined. These coordinates, which are
called Delaunay coordinates, are defined on the elliptic domain of the
Kepler problem. The elliptic domain is the open set on R

4 which is filled
with elliptic solutions of the Kepler problem. In this way, these coordi-
nates are not valid in a neighborhood of the circular orbits of the Kepler’s
problem. Now, we point out to the Hamiltonian function (23) (synodical
coordinates) in the variables described in (36), which is

Ĥ (Q,P, t, ε)= Ĥ0(Q,P)+ ε4Ĥ1(Q,P, t, ε)+ ε8Ĥr (Q,P, t, ε), (37)

where Q= (Q1,Q2), P= (P 1,P 2) and

Ĥ0(Q,P)=− 1

2P
2
1

−P 2, (38)
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Ĥ1(Q,P, t, ε)= 1
8‖q̂‖3

[1− cosEε(t)]2, (39)

and

Ĥr (Q,P, t, ε)=−3[1− cosEε(t)]4

128‖q̂‖5 +O(ε4), (40)

where we denote q̂(Q,P) by q̂.
The Delaunay–Poincaré and Delaunay variables make easier the local-

ization of the infinitesimal particle in the space. So, in the below proposi-
tions we give sufficient conditions in order that the test particle lies in the
invariant subset L1 or L2 and in the invariant subsets L̂1 or L̂2.

Proposition 5. Let Q = (Q1,Q2), P = (P1,P2) be the Delaunay–
Poincaré variables defined in (27). The subset of R

4:

1. L1 : Q1 =0 (mod π), Q2 =0, gives us points in the invariant subset
L1 or L̂1.

2. L2 : Q1 = π
2 (mod π), P2 =0, gives us points in the invariant subset

L2 or L̂2.

Analogously,

Proposition 6. Let Q = (Q1,Q2), P = (P 1,P 2) be the Delaunay vari-
ables defined in (36). The subset of R

4:

1. L̂1 : Q1 =0 (mod π), Q2 =0 (mod π), gives us points in the invari-
ant subset L1 or L̂1.

2. L̂2 : Q1 =0 (mod π), Q2 = π
2 (mod π), gives us points in the invari-

ant subset L2 or L̂2.

5. PERIODIC SOLUTIONS OF FIRST KIND

In this section we will prove the existence of periodic doubly-
symmetric (S1 and S2 symmetric) solutions; S2 symmetric solutions and S1
symmetric solutions as continuation of convenient circular orbits of the
Kepler problem via Arenstorf’s Theorem 8.1 (see Appendix) for suitable
values of the parameter ε.

5.1. Doubly-symmetric Periodic Solutions as Continuation of Circular
Kepler’s Orbits

In this case we consider the elliptic isosceles restricted three-body
problem with collision in inertial coordinates and then we write the
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problem in Delaunay–Poincaré variables (27) (i.e., the system associated
with Hamiltonian function (28)).

The equations of motion (13) in Delaunay–Poincaré variables given
by (27) can be written as

Ż=F(Z), (41)

where Z= (Q1,Q2,P1,P2), F(Z)=F0(Z)+ ε4F1(Z, t, ε)+ ε8Fr (Z, t, ε).

F0(Z)= (P−3
1 ,0,0,0), (42)

F1(Z, t, ε)=
(
∂H1

∂P1
,
∂H1

∂P2
,− ∂H1

∂Q1
,− ∂H1

∂Q2

)
, (43)

with H1(Q,P, t, ε) given by (30) and finally,

Fr (Z, t, ε)=
(
∂Hr

∂P1
,
∂Hr

∂P2
,− ∂Hr
∂Q1

,− ∂Hr
∂Q2

)
, (44)

with Hr(Q,P, t, ε) given by (31). Note that the system (41) is non-
autonomous and 2πε3-periodic in t , and it is defined on the phase space

Ω=
{
(Z, t, ε)∈R

4 ×R ×R / P1 �=0,q �=0
}
.

Now we will characterize doubly-symmetric orbits of the Kepler problem
(42), whose equations of motion are

Q̇1 = P−3
1 , Ṗ1 =0,

Q̇2 = 0, Ṗ2 =0.
(45)

The solutions of this system are given by

Q
(0)
1 (t)= P−3

10 t+Q10, P
(0)
1 (t)=P10,

Q
(0)
2 (t)= Q20, P

(0)
2 (t)=P20,

(46)

for initial conditions (Q10,Q20,P10,P20) at t = 0. Now, we consider solu-
tions of the Kepler problem (45) with initial conditions z∗

0 ∈L2 when t=0
and E(0)=0, with

z∗
0 =

((
m+ 1

2

)
π,Q∗

2,P
∗
1 ,0

)
,
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where m is an integer that we will choose, without loss of generality,
either 0 or 1, and P ∗

1 ,Q
∗
2 are constants to be determined. These solutions

denoted by Z(0)(t, z∗
0) are of the form:

Q
(0)
1 (t, z∗

0) = (P ∗
1 )

−3t+ (m+ 1
2 )π, P

(0)
1 (t) =P ∗

1 ,

Q
(0)
2 (t, z∗

0) =Q∗
2, P

(0)
2 (t) =0.

By Proposition 3 item 3 and Proposition 5 item (i) we can obtain doubly
symmetric orbit to the Kepler’s problem (45), if we may solve the set of
two equations at time t=T/4 in three unknowns:

Q
(0)
1

(
T

4
, z∗

0

)
= (P ∗

1 )
−3 T

4
+

(
m+ 1

2

)
π = (m+m̃+1)π, Q(0)

2

(
T

4
, z∗

0

)
=Q∗

2=0,

where m̃ is an integer. The second equation is satisfied by Q∗
2 = 0 (note

that with this choice it will be a circular orbit). Taking P−3
1 = s, where s

is positive real constant, we have from the first equation that

T =4
m̃+ 1

2

s
π. (47)

On the other hand, by Remark 3, the conditions E(0)= 0 and E(T/4)=
k̂π , where k̂ is a convenient even integer and in this way we must take

T =4k̂πε3. (48)

So, combining (47) and (48) we have k̂= (m̃+1/2)ks−1, when we have con-
sidered ε3 = 1/k, k, m̃ a positive integers and s a positive real constant.
Since k̂ is an even positive integer, we will verify this condition assuming
that for example, k is an even positive integer and (m̃+1/2)s−1 is a posi-
tive integer or either (m̃+1/2)s−1 is an even positive integer. To facilitate
our approach we will choose the second option. In this way the value of
s will be

s= m̃+1/2
2s̃

,

where s̃ ∈ N. So, we have Z(0)(T /4, z∗
0)= ((m+ m̃+ 1)π, 0, ( m̃+1/2

2s̃ )−1/3,0)
which is in L1 and E(T/4)= k̂π , where k̂ = 2s̃k. Therefore, the solution
Z(0)(t, z∗

0) is a doubly-symmetric circular orbit with radius (
m̃+1/2

2s̃ )−2/3

and period T =8πs̃ on the plane xy.
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Let C ⊂ R
4 be a compact neighborhood of Z(0)(t, z∗

0) without singu-
larities and z∗

0 such that Z(0)(t, z∗
0) remains bounded and bounded away

from the singularities. In this way, we describe the following lemma:

Lemma 3. The functions F0(Z), ε4 F1(Z, t, ε) and ε8 Fr (Z, t, ε), given
in (41), together with all their derivatives with respect to Z are continuous
at C.

Proof. It is easy to see that the function F0 is continuous on C.
The functions ε4 F1 and ε8 Fr are defined for all (Z, t, ε) ∈ Ω and are
continuous on C, because are rational functions in Z and the term ‖q‖
is a function continuous in C (see Lemma 7 in Appendix). With rela-
tion to the variables ε to ε �= 0 and t , these functions are clearly con-
tinuous. For see this, it is sufficient to observe that the term cosEε(t)
is a continuous function in t and in ε, for ε �= 0. Note that for ε =
0, by Remark 4, we define the functions ε4 F1 and ε8 Fr at ε = 0 in
such a way that they are continuous at ε= 0. So, we have that F0, ε

4 F1
and ε8 Fr are continuous in C. With relation to the derivatives of these
functions with respect to Z, since F0, ε

4F1 and ε8Fr are rational func-
tions with respect to Z and the term ‖q‖ have all derivatives continu-
ous (see Lemma 7), it follows that there are the derivatives of F0, ε

4F1
and ε8Fr with respect to Z in C in any order and are continuous.

�
As a consequence by the above lemma we have that given the solution

Z(t, z∗0) of the system Ż=F0(Z) and a compact neighborhood of this solu-
tion C, we have that F0, ε

4F1 and ε8Fr together with all their derivatives
with respect to Z are bounded at C. In particular, since F0 is in C1, it fol-
lows that F0 is Lipschitz in C (we can restrict the compact neighborhood
if necessary). In this way, we can use the estimates obtained in Lemmas 5
and 6 described in the Appendix.

Now, we will proceed to study the perturbed system. We look for
initial conditions in a neighborhood of z∗

0, of the type

z0 =
((
m+ 1

2

)
π, 
Q2, s

−1/3 +
P1,0
)
,

where m can be either 0 or 1 and s= m̃+1/2
2s̃ with m̃, s̃ ∈N, in such a way

that a solution Z(t, z0) of (41), with ε �= 0 small enough, let be a doubly
symmetric orbit. By Lemma 5 of the Appendix, we have that the solution
Z(t, z0, ε) of (41) is given by
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Q1(t, z0, ε) = ( ((m̃+1/2)/2s̃)−1/3 +
P1)
−3t +

(
m+ 1

2

)
π

+ε4Q
(1)
1 (t, z0, ε)+O(ε8)

Q2(t, z0, ε) = 
Q2 +ε4Q
(1)
2 (t, z0, ε)+O(ε8)

P1(t, z0, ε) = s−1/3 +
P1 +ε4P
(1)
1 (t, z0, ε)+O(ε8)

P2(t, z0, ε) = 0 +ε4P
(1)
2 (t, z0, ε)+O(ε8).

(49)

By Proposition 3 item 3 and Proposition 5 item (i), to obtain a doubly
symmetric orbit of the system (41), the two equations below

Q1(T /4, z0, ε)= (m+ m̃+1)π, Q2(T /4, z0, ε)=0, (50)

must be satisfied. Defining Φ(X,P )= (Φ1(X,P ),Φ2(X,P ))= (Q1(X,P )−
(m̃+m+ 1)π,Q2(X,P ))= (Q1(T /4, z0, ε)− (m̃+m+ 1)π,Q2(T /4, z0, ε)),
where X = (
Q2,
P1),P = ε and T/4 = 2πs̃, the system (50) is
equivalent to

Φ1(X,P ) = (s−1/3 +
P1)
−3 T

4
−

(
m̃+ 1

2

)
π + ε4Q

(1)
1

(
T

4
, z0, ε

)
+O(ε8)=0

Φ2(X,P ) = 
Q2 + ε4Q
(1)
2

(
T

4
, z0, ε

)
+O(ε8)=0, (51)

called periodicity equations.

Remark 5. By Lemma 5 in the Appendix the functions

ε4
[
Q
(1)
1

(
T

4
, z0, ε

)
+O(ε4)

]
:= ε4g1(z0, ε)

ε4
[
Q
(1)
2

(
T

4
, z0, ε

)
+O(ε4)

]
:= ε4g2(z0, ε)

are uniformly bounded as ε approaches to zero, so we can define them to
be continuous at ε=0 by taking its limit, which is zero.

By the previous Remark 5, we can extend Φ(X,P ) to the case P =
ε=0 by defining

Φ1(X,0) = ( ((m̃+1/2)/2s̃)−1/3 +
P1)
−3 T

4
−

(
m̃+ 1

2

)
π

Φ2(X,0) = 
Q2.

Thus, it is clear that Φ(0,0) = 0 with T/4 = 2πs̃. With the previous
notation, we have the following result analogous to Proposition 7 given in
the Appendix. Since this kind of arguments will be used frequently during
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this work, we will give all the details of the proof in order to does not
repeat it the other cases.

Lemma 4. Let B∗ be a ball around X = 0 and B a region containing
P = 0. The function Φ(X,P ) is differentiable, with respect to X ∈ B∗ for
every P ∈B, and satisfies the next three properties

1. |(DXΦ)
−1(0,0)| � b

2. |DXΦ(X,P )−DXΦ(0,0)| � c(‖X‖+ ε4)

3. ‖Φ(0, ε)‖ � dε4

where b, c, d are constants independent of ε.

Proof. Firstly, we will prove the differentiability of Φ. Each term
ε4gj inside the coordinate functions Φj , for j = 1,2 respectively, are
differentiable at ε = 0. In fact, by the process of the limit, the par-
tial derivatives at ε = 0 ar zero. Observe that the partial derivatives

ε4 ∂gj

∂
P1
, ε4 ∂gj

∂
Q2
, j=1,2 exist and are continuous for each ε �=0 because

the functions F0, ε4F1 and ε8Fr are differentiable with respect to Z and
all their derivatives with respect to Z are continuous in C. So, by basic
theory of Ordinary Differential Equation, the solution Z(t, z0) has the
same properties. At ε= 0, Lemma 6 in the Appendix allows us to define
these partial derivatives in a continuous way. So, we have that the function
Φ(X, ε) is differentiable, for every ε, with respect to X ∈B∗. Now, we will
proceed to prove the properties 1, 2 and 3. It is verified that

DXΦ(X, ε)=
(

0+O(ε4) −3(((m̃+1/2)/2s̃)−1/3 +
P1)
−4 T

4 +O(ε4)

1+O(ε4) 0+O(ε4)

)
,

(52)

where T/4=2πs̃. Then, evaluating at X =0 and ε=0, it follows that

DXΦ(0,0)=
(

0 −6
( m̃+1/2

2

)4/3
πs̃−1/3

1 0

)
. (53)

Thus, detDXΦ(0,0)=−6
(
m̃+1/2

2

)4/3
πs̃−1/3 �= 0 and therefore, there exists

(DXΦ)
−1(0,0), then item 1 holds taking a convenient positive constant b.

In order to prove 2, by the triangle inequality

|DXΦ(X,P )−DXΦ(0,0)| � |DXΦ(X,P )−DXΦ(X,0)|+ |DXΦ(X,0)

−DXΦ(0,0)|,
and as the matrix DXΦ(X,P )−DXΦ(X,0) is given by partial derivatives
of the functions ε4g1 and ε4g2, and these partial derivatives are contin-
uous, it follows that the norm |DXΦ(X,P )−DXΦ(X,0)| is bounded by,
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say, c1ε
4, where c1 is a positive constant. To prove that the second norm

in the above sum is bounded, we note that the components of DXΦ(X,0)
are twice differentiable with respect to X and, applying the Mean Value
Inequality, we obtain that the second norm is bounded, say, by c2‖X‖, for
X in a compact neighborhood, where c2 is a positive constant. So, item 2
follows taking c=Max{c1, c2}. To prove item 3, observe that

Φ(0, ε)=
(
ε4Q

(1)
1 +O(ε8), ε4Q

(1)
2 +O(ε8)

)
,

and using Lemma 5 in the Appendix, we see that there is a positive con-
stant d such that ‖Φ(0, ε)‖ � dε4. �

Theorem 1. Consider the equations of motion (41) for the elliptic
isosceles restricted three-body problem with collision, where the primaries
move in an elliptic-collision orbit with energy h=−1/2 ε−2. If ε=k−1/3 for
k a large enough positive integer, then there exist initial conditions for the
infinitesimal body such that its motion is a doubly-symmetric periodic solu-
tion, near a Keplerian circular orbit on the xy-plane whose period is 8πs̃,
where s̃ ∈N.

Proof. Firstly, it is enough to observe that under the hypoth-
eses of the theorem and previous computations, we are in position
apply Arenstorf’s Theorem to the periodicity equation (50) for ε in
a sufficiently small interval with the auxiliary function g(X,P ) = X −
[DXΦ(X0,0)]−1 Φ(X,P ) (as in the proof of Proposition 7). Thus, there
exist families (indexed by m, m̃, s̃) to one-parameter (ε) of initial condi-
tions Xm, m̃, s̃ (ε) such that Φ(Xm, m̃, s̃ (ε), ε)= 0. Secondly, in order to have
periodic solutions of the elliptic isosceles restricted three-body problem
with collision (41) and consequently of system (13), the conditions in (50)
must be satisfied simultaneously with E = k̂π , where k̂ is even integer.
Thus, for each ε = k−1/3, where k is a large enough positive integer, we
have initial conditions whose associated solution is 8πs̃-periodic and dou-
bly symmetric. �

Remark 6. (1) For ε=k−1/3, where k is a large enough positive inte-
ger we have the relation k̂=2s̃k, s̃ ∈N.
(2) Since the period of the continued orbit is T =8πs̃, the commensurabil-
ity relation give us T/Tp=4s̃k, where Tp denotes the period of the prima-
ries or the period of the perturbed system. In this way, we have that the
common period of the motion of the three bodies together is T = 4s̃kTp,
and so, while the infinitesimal body completes one revolution, the prima-
ries completed 4s̃k revolutions or encounters.
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We will finish this section with the following important results, which
are direct consequences of Proposition 2 item 3 and Theorem 1:

Corollary 1. There are doubly-symmetric periodic solutions for the
elliptic isosceles restricted three-body problem with collision (41), where the
primaries move in an elliptic-collision orbit with energy h= −1/2 near a
Keplerian circular orbit on the xy-plane whose period is large enough.

Proof. Let ψ(t) be a solution of system (41) given by Theorem 1
with energy of the primaries h=−1/2 ε−2. Then, by Proposition 2 item 3,
we have that s(t)= 1

ε2ψ(ε
3t) is a solution of the system (41) where now the

energy of the primaries is h=−1/2. Note that its period is 8πs̃k, which is
too large if k is too large. �

Another consequence is:

Corollary 2. There are doubly symmetric periodic solutions which cut
orthogonally any two perpendicular lines at the origin for the elliptic isos-
celes restricted three-body problem with collision (41), where the primaries
move in an elliptic-collision orbit with energy h=−1/2 ε−2 near a Keplerian
circular orbit on the xy-plane.

Proof. This result follows immediately since our problem is invariant
under rotations around the z-axis. �

Using Corollary 1 and again Proposition 2 item 3, we can prove
the existence of doubly-symmetric periodic solutions for any value of the
parameter ε. Thus,

Theorem 2. There are doubly-symmetric periodic solutions for the
elliptic isosceles restricted three-body problem with collision (41), where the
primaries move in an elliptic-collision orbit for any fixed energy h< 0 near
a Keplerian circular orbit on the xy-plane.

5.2. Ŝ2-symmetric Periodic Solutions

Here, we prove the existence of S2-symmetric periodic orbits, using
similar arguments of the doubly symmetric periodic solutions. In this case,
it will be convenient to use the problem in rotating coordinates and after
that, put it in Delaunay–Poincaré variables, i.e., the Hamiltonian (32).
But, similar results can be obtained using the problem in original vari-
ables (inertial coordinates), but the calculus are more tedious. Thus, the
equation of motion is

Ż= F̂ (Z)= F̂0(Z)+ ε4F̂1(Z, t, ε)+ ε8F̂r (Z, t, ε), (54)
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where Z= (Q1,Q2,P1,P2),

F̂0(Z)= (P−3
1 −1,P2,0,−Q2), (55)

and

F̂1(Z, t, ε) =
(
∂Ĥ1

∂P1
,
∂Ĥ1

∂P2
,− ∂Ĥ1

∂Q1
,− ∂Ĥ1

∂Q2

)
,

F̂r (Z, t, ε) =
(
∂Ĥr

∂P1
,
∂Ĥr

∂P2
,− ∂Ĥr
∂Q1

,− ∂Ĥr
∂Q2

)
,

where Ĥ1 and Ĥr are given respectively by (34) and (35). Now, we will
characterize the Ŝ2 symmetric circular of the Kepler’s problem

Q̇1 = P−3
1 −1, Ṗ1 =0,

Q̇2 = P2, Ṗ2 =−Q2,
(56)

whose solutions with initial conditions (Q10,Q20,P10,P20) at t = 0 are
described by

Q
(0)
1 (t)= ((P10)

−3 −1)t+Q10, P
(0)
1 (t)=P10,

Q
(0)
2 (t)= Q20 cos t+P20 sin t, P

(0)
2 (t)=−Q20 sin t+P20 cos t.

(57)

We consider a solution of the Kepler’s problem (56) with initial conditions
z∗

0 ∈L2 when t=0 and E(0)=0, with

z∗
0 =

((
m+ 1

2

)
π,Q∗

2,P
∗
1 ,0

)
.

where m is an integer that, without loss of generalities, can be taken as
0 or 1, and Q∗

2, P
∗
1 are constants to be determined. So, we have that this

solution is written in the following manner

Z(0)(t, z∗
0)=

(
(P ∗

1 )
−3 −1)t+

(
m+ 1

2

)
π, Q∗

2 cos t, P ∗
1 ,−Q∗

2 sin t
)
.

Since, we want that this solution be S2-symmetric, by Proposition 4 item
2 and Proposition 5, item (ii), it is sufficient to solve, at time t=T/2, the
system

Q
(0)
1 (T /2, z∗0) = ((P ∗

1 )
−3 −1)

T

2
+

(
m+ 1

2

)
π =

(
m+ 1

2
+ m̃

)
π

P
(0)
2 (T /2, z∗0) = −Q∗

2 sin
T

2
=0,
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where m̃ is an integer. The second equation is satisfied taking Q∗
2 =0 and

so, with this choice, we obtain a circular orbit. By the first equation we
obtain T/2= m̃π [(P ∗

1 )
−3 −1]−1. Then, taking (P ∗

1 )
−3 = s, where s is a pos-

itive real constant, we have that

T

2
= m̃π

s−1
. (58)

By Remark 3, we must have E(0)= 0 and E(T/2)= k̂π and by Proposi-
tion 1 item 2, we must take

T =2k̂πε3, (59)

where k̂ is an even positive integer. By Eqs. (58) and (59), it follows that

k̂= m̃

ε3(s−1)
, (60)

where s is a positive real constant (s �=1). Since, for future applications, we
will want that sinT/2 �=0, it is necessary to make more restrictions about
T/2. So, we also must assume

m̃

s−1
= 1

2
(mod 1). (61)

Observe that by (60) and (61) it follows that k̂= 2s̃+1
2ε3

, where s̃ ∈ N. So,

since k̂ is a positive even integer, we have that

ε3 = 1
4k
, with k∈N.

Therefore, it follows that Z(0)(t, z∗
0) is a circular orbit of radius s−2/3,

where s= 2m̃
2s̃+1 +1 with m̃, s̃ ∈N in the xy plane whose period is T = (2s̃+

1)π , where s̃ ∈N.
Now, we will consider the perturbed problem (54) and we look for

initial conditions in a neighborhood of z∗
0 of type

z0 =
((
m+ 1

2

)
π,
Q2, s

−1/3 +
P1,0
)
,

where s= 2m̃
2s̃+1 +1 in such a way that the solution Z(t, z0, ε) of (54), with

ε �= 0 small enough, is a S2-symmetric periodic orbit. We know that the
solution of Kepler’s problem (55) with initial condition z0 is given by

Z(0)(t, z0)= (((s−1/3 +
P1)
−3 −1)t+

(
m+ 1

2

)
π,


Q2 cos t, s−1/3 +
P1,−
Q2 sin t).
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Again by Lemma 5 of the Appendix, we have that the solution Z(t, z0, ε)

of (54) is given by

Q1(t, z0, ε) = ((s−1/3 +
P1)
−3 −1)t+ (m+ 1

2 )π +ε4Q
(1)
1 (t, z0, ε)+O(ε8)

Q2(t, z0, ε) =
Q2 cos t +ε4Q
(1)
2 (t, z0, ε)+O(ε8)

P1(t, z0, ε) = s−1/3 +
P1 +ε4P
(1)
1 (t, z0, ε)+O(ε8)

P2(t, z0, ε) =−
Q2 sin t +ε4P
(1)
2 (t, z0, ε)+O(ε8).

(62)

To obtain S2-symmetric periodic orbits, by Proposition 4, item 2, and
Proposition 5, item (ii) it is enough to solve, at time t = T/2, where we
take T/2=π/2 (2s̃+1), with s̃ ∈N the following periodicity equations:

Q1(T /2, z0, ε) = ((s−1/3 +
P1)
−3 −1)

T

2
+

(
m+ 1

2

)
π + ε4[Q(1)

1 (T /2, z0, ε)

+O(ε4)]=
(
m+ 1

2
+ m̃

)
π (63)

P2(T /2, z0, ε) = −
Q2 sin
T

2
+ ε4[P (1)1 (T /2, z0, ε)+O(ε4)]=0.

Let be Φ(X,P ) = (Φ1(X,P ),Φ2(X,P )) = (Q1(X,P ) − (m + 1
2 + m̃)π,

P2(X,P )) = (Q1(T /2, z0, ε) − (m + 1
2 + m̃)π,P2(T /2, z0, ε)), where X =

(
Q2,
P1),P = ε. Thus, the periodicity equations are given by

Φ1(X,P )= ((s−1/3+
P1)
−3−1) T2 −m̃π +ε4[Q(1)

1 (T /2, z0, ε)+O(ε4)]=0

Φ2(X,P )= −
Q2 sin T
2 +ε4[P (1)1 (T /2, z0, ε)+O(ε4)]=0.

(64)

Similarly to the pervious case, we can extend Φ(X,P ) to the case ε=0 by
defining

Φ1(X,0) = ((s−1/3 +
P1)
−3 −1) T2 − m̃π

Φ2(X,0) = −
Q2 sin T
2 ,

and by the choosing of T and s, it follows that Φ(0,0)=0. Here, we easily
verify that

DXΦ(X, ε)=
⎛
⎜⎝0+O(ε4) −3π2 (2s̃+1)

((
2m̃

2s̃+1
+1

)−1/3

+
P1

)−4

+O(ε4)

1+O(ε4) 0+O(ε4)

⎞
⎟⎠,
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and so,

DXΦ(0,0)=
(

0 − 3π
2 (2m̃+1)4/3(2s̃+1)−1/3

±1 0

)
.

It is a simple exercise to verify that an analogous result to Lemma 4 is
valid in this case. Thus, now we can use the Arenstorf’s Theorem to solve
the Eq. (63). In this way, we have the following theorem:

Theorem 3. Consider the equations of motion (54) for the elliptic
isosceles restricted three-body problem with collision, where the primaries
move in an elliptic-collision orbit with energy h=1/2 ε−2. If ε= (4k)−1/3 for
k a large enough positive integer, then there exist initial conditions for the
infinitesimal body such that its motion is a Ŝ2-symmetric periodic solution,
near a Keplerian circular orbit on the xy-plane whose period is (2s̃ + 1)π
with s̃ ∈N.

Proof. Initially we observe that under the hypotheses of the theo-
rem, we are in position to apply Arenstorf’s Theorem to the periodicity
Eq. (63) for ε in a sufficiently small interval. Thus, there exist families
(indexed by m, m̃, s̃) to one-parameter (ε) of initial conditions Xm,m̃,s̃ (ε)
such that Φ(Xm,m̃,s̃ (ε), ε)= 0. After that, in order to have periodic solu-
tions of the elliptic isosceles restricted three-body problem with collision
(13), the conditions in (63) must be satisfied simultaneously with E= k̂π ,
where k̂ is an even integer. Thus, for each ε = (4k)−1/3, where k ∈ N, we
have initial conditions whose associated solution is (2s̃+1)π -periodic and
Ŝ2-symmetric. �

Remark 7. (1) For ε= (4k)−1/3, where k∈N and s= 2m̃(2s̃+ 1)−1 +
1, where m̃, s̃ ∈N we have the relation k̂=2k(2s̃+1).
(2) Since the period of the continued orbit in inertial coordinates is T =
2(2s̃+ 1)π , where s̃ ∈ N and the system (13) defining the elliptic isosceles
restricted three-body problem with collision is Tp = 2πε3, with ε3 = 1/4k,
the commensurability relation give us T/Tp=4k(2s̃+1). Notice that Tp is
also the period of the primaries. In this way, we have that the period of
the motion of the three bodies together is T =4k(2s̃+1)Tp, and so, while
the infinitesimal body completes one revolution, the primaries have com-
pleted 4k(2s̃+1) revolutions or encounters.
(3) Similar results to Corollary 1, 2 and Theorem 2 are also true in this
case.
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5.3. Ŝ1-symmetric Periodic Solutions

In order to get Ŝ1-symmetric orbits of the elliptic isosceles restricted
three-body problem with collision, we will use the same coordinates as the
case of Ŝ2 symmetry. Similar results also can be obtained in the orginal
variables. At this time, we will consider a solution of Kepler’s problem (55)
with initial conditions z∗

0 ∈L1 when t=0 and E(0)=0, with

z∗
0 = (mπ,0,P ∗

1 ,P
∗
2 ),

where m is an integer that, without loss of generality, we can take as 0 or
1, and P ∗

1 , P
∗
2 are constants to be determined. So, we have that this solu-

tion is written in the following manner

Z(0)(t, z∗
0)= ((P ∗

1 )
−3 −1)t+mπ, P ∗

2 sin t, P ∗
1 ,P

∗
2 cos t).

We want this solution to be the S1-symmetric of Kepler’s problem (55). So
by Proposition 4, item 1 and Proposition 5, item (i) it is enough to solve,
at time t=T/2, the system

Q
(0)
1 (T /2, z∗0)= ((P ∗

1 )
−3 −1) T2 +mπ = (m+ m̃)π

Q
(0)
2 (T /2, z∗0)= P ∗

2 sin T
2 =0,

where m̃ is an integer. The second equation is satisfied taking P ∗
2 =0 (note

that with this choice, this orbit will be circular), and by the first equa-
tion we obtain T/2= m̃π [(P ∗

1 )
−3 −1]−1. So, taking (P ∗

1 )
−3 = s, where s is

a positive real constant, we have that

T

2
= m̃π

s−1
. (65)

Considering Remark 3, it is necessary to have E(0)= 0 and E(T/2)= k̂π
and by Remark 1 item 2, it is seen that we must take

T =2k̂πε3, (66)

where k̂ is a even positive integer. From Eqs. (65) and (66), it follows that

k̂= m̃

ε3(s−1)
, (67)

where s is a positive real constant. Since we will demand sinT/2 �= 0, we
take

m̃

s−1
= 1

2
(mod 1). (68)
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In this way, given m̃ (to facilitate the calculus we take m̃∈N), we choose
s ∈R+ such that m̃(s−1)−1 = s̃+1/2, where s̃ ∈N. So, we have that

T

2
= 2s̃+1

2
π, s̃ ∈N, (69)

and by (67) with m̃(s−1)−1 = s̃+1/2 it follows that k̂= (s̃+1/2)ε−3, where
s̃ ∈N. So, since k̂ is a positive even integer we take ε such that

ε3 = 1
4k
,with k∈N.

Therefore, it follows that Z(0)(t, z∗
0) is a circular orbit of radius s−2/3 on

the plane xy whose period is T = (2s̃+1)π , where s̃ ∈N.
In order to get Ŝ1-symmetric periodic solutions of the perturbed sys-

tem (54), we look for an initial condition in a neighborhood of z∗
0 of the

type

z0 = (mπ,0, s−1/3 +
P1,
P2),

where s=2m̃(2s̃+1)−1 +1, s̃∈N. The solution of the Kepler problem (55),
with initial condition z0, is given by

Z(0)(t, z0)= (((s−1/3+
P1)
−3−1)t+mπ, 
P2 sin t, s−1/3+
P1,
P2 cos t).

To obtain S1-symmetric periodic orbits, by Proposition 4, item 1 and
Proposition 5, item (i), it is sufficient to solve, at time t =T/2, where we
take T/2= (s̃+1/2)π , with s̃ ∈N, the following periodicity equations:

Q1(T /2, z0, ε)= ((s−1/3+
P1)
−3−1)

T

2
+mπ + ε4[Q(1)

1 (T /2, z0, ε)+O(ε4)]
= (m+m̃)π

Q2(T /2, z0, ε)=
P2 sin
T

2
+ ε4[Q(1)

2 (T /2, z0, ε)+O(ε4)]
= 0.

(70)

Let be Φ(X,P )= (Φ1(X,P ),Φ2(X,P ))= (Q1(X,P )− (m+ m̃)π,Q2(X,P ))
= (Q1(T /2, z0, ε)− (m+ m̃)π,Q2(T /2, z0, ε)), where X= (
P1,
P2), P =ε,
so the periodicity equations are equivalent to the system

Φ1(X,P )= ((s−1/3 +
P1)
−3 −1)

T

2
− m̃π + ε4[Q(1)

1 (T /2, z0, ε)+O(ε4)]
= 0

Φ2(X,P )=
P2 sin
T

2
+ ε4[Q(1)

2 (T /2, z0, ε)+O(ε4)]
= 0.

(71)
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Note that similarly to the previous cases, we can extend Φ(X,P ) to the
case ε=0 by defining

Φ1(X,0) = ((s−1/3 +
P1)
−3 −1) T2 − m̃π

Φ2(X,0) = 
P2 sin T
2 ,

and by the choosing of T and s, it follows that Φ(0,0)=0. Here, we verify
that

DXΦ(X, ε)=
(−3(s−1/3 +
P1)

−4 T
2 +O(ε4) 0+O(ε4)

0+O(ε4) sin T
2 +O(ε4)

)
,

where T = (2s̃+1)π and s= 2m̃
2s̃+1 +1, s̃ ∈N. So, it follows that

DXΦ(0,0)=
(− 3π

2 (s)
4/3(2s̃+1) 0
0 ±1

)
,

It is verified an analogous result to Lemma 4. Now, we can use the
Arenstorf’s Theorem to solve the equations in (70). In this way we can
prove in a similar way to Theorem 1 the following result:

Theorem 4. Consider the equations of motion (54) for the elliptic
isosceles restricted three-body problem with collision, where the primaries
move in an elliptic-collision orbit with energy h=1/2 ε−2. If ε= (4k)−1/3 for
k a large enough positive integer, then there exist initial conditions for the
infinitesimal body such that its motion is a Ŝ1-symmetric periodic solution,
near a Keplerian circular orbit on the xy-plane whose period is (2s̃ + 1)π
with s̃ ∈N.

Remark 8. (1) Similar facts to the ones given in Remark 6 are valid
to this symmetry, and analogous results to Corollary 1, 2 and Theorem 2
are also true in this case.

6. PERIODIC SOLUTIONS OF SECOND KIND

In this section we will prove the existence of periodic doubly-
symmetric (Ŝ1 and Ŝ2 symmetric) solutions; Ŝ2 symmetric solutions and
Ŝ1 symmetric solutions as continuation of convenient elliptic orbits of the
Kepler problem via Arenstorf’s Theorem 8.1 for appropriate values of the
parameter ε. As it is clear more ahead, the main difference between this
case with the first kind case, is that here we need to introduce time as a
new variable in order to avoid degeneracy of the periodicity system. This
kind of arguments have been used, for example, by Schmidt in [12].

To study this case we will use the elliptic isosceles restricted three-
body problem with collision in rotating coordinates followed by the
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Delaunay variables (36) (Q1,Q2,P 1,P 2). Thus, the equations of motion
are given by

Ż= F̂(Z), (72)

where Z= (Q1,Q2,P 1,P 2), F̂(Z)= F̂0(Z)+ ε4F̂1(Z, t, ε)+ ε8F̂r (Z, t, ε).

F̂0(Z)= (P−3
1 ,−1,0,0), (73)

F̂1(Z, t, ε) =
(
∂Ĥ1

∂P 1
,
∂Ĥ1

∂P 2
,− ∂Ĥ1

∂Q1
,− ∂Ĥ1

∂Q2

)
,

F̂r (Z, t, ε) =
(
∂Ĥr

∂P 1
,
∂Ĥr

∂P 2
,− ∂Ĥr
∂Q1

,− ∂Ĥr
∂Q2

)
,

where Ĥ1 and Ĥr are given by (30) and (31), respectively. Note that a sim-
ilar result of Lemma 3 holds here. So, in this way we can also use the
estimates of Lemmas 5 and 6.

6.1. Doubly-symmetric Periodic Solutions as Continuation of Elliptic
Kepler’s Orbits

As in the circular case, initially we will show how to obtain doubly
symmetric elliptic orbits of the Kepler problem associated to (73) using
symmetries in the Delaunay variables. The general solution of this system
is given by

Q
(0)
1 (t)= P

−3
10 t+Q10, P

(0)
1 (t)=P 10,

Q
(0)
2 (t)= −t+Q20, P

(0)
2 (t)=P 20,

(74)

for initial conditions (Q10,Q20,P 10,P 20) at t = 0. Now, we consider a
solution of Kepler’s problem with initial conditions z∗

0 ∈L2 when t=0 and
E(0)=0, with

z∗
0 =

(
mπ,

(
i+ 1

2

)
π,P

∗
1,P

∗
2

)
,

where m and i are integers that we are going to choose, without loss of
generality, to be 0 or either 1, and P

∗
1,P

∗
2 are constants to be determined.

Thus, this solution is of the form:

Q
(0)
1 (t, z∗

0) = (P ∗
1)

−3t+mπ, P
(0)
1 (t) =P ∗

1,

Q
(0)
2 (t, z∗

0) =−t+ ( 1
2 + i)π, P

(0)
2 (t) =P ∗

2.
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By Proposition 4, item 3 and Proposition 6 item (i), these elliptic orbits
will be doubly symmetric orbit to Kepler’s problem (73), if we may solve
the set of two equations in two unknowns:

Q
(0)
1 (T /4, z∗

0) = (P ∗
1)

−3 T
4 +mπ = (m+ m̃)π

Q
(0)
2 (T /4, z∗

0) =−T/4+ ( 1
2 + i)π = (1+ i+ j)π, (75)

where m̃, j are integers. The second equation is satisfied taking

T

4
=−

(
j + 1

2

)
π, (76)

where j ∈Z−. And substituting (76) in the first equation of (75), it follows
that

(P
∗
1)

−3 =− m̃

j +1/2
, (77)

where m̃∈Z+. Observe that for instance we have some restrictions in P
∗
2.

Namely, P
∗
2 �=P ∗

1 because the orbit is elliptic but not circular and as P 2 is
the angular momentum P

∗
2 must be also not null. By Remark 3, we will

want also that E(0)= 0 and E(T/4)= k̂π , where k̂ is a convenient even
integer and in this way we must take

T =4k̂πε3. (78)

A comparison between equation (76) and (78) shows that

k̂=−2k(2j +1),

where ε3 = (4k)−1, k a positive integer and j ∈Z−. So, we have

Z(0)(T /4, z∗
0)=

(
(m+ m̃)π, (i+ j +1)π,

(
− m̃

j +1/2

)−1/3

,P
∗
2

)
,

where P
∗
2 is a real positive constant different from P

∗
1 = (− m̃

j+1/2 )
−1/3. By

construction, Z(0)(T /4, z∗
0) lies in L1 and E(T/4)= k̂π , where k̂=−2k(2j+

1). Therefore, the solution Z(0)(t, z∗
0) is a doubly symmetric elliptic orbit of

the Kepler problem with period T =−2(2j+1)π (j ∈Z−) on the plane xy.
Next, we will analyze the perturbed system (72). Firstly, we take ini-

tial conditions in a neighborhood of z∗
0 of the type

z0 =
(
mπ,

(
i+ 1

2

)
π,

(
− m̃

j +1/2

)−1/3

+
P 1,P
∗
2 +
P 2

)
,
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in such a way that a solution Z(t, z0, ε) of (72), with small enough ε �= 0
be a doubly symmetric orbit of second kind. By Lemma 5, we have that
the solution Z(t, z0, ε) of (72) is given by

Q1(t, z0, ε) = (P
∗
1 +
P 1)

−3t+mπ +ε4Q
(1)
1 (t, z0, ε)+O(ε8)

Q2(t, z0, ε) = −t+ (i+ 1
2 )π +ε4Q

(1)
2 (t, z0, ε)+O(ε8)

P 1(t, z0, ε) = P
∗
1 +
P 1 +ε4P

(1)
1 (t, z0, ε)+O(ε8)

P 2(t, z0, ε) = P
∗
2 +
P 2 +ε4P

(1)
2 (t, z0, ε)+O(ε8),

(79)

where P
∗
1 is given in (77). Calling Φ(X,P ) = (Φ1(X,P),Φ2(X,P)) =

(Q1(X,P) − (m̃ + m)π,Q2(X,P) − (i + j + 1)π) = (Q1(T /4, z0, ε) − (m̃ +
m)π,Q2(T /4, z0, ε)− (i + j + 1)π), where X = (T ,
P 1),P = (ε,
P 2). By
Proposition 4, item 3 and Proposition 6 item (ii), to obtain doubly sym-
metric orbit of the system (72), it is sufficient to solve the two below equa-
tions in two unknowns,

Φ1(X,P) = (P ∗
1 +
P 1)

−3 T
4 − m̃π +ε4[Q(1)

1 (T /4, z0, ε)+O(ε4)]=0

Φ2(X,P) =−T/4− (j +1/2)π +ε4[Q(1)
2 (T /4, z0, ε)+O(ε4)]=0,

(80)

called periodicity equations. It is clear that we can extend Φ(X,P) to the
case P=0 by defining

Φ1(X,0) = (P
∗
1 +
P 1)

−3 T
4 − m̃π

Φ2(X,0) = −T/4− (j +1/2)π.

Thus, Φ(X0,0)= 0 when X0 = (−2(2j + 1)π,0). In this case, the matrix
DXΦ(X,P) is given by

DXΦ(X,P)=
( 1

4 (P
∗
1 +
P 1)

−3 +O(ε4) −3(P ∗
1 +
P 1)

−4 T
4 +O(ε4)

− 1
4 +O(ε4) 0+O(ε4)

)
,

where P
∗
1 = (−m̃/(j +1/2))−1/3. So, it follows that

DXΦ(X0,0)=
(

1
4

(
− m̃
j+1/2

)−3
3
2

(
− m̃
j+1/2

)4/3
(2j +1)π

−1/4 0

)
,

whose determinant is not null by the appropriate conditions. Thus, we can
obtain a similar result of Lemma 4. Therefore, now we are in position to
apply Arenstorf’s theorem, to solve the system of equations (80).
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Theorem 5. Consider the equations of motion (72) for the elliptic
isosceles restricted three-body problem with collision, where the primaries
move in an elliptic-collision orbit with energy h=1/2 ε−2. If ε= (4k)−1/3 for
k a large enough positive integer, then there exist initial conditions for the
infinitesimal body such that its motion is a doubly-symmetric periodic solu-
tion, near a Keplerian elliptic orbit on the xy-plane whose period is close to
−2(2j +1)π with j ∈Z−.

Proof. As in Theorem 1, first we observe that under the hypothe-
ses of the theorem we can apply Arenstorf’s Theorem to the periodic-
ity equation (80) for ε in a sufficiently small interval with X = (T ,
P 1)

and P = (ε,
P 2). Thus, there are families (indexed by m, m̃, j, i,P
∗
2) to

two-parameter (ε,
P 2) of initial conditions X
m,m̃,j,i,P

∗
2
(ε,
P 2) such that

Φ(X
m,m̃,j,i,P

∗
2
(ε,
P 2), ε,
P 2) = 0. In order to have periodic solutions

of the elliptic isosceles restricted three-body problem with collision (72),
the conditions in (80) must be satisfied simultaneously with the com-
mensurability condition T/2πε3 ∈ Q. So, since T = T (ε,
P 2) and ε3 =
(4k)−1, we take k ∈ N and 
P 2 ∈ R such that T ((4k)−1/3,
P 2)/2πε3 =
2kT ((4k)−1/3,
P 2)/π ∈Q. Thus, for these ε= (4k)−1/3, where k is a large
enough positive integer, and 
P 2 ∈R we have some initial conditions that
give origin to a solution of (72) which are T = T (ε,
P 2)-periodic and
doubly symmetric. �

Remark 9. Analogous considerations to Remark 6 are valid to this
case and similar results to Corollary 1, 2 and Theorem 2 are also true in
this situation.

6.2. Ŝ2-symmetric Periodic Solutions as Continuation of Elliptic Orbits

We will prove the existence of Ŝ2-symmetric periodic solutions of sec-
ond kind to the perturbed system (72). Again, the first argument is to
obtain Ŝ2-elliptic orbits of Kepler’s problem given by the function (73),
and we consider solutions with initial conditions z∗

0 ∈L2 when t = 0 and
E(0)=0, with

z∗
0 =

(
mπ,

(
i+ 1

2

)
π,P

∗
1,P

∗
2

)
,

where m, i are integers that we will choose, without loss of generality, 0 or
either 1 and P

∗
1,P

∗
2 are constants to be determined. By Proposition 4, item

2 and Proposition 6 item (ii), we can obtain elliptic Ŝ2-symmetric orbit to
the Kepler problem (73), if we may solve the set of two equations at time
t=T/2 in three unknowns:



Periodic Solutions of the Elliptic Isosceles 411

Q
(0)
1 (T /2) = (P ∗

1)
−3 T

2 +mπ = (m+ m̃)π
Q
(0)
2 (T /2) =−T/2+

(
1
2 + i

)
π =

(
i+ j + 1

2

)
π,

(81)

where m̃, j are integers. The second equation is satisfied by

T

2
=−jπ, (82)

where j ∈Z−. And substituting (82) in the first equation of (81), it follows
that

(P
∗
1)

−3 =− m̃
j
, (83)

where m̃ ∈ Z+. By Remark 3, we must have E(0)= 0 and E(T/2)= k̂π ,
where k̂ is a convenient even integer and in this way we must take

T =2k̂πε3. (84)

So, combining (82) and (84) we have k̂=−2kj , with ε3 =(2k)−1, k is a pos-
itive integer and j ∈Z−. So, we have

Z(0)(T /2, z∗
0)=

(
(m+ m̃)π,

(
i+ j + 1

2

)
π,

(
− m̃
j

)−1/3

,P
∗
2

)
,

where P
∗
2 is a real positive constant differ of P

∗
1 = (−m̃/j)−1/3. So, by

construction, Z(0)(T /2, z∗
0) lies on L2 and E(T/2)= k̂π , where k̂= −2kj .

Therefore, the solution Z(0)(t, z∗
0) is a Ŝ2-symmetric elliptic orbit with

period T =−2jπ (j ∈Z−) on the plane xy.
For the perturbed system, we will look for initial conditions in a

neighborhood of z∗
0, in the form

z0 =
(
mπ,

(
i+ 1

2

)
π, (−m̃/j)−1/3 +
P 1,P

∗
2 +
P 2

)
,

in such a way that a solution Z(t, z0) of (72), with a small enough ε �=0,
be a Ŝ2-symmetric orbit of second kind. Again, by Lemma 5 we have that
the solution Z(t, z0, ε) of (72) is given by

Q1(t, ε, z0) = (P
∗
1 +
P 1)

−3t+mπ +ε4Q
(1)
1 (t, z0, ε)+O(ε8)

Q2(t, ε, z0) = −t+ (
i+ 1

2

)
π +ε4Q

(1)
2 (t, z0, ε)+O(ε8)

P 1(t, ε, z0) = P
∗
1 +
P 1 +ε4P

(1)
1 (t, z0, ε)+O(ε8)

P 2(t, ε, z0) = P
∗
2 +
P 2 +ε4P

(1)
2 (t, z0, ε)+O(ε8),

(85)
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where P
∗
1 is given in (83). Let Φ(X,P )= (Φ1(X,P),Φ2(X,P))= (Q1(T /2,


P 1, ε,
P 2) − (m̃ + m)π,Q2(T /2,
P 1, ε,
P 2) − (i + j + 1
2 )π), where

X = (T ,
P 1),P = (ε,
P 2). By Proposition 4, item 2 and Proposition 6
item (ii), to obtain Ŝ2-symmetric orbit of the system (72), it is sufficient
to solve

Φ1(X,P)= (P
∗
1 +
P 1)

−3 T
2 − m̃π +ε4[Q(1)

1 (T /2, z0, ε)+O(ε4)] =0

Φ2(X,P)= −T/2− jπ +ε4[Q(1)
2 (T /2, z0, ε)+O(ε4)] =0.

(86)

By the same reasons of the previous cases (see Remark 5) we can extend
Φ(X,P) to the case P=0 by defining

Φ1(X,0) = (P
∗
1 +
P 1)

−3 T
2 − m̃π

Φ2(X,0) = −T/2− jπ.

Thus, it is clear that Φ(X0,0)=0, where X0 = (−2jπ,0). Here, we have

DXΦ(X,P)=
( 1

2 (P
∗
1 +
P 1)

−3 +O(ε4) −3(P
∗
1 +
P 1)

−4 T
2 +O(ε4)

− 1
2 +O(ε4) 0+O(ε4)

)
,

where P
∗
1 = (−m̃/j)−1/3. So, it follows that

DXΦ(X0,0)=
⎛
⎝

− 1
2
m̃
j

3π(−m̃)4/3j−1/3

−1/2 0

⎞
⎠ ,

whose determinant is not null. Then, we can prove a similar result as in
Lemma 4. Now we are in a position to apply Arenstorf’s theorem to solve
the system of equations (86) using the same arguments as in Theorem 5.

Theorem 6. Consider the equations of motion (72) for the elliptic
isosceles restricted three-body problem with collision, where the primaries
move in an elliptic-collision orbit with energy h= 1/2 ε−2. If ε = (2k)−1/3

for k a large enough positive integer, then there exist initial conditions for
the infinitesimal body such that its motion is a Ŝ2-symmetric periodic solu-
tion, near a Keplerian elliptic orbit on the xy-plane whose period is close to
−2jπ with j ∈Z−.

Remark 10. Similar facts to the Remark 6 are valid to this symme-
try and to this case, we also have that an analogous Corollary 1, 2 and
Theorem 2 are also true in this case.
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6.3. Ŝ1-symmetric Periodic Solutions as Continuation Of Elliptic Orbits

We are going to characterize the solutions of the Kepler problem (73)
with initial conditions z∗

0 ∈L1 when t=0 and E(0)=0,

z∗
0 = (mπ, iπ,P ∗

1,P
∗
2),

where m, i are integers that we will choose, without loss of generality, to
be either 0 or 1, and P

∗
1,P

∗
2 are constants to be determined. These solu-

tions are of the form:

Q
(0)
1 (t, z∗

0) = (P ∗
1)

−3t+mπ, P
(0)
1 (t, z∗

0) =P ∗
1

Q
(0)
2 (t, z∗

0) =−t+ iπ, P
(0)
2 (t, z∗

0) =P ∗
2.

By Proposition 4, item 1 and Proposition 6 item (i), we can obtain a
Ŝ1-symmetric elliptic orbit to the Kepler problem (73), if we can solve the
set of two equations at time t=T/2 in three unknowns:

Q
(0)
1 (T /2, z∗

0) = (P ∗
1)

−3 T
2 +mπ = (m+ m̃)π

Q
(0)
2 (T /2, z∗

0) =−T/2+ iπ = (i+ j)π, (87)

where m̃, j are integers. The second equation is satisfied by

T

2
=−jπ, (88)

where j ∈Z−. Substituting (88) in the first equation of (87), it follows that

(P
∗
1)

−3 =− m̃
j
, (89)

where m̃ ∈ Z+. Observe that we have some freedom in choosing P
∗
2,

because we have only the restrictions P
∗
2 �=P

∗
1 and as P 2 is the angular

momentum, P
∗
2 must be not null. By Remark 3, we will want also that

E(0)= 0 and E(T/2)= k̂π , where k̂ is a convenient even integer, and in
this way we must take

T =2k̂πε3. (90)

So, combining (88) and (90) we have

k̂=−2kj,

with ε3 = (2k)−1, k a positive integer and j ∈Z−. So, we have

Z(0)(T /2, z∗
0)=

(
(m+ m̃)π, (i+ j)π,

(
− m̃
j

)−1/3

,P
∗
2

)
,
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where P
∗
2 is a real positive constant different from P

∗
1 = (−m̃/j)−1/3. So,

by construction, Z(0)(T /2, z∗
0) lies in L1 and E(T/2) = k̂π , where k̂ =

−2kj . Therefore, the solution Z(0)(t, z∗
0) is a Ŝ1-symmetric elliptic orbit

with period T =−2jπ (j ∈Z−) in the xy plane.
Now, we will proceed to study the perturbed system. We will look for

initial conditions in a neighborhood of z∗
0, of type

z0 = (mπ, iπ, (−m̃/j)−1/3 +
P 1,P
∗
2 +
P 2),

in such a way that a solution Z(t, z0, ε) of (72), with small enough ε �=0,
be a Ŝ1-symmetric orbit of second kind.

By Lemma 5 we have that the solution Z(t, z0, ε) of (72) is given by

Q1(t, z0, ε) = (P
∗
1 +
P 1)

−3t+mπ +ε4Q
(1)
1 (t, z0, ε)+O(ε8)

Q2(t, z0, ε) = −t+ iπ +ε4Q
(1)
2 (t, z0, ε)+O(ε8)

P 1(t, z0, ε) = P
∗
1 +
P 1 +ε4P

(1)
1 (t, z0, ε)+O(ε8)

P 2(t, z0, ε) = P
∗
2 +
P 2 +ε4P

(1)
2 (t, z0, ε)+O(ε8),

(91)

where P
∗
1 is given in (89). Defining, Φ(X,P ) = (Φ1(X,P),Φ2(X,P)) =

(Q1(T /2, z0, ε)− (m̃+m)π, Q2(T /2, z0, ε)− (i+j)π), where X= (T ,
P 1),

P= (ε,
P 2), and by Proposition 4, item 1 and Proposition 6 item (i), to
obtain a Ŝ1-symmetric orbit of the system (72), it is enough to solve,

Φ1(X,P)= (P
∗
1 +
P 1)

−3 T
2 − m̃π +ε4[Q(1)

1 (T /2, z0, ε)+O(ε4)] =0

Φ2(X,P)= −T/2− jπ +ε4[Q(1)
2 (T /2, z0, ε)+O(ε4)] =0.

(92)

By the same reasons of the previous cases (see Remark 5) we can extend
Φ(X,P) to the case P=0 by defining

Φ1(X,0) = (s−1/3 +
P 1)
−3 T

2 − m̃π
Φ2(X,0) =−T

2 − jπ.
Thus, it is clear that Φ(X0,0)=0, where X0 = (−2jπ,0). It is verified that

DXΦ(X,P)=
( 1

2 (P
∗
1 +
P 1)

−3 +O(ε4) −3(P
∗
1 +
P 1)

−4 T
2 +O(ε4)

− 1
2 +O(ε4) 0+O(ε4)

)
,

where P
∗
1 = (−m̃/j)−1/3. So, it follows that

DXΦ(X0,0)=
⎛
⎝

− 1
2
m̃
j

−3πm̃4/3j−1/3

−1/2 0

⎞
⎠ ,

whose determinant is not null. Easily we prove a similar result as in
Lemma 4. Thus, we can apply Arenstorf’s theorem to solve the system of
Eqs. (92) in a similar way of Theorem 5.
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Theorem 7. Consider the equations of motion (72) for the elliptic
isosceles restricted three-body problem with collision, where the primaries
move in an elliptic-collision orbit with energy h= 1/2 ε−2. If ε = (2k)−1/3

for k a large enough positive integer, then there exist initial conditions for
the infinitesimal body such that its motion is a Ŝ1-symmetric periodic solu-
tion, near a Keplerian elliptic orbit on the xy-plane whose period is close to
−2jπ with j ∈Z−.

Remark 11. Similar consequences of Remark 6 are valid to this
symmetry and an adapted version of Corollary 1, 2 and Theorem 2 are
also true in this case.

7. PERIODIC ORBITS FAR FROM THE PRIMARIES NOT
NECESSARILY SYMMETRIC

In this section using similar arguments to [9] in Chapter 9 or equiva-
lently to Section E of Chapter VI in [8] (both applied to an autonomous
Hamiltonian system) or in [6] (applied to a periodic Hamiltonian system),
we will consider the situation when the infinitesimal particle is far from
the primaries. Without loss of generality we will assume that ε= 1, then
system (13) is 2π -periodic.

Theorem 8. There exist two one-parameter families of nearly circular
large periodic solutions of the elliptic collision isosceles restricted 3-body
problem whose period is nearly 2π . These orbits tend to infinity.

Proof. The proof is based in similar arguments to the ones used in
[8] pp. 161 in the planar circular restricted three-body problem. But, we
need to provide the arguments of the proof in our case because they are
problems from different nature.

Now, we will consider the situation when the infinitesimal body is far
from the primaries in which case it will be called the comet. To consider
orbits close to infinity, scale the position variables by µ−2 and momentum
variables by µ, where µ is a positive parameter.

Like in the case of the planar restricted 3-body problem, we can-
not prove the continuation of the periodic solutions in fixed coordinates
because the system in these coordinates is very degenerated. For this rea-
son, we consider a rotating coordinate system (ξ, η) obtained through the
symplectic transformation (15). In this way we have that the equations of
motion in the new variables are given by
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ξ̇ =pξ +η, ṗξ =pη− ξ

(ξ2 +η2 + ρ2(t)
4 )3/2

η̇=pη− ξ, ṗη=−pξ − η

(ξ2 +η2 + ρ2(t)
4 )3/2

,

and the new Hamiltonian function is

H(ξ, η,pξ ,pη, t)=
p2
ξ +p2

η

2
+ηpξ − ξpη− 1√

ξ2 +η2 + ρ2(t)
4

. (93)

The “comet variables” (x, y,px,py) are introduced by

ξ =µ−2x, η=µ−2y,pξ =µpx,pη=µpy.
Since this change is µ-symplectic, the Hamiltonian function in the comet
variables is

H=H(q,p, t,µ)=−qT Kp+µ3

⎛
⎝‖p‖2

2
− 1√

‖q‖2 +µ4 ρ2(t)
4

⎞
⎠ , (94)

where q = (x, y),p= (px,py).
Since H is an analytic function in µ, expanding it as a Taylor series

around µ=0, we have that

H=−qT Kp+µ3

(‖p‖2

2
− 1

‖q‖

)
+O(µ7). (95)

Observe that when µ is very small, the infinitesimal body is close to infin-
ity and by the Hamiltonian (95) near to infinity the Coriolis force domi-
nates. Introducing symplectic polar coordinates (r, θ,R,Θ) given by

x= r cos θ, y= r sin θ

px =R cosΘ− Θ

r
sin θ, py =R sin θ + Θ

r
,

the Hamiltonian (95) becomes

H=H(r, θ,R,Θ, t,µ)=−Θ+µ3

(
1
2

[
R2 + Θ2

r2
− 1
r

)
+O(µ7)

]
.
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So, the equations of motion are given by

ṙ =µ3R+O(µ7), Ṙ = µ3Θ2

r3 − µ3

r2 +O(µ7),

θ̇ =−1+ µ3Θ

r2 +O(µ7), Θ̇ =0+O(µ7).
(96)

The parameter µ is inversely proportional to the square root of the dis-
tance of the infinitesimal body from the primaries. Thus, as µ→ 0, this
distance goes to infinity and the form of the differential equation (96)
degenerates. We cannot, therefore, use perturbation methods which rely on
solving the differential equation when µ= 0. Instead, we need to obtain
solutions for µ in a deleted neighborhood of µ= 0, and to do this, we
need to approximate solutions to this system of differential equations and
good estimates. Also, since we are looking for periodic solutions far from
the primaries and therefore of long period, we need these approximate
solutions for large values of t and small values of µ.

Now, we will consider the equation of the first approximation by
dropping the µ7 term, i.e., consider the equations

ṙ =µ3R, Ṙ = µ3Θ2

r3 − µ3

r2 ,

θ̇ =−1+ µ3Θ

r2 , Θ̇ =0,
(97)

which are the equations of motion of the Kepler problem in the scale
rotating polar. Omitting these terms gives us a system where Θ is a first
integral, so let Θ = ±√

2c, where c ∈ Z. The circular orbit ψ(t) given by
r(t)= c2,R = 0 is a periodic solution of (97) with period 2πc3 (−c3 ±√

2 µ3)−1. Observe that Θ is also a first integral to the full problem, so
we can reduce the dimension of the space phase in one unit and moreover
introducing the Poincaré map in a level surface of the angular momentum
Θ and so, we will reduce it in one more unit. In this way, when we line-
arize the system (97), we will work only in the variables r and R. By lin-
earizing the r and R equations about ψ(τ) we have

ṙ=µ3R, Ṙ=−4µ3

c6
.

This system has solutions of the form exp(± 2µ3

c3 ), and so the non-trivial

multipliers of the circular orbits of (97) are exp( ±2πµ3 i

−c3±√
2 µ3 )=∓ 2π

c3 µ
3 i+

O(µ6).
Consider the Poincaré map in a level surface of the angular momen-

tum Θ about the circular orbit ψ(τ). Let u be the coordinate in this
surface, with u= 0, corresponding to the circular orbit when µ= 0. The
Poincaré map has a fixed point at the origin up to the µ3 terms and
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it is the identity up the terms of order µ2, and at µ3 there is a term
whose Jacobian has eigenvalues ∓ 2π

c3 i. That is, the Poincaré map is of
the form P(u)=u+µ3p(u)+O(µ6), where p(0)= 0, ∂p(0)/∂u has eigen-
values ∓ 2π

c3 i. So, ∂p(0)/∂u is non-singular. Applying the Implicit Func-
tion Theorem to G(u,µ)= (P (u)−u)/µ3 =p(u)+O(µ3). Since G(0,0)=
0 and ∂G(0,0)/∂u= ∂p(0)/∂u �= 0, there is a smooth function u(µ) such
that G(u(µ),µ)= 0 for all sufficiently small µ. So, the two solutions can
be continued from the equations in (97) to the full equations, where
the O(µ7) terms are included. In the scale variables, these solutions
have period T approximated to 2π . Thus, we conclude the proof of the
theorem. �

8. APPENDIX

8.1. Continuation Method with Non-regular Dependency on the Parameter

Let U be an open domain in R
n,V an open domain in R

k, X ∈U
and P = (ε, y1, y2, . . . , yk−1). Poincaré’s method of analytic continuation
reduces to solving a system of equations Φ(X,P), with Φ(X0,0)= 0 for
X as function of P. If the system is analytic or differentiable enough and
DXΦ(X0,0) �= 0, then the Implicit Function Theorem guarantees the exis-
tence of such a solution. There are cases, however, where the function Φ

is not differentiable with respect to P, so the Implicit Function Theorem
cannot be applied. Arenstorf proved a result that dropped this problem.
The differenciability with respect to P is not required and instead of this
condition, he uses that the function Φ satisfies some mild regularity con-
ditions. Arenstorf’s Fixed Point Theorem is as follows:

Theorem A (Arenstorf ’s Theorem). We assume W and V to be Banach
spaces with elements X and P respectively. Let g be a mapping from the
product space W × V into W , given be (X,P)→ g(X,P) ∈W , and defined
for X in a ball B∗ around X=X0 ∈W and P in a region B of V containing
P = 0, with g(X0,0)= X0, and B∗ = {X ∈W/‖X − X0‖�α∗, α∗> 0}. If, for
every P∈B,g is differentiable with respect to X ∈B∗ and

|DXg(X,P)|� ζ ∗ � 1
2
onB∗ ×B,

(where the norm of the linear operator DXg(X,PP) is the sup norm) and
if

‖g(X0,P)−X0‖� α∗

2
, onB,
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then there exists a function X(P) with

g(X(P ),P)=X(P),X(P)∈B∗f orP∈B,X(0)=X0.

In [3] the reader can find the proof of this theorem. We observe that
neither continuity of g in X,P together, nor continuity of DXg at all is
required here in contrast to the usual formulation and derivation of the
Implicit Function Theorem.

Remark 12. It is possible to check from the proof of Arenstorf’s
Theorem ([3]) that if the function g is continuous in (X,P) then the func-
tion X(P) is also continuous in P in appropriate neighborhood.

Applications of the Arenstorf theorem were given by Cors et al in
[4, 5] and Meyer and Howison in [10]. They showed the existence of
symmetric periodic orbits in the restricted three-body problem, in con-
trast with others results which generally use the Poincaré Continuation
Method, or more precisely, the Implicit Function Theorem to obtain peri-
odic orbits. The problem of differentiability of the equations of periodic in
the problems of continuation of periodic orbits, to some extent, is dropped
by Arenstorf’s theorem.

By mean of this theorem it can be seen that a sufficient condition
for the existence of a solution of Φ(X,P)= 0, in a neighborhood of X =
X0, P=0 is that the determinant of DXΦ(X0,0) does not vanish together
with some regularity conditions, as stated in the following proposition. Its
proof follows in a similar way to the proof of proposition 2 in [5], but
since we will use this kinds of arguments through this paper we decide to
include the proof with all the details.

Proposition 7. Let U be an open domain in R
n, V a region of R

k

containing P = 0. Let X ∈U, P = (ν, y1, . . . , yk−1)∈V and Φ :U ×V → R
n

with Φ(X0,0)=0, differentiable, for every P∈V , with respect to X∈U , and
DXΦ(0,0) non-singular. Assume that there exist positive constants b, c, d
such that for X ∈U

1. |(DXΦ(X0,0))−1|�b,
2. |DXΦ(X,P)−DXΦ(X0,0)|� c (‖X −X0‖+ν),
3. ‖Φ(X0,P)‖�d ν.

Then there exist a function X(P ) ∈ U , defined for P ∈ V ′ ⊂ V , such that
Φ(X(P),P)=0 and X(0)=X0.

Proof. Let α∗ = d

2c(db+1/2)
, β= 1

4bc(db+1/2)
and let the auxiliary

function

g(X,P)=X − (DXφ(X0,0))−1φ(X,P). (98)
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Since by hypothesis Φ(X,P ) is differentiable with respect to X ∈ U for
every P ∈V , we have that g(X,P) is differentiable, for every P ∈V , with
respect to X ∈U . Now, by hypothesis 1 and 2 we have

‖DXg(X,P)‖ = ‖I − (DXΦ(X0,0))
−1DXΦ(X,P)‖

�‖(DXΦ(X0,0))−1‖DXΦ(X,P)−DXΦ(0,0)‖
�bc(‖X −X0‖+ν)�bc(α∗ +β)= 1

2
,

considering X ∈U and ν such that ‖X −X0‖�α∗ and ν�β, here I repre-
sents the identity matrix.

On the other hand, by hypothesis 1 and 3, for ν�β the following
inequality holds,

‖g(X0,P)−X0‖=‖(DXΦ(X0,0))−1Φ(X0,P)‖�bdν�bdβ= 1
2
α∗.

Therefore, g satisfies the hypothesis of Arenstorf’s Fixed Point Theorem
and there exists a neighborhood of the origin V ′ ⊂ V and a function
X(P)∈U such that Φ(X(P),P)=0 for P∈V ′. �

This result will be used to show the existence of periodic solutions,
when the infinitesimal body is at great distance from the primaries and the
perturbation can be seen as a fast periodic forcing. But, for this we will
need of good long term estimate such that the hypothesis of the Proposi-
tion 7 were obtained. So, in the next section it will be shown results about
approximation of solutions of the perturbed system.

8.2. Approximation of Solutions of the Perturbed System

Consider the following differential equation

Ż=F(Z, t, ε), (99)

where Z∈R
n, t ∈R, ε ∈R+ and

F(Z, t, ε)=F0(Z)+ εlF1(Z, t, ε)+ εl+rFr (Z, t, ε),
where l > 0, r > 0. This case is slightly different to the case considered
in [5].

Let z0 be an initial condition such that Z(0)(t, z0) is a solution of
Ż = F0(Z) which remains bounded and bounded away from the singular-
ities. Let C⊂R

6 be a compact neighborhood of Z(0)(t, z0) without singu-
larities and let the functions F0, ε

lF1, ε
l+rFr be continuous for Z ∈ C, ε ∈

[0, ε1], t ∈ R. Furthermore, suppose that F0,F1 and Fr together with all
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their derivatives with respect to Z are bounded on C by a positive con-
stant, say, c1 independent of ε. So, in particular, we have that F0 is Lips-
chitz with respect to the variable Z with , say, a positive constant c2. In
what follows, the maximum norm for vectors v ∈ R

6 and the usual norm
of the supreme on the unit ball for linear operators will be used. The next
two lemma, as seen in [5], show that the solution of Eq. (99) can be writ-
ten as the solution of Ż = F0(Z) plus terms which are of order εl , and
the same is true about its partial derivatives with respect to the initial
conditions.

Lemma 5. Let z0 be the initial condition such that Z(0)(t, z0) is a solu-
tion of

Ż=F0(Z),

which remains bounded and bounded away from the singularities. Let
Z(t, z0, ε) be a solution of the system (99) with initial condition z0. Then,
it is verified that

Z(t, z0, ε)=Z(0)(t, z0)+ εlZ(1)(t, z0, ε)+Zr (t, z0, ε),

where Z(1)(t, z0, ε) is the solution of the variational equation

Ż(1)(t, z0, ε)=DF0(Z(0)(t, z0))Z(1)(t, z0, ε)+F1(Z(0)(t, z0), t, ε), (100)

which is bounded on C with initial condition Z(1)(0, z0, ε)=0, where DF(·) is
the matrix whose entries are the partial derivatives of F with respect to the
Z variable, and Zr (t, z0, ε) is O(εl+s), where s=Min{l, r} in a finite interval
of time.

Proof. The prove is analogous to Lemma 3 in [5]. �
The next lemma shows that similar bounds hold for the partial of Z1

and Zr with respect to Z.

Lemma 6. Let Zr (t, z0, ε) and Z1(t, z0, ε)be as Lemma 5. Then
Dz0 Zr (t, z0, ε) is O(εl+s), where s = min{l, r} and Dz0 Z1(t, z0, ε) is O(εl).
for t ∈[0, T ∗].

Proof. The proof is analogous to Lemma 4 in [5]. �

8.3. Relation between the Variables

We have the following result:
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Lemma 7. The expression of ‖q‖, which coincides with the expression
of ‖q̂‖, in the Delaunay–Poincaré variables (27), obtained as power series
in Q2,P1,P2 near Q2 =0,P1 = s−1/3,P2 =0 is given by

‖q‖ = s−2/3 + s−1/2Q2 sinQ1 − s−1/2P2 cosQ1 +2s−1/3
(
P1 − s−1/3

)

+ s−1/3Q2
2 cos2Q1 + 3

2
s−1/6Q2

(
P1 − s−1/3

)
sinQ1

+2s−1/3Q2P2 sinQ1 cosQ1 +
(
P1 − s−1/3

)2 − 3
2
s−1/6

(
P1 − s−1/3

)

×P2 cosQ1 + s−1/3P 2
2 sinQ2

1 +O
(
‖X‖3

)
,

where X = (Q2,P1 − s−1/3,P2)= (
Q2,
P1,
P2). And the expression of
‖q̂‖ in the Delaunay variables (36), obtained as power series in P1,P2 near
P1 = s−1/3,P2 =P ∗

2 , where s∈Z and P ∗
2 is a non-zero real constant that dif-

fer of s−1/3, is given by

‖q̂‖ = s−2/3 −
(
s−2/3 −

(
P

∗
2

)2
)

sinQ1 − s−1/3

√
s−2/3 +

(
P

∗
2

)2
cosQ1

+

⎛
⎜⎜⎝2s−1/3 −

⎛
⎜⎜⎝

s−2/3
√
s−2/3 +

(
P

∗
2

)2
+

√
s−2/3 +

(
P

∗
2

)2

⎞
⎟⎟⎠ cosQ1 −2s−1/3 sinQ1

⎞
⎟⎟⎠

×
(
P 1 − s−1/3

)
+

⎛
⎜⎜⎝− vw√

s−2/3 +
(
P

∗
2

)2
cosQ1 +2w sinQ1

⎞
⎟⎟⎠

(
P 2 −P ∗

2

)

+

⎛
⎜⎜⎝

⎛
⎜⎜⎝− 3s−1/3

2

√
s−2/3 +

(
P

∗
2

)2
+ s−1

2
(
s−2/3 + (

P2∗)2
)3/2

⎞
⎟⎟⎠ cosQ1 +1− sinQ1

⎞
⎟⎟⎠

×
(
P 1 − s−1/3

)2 +

⎛
⎜⎜⎜⎝

s−2/3P
∗
2(

s−2/3 +
(
P

∗
2

)2
)3/2

− P
∗
2√

s−2/3 +
(
P

∗
2

)2

⎞
⎟⎟⎟⎠
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× cosQ1

(
P 1 − s−1/3

)(
P 2 −P ∗

2

)

+

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝− s−1/3

2

√
s−2/3 +

(
P

∗
2

)2
+

s−1/3
(
P

∗
2

)2

2
(
s−2/3 +

(
P

∗
2

)2
)3/2

⎞
⎟⎟⎟⎠ cosQ1 + sinQ1

⎞
⎟⎟⎟⎠

×
(
P 2 −P ∗

2

)2 +O
(
‖X‖3

)
,

where X=
(
P 1 − s−1/3,P 2 −P ∗

2

)
= (
P1,
P2) .
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